1
|
Günter M, Mueller KAL, Salazar MJ, Gekeler S, Prang C, Harm T, Gawaz MP, Autenrieth SE. Immune signature of patients with cardiovascular disease predicts increased risk for a severe course of COVID-19. Eur J Immunol 2024; 54:e2451145. [PMID: 39094122 DOI: 10.1002/eji.202451145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection can lead to life-threatening clinical manifestations. Patients with cardiovascular disease (CVD) are at higher risk for severe courses of COVID-19. So far, however, there are hardly any strategies for predicting the course of SARS-CoV-2 infection in CVD patients at hospital admission. Thus, we investigated whether this prediction is achievable by prospectively analysing the blood immunophenotype of 94 nonvaccinated participants, including uninfected and acutely SARS-CoV-2-infected CVD patients and healthy donors, using a 36-colour spectral flow cytometry panel. Unsupervised data analysis revealed little differences between healthy donors and CVD patients, whereas the distribution of the cell populations changed dramatically in SARS-CoV-2-infected CVD patients. The latter had more mature NK cells, activated monocyte subsets, central memory CD4+ T cells, and plasmablasts but fewer dendritic cells, CD16+ monocytes, innate lymphoid cells, and CD8+ T-cell subsets. Moreover, we identified an immune signature characterised by CD161+ T cells, intermediate effector CD8+ T cells, and natural killer T (NKT) cells that is predictive for CVD patients with a severe course of COVID-19. Thus, intensified immunophenotype analyses can help identify patients at risk of severe COVID-19 at hospital admission, improving clinical outcomes through specific treatment.
Collapse
Affiliation(s)
- Manina Günter
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
- German Cancer Research Centre, Research Group Dendritic Cells in Infection and Cancer, Heidelberg, Germany
| | - Karin Anne Lydia Mueller
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Mathew J Salazar
- German Cancer Research Centre, Research Group Dendritic Cells in Infection and Cancer, Heidelberg, Germany
| | - Sarah Gekeler
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Carolin Prang
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Tobias Harm
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Meinrad Paul Gawaz
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Stella E Autenrieth
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
- German Cancer Research Centre, Research Group Dendritic Cells in Infection and Cancer, Heidelberg, Germany
| |
Collapse
|
2
|
Ibraheem Y, Bayarsaikhan G, Macalinao ML, Kimura K, Yui K, Aoshi T, Inoue SI. γδ T cell-mediated activation of cDC1 orchestrates CD4 + Th1 cell priming in malaria. Front Immunol 2024; 15:1426316. [PMID: 39211036 PMCID: PMC11357926 DOI: 10.3389/fimmu.2024.1426316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
γδ T cells facilitate the CD4+ T helper 1 (Th1) cell response against Plasmodium infection by activating conventional dendritic cells (cDCs), although the underlying mechanism remains elusive. Our study revealed that γδ T cells promote the complete maturation and production of interleukin-12 and CXCR3-ligands specifically in type 1 cDCs (cDC1), with minimal impact on cDC2 and monocyte derived DCs (Mo-DCs). During the initial infection phase, γδ T cell activation and temporal accumulation in the splenic white pulp, alongside cDC1, occur via CCR7-signaling. Furthermore, cDC1/γδ T cell interactions in the white pulp are amplified through CXCR3 signaling in γδ T cells, optimizing Th1 cell priming by cDC1. We also demonstrated how transitional Th1 cells arise in the white pulp before establishing their presence in the red pulp as fully differentiated Th1 cells. Additionally, we elucidate the reciprocal activation between γδ T cells and cDC1s. These findings suggest that Th1 cell priming is orchestrated by this reciprocal activation in the splenic white pulp during the early phase of blood-stage Plasmodium infection.
Collapse
MESH Headings
- Th1 Cells/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Animals
- Mice
- Lymphocyte Activation/immunology
- Malaria/immunology
- Malaria/parasitology
- Mice, Inbred C57BL
- Receptors, CXCR3/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, CCR7/metabolism
- Receptors, CCR7/immunology
- Signal Transduction
- Spleen/immunology
- Cell Differentiation/immunology
- Female
Collapse
Affiliation(s)
- Yarob Ibraheem
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ganchimeg Bayarsaikhan
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | - Kazumi Kimura
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Katsuyuki Yui
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Taiki Aoshi
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shin-Ichi Inoue
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
3
|
Maurice NJ, Erickson JR, DeJong CS, Mair F, Taber AK, Frutoso M, Islas LV, Vigil ALB, Lawler RL, McElrath MJ, Newell EW, Sullivan LB, Shree R, McCartney SA. Converging cytokine and metabolite networks shape asymmetric T cell fate at the term human maternal-fetal interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598377. [PMID: 38915597 PMCID: PMC11195144 DOI: 10.1101/2024.06.10.598377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Placentation presents immune conflict between mother and fetus, yet in normal pregnancy maternal immunity against infection is maintained without expense to fetal tolerance. This is believed to result from adaptations at the maternal-fetal interface (MFI) which affect T cell programming, but the identities (i.e., memory subsets and antigenic specificities) of T cells and the signals that mediate T cell fates and functions at the MFI remain poorly understood. We found intact recruitment programs as well as pro-inflammatory cytokine networks that can act on maternal T cells in an antigen-independent manner. These inflammatory signals elicit T cell expression of co-stimulatory receptors necessary for tissue retention, which can be engaged by local macrophages. Although pro-inflammatory molecules elicit T cell effector functions, we show that additional cytokine (TGF-β1) and metabolite (kynurenine) networks may converge to tune T cell function to those of sentinels. Together, we demonstrate an additional facet of fetal tolerance, wherein T cells are broadly recruited and restrained in an antigen-independent, cytokine/metabolite-dependent manner. These mechanisms provide insight into antigen-nonspecific T cell regulation, especially in tissue microenvironments where they are enriched.
Collapse
Affiliation(s)
- Nicholas J Maurice
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jami R Erickson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Caitlin S DeJong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Alexis K Taber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Marie Frutoso
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Laura V Islas
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Richard L Lawler
- Immune Monitoring Core, Fred Hutchinson Cancer Center, Seattle, WA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Raj Shree
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| | - Stephen A McCartney
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| |
Collapse
|
4
|
Papaioannou S, See JX, Jeong M, De La Torre C, Ast V, Reiners-Koch PS, Sati A, Mogler C, Platten M, Cerwenka A, Stojanovic A. Liver sinusoidal endothelial cells orchestrate NK cell recruitment and activation in acute inflammatory liver injury. Cell Rep 2023; 42:112836. [PMID: 37471222 DOI: 10.1016/j.celrep.2023.112836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/30/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) rapidly clear lipopolysaccharide (LPS) from the bloodstream and establish intimate contact with immune cells. However, their role in regulating liver inflammation remains poorly understood. We show that LSECs modify their chemokine expression profile driven by LPS or interferon-γ (IFN-γ), resulting in the production of the myeloid- or lymphoid-attracting chemokines CCL2 and CXCL10, respectively, which accumulate in the serum of LPS-challenged animals. Natural killer (NK) cell exposure to LSECs in vitro primes NK cells for higher production of IFN-γ in response to interleukin-12 (IL-12) and IL-18. In livers of LPS-injected mice, NK cells are the major producers of this cytokine. In turn, LSECs require exposure to IFN-γ for CXCL10 expression, and endothelial-specific Cxcl10 gene deletion curtails NK cell accumulation in the inflamed livers. Thus, LSECs respond to both LPS and immune-derived signals and fuel a positive feedback loop of immune cell attraction and activation in the inflamed liver tissue.
Collapse
Affiliation(s)
- Sophia Papaioannou
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jia-Xiang See
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mingeum Jeong
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Volker Ast
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute for Clinical Chemistry, University Hospital Mannheim (UMM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp-Sebastian Reiners-Koch
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Ankita Sati
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU), Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Michael Platten
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU), Heidelberg, Germany; Department of Neurology, University Hospital Mannheim (UMM), MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Ana Stojanovic
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
5
|
van Wolfswinkel M, van Meijgaarden KE, Ottenhoff THM, Niewold P, Joosten SA. Extensive flow cytometric immunophenotyping of human PBMC incorporating detection of chemokine receptors, cytokines and tetramers. Cytometry A 2023. [PMID: 36898852 DOI: 10.1002/cyto.a.24727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/19/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Characterization of immune cells is essential to advance our understanding of immunology and flow cytometry is an important tool in this context. Addressing both cellular phenotype and antigen-specific functional responses of the same cells is valuable to achieve a more integrated understanding of immune cell behavior and maximizes information obtained from precious samples. Until recently, panel size was limiting, resulting in panels generally focused on either deep immunophenotyping or functional readouts. Ongoing developments in the field of (spectral) flow cytometry have made panels of 30+ markers more accessible, opening up possibilities for advanced integrated analyses. Here, we optimized immune phenotyping by co-detection of markers covering chemokine receptors, cytokines and specific T cell/peptide tetramer interaction using a 32-color panel. Such panels enable integrated analysis of cellular phenotypes and markers assessing the quality of immune responses and will contribute to our understanding of the immune system.
Collapse
Affiliation(s)
| | | | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, The Netherlands
| | - Paula Niewold
- Department of Infectious Diseases, Leiden University Medical Center, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, The Netherlands
| |
Collapse
|
6
|
Garg A, Khan S, Luu N, Nicholas DJ, Day V, King AL, Fear J, Lalor PF, Newsome PN. TGFβ 1 priming enhances CXCR3-mediated mesenchymal stromal cell engraftment to the liver and enhances anti-inflammatory efficacy. J Cell Mol Med 2023; 27:864-878. [PMID: 36824012 PMCID: PMC10002976 DOI: 10.1111/jcmm.17698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/25/2023] Open
Abstract
The immunomodulatory characteristics of mesenchymal stromal cells (MSC) confers them with potential therapeutic value in the treatment of inflammatory/immune-mediated conditions. Previous studies have reported only modest beneficial effects in murine models of liver injury. In our study we explored the role of MSC priming to enhance their effectiveness. Herein we demonstrate that stimulation of human MSC with cytokine TGβ1 enhances their homing and engraftment to human and murine hepatic sinusoidal endothelium in vivo and in vitro, which was mediated by increased expression of CXCR3. Alongside improved hepatic homing there was also greater reduction in liver inflammation and necrosis, with no adverse effects, in the CCL4 murine model of liver injury treated with primed MSC. Priming of MSCs with TGFβ1 is a novel strategy to improve the anti-inflammatory efficacy of MSCs.
Collapse
Affiliation(s)
- Abhilok Garg
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sheeba Khan
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - N Luu
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Davies J Nicholas
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Victoria Day
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Andrew L King
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Janine Fear
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Patricia F Lalor
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Philip N Newsome
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK.,Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
7
|
Westerlund J, Askman S, Pettersson Å, Hellmark T, Johansson ÅCM, Hansson M. Suppression of T-Cell Proliferation by Normal Density Granulocytes Led to CD183 Downregulation and Cytokine Inhibition in T-Cells. J Immunol Res 2022; 2022:8077281. [PMID: 36438199 PMCID: PMC9683987 DOI: 10.1155/2022/8077281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2023] Open
Abstract
Normal density granulocytes (NDGs) can suppress T-cell responses in a similar way as myeloid-derived suppressor cells (MDSCs). In this study, we tested the hypothesis that NDGs from healthy donors preferentially inhibit T helper 1 (Th1) cells and investigated the myeloid-derived suppressive effect in different T-cell populations. We found that NDG-induced suppression of T-cell proliferation was contact dependent, mediated by integrin CD11b, and dependent on NDG-production of reactive oxygen species (ROS). The suppression was rapid and occurred within the first few hours of coculture. The suppression did not influence the CD8+/CD4+ ratio indicating an equal sensitivity in these populations. We further analyzed the CD4+ T helper subsets and found that NDGs induced a loss of Th1 surface marker, CD183, that was unrelated to ligand-binding to CD183. In addition, we analyzed the Th1, Th2, and Th17 cytokine production and found that all cytokine groups were suppressed when T-cells were incubated with NDGs. We therefore concluded that NDGs do not preferentially suppress Th1-cells. Instead, NDGs generally suppress Th cells and cytotoxic T-cells but specifically downregulate the Th1 marker CD183.
Collapse
Affiliation(s)
- Julia Westerlund
- Lund University, Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, BMC B13, 22184 Lund, Sweden
| | - Sandra Askman
- Lund University, Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, BMC B13, 22184 Lund, Sweden
- Skåne University Hospital, Department of Respiratory Medicine and Allergology, 22185 Lund, Sweden
| | - Åsa Pettersson
- Lund University, Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, BMC B13, 22184 Lund, Sweden
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Nephrology, Barngatan 2, 22185 Lund, Sweden
| | - Thomas Hellmark
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Nephrology, Barngatan 2, 22185 Lund, Sweden
| | - Åsa C. M. Johansson
- Lund University, Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, BMC B13, 22184 Lund, Sweden
- Skåne University Hospital, Region Skåne, Clinical Genetics and Pathology, 22185 Lund, Sweden
| | - Markus Hansson
- Skåne University Hospital, Department of Hematology, Oncology and Radiation Physics, 22185 Lund, Sweden
- University of Göteborg, Sahlgrenska Academy, Institute of Medicine, Department of Internal Medicin and clinical nutrition, Bruna stråket 5, Plan 5, 41325 Göteborg, Sweden
| |
Collapse
|
8
|
Eiger DS, Boldizsar N, Honeycutt CC, Gardner J, Kirchner S, Hicks C, Choi I, Pham U, Zheng K, Warman A, Smith JS, Zhang JY, Rajagopal S. Location bias contributes to functionally selective responses of biased CXCR3 agonists. Nat Commun 2022; 13:5846. [PMID: 36195635 PMCID: PMC9532441 DOI: 10.1038/s41467-022-33569-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/13/2022] [Indexed: 01/19/2023] Open
Abstract
Some G protein-coupled receptor (GPCR) ligands act as "biased agonists" that preferentially activate specific signaling transducers over others. Although GPCRs are primarily found at the plasma membrane, GPCRs can traffic to and signal from many subcellular compartments. Here, we determine that differential subcellular signaling contributes to the biased signaling generated by three endogenous ligands of the GPCR CXC chemokine receptor 3 (CXCR3). The signaling profile of CXCR3 changes as it traffics from the plasma membrane to endosomes in a ligand-specific manner. Endosomal signaling is critical for biased activation of G proteins, β-arrestins, and extracellular-signal-regulated kinase (ERK). In CD8 + T cells, the chemokines promote unique transcriptional responses predicted to regulate inflammatory pathways. In a mouse model of contact hypersensitivity, β-arrestin-biased CXCR3-mediated inflammation is dependent on receptor internalization. Our work demonstrates that differential subcellular signaling is critical to the overall biased response observed at CXCR3, which has important implications for drugs targeting chemokine receptors and other GPCRs.
Collapse
Affiliation(s)
| | | | | | - Julia Gardner
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Stephen Kirchner
- Department of Dermatology, Duke University, Durham, NC, 27707, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27707, USA
| | - Chloe Hicks
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Issac Choi
- Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Uyen Pham
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Kevin Zheng
- Harvard Medical School, Boston, MA, 02115, USA
| | - Anmol Warman
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Jeffrey S Smith
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Dermatology Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University, Durham, NC, 27707, USA
- Department of Pathology, Duke University, Durham, NC, 27710, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA.
- Department of Medicine, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
9
|
Gorchs L, Oosthoek M, Yucel-Lindberg T, Moro CF, Kaipe H. Chemokine Receptor Expression on T Cells Is Modulated by CAFs and Chemokines Affect the Spatial Distribution of T Cells in Pancreatic Tumors. Cancers (Basel) 2022; 14:cancers14153826. [PMID: 35954489 PMCID: PMC9367555 DOI: 10.3390/cancers14153826] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 01/18/2023] Open
Abstract
Simple Summary The infiltration of T cells in pancreatic tumors has been correlated with better overall survival. However, the dense desmoplastic stroma, mainly composed by cancer-associated fibroblasts (CAFs), can sequester the T cells in the stroma preventing them from reaching the tumor nests. Chemokines are small molecules capable of directing T cell migration. Here, we explored whether CAFs could modulate the expression of chemokine receptors on T cells and examined if the spatial distribution of T cells within tumors was correlated to chemokine secretion patterns. Overall, we found that CXCR3 ligands was associated with an increased number of T cells in tumor rich areas and that CAFs downregulated the expression of CXCR3 on T cells. Understanding the mechanisms by which T cells are prevented from reaching the tumor nests is of great importance for the development of novel targeting therapies. Abstract The accumulation of T cells is associated with a better prognosis in pancreatic cancer. However, the immunosuppressive tumor microenvironment, largely composed by cancer-associated fibroblasts (CAFs), can prevent T cells from reaching the tumor nests. We examined how human CAFs modulated chemokine receptors known to be associated with T cell trafficking, CXCR3 and CCR5, and T cell exclusion, CXCR4. CAFs decreased the expression of CXCR3 and CCR5 but increased CXCR4 expression in both 2D and 3D cultures, affecting the migratory capacity of T cells towards CXCL10. An immunohistochemistry analysis showed that very few T cells were found in the tumor nests. Within the stroma, CD8+ T cells were localized more distantly from the malignant cells whereas CD4+ T cells were more equally distributed. Tumor tissues with a high production of chemokines were associated with less T cell infiltration when the whole tissue was analyzed. However, when the spatial localization of CD8+ T cells within the tissue was taken into account, levels of CXCR3 ligands and the CCR5 ligand CCL8 showed a positive association with a high relative T cell infiltration in tumor-rich areas. Thus, CXCR3 ligands could mediate T cell trafficking but CAFs could prevent T cells from reaching the malignant cells.
Collapse
Affiliation(s)
- Laia Gorchs
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden
- Correspondence: (L.G.); (H.K.)
| | - Marlies Oosthoek
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden
| | | | - Carlos Fernández Moro
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, 141 57 Stockholm, Sweden
| | - Helen Kaipe
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, 141 52 Stockholm, Sweden
- Correspondence: (L.G.); (H.K.)
| |
Collapse
|
10
|
Morrell ED, Bhatraju PK, Sathe NA, Lawson J, Mabrey L, Holton SE, Presnell SR, Wiedeman A, Acosta-Vega C, Mitchem MA, Liu T, Chai XY, Sahi S, Brager C, Orlov M, Sakr SS, Sader A, Lum DM, Koetje N, Garay A, Barnes E, Cromer G, Bray MK, Pipavath S, Fink SL, Evans L, Long SA, West TE, Wurfel MM, Mikacenic C. Chemokines, soluble PD-L1, and immune cell hyporesponsiveness are distinct features of SARS-CoV-2 critical illness. Am J Physiol Lung Cell Mol Physiol 2022; 323:L14-L26. [PMID: 35608267 PMCID: PMC9208434 DOI: 10.1152/ajplung.00049.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/03/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
Critically ill patients manifest many of the same immune features seen in coronavirus disease 2019 (COVID-19), including both "cytokine storm" and "immune suppression." However, direct comparisons of molecular and cellular profiles between contemporaneously enrolled critically ill patients with and without severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are limited. We sought to identify immune signatures specifically enriched in critically ill patients with COVID-19 compared with patients without COVID-19. We enrolled a multisite prospective cohort of patients admitted under suspicion for COVID-19, who were then determined to be SARS-CoV-2-positive (n = 204) or -negative (n = 122). SARS-CoV-2-positive patients had higher plasma levels of CXCL10, sPD-L1, IFN-γ, CCL26, C-reactive protein (CRP), and TNF-α relative to SARS-CoV-2-negative patients adjusting for demographics and severity of illness (Bonferroni P value < 0.05). In contrast, the levels of IL-6, IL-8, IL-10, and IL-17A were not significantly different between the two groups. In SARS-CoV-2-positive patients, higher plasma levels of sPD-L1 and TNF-α were associated with fewer ventilator-free days (VFDs) and higher mortality rates (Bonferroni P value < 0.05). Lymphocyte chemoattractants such as CCL17 were associated with more severe respiratory failure in SARS-CoV-2-positive patients, but less severe respiratory failure in SARS-CoV-2-negative patients (P value for interaction < 0.01). Circulating T cells and monocytes from SARS-CoV-2-positive subjects were hyporesponsive to in vitro stimulation compared with SARS-CoV-2-negative subjects. Critically ill SARS-CoV-2-positive patients exhibit an immune signature of high interferon-induced lymphocyte chemoattractants (e.g., CXCL10 and CCL17) and immune cell hyporesponsiveness when directly compared with SARS-CoV-2-negative patients. This suggests a specific role for T-cell migration coupled with an immune-checkpoint regulatory response in COVID-19-related critical illness.
Collapse
Affiliation(s)
- Eric D Morrell
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
- Hospital and Specialty Medicine, VA Puget Sound Health Care System, Seattle, Washington
| | - Pavan K Bhatraju
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Neha A Sathe
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Jonathan Lawson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Linzee Mabrey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Sarah E Holton
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Scott R Presnell
- Translational Immunology, Benaroya Research Institute, Seattle, Washington
| | - Alice Wiedeman
- Translational Immunology, Benaroya Research Institute, Seattle, Washington
| | | | - Mallorie A Mitchem
- Translational Immunology, Benaroya Research Institute, Seattle, Washington
| | - Ted Liu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Xin-Ya Chai
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Sharon Sahi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Carolyn Brager
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Marika Orlov
- Hospital and Specialty Medicine, VA Puget Sound Health Care System, Seattle, Washington
| | - Sana S Sakr
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Anthony Sader
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Dawn M Lum
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Neall Koetje
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Ashley Garay
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Elizabeth Barnes
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Gail Cromer
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Mary K Bray
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Sudhakar Pipavath
- Department of Radiology, University of Washington, Seattle, Washington
| | - Susan L Fink
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Laura Evans
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - S Alice Long
- Translational Immunology, Benaroya Research Institute, Seattle, Washington
| | - T Eoin West
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Mark M Wurfel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Carmen Mikacenic
- Translational Immunology, Benaroya Research Institute, Seattle, Washington
| |
Collapse
|
11
|
Lee JY, Nguyen B, Mukhopadhyay A, Han M, Zhang J, Gujar R, Salazar J, Hermiz R, Svenson L, Browning E, Lyerly HK, Canton DA, Fisher D, Daud A, Algazi A, Skitzki J, Twitty CG. Amplification of the CXCR3/CXCL9 axis via intratumoral electroporation of plasmid CXCL9 synergizes with plasmid IL-12 therapy to elicit robust anti-tumor immunity. Mol Ther Oncolytics 2022; 25:174-188. [PMID: 35592387 PMCID: PMC9092072 DOI: 10.1016/j.omto.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/15/2022] [Indexed: 12/20/2022] Open
Abstract
Clinical studies have demonstrated that local expression of the cytokine IL-12 drives interferon-gamma expression and recruits T cells to the tumor microenvironment, ultimately yielding durable systemic T cell responses. Interrogation of longitudinal biomarker data from our late-stage melanoma trials identified a significant on-treatment increase of intratumoral CXCR3 transcripts that was restricted to responding patients, underscoring the clinical relevance of tumor-infiltrating CXCR3+ immune cells. In this study, we sought to understand if the addition of DNA-encodable CXCL9 could augment the anti-tumor immune responses driven by intratumoral IL-12. We show that localized IL-12 and CXCL9 treatment reshapes the tumor microenvironment to promote dendritic cell licensing and CD8+ T cell activation. Additionally, this combination treatment results in a significant abscopal anti-tumor response and provides a concomitant benefit to anti-PD-1 therapies. Collectively, these data demonstrate that a functional tumoral CXCR3/CXCL9 axis is critical for IL-12 anti-tumor efficacy. Furthermore, restoring or amplifying the CXCL9 gradient in the tumors via intratumoral electroporation of plasmid CXCL9 can not only result in efficient trafficking of cytotoxic CD8+ T cells into the tumor but can also reshape the microenvironment to promote systemic immune response.
Collapse
Affiliation(s)
- Jack Y. Lee
- Oncosec Medical Incorporated, 3565 General Atomics Court, San Diego, CA 92121, USA
| | - Bianca Nguyen
- Oncosec Medical Incorporated, 3565 General Atomics Court, San Diego, CA 92121, USA
| | | | - Mia Han
- Oncosec Medical Incorporated, 3565 General Atomics Court, San Diego, CA 92121, USA
| | - Jun Zhang
- Oncosec Medical Incorporated, 3565 General Atomics Court, San Diego, CA 92121, USA
| | - Ravindra Gujar
- Oncosec Medical Incorporated, 3565 General Atomics Court, San Diego, CA 92121, USA
| | - Jon Salazar
- Oncosec Medical Incorporated, 3565 General Atomics Court, San Diego, CA 92121, USA
| | - Reneta Hermiz
- Oncosec Medical Incorporated, 3565 General Atomics Court, San Diego, CA 92121, USA
| | - Lauren Svenson
- Oncosec Medical Incorporated, 3565 General Atomics Court, San Diego, CA 92121, USA
| | - Erica Browning
- Oncosec Medical Incorporated, 3565 General Atomics Court, San Diego, CA 92121, USA
| | - H. Kim Lyerly
- Department of Immunology, Duke University, Durham, NC 27710, USA
| | - David A. Canton
- Oncosec Medical Incorporated, 3565 General Atomics Court, San Diego, CA 92121, USA
- Corresponding author David A Canton, Oncosec Medical Incorporated, 3565 General Atomics Court, San Diego, CA 92121, USA.
| | - Daniel Fisher
- Department of Immunology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Adil Daud
- Department of Medicine, University of California, San Francisco, 550 16 Street, San Francisco, CA 94158, USA
| | - Alain Algazi
- Department of Medicine, University of California, San Francisco, 550 16 Street, San Francisco, CA 94158, USA
| | - Joseph Skitzki
- Department of Immunology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | | |
Collapse
|
12
|
Diamond T, Burn TN, Nishiguchi MA, Minichino D, Chase J, Chu N, Kreiger PA, Behrens EM. Familial hemophagocytic lymphohistiocytosis hepatitis is mediated by IFN-γ in a predominantly hepatic-intrinsic manner. PLoS One 2022; 17:e0269553. [PMID: 35671274 PMCID: PMC9173616 DOI: 10.1371/journal.pone.0269553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022] Open
Abstract
Interferon gamma (IFN-γ) is the main cytokine driving organ dysfunction in Familial Hemophagocytic Lymphohistiocytosis (FHL). Blockade of IFN-γ pathway ameliorates FHL hepatitis, both in animal models and in humans with FHL. Hepatocytes are known to express IFN-γ receptor (IFN-γ-R). However, whether IFN-γ induced hepatitis in FHL is a lymphocyte or liver intrinsic response to the cytokine has yet to be elucidated. Using a IFNgR-/- bone marrow chimeric model, this study showed that non-hematopoietic IFN-γ response is critical for development of FHL hepatitis in LCMV-infected Prf1-/- mice. Lack of hepatic IFN-γ responsiveness results in reduced hepatitis as measured by hepatomegaly, alanine aminotransferase (ALT) levels and abrogated histologic endothelial inflammation. In addition, IFN-γ non-hematopoietic response was critical in activation of lymphocytes by soluble interleukin 2 receptor (sIL-2r) and recruitment of CD8+ effector T lymphocytes (CD8+ CD44hi CD62Llo) (Teff) and inflammatory monocytes. Lastly, non-hematopoietic IFN-γ response results in increased hepatic transcription of type 1 immune response and oxidative stress response pathways, while decreasing transcription of genes involved in extracellular matrix (ECM) production. In summary, these findings demonstrate that there is a hepatic transcriptional response to IFN-γ, likely critical in the pathogenesis of FHL hepatitis and hepatic specific responses could be a therapeutic target in this disorder.
Collapse
Affiliation(s)
- Tamir Diamond
- Division of Gastroenterology Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Thomas N. Burn
- Perlman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Mailyn A. Nishiguchi
- Perlman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Danielle Minichino
- Perlman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Julie Chase
- Division of Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Niansheng Chu
- Division of Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Portia A. Kreiger
- Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Edward M. Behrens
- Division of Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| |
Collapse
|
13
|
Li T, Pan J, Chen H, Fang Y, Sun Y. CXCR6-based immunotherapy in autoimmune, cancer and inflammatory infliction. Acta Pharm Sin B 2022; 12:3255-3262. [PMID: 35967287 PMCID: PMC9366225 DOI: 10.1016/j.apsb.2022.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/25/2022] [Accepted: 02/25/2022] [Indexed: 01/22/2023] Open
Affiliation(s)
- Tingting Li
- Department of Gastroenterology, the Second Medical Center, National Clinical Research Center for Geriatric Diseases, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, China
- Corresponding authors.
| | - Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hongqi Chen
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yongliang Fang
- Department of Urology, Boston Children's Hospital, Departments of Microbiology and Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
- Corresponding authors.
| |
Collapse
|
14
|
Ozga AJ, Chow MT, Lopes ME, Servis RL, Di Pilato M, Dehio P, Lian J, Mempel TR, Luster AD. CXCL10 chemokine regulates heterogeneity of the CD8 + T cell response and viral set point during chronic infection. Immunity 2022; 55:82-97.e8. [PMID: 34847356 PMCID: PMC8755631 DOI: 10.1016/j.immuni.2021.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 04/19/2021] [Accepted: 11/02/2021] [Indexed: 01/13/2023]
Abstract
CD8+ T cells responding to chronic infection adapt an altered differentiation program that provides some restraint on pathogen replication yet limits immunopathology. This adaptation is imprinted in stem-like cells and propagated to their progeny. Understanding the molecular control of CD8+ T cell differentiation in chronic infection has important therapeutic implications. Here, we find that the chemokine receptor CXCR3 is highly expressed on viral-specific stem-like CD8+ T cells and that one of its ligands, CXCL10, regulates the persistence and heterogeneity of responding CD8+ T cells in spleens of mice chronically infected with lymphocytic choriomeningitis virus. CXCL10 is produced by inflammatory monocytes and fibroblasts of the splenic red pulp, where it grants stem-like cells access to signals promoting differentiation and limits their exposure to pro-survival niches in the white pulp. Consequently, functional CD8+ T cell responses are greater in Cxcl10-/- mice and are associated with a lower viral set point.
Collapse
Affiliation(s)
- Aleksandra J Ozga
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Melvyn T Chow
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Mateus E Lopes
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Rachel L Servis
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Mauro Di Pilato
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Philippe Dehio
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Jeffrey Lian
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
15
|
Pinto MC, Botelho HM, Silva IAL, Railean V, Neumann B, Pepperkok R, Schreiber R, Kunzelmann K, Amaral MD. Systems Approaches to Unravel Molecular Function: High-content siRNA Screen Identifies TMEM16A Traffic Regulators as Potential Drug Targets for Cystic Fibrosis. J Mol Biol 2022; 434:167436. [PMID: 34990652 DOI: 10.1016/j.jmb.2021.167436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022]
Abstract
An attractive approach to treat people with Cystic Fibrosis (CF), a life-shortening disease caused by mutant CFTR, is to compensate for the absence of this chloride/bicarbonate channel by activating alternative (non-CFTR) chloride channels. One obvious target for such "mutation-agnostic" therapeutic approach is TMEM16A (anoctamin-1/ANO1), a calcium-activated chloride channel (CaCC) which is also expressed in the airways of people with CF, albeit at low levels. To find novel TMEM16A regulators of both traffic and function, with the main goal of identifying candidate CF drug targets, we performed a fluorescence cell-based high-throughput siRNA microscopy screen for TMEM16A trafficking using a double-tagged construct expressed in human airway cells. About 700 genes were screened (2 siRNAs per gene) of which 262 were identified as candidate TMEM16A modulators (179 siRNAs enhanced and 83 decreased TMEM16A traffic), being G-protein coupled receptors (GPCRs) enriched on the primary hit list. Among the 179 TMEM16A traffic enhancer siRNAs subjected to secondary screening 20 were functionally validated. Further hit validation revealed that siRNAs targeting two GPCRs - ADRA2C and CXCR3 - increased TMEM16A-mediated chloride secretion in human airway cells, while their overexpression strongly diminished calcium-activated chloride currents in the same cell model. The knockdown, and likely also the inhibition, of these two TMEM16A modulators is therefore an attractive potential therapeutic strategy to increase chloride secretion in CF.
Collapse
Affiliation(s)
- Madalena C Pinto
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal. https://twitter.com/madalenacfpinto
| | - Hugo M Botelho
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Iris A L Silva
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Violeta Railean
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Beate Neumann
- Cell Biology/Biophysics Unit, and ALMF, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Rainer Pepperkok
- Cell Biology/Biophysics Unit, and ALMF, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Rainer Schreiber
- Institut für Physiologie, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Karl Kunzelmann
- Institut für Physiologie, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Margarida D Amaral
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal.
| |
Collapse
|
16
|
Lefebvre MN, Surette FA, Anthony SM, Vijay R, Jensen IJ, Pewe LL, Hancox LS, Van Braeckel-Budimir N, van de Wall S, Urban SL, Mix MR, Kurup SP, Badovinac VP, Butler NS, Harty JT. Expeditious recruitment of circulating memory CD8 T cells to the liver facilitates control of malaria. Cell Rep 2021; 37:109956. [PMID: 34731605 PMCID: PMC8628427 DOI: 10.1016/j.celrep.2021.109956] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/08/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Circulating memory CD8 T cell trafficking and protective capacity during liver-stage malaria infection remains undefined. We find that effector memory CD8 T cells (Tem) infiltrate the liver within 6 hours after malarial or bacterial infections and mediate pathogen clearance. Tem recruitment coincides with rapid transcriptional upregulation of inflammatory genes in Plasmodium-infected livers. Recruitment requires CD8 T cell-intrinsic LFA-1 expression and the presence of liver phagocytes. Rapid Tem liver infiltration is distinct from recruitment to other non-lymphoid tissues in that it occurs both in the absence of liver tissue resident memory "sensing-and-alarm" function and ∼42 hours earlier than in lung infection by influenza virus. These data demonstrate relevance for Tem in protection against malaria and provide generalizable mechanistic insights germane to control of liver infections.
Collapse
Affiliation(s)
- Mitchell N Lefebvre
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Medical Scientist Training Program, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA
| | - Fionna A Surette
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA; Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Scott M Anthony
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Rahul Vijay
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Isaac J Jensen
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA
| | - Lecia L Pewe
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Lisa S Hancox
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | | | - Stephanie van de Wall
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Stina L Urban
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Madison R Mix
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Medical Scientist Training Program, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA
| | - Samarchith P Kurup
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA; Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Noah S Butler
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA; Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - John T Harty
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA.
| |
Collapse
|
17
|
Vujanovic L, Ballard W, Thorne SH, Vujanovic NL, Butterfield LH. Adenovirus-engineered human dendritic cells induce natural killer cell chemotaxis via CXCL8/IL-8 and CXCL10/IP-10. Oncoimmunology 2021; 1:448-457. [PMID: 22754763 PMCID: PMC3382881 DOI: 10.4161/onci.19788] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recombinant adenovirus-engineered dendritic cells (Ad.DC) are potent vaccines for induction of anti-viral and anti-cancer T cell immunity. The effectiveness of Ad.DC vaccines may depend on the newly described ability of Ad.DC to crosstalk with natural killer (NK) cells via cell-to-cell contact, and to mediate activation, polarization and bridging of innate and adaptive immunity. For this interaction to occur in vivo, Ad.DC must be able to attract NK cells from surrounding tissues or peripheral blood. We developed a novel live mouse imaging system-based NK-cell migration test, and demonstrated for the first time that human Ad.DC induced directional migration of human NK cells across subcutaneous tissues, indicating that Ad.DC-NK cell contact and interaction could occur in vivo. We examined the mechanism of Ad.DC-induced migration of NK cells in vitro and in vivo. Ad.DC produced multiple chemokines previously reported to recruit NK cells, including immunoregulatory CXCL10/IP-10 and proinflammatory CXCL8/IL-8. In vitro chemotaxis experiments utilizing neutralizing antibodies and recombinant human chemokines showed that CXCL10/IP-10 and CXCL8/IL-8 were critical for Ad.DC-mediated recruitment of CD56hiCD16- and CD56loCD16+ NK cells, respectively. The importance of CXCL8/IL-8 was further demonstrated in vivo. Pretreatment of mice with the neutralizing anti-CXCL8/IL-8 antibody led to significant inhibition of Ad.DC-induced migration of NK cells in vivo. These data show that Ad.DC can recruit spatially distant NK cells toward a vaccine site via specific chemokines. Therefore, an Ad.DC vaccine can likely induce interaction with endogenous NK cells via transmembrane mediators, and consequently mediate Th1 polarization and amplification of immune functions in vivo.
Collapse
Affiliation(s)
- Lazar Vujanovic
- University of Pittsburgh Cancer Institute; Pittsburgh, PA USA ; Deparment of Medicine; University of Pittsburgh School of Medicine; University of Pittsburgh; Pittsburgh, PA USA
| | | | | | | | | |
Collapse
|
18
|
Worrell JC, Walsh SM, Fabre A, Kane R, Hinz B, Keane MP. CXCR3A promotes the secretion of the antifibrotic decoy receptor sIL-13Rα2 by pulmonary fibroblasts. Am J Physiol Cell Physiol 2020; 319:C1059-C1069. [PMID: 33026833 DOI: 10.1152/ajpcell.00076.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CXC chemokine receptor 3 (CXCR3) A and its IFN-inducible ligands CXCL9 and CXCL10 regulate vascular remodeling and fibroblast motility. IL-13 is a profibrotic cytokine implicated in the pathogenesis of inflammatory and fibroproliferative conditions. Previous work from our laboratory has shown that CXCR3A is negatively regulated by IL-13 and is necessary for the basal regulation of the IL-13 receptor subunit IL-13Rα2. This study investigates the regulation of fibroblast phenotype, function, and downstream IL-13 signaling by CXCR3A in vitro. CXCR3A was overexpressed via transient transfection. CXCR3A-/- lung fibroblasts were isolated for functional analysis. Additionally, the contribution of CXCR3A to tissue remodeling following acute lung injury was assessed in vivo with wild-type (WT) and CXCR3-/- mice challenged with IL-13. CXCR3 and IL-13Rα2 displayed a reciprocal relationship after stimulation with either IL-13 or CXCR3 ligands. CXCR3A reduced expression of fibroblast activation makers, soluble collagen production, and proliferation. CXCR3A enhanced the basal expression of pERK1/2 while inducing IL-13-mediated downregulation of NF-κB-p65. CXCR3A-/- pulmonary fibroblasts were increasingly proliferative and displayed reduced contractility and α-smooth muscle actin expression. IL-13 challenge regulated expression of the CXCR3 ligands and soluble IL-13Rα2 levels in lungs and bronchoalveolar lavage fluid (BALF) of WT mice; this response was absent in CXCR3-/- mice. Alveolar macrophage accumulation and expression of genes involved in lung remodeling was increased in CXCR3-/- mice. We conclude that CXCR3A is a central antifibrotic factor in pulmonary fibroblasts, limiting fibroblast activation and reducing extracellular matrix (ECM) production. Therefore, targeting of CXCR3A may be a novel approach to regulating fibroblast activity in lung fibrosis and remodeling.
Collapse
Affiliation(s)
- Julie C Worrell
- St. Vincent's University Hospital and School of Medicine, University College Dublin and UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - Sinead M Walsh
- St. Vincent's University Hospital and School of Medicine, University College Dublin and UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Aurélie Fabre
- St. Vincent's University Hospital and School of Medicine, University College Dublin and UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.,UCD Conway Research Pathology Core Technology, University College Dublin, Dublin, Ireland
| | - Rosemary Kane
- St. Vincent's University Hospital and School of Medicine, University College Dublin and UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Michael P Keane
- St. Vincent's University Hospital and School of Medicine, University College Dublin and UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Regulation of CXCR6 Expression on Adipocytes and Osteoblasts Differentiated from Human Adipose Tissue-Derived Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:8870133. [PMID: 32922452 PMCID: PMC7453243 DOI: 10.1155/2020/8870133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 01/16/2023] Open
Abstract
Human mesenchymal stem cells derived from adipose tissue (hADMSCs) are a desirable candidate in regenerative medicine. hADMSCs secrete growth factors, cytokines, and chemokines and also express various receptors that are important in cell activation, differentiation, and migration to injured tissue. We showed that the expression level of chemokine receptor CXCR6 was significantly increased by ~2.5-fold in adipogenic-differentiated cells (Ad), but not in osteogenic-differentiated cells (Os) when compared with hADMSCs. However, regulation of CXCR6 expression on hADMSCs by using lentiviral particles did not affect the differentiation potential of hADMSCs. Increased expression of CXCR6 on Ad was mediated by both receptor recycling, which was in turn regulated by secretion of CXCL16, and de novo synthesis. The level of soluble CXCL16 was highly increased in both Ad and Os in particular, which inversely correlates with the expression on a transmembrane-bound form of CXCL16 that is cleaved by disintegrin and metalloproteinase. We concluded that the expression of CXCR6 is regulated by receptor degradation or recycling when it is internalized by interaction with CXCL16 and by de novo synthesis of CXCR6. Overall, our study may provide an insight into the molecular mechanisms of the CXCR6 reciprocally expressed on differentiated cells from hADMSCs.
Collapse
|
20
|
Złotkowska A, Andronowska A. Modulatory effect of chemokines on porcine endometrial stromal and endothelial cells. Domest Anim Endocrinol 2020; 72:106475. [PMID: 32371294 DOI: 10.1016/j.domaniend.2020.106475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/07/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023]
Abstract
The endometrium undergoes cyclical changes during the estrous cycle and pregnancy. These alterations are controlled by various factors, including cytokines. The present study aimed to screen the effect of several chemokines (CCL2, CCL4, CCL5, CCL8, CXCL2, CXCL8, CXCL9, CXCL10, and CXCL12) on endometrial stromal and endothelial cells. Real-time PCR analysis revealed mRNA expression of all examined chemokines and their receptors in primary stromal cells and undetectable levels of CXCL9, CXCL10, and CXCR3 in endothelial cells. Immunocytochemical staining showed variable distribution of chemokine receptors in stromal and endothelial cells. All examined chemokines enhanced stromal cell proliferation, and CCL2 and CXCL12 also increased the migratory potential of these cells. The evaluation of a possible indirect effect of chemokines on angiogenesis and lymphangiogenesis demonstrated that CXCL12 may potentially negatively affect lymphatic vessel creation. Downregulation of VEGFC mRNA and protein expression was noticed after CXCL12 stimulation. Among all examined chemokines, CCL4 and CCL8 positively affected the proliferation and migration of endothelial cells. The number of capillary-like structures was significantly reduced after CXCL8, CXCL10, and CXCL12 stimulation. In conclusion, among all examined chemokines, CCL2 is thought to act as the modulator of stromal cell functions, whereas CCL4 and CCL8 are suggested to be potent factors directly stimulating blood vessel creation.
Collapse
Affiliation(s)
- A Złotkowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland; Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - A Andronowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland.
| |
Collapse
|
21
|
Botafogo V, Pérez-Andres M, Jara-Acevedo M, Bárcena P, Grigore G, Hernández-Delgado A, Damasceno D, Comans S, Blanco E, Romero A, Arriba-Méndez S, Gastaca-Abasolo I, Pedreira CE, van Gaans-van den Brink JAM, Corbiere V, Mascart F, van Els CACM, Barkoff AM, Mayado A, van Dongen JJM, Almeida J, Orfao A. Age Distribution of Multiple Functionally Relevant Subsets of CD4+ T Cells in Human Blood Using a Standardized and Validated 14-Color EuroFlow Immune Monitoring Tube. Front Immunol 2020; 11:166. [PMID: 32174910 PMCID: PMC7056740 DOI: 10.3389/fimmu.2020.00166] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
CD4+ T cells comprise multiple functionally distinct cell populations that play a key role in immunity. Despite blood monitoring of CD4+ T-cell subsets is of potential clinical utility, no standardized and validated approaches have been proposed so far. The aim of this study was to design and validate a single 14-color antibody combination for sensitive and reproducible flow cytometry monitoring of CD4+ T-cell populations in human blood to establish normal age-related reference values and evaluate the presence of potentially altered profiles in three distinct disease models-monoclonal B-cell lymphocytosis (MBL), systemic mastocytosis (SM), and common variable immunodeficiency (CVID). Overall, 145 blood samples from healthy donors were used to design and validate a 14-color antibody combination based on extensive reagent testing in multiple cycles of design-testing-evaluation-redesign, combined with in vitro functional studies, gene expression profiling, and multicentric evaluation of manual vs. automated gating. Fifteen cord blood and 98 blood samples from healthy donors (aged 0-89 years) were used to establish reference values, and another 25 blood samples were evaluated for detecting potentially altered CD4 T-cell subset profiles in MBL (n = 8), SM (n = 7), and CVID (n = 10). The 14-color tube can identify ≥89 different CD4+ T-cell populations in blood, as validated with high multicenter reproducibility, particularly when software-guided automated (vs. manual expert-based) gating was used. Furthermore, age-related reference values were established, which reflect different kinetics for distinct subsets: progressive increase of naïve T cells, T-helper (Th)1, Th17, follicular helper T (TFH) cells, and regulatory T cells (Tregs) from birth until 2 years, followed by a decrease of naïve T cells, Th2, and Tregs in older children and a subsequent increase in multiple Th-cell subsets toward late adulthood. Altered and unique CD4+ T-cell subset profiles were detected in two of the three disease models evaluated (SM and CVID). In summary, the EuroFlow immune monitoring TCD4 tube allows fast, automated, and reproducible identification of ≥89 subsets of CD4+ blood T cells, with different kinetics throughout life. These results set the basis for in-depth T-cell monitoring in different disease and therapeutic conditions.
Collapse
Affiliation(s)
- Vitor Botafogo
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
- Clinical Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Martín Pérez-Andres
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - María Jara-Acevedo
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
- Sequencing Service, NUCLEUS, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Paloma Bárcena
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Alejandro Hernández-Delgado
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
- Cytognos SL, Salamanca, Spain
| | - Daniela Damasceno
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - Suzanne Comans
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Elena Blanco
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfonso Romero
- Miguel Armijo Primary Health Care Centre, Sanidad de Castilla y León (SACYL), Salamanca, Spain
| | | | - Irene Gastaca-Abasolo
- Gynecology and Obstetrics Service, University Hospital of Salamanca, Salamanca, Spain
| | - Carlos Eduardo Pedreira
- Systems and Computing Department (PESC), COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Véronique Corbiere
- Laboratory of Vaccinology and Mucosal Immunity, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université libre de Bruxelles (ULB), Brussels, Belgium
- Immunobiology Clinic, Hôpital Erasme, Brussels, Belgium
| | - Cécile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Alex-Mikael Barkoff
- Institute of Biomedicine, Department of Microbiology, Virology and Immunology, University of Turku (UTU), Turku, Finland
| | - Andrea Mayado
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - Jacques J. M. van Dongen
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Julia Almeida
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Orfao
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
22
|
Anderson CA, Patel P, Viney JM, Phillips RM, Solari R, Pease JE. A degradatory fate for CCR4 suggests a primary role in Th2 inflammation. J Leukoc Biol 2020; 107:455-466. [PMID: 32052476 PMCID: PMC7155072 DOI: 10.1002/jlb.2a0120-089rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 01/12/2023] Open
Abstract
CCR4 is the sole receptor for the chemokines CCL22 and CCL17. Clinical studies of asthmatic airways have shown levels of both ligands and CCR4+ Th2 cells to be elevated, suggestive of a role in disease. Consequently, CCR4 has aroused much interest as a potential therapeutic target and an understanding of how its cell surface expression is regulated is highly desirable. To this end, receptor expression, receptor endocytosis, and chemotaxis were assessed using transfectants expressing CCR4, CCR4+ human T cell lines, and human Th2 cells polarized in vitro. CCL17 and CCL22 drove rapid endocytosis of CCR4 in a dose-dependent manner. Replenishment at the cell surface was slow and sensitive to cycloheximide, suggestive of de novo synthesis of CCR4. Constitutive CCR4 endocytosis was also observed, with the internalized CCR4 found to be significantly degraded over a 6-h incubation. Truncation of the CCR4 C-terminus by 40 amino acids had no effect on cell surface expression, but resulted in significant impairment of ligand-induced endocytosis. Consequently, migration to both CCL17 and CCL22 was significantly enhanced. In contrast, truncation of CCR4 did not impair constitutive endocytosis or degradation, suggesting the use of alternative receptor motifs in these processes. We conclude that CCR4 cell surface levels are tightly regulated, with a degradative fate for endocytosed receptor. We postulate that this strict control is desirable, given that Th2 cells recruited by CCR4 can induce the further expression of CCR4 ligands in a positive feedback loop, thereby enhancing allergic inflammation.
Collapse
Affiliation(s)
- Caroline A Anderson
- National Heart & Lung Institute, Inflammation, Repair & Development Section, Imperial College London, London, UK.,Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Pallavi Patel
- National Heart & Lung Institute, Inflammation, Repair & Development Section, Imperial College London, London, UK.,Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Jonathan M Viney
- National Heart & Lung Institute, Inflammation, Repair & Development Section, Imperial College London, London, UK
| | - Rhian M Phillips
- National Heart & Lung Institute, Inflammation, Repair & Development Section, Imperial College London, London, UK
| | - Roberto Solari
- National Heart and Lung Institute, Airway Disease Infection Section, Imperial College London, London, UK.,Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - James E Pease
- National Heart & Lung Institute, Inflammation, Repair & Development Section, Imperial College London, London, UK.,Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| |
Collapse
|
23
|
Ibidapo-Obe O, Stengel S, Köse-Vogel N, Quickert S, Reuken PA, Busch M, Bauer M, Stallmach A, Bruns T. Mucosal-Associated Invariant T Cells Redistribute to the Peritoneal Cavity During Spontaneous Bacterial Peritonitis and Contribute to Peritoneal Inflammation. Cell Mol Gastroenterol Hepatol 2020; 9:661-677. [PMID: 31954178 PMCID: PMC7160599 DOI: 10.1016/j.jcmgh.2020.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Mucosal-associated invariant T (MAIT) cells are depleted from blood in patients with advanced liver disease and show features of immune dysfunction. Because circulating MAIT cells differ from organ-resident MAIT cells, we aimed to investigate the frequency, phenotype, and function of peritoneal MAIT cells from patients with cirrhosis and spontaneous bacterial peritonitis (SBP). METHODS MAIT cells in blood and ascitic fluid from patients with cirrhosis were characterized using flow cytometry. Healthy individuals and noncirrhotic patients undergoing peritoneal dialysis served as controls. MAIT cell migration was studied in transwell assays. Cytokine release in response to infected ascitic fluid and bacterial products was assessed in vitro. RESULTS Peritoneal CD3+ CD161hi Vα7.2+ T cells had an inflammatory, tissue retention phenotype, expressing the alpha E integrin, the chemokine receptors CCR5 and CXCR3, and the activation marker CD69 at higher levels than their circulating equivalents. Seventy-seven percent bound to MR1 tetramers loaded with the pyrimidine intermediate 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil. The ratio of peritoneal to blood MAIT cell frequency increased from 1.3 in the absence of SBP to 2.6 at diagnosis and decreased by day 3. MAIT cells migrated toward infected ascitic fluid containing CCL5 and CCL20 and released cytokines in an MR1-restricted fashion. Whereas the depleted circulating MAIT cell pool displayed features of immune exhaustion, peritoneal MAIT cells remained competent producers of inflammatory cytokines in response to bacterial products. Peritoneal MAIT activation correlated with systemic inflammation, suggesting a possible link between peritoneal and systemic immunity. CONCLUSIONS Peritoneal MAIT cells phenotypically and functionally differ from circulating MAIT cells in decompensated cirrhosis and redistribute to the peritoneum during SBP.
Collapse
Affiliation(s)
- Oluwatomi Ibidapo-Obe
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany
| | - Sven Stengel
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany
| | - Nilay Köse-Vogel
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany
| | - Stefanie Quickert
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany
| | - Philipp A Reuken
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany
| | - Martin Busch
- Department of Internal Medicine III, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany; Department of Anesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany
| | - Tony Bruns
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany; Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
24
|
Harabuchi S, Kosaka A, Yajima Y, Nagata M, Hayashi R, Kumai T, Ohara K, Nagato T, Oikawa K, Ohara M, Harabuchi Y, Ohkuri T, Kobayashi H. Intratumoral STING activations overcome negative impact of cisplatin on antitumor immunity by inflaming tumor microenvironment in squamous cell carcinoma. Biochem Biophys Res Commun 2019; 522:408-414. [PMID: 31771883 DOI: 10.1016/j.bbrc.2019.11.107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/16/2019] [Indexed: 01/26/2023]
Abstract
Although cisplatin (CDDP) has been used as a major chemotherapeutic drug for head and neck squamous cell carcinoma (HNSCC), its impact on T-cell functions is controversial. Therefore, we investigated the immunologic effects of CDDP and antitumor effects by combination therapy of CDDP with a ligand for stimulator of interferon genes, cyclic guanosine monophosphate-adenosine monophosphate (cGAMP). Direct impacts of CDDP on T-cell functions were addressed by comparing T-cell functions between human subjects treated and untreated with CDDP. The immune responses and the efficacy of combination therapy using CDDP and cGAMP were assessed using BALB/c mice inoculated with mouse squamous cell carcinoma (SCC) cell lines. CDDP inhibited T-cell proliferation in a dose-dependent manner. T-cell functions of CDDP-treated HNSCC patients were comparable to those of healthy donors and CDDP-untreated HNSCC patients. In the mice bearing SCC cell lines, combination therapy using CDDP and cGAMP enhanced the gene expressions of CXCL9 and CXCL10 in the tumor tissues and inhibited tumor growth. The antitumor effect was cancelled by anti-CXCR3 monoclonal antibody. These findings suggest that the combination therapy using CDDP and an immunomodulating drug like cGAMP would be a rational cancer immunotherapy for patients with HNSCC.
Collapse
Affiliation(s)
- Shohei Harabuchi
- Department of Pathology, Head and Neck Surgery Asahikawa Medical University, Asahikawa Midorigaoka-Higashi 2-1-1, Asahikawa, Japan; Department of Otolaryngology, Head and Neck Surgery Asahikawa Medical University, Asahikawa Midorigaoka-Higashi 2-1-1, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Head and Neck Surgery Asahikawa Medical University, Asahikawa Midorigaoka-Higashi 2-1-1, Asahikawa, Japan
| | - Yuki Yajima
- Department of Pathology, Head and Neck Surgery Asahikawa Medical University, Asahikawa Midorigaoka-Higashi 2-1-1, Asahikawa, Japan
| | - Marino Nagata
- Department of Pathology, Head and Neck Surgery Asahikawa Medical University, Asahikawa Midorigaoka-Higashi 2-1-1, Asahikawa, Japan
| | - Ryusuke Hayashi
- Department of Pathology, Head and Neck Surgery Asahikawa Medical University, Asahikawa Midorigaoka-Higashi 2-1-1, Asahikawa, Japan; Department of Otolaryngology, Head and Neck Surgery Asahikawa Medical University, Asahikawa Midorigaoka-Higashi 2-1-1, Asahikawa, Japan
| | - Takumi Kumai
- Department of Otolaryngology, Head and Neck Surgery Asahikawa Medical University, Asahikawa Midorigaoka-Higashi 2-1-1, Asahikawa, Japan
| | - Kenzo Ohara
- Department of Pathology, Head and Neck Surgery Asahikawa Medical University, Asahikawa Midorigaoka-Higashi 2-1-1, Asahikawa, Japan; Department of Otolaryngology, Head and Neck Surgery Asahikawa Medical University, Asahikawa Midorigaoka-Higashi 2-1-1, Asahikawa, Japan
| | - Toshihiro Nagato
- Department of Pathology, Head and Neck Surgery Asahikawa Medical University, Asahikawa Midorigaoka-Higashi 2-1-1, Asahikawa, Japan
| | - Kensuke Oikawa
- Department of Pathology, Head and Neck Surgery Asahikawa Medical University, Asahikawa Midorigaoka-Higashi 2-1-1, Asahikawa, Japan
| | - Mizuho Ohara
- Department of Pathology, Head and Neck Surgery Asahikawa Medical University, Asahikawa Midorigaoka-Higashi 2-1-1, Asahikawa, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology, Head and Neck Surgery Asahikawa Medical University, Asahikawa Midorigaoka-Higashi 2-1-1, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Head and Neck Surgery Asahikawa Medical University, Asahikawa Midorigaoka-Higashi 2-1-1, Asahikawa, Japan.
| | - Hiroya Kobayashi
- Department of Pathology, Head and Neck Surgery Asahikawa Medical University, Asahikawa Midorigaoka-Higashi 2-1-1, Asahikawa, Japan.
| |
Collapse
|
25
|
Key features and homing properties of NK cells in the liver are shaped by activated iNKT cells. Sci Rep 2019; 9:16362. [PMID: 31704965 PMCID: PMC6841958 DOI: 10.1038/s41598-019-52666-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 10/16/2019] [Indexed: 11/16/2022] Open
Abstract
The contribution of natural killer (NK) cells to the clearance of hepatic viral infections is well recognized. The recently discovered heterogeneity of NK cell populations renders them interesting targets for immune interventions. Invariant natural killer T (iNKT) cells represent a key interaction partner for hepatic NK cells. The present study addressed whether characteristics of NK cells in the liver can be shaped by targeting iNKT cells. For this, the CD1d-binding pegylated glycolipid αGalCerMPEG was assessed for its ability to modulate the features of NK cells permanently or transiently residing in the liver. In vivo administration resulted in enhanced functionality of educated and highly differentiated CD27+ Mac-1+ NK cells accompanied by an increased proliferation. Improved liver homing was supported by serum-derived and cellular factors. Reduced viral loads in a mCMV infection model confirmed the beneficial effect of NK cells located in the liver upon stimulation with αGalCerMPEG. Thus, targeting iNKT cell-mediated NK cell activation in the liver represents a promising approach for the establishment of liver-directed immune interventions.
Collapse
|
26
|
Maurice NJ, McElrath MJ, Andersen-Nissen E, Frahm N, Prlic M. CXCR3 enables recruitment and site-specific bystander activation of memory CD8 + T cells. Nat Commun 2019; 10:4987. [PMID: 31676770 PMCID: PMC6825240 DOI: 10.1038/s41467-019-12980-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
Bystander activation of memory T cells occurs in the absence of cognate antigen during infections that elicit strong systemic inflammatory responses, which subsequently affect host immune responses. Here we report that memory T cell bystander activation is not limited to induction by systemic inflammation. We initially observe potential T cell bystander activation in a cohort of human vaccine recipients. Using a mouse model system, we then find that memory CD8+ T cells are specifically recruited to sites with activated antigen-presenting cells (APCs) in a CXCR3-dependent manner. In addition, CXCR3 is also necessary for T cell clustering around APCs and T cell bystander activation, which temporospatially overlaps with the subsequent antigen-specific T cell response. Our data thus suggest that bystander activation is part of the initial localized immune response, and is mediated by a site-specific recruitment process of memory T cells.
Collapse
Affiliation(s)
- Nicholas J Maurice
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.,HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.,Department of Global Health, University of Washington, Seattle, WA, 98195, USA.,Department of Medicine, University of Washington, Seattle, WA, 98195, USA.,Department of Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Erica Andersen-Nissen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.,Cape Town HIV Vaccine Trials Network Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, 8001, Cape Town, South Africa
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA. .,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA. .,Department of Global Health, University of Washington, Seattle, WA, 98195, USA. .,Department of Immunology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
27
|
House IG, Savas P, Lai J, Chen AXY, Oliver AJ, Teo ZL, Todd KL, Henderson MA, Giuffrida L, Petley EV, Sek K, Mardiana S, Gide TN, Quek C, Scolyer RA, Long GV, Wilmott JS, Loi S, Darcy PK, Beavis PA. Macrophage-Derived CXCL9 and CXCL10 Are Required for Antitumor Immune Responses Following Immune Checkpoint Blockade. Clin Cancer Res 2019; 26:487-504. [PMID: 31636098 DOI: 10.1158/1078-0432.ccr-19-1868] [Citation(s) in RCA: 345] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/11/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Response rates to immune checkpoint blockade (ICB; anti-PD-1/anti-CTLA-4) correlate with the extent of tumor immune infiltrate, but the mechanisms underlying the recruitment of T cells following therapy are poorly characterized. A greater understanding of these processes may see the development of therapeutic interventions that enhance T-cell recruitment and, consequently, improved patient outcomes. We therefore investigated the chemokines essential for immune cell recruitment and subsequent therapeutic efficacy of these immunotherapies. EXPERIMENTAL DESIGN The chemokines upregulated by dual PD-1/CTLA-4 blockade were assessed using NanoString-based analysis with results confirmed at the protein level by flow cytometry and cytometric bead array. Blocking/neutralizing antibodies confirmed the requirement for key chemokines/cytokines and immune effector cells. Results were confirmed in patients treated with immune checkpoint inhibitors using single-cell RNA-sequencing (RNA-seq) and paired survival analyses. RESULTS The CXCR3 ligands, CXCL9 and CXCL10, were significantly upregulated following dual PD-1/CTLA-4 blockade and both CD8+ T-cell infiltration and therapeutic efficacy were CXCR3 dependent. In both murine models and patients undergoing immunotherapy, macrophages were the predominant source of CXCL9 and their depletion abrogated CD8+ T-cell infiltration and the therapeutic efficacy of dual ICB. Single-cell RNA-seq analysis of patient tumor-infiltrating lymphocytes (TIL) revealed that CXCL9/10/11 was predominantly expressed by macrophages following ICB and we identified a distinct macrophage signature that was associated with positive responses to ICB. CONCLUSIONS These data underline the fundamental importance of macrophage-derived CXCR3 ligands for the therapeutic efficacy of ICB and highlight the potential of manipulating this axis to enhance patient responses.
Collapse
Affiliation(s)
- Imran G House
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Peter Savas
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Junyun Lai
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Amanda X Y Chen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Amanda J Oliver
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Zhi L Teo
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Kirsten L Todd
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Melissa A Henderson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Lauren Giuffrida
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Emma V Petley
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Sherly Mardiana
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Tuba N Gide
- The University of Sydney, Melanoma Institute Australia, Sydney, New South Wales, Australia
| | - Camelia Quek
- The University of Sydney, Melanoma Institute Australia, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- The University of Sydney, Melanoma Institute Australia, Sydney, New South Wales, Australia.,Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- The University of Sydney, Melanoma Institute Australia, Sydney, New South Wales, Australia.,Royal North Shore Hospital, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia
| | - James S Wilmott
- The University of Sydney, Melanoma Institute Australia, Sydney, New South Wales, Australia
| | - Sherene Loi
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Department of Pathology, University of Melbourne, Parkville, Victoria, Australia.,Department of Immunology, Monash University, Clayton, Victoria, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
28
|
Romero-Suárez S, Del Rio Serrato A, Bueno RJ, Brunotte-Strecker D, Stehle C, Figueiredo CA, Hertwig L, Dunay IR, Romagnani C, Infante-Duarte C. The Central Nervous System Contains ILC1s That Differ From NK Cells in the Response to Inflammation. Front Immunol 2019; 10:2337. [PMID: 31649664 PMCID: PMC6795712 DOI: 10.3389/fimmu.2019.02337] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022] Open
Abstract
Innate lymphoid cells (ILCs) are tissue resident cells with organ-specific properties. Here, we show that the central nervous system (CNS) encompasses ILCs. In particular, CD3-NK1.1+ cells present in the murine CNS comprise natural killer (NK) cells, ILC1s, intermediate ILC1s (intILC1s) and ex-ILC3s. We investigated the properties of CNS-ILC1s in comparison with CNS-NK cells during steady state and experimental autoimmune encephalomyelitis (EAE). ILC1s characteristically express CXCR3, CXCR6, DNAM-1, TRAIL, and CD200R and display heightened TNF-α production upon stimulation. In addition, ILC1s express perforin and are able to degranulate, although in a lesser extent than NK cells. Within the CNS compartments, ILC1s are enriched in the choroid plexus where very few NK cells are present, and also reside in the brain parenchyma and meninges. During EAE, ILC1s maintain stable IFN-γ and TNF-α levels while in NK cells the production of these cytokines increases as EAE progresses. Moreover, the amount of ILC1s and intILC1s increase in the parenchyma during EAE, but in contrast to NK cells, they show no signs of local proliferation. The upregulation in the inflamed brain of chemokines involved in ILC1 migration, such as CXCL9, CXCL10, and CXCL16 may lead to a recruitment of ILC1s from meninges or choroid plexus into the brain parenchyma. In sum, CNS-ILC1 phenotype, distribution and moderate inflammatory response during EAE suggest that they may act as gatekeepers involved in the control of neuroinflammation.
Collapse
Affiliation(s)
- Silvina Romero-Suárez
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Alba Del Rio Serrato
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Roemel Jeusep Bueno
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Daniel Brunotte-Strecker
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany
| | - Caio Andreeta Figueiredo
- Medical Faculty, Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Laura Hertwig
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany.,Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ildiko R Dunay
- Medical Faculty, Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany
| | - Carmen Infante-Duarte
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| |
Collapse
|
29
|
Wang W, Chong WP, Li C, Chen Z, Wu S, Zhou H, Wan Y, Chen W, Gery I, Liu Y, Caspi RR, Chen J. Type I Interferon Therapy Limits CNS Autoimmunity by Inhibiting CXCR3-Mediated Trafficking of Pathogenic Effector T Cells. Cell Rep 2019; 28:486-497.e4. [PMID: 31291583 PMCID: PMC6748389 DOI: 10.1016/j.celrep.2019.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/13/2019] [Accepted: 06/05/2019] [Indexed: 12/22/2022] Open
Abstract
Type I interferons (IFNs) have therapeutic potential in CNS autoimmune diseases, such as uveitis, but the molecular mechanisms remain unclear. Using a T cell-transfer model of experimental autoimmune uveitis (EAU), we found that IFN-α/β treatment inhibited the migration of IFN-γ-producing pathogenic CD4+ T cells to effector sites. IFN-α/β upregulated the expression of the cognate ligands CXCL9, CXCL10, and CXCL11, causing ligand-mediated downregulation of CXCR3 expression and effector T cell retention in the spleen. Accordingly, type I IFN did not alter EAU progression in CXCR3-/- mice. In uveitis patients, disease exacerbations correlated with reduced serum IFN-α concentrations. IFN-α/β reduced CXCR3 expression and migration by human effector T cells, and these parameters were associated with the therapeutic efficacy of IFN-α in uveitis patients. Our findings provide insight into the molecular basis of type I IFN therapy for CNS autoimmune diseases and identify CXCR3 as a biomarker for effective type I IFN immunotherapy.
Collapse
Affiliation(s)
- Weiwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University (SYSU), Guangzhou 510060, China
| | - Wai Po Chong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University (SYSU), Guangzhou 510060, China; Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Chunmei Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University (SYSU), Guangzhou 510060, China
| | - Zilin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University (SYSU), Guangzhou 510060, China
| | - Sihan Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University (SYSU), Guangzhou 510060, China
| | - Hongyan Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University (SYSU), Guangzhou 510060, China
| | - Ying Wan
- Biomedical Analysis Center, Third Military Medical University, Chongqing 40038, China
| | - Wanjun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Igal Gery
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University (SYSU), Guangzhou 510060, China
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA.
| | - Jun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University (SYSU), Guangzhou 510060, China; Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
30
|
Matsuzaki G, Yamasaki M, Tamura T, Umemura M. Dispensable role of chemokine receptors in migration of mycobacterial antigen-specific CD4 + T cells into Mycobacterium-infected lung. Immunobiology 2019; 224:440-448. [PMID: 30795859 DOI: 10.1016/j.imbio.2019.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 11/30/2022]
Abstract
Mycobacterial antigen-specific CD4+ Th1 cells have pivotal role in protective immunity against mycobacterial infections including pulmonary tuberculosis. In the course of the infection, Th1 cells differentiate in the lung-draining lymph nodes and migrate into the infected lung. Chemokine receptors on T cells are involved in T cell migration into the intestine and skin. However, role of chemokine receptors in the migration of CD4+ T cells into the lung is not yet established. To address the issue, the role of chemokine receptors in T cell migration into the mycobacteria-infected lung was analyzed using mycobacterial Ag85B peptide 25-specific T cell receptor-transgenic (P25) CD4+ T cells. The P25 T cells in the Mycobacterium bovis BCG-infected lung and lung-draining mediastinal lymph node expressed chemokine receptors CCR5, CCR6, CXCR3 and CXCR5 which bind chemokines expressed by the BCG-infected lung. To further analyze the role of the chemokine receptors in the migration of the BCG-primed P25 T cells into the lung or mediastinal lymph node, the P25 T cells were adoptively transferred into the BCG-infected wild type mice, and their migration into the lung was monitored. Unexpectedly, blocking of chemokine receptor function with pertussis toxin, a G-protein inhibitor, failed to suppress migration of the T cells into the infected lung although the treatment completely blocked migration of the mediastinal lymph node P25 T cells into the recipient lymph node. The results suggest that interaction of chemokine receptors on mycobacterial antigen-specific Th1 cells with chemokines is dispensable in their migration into the mycobacteria-infected lung.
Collapse
Affiliation(s)
- Goro Matsuzaki
- Molecular Microbiology Group, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan; Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Masatoshi Yamasaki
- Molecular Microbiology Group, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Toshiki Tamura
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 189-0002, Japan
| | - Masayuki Umemura
- Molecular Microbiology Group, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan; Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0213, Japan
| |
Collapse
|
31
|
Grozdanovic M, Laffey KG, Abdelkarim H, Hitchinson B, Harijith A, Moon HG, Park GY, Rousslang LK, Masterson JC, Furuta GT, Tarasova NI, Gaponenko V, Ackerman SJ. Novel peptide nanoparticle-biased antagonist of CCR3 blocks eosinophil recruitment and airway hyperresponsiveness. J Allergy Clin Immunol 2019; 143:669-680.e12. [PMID: 29778505 PMCID: PMC6240402 DOI: 10.1016/j.jaci.2018.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 10/25/2022]
Abstract
BACKGROUND Chemokine signaling through CCR3 is a key regulatory pathway for eosinophil recruitment into tissues associated with allergic inflammation and asthma. To date, none of the CCR3 antagonists have shown efficacy in clinical trials. One reason might be their unbiased mode of inhibition that prevents receptor internalization, leading to drug tolerance. OBJECTIVE We sought to develop a novel peptide nanoparticle CCR3 inhibitor (R321) with a biased mode of inhibition that would block G protein signaling but enable or promote receptor internalization. METHODS Self-assembly of R321 peptide into nanoparticles and peptide binding to CCR3 were analyzed by means of dynamic light scattering and nuclear magnetic resonance. Inhibitory activity on CCR3 signaling was assessed in vitro by using flow cytometry, confocal microscopy, and Western blot analysis in a CCR3+ eosinophil cell line and blood eosinophils. In vivo effects of R321 were assessed by using a triple-allergen mouse asthma model. RESULTS R321 self-assembles into nanoparticles and binds directly to CCR3, altering receptor function. Half-maximal inhibitory concentration values for eotaxin-induced chemotaxis of blood eosinophils are in the low nanomolar range. R321 inhibits only the early phase of extracellular signal-regulated kinase 1/2 activation and not the late phase generally associated with β-arrestin recruitment and receptor endocytosis, promoting CCR3 internalization and degradation. In vivo R321 effectively blocks eosinophil recruitment into the blood, lungs, and airways and prevents airway hyperresponsiveness in a mouse eosinophilic asthma model. CONCLUSIONS R321 is a potent and selective antagonist of the CCR3 signaling cascade. Inhibition through a biased mode of antagonism might hold significant therapeutic promise by eluding the formation of drug tolerance.
Collapse
Affiliation(s)
- Milica Grozdanovic
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Kimberly G Laffey
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Hazem Abdelkarim
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Ben Hitchinson
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Anantha Harijith
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Hyung-Geon Moon
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep & Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Gye Young Park
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep & Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Lee K Rousslang
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Joanne C Masterson
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, University of Colorado School of Medicine, and the Digestive Health Institute, Children's Hospital Colorado, Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colo
| | - Glenn T Furuta
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, University of Colorado School of Medicine, and the Digestive Health Institute, Children's Hospital Colorado, Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colo
| | - Nadya I Tarasova
- Center for Cancer Research, National Cancer Institute, Frederick, Md
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill.
| |
Collapse
|
32
|
Teo TH, Howland SW, Claser C, Gun SY, Poh CM, Lee WW, Lum FM, Ng LF, Rénia L. Co-infection with Chikungunya virus alters trafficking of pathogenic CD8 + T cells into the brain and prevents Plasmodium-induced neuropathology. EMBO Mol Med 2019; 10:121-138. [PMID: 29113976 PMCID: PMC5760855 DOI: 10.15252/emmm.201707885] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Arboviral diseases have risen significantly over the last 40 years, increasing the risk of co-infection with other endemic disease such as malaria. However, nothing is known about the impact arboviruses have on the host response toward heterologous pathogens during co-infection. Here, we investigate the effects of Chikungunya virus (CHIKV) co-infection on the susceptibility and severity of malaria infection. Using the Plasmodium berghei ANKA (PbA) experimental cerebral malaria (ECM) model, we show that concurrent co-infection induced the most prominent changes in ECM manifestation. Concurrent co-infection protected mice from ECM mortality without affecting parasite development in the blood. This protection was mediated by the alteration of parasite-specific CD8+ T-cell trafficking through an IFNγ-mediated mechanism. Co-infection with CHIKV induced higher splenic IFNγ levels that lead to high local levels of CXCL9 and CXCL10. This induced retention of CXCR3-expressing pathogenic CD8+ T cells in the spleen and prevented their migration to the brain. This then averts all downstream pathogenic events such as parasite sequestration in the brain and disruption of blood-brain barrier that prevents ECM-induced mortality in co-infected mice.
Collapse
Affiliation(s)
- Teck-Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shanshan W Howland
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Carla Claser
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sin Yee Gun
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chek Meng Poh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wendy Wl Lee
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Fok-Moon Lum
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Lisa Fp Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore .,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
33
|
Wilson BJ, Allen JL, Caswell PT. Vesicle trafficking pathways that direct cell migration in 3D matrices and in vivo. Traffic 2018; 19:899-909. [PMID: 30054969 PMCID: PMC6282850 DOI: 10.1111/tra.12605] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Cell migration is a vital process in development and disease, and while the mechanisms that control motility are relatively well understood on two-dimensional surfaces, the control of cell migration in three dimensions (3D) and in vivo has only recently begun to be understood. Vesicle trafficking pathways have emerged as a key regulatory element in migration and invasion, with the endocytosis and recycling of cell surface cargos, including growth factor and chemokine receptors, adhesion receptors and membrane-associated proteases, being of major importance. We highlight recent advances in our understanding of how endocytic trafficking controls the availability and local activity of these cargoes to influence the movement of cells in 3D matrix and in developing organisms. In particular, we discuss how endocytic trafficking of different receptor classes spatially restricts signals and activity, usually to the leading edge of invasive cells.
Collapse
Affiliation(s)
- Beverley J. Wilson
- Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Jennifer L. Allen
- Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Patrick T. Caswell
- Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| |
Collapse
|
34
|
Jacquelot N, Duong CPM, Belz GT, Zitvogel L. Targeting Chemokines and Chemokine Receptors in Melanoma and Other Cancers. Front Immunol 2018; 9:2480. [PMID: 30420855 PMCID: PMC6215820 DOI: 10.3389/fimmu.2018.02480] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment is highly heterogeneous. It is composed of a diverse array of immune cells that are recruited continuously into lesions. They are guided into the tumor through interactions between chemokines and their receptors. A variety of chemokine receptors are expressed on the surface of both tumor and immune cells rendering them sensitive to multiple stimuli that can subsequently influence their migration and function. These features significantly impact tumor fate and are critical in melanoma control and progression. Indeed, particular chemokine receptors expressed on tumor and immune cells are strongly associated with patient prognosis. Thus, potential targeting of chemokine receptors is highly attractive as a means to quench or eliminate unconstrained tumor cell growth.
Collapse
Affiliation(s)
- Nicolas Jacquelot
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Connie P M Duong
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM U1015, Villejuif, France
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM U1015, Villejuif, France.,Faculty of Medicine, Paris Sud/Paris XI University, LeKremlin-Bicêtre, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| |
Collapse
|
35
|
Identification of mRNA of the Inflammation-associated Proteins CXCL8, CXCR2, CXCL10, CXCR3, and β-Arrestin-2 in Equine Wounded Cutaneous Tissue: a Preliminary Study. J Equine Vet Sci 2018; 68:51-54. [PMID: 31256888 DOI: 10.1016/j.jevs.2018.05.216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 12/16/2022]
Abstract
Horses often sustain cutaneous wounds and healing can be prolonged and difficult to treat. Compared to body wounds, limb wounds heal slower and are more likely to develop exuberant granulation tissue. Differences in healing rates and exuberant granulation tissue formation is attributed to abnormal cytokine profiles. CXCL8 and its receptor CXCR2 are involved in acute inflammation whereas CXCL10 and its receptor CXCR3 are involved in inflammation resolution. β- arrestin-2 regulates inflammation through internalization of G-protein coupled receptors (GPCRs) including CXCR2 and CXCR3. Gene expression of these five inflammation associated proteins have not been previously identified in equine cutaneous tissue and may play a role in dysregulation of inflammation in equine limb wounds. The mRNA expression levels were measured using QuantiGene Plex Assay from cutaneous biopsies collected from surgically created wounds on the limb and thorax on days 0, 1, 2, 7, 14, and 33 from two horses. The mRNA expression levels were measured in mean fluorescent intensity and graphed. We were successful in identifying all five proteins for the first time in equine cutaneous tissue. Preliminary results suggest that there are different expression patterns for CXCL8, CXCR2 and β-arrestin-2 between the limb and thorax but not for CXCL10 and CXCR3. Differential regulation of CXCL8, CXCR2 and β-arrestin-2 may further explain why limb wounds heal differently than body wounds and warrants further investigation.
Collapse
|
36
|
de Graaf KL, Lapeyre G, Guilhot F, Ferlin W, Curbishley SM, Carbone M, Richardson P, Moreea S, McCune CA, Ryder SD, Chapman RW, Floreani A, Jones DE, de Min C, Adams DH, Invernizzi P. NI-0801, an anti-chemokine (C-X-C motif) ligand 10 antibody, in patients with primary biliary cholangitis and an incomplete response to ursodeoxycholic acid. Hepatol Commun 2018; 2:492-503. [PMID: 29761166 PMCID: PMC5944576 DOI: 10.1002/hep4.1170] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/18/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022] Open
Abstract
NI-0801 is a fully human monoclonal antibody against chemokine (C-X-C motif) ligand 10 (CXCL10), which is involved in the recruitment of inflammatory T cells into the liver. The safety and efficacy of NI-0801 was assessed in patients with primary biliary cholangitis. In this open-label phase 2a study, patients with primary biliary cholangitis with an inadequate response to ursodeoxycholic acid received six consecutive intravenous administrations of NI-0801 (10 mg/kg) every 2 weeks. Patients were followed up for 3 months after the last infusion. Liver function tests, safety assessments, as well as pharmacokinetic and pharmacodynamic parameters were evaluated at different time points throughout the dosing period and the safety follow-up period. Twenty-nine patients were enrolled in the study and were treated with NI-0801. The most frequently reported adverse events included headaches (52%), pruritus (34%), fatigue (24%), and diarrhea (21%). No study drug-related serious adverse events were reported. NI-0801 administration did not lead to a significant reduction in any of the liver function tests assessed at the end of the treatment period (i.e., 2 weeks after final NI-0801 administration) compared to baseline. Conclusion: Despite clear pharmacologic responses in the blood, no therapeutic benefit of multiple administrations of NI-0801 could be demonstrated. The high production rate of CXCL10 makes it difficult to achieve drug levels that lead to sustained neutralization of the chemokine, thus limiting its targetability. (Hepatology Communications 2018;2:492-503).
Collapse
Affiliation(s)
| | | | | | | | - Stuart M. Curbishley
- Centre for Liver ResearchUniversity of BirminghamBirminghamUnited Kingdom
- National Institute for Health Research (NIHR) Biomedical Research CentreBirminghamUnited Kingdom
| | - Marco Carbone
- Division of Gastroenterology and Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and SurgeryUniversity of Milan‐BicoccaMilanItaly
| | - Paul Richardson
- Royal Liverpool University National Health Service TrustLiverpoolUnited Kingdom
| | - Sulleman Moreea
- Department of GastroenterologyBradford Teaching Hospitals National Health Service Foundation TrustBradfordUnited Kingdom
| | - C. Anne McCune
- Department of HepatologyBristol Royal InfirmaryBristolUnited Kingdom
| | - Stephen D. Ryder
- NIHR Biomedical Research Unit in Gastrointestinal and Liver Diseases at Nottingham University Hospitals National Health Service Trust and The University of NottinghamNottinghamUnited Kingdom
| | - Roger W. Chapman
- Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUnited Kingdom
| | - Annarosa Floreani
- Department of Surgery, Oncology and GastroenterologyUniversity of PaduaPaduaItaly
| | - David E. Jones
- NIHR Newcastle Biomedical Research Centre and the Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | | | - David H. Adams
- Centre for Liver ResearchUniversity of BirminghamBirminghamUnited Kingdom
- National Institute for Health Research (NIHR) Biomedical Research CentreBirminghamUnited Kingdom
| | - Pietro Invernizzi
- Division of Gastroenterology and Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and SurgeryUniversity of Milan‐BicoccaMilanItaly
| |
Collapse
|
37
|
Hickey K, Stabenfeldt SE. Using biomaterials to modulate chemotactic signaling for central nervous system repair. Biomed Mater 2018; 13:044106. [PMID: 29411713 PMCID: PMC5991092 DOI: 10.1088/1748-605x/aaad82] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemotaxis enables cellular communication and movement within the body. This review focuses on exploiting chemotaxis as a tool for repair of the central nervous system (CNS) damaged from injury and/or degenerative diseases. Chemokines and factors alone may initiate repair following CNS injury/disease, but exogenous administration may enhance repair and promote regeneration. This review will discuss critical chemotactic molecules and factors that may promote neural regeneration. Additionally, this review highlights how biomaterials can impact the presentation and delivery of chemokines and growth factors to alter the regenerative response.
Collapse
Affiliation(s)
- Kassondra Hickey
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| | | |
Collapse
|
38
|
Patas K, Willing A, Demiralay C, Engler JB, Lupu A, Ramien C, Schäfer T, Gach C, Stumm L, Chan K, Vignali M, Arck PC, Friese MA, Pless O, Wiedemann K, Agorastos A, Gold SM. T Cell Phenotype and T Cell Receptor Repertoire in Patients with Major Depressive Disorder. Front Immunol 2018. [PMID: 29515587 PMCID: PMC5826233 DOI: 10.3389/fimmu.2018.00291] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
While a link between inflammation and the development of neuropsychiatric disorders, including major depressive disorder (MDD) is supported by a growing body of evidence, little is known about the contribution of aberrant adaptive immunity in this context. Here, we conducted in-depth characterization of T cell phenotype and T cell receptor (TCR) repertoire in MDD. For this cross-sectional case–control study, we recruited antidepressant-free patients with MDD without any somatic or psychiatric comorbidities (n = 20), who were individually matched for sex, age, body mass index, and smoking status to a non-depressed control subject (n = 20). T cell phenotype and repertoire were interrogated using a combination of flow cytometry, gene expression analysis, and next generation sequencing. T cells from MDD patients showed significantly lower surface expression of the chemokine receptors CXCR3 and CCR6, which are known to be central to T cell differentiation and trafficking. In addition, we observed a shift within the CD4+ T cell compartment characterized by a higher frequency of CD4+CD25highCD127low/− cells and higher FOXP3 mRNA expression in purified CD4+ T cells obtained from patients with MDD. Finally, flow cytometry-based TCR Vβ repertoire analysis indicated a less diverse CD4+ T cell repertoire in MDD, which was corroborated by next generation sequencing of the TCR β chain CDR3 region. Overall, these results suggest that T cell phenotype and TCR utilization are skewed on several levels in patients with MDD. Our study identifies putative cellular and molecular signatures of dysregulated adaptive immunity and reinforces the notion that T cells are a pathophysiologically relevant cell population in this disorder.
Collapse
Affiliation(s)
- Kostas Patas
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Willing
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Cüneyt Demiralay
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Andreea Lupu
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Immunomodulation Group, Cantacuzino National Research Institute, Bucharest, Romania
| | - Caren Ramien
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Laura Stumm
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Kenneth Chan
- Adaptive Biotechnologies, Seattle, WA, Unites States
| | | | - Petra C Arck
- Experimentelle Feto-Maternale Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ole Pless
- Fraunhofer IME ScreeningPort, Hamburg, Germany
| | - Klaus Wiedemann
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Agorastos Agorastos
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan M Gold
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Charité - Universitätsmedizin Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin (CBF), Berlin, Germany
| |
Collapse
|
39
|
Nikitina IY, Panteleev AV, Kosmiadi GA, Serdyuk YV, Nenasheva TA, Nikolaev AA, Gorelova LA, Radaeva TV, Kiseleva YY, Bozhenko VK, Lyadova IV. Th1, Th17, and Th1Th17 Lymphocytes during Tuberculosis: Th1 Lymphocytes Predominate and Appear as Low-Differentiated CXCR3 +CCR6 + Cells in the Blood and Highly Differentiated CXCR3 +/-CCR6 - Cells in the Lungs. THE JOURNAL OF IMMUNOLOGY 2018; 200:2090-2103. [PMID: 29440351 DOI: 10.4049/jimmunol.1701424] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
Th1 lymphocytes are considered the main mediators of protection against tuberculosis (TB); however, their phenotypic characteristics and relationship with Th17 and Th1Th17 populations during TB are poorly understood. We have analyzed Th1, Th17, and Th1Th17 lymphocytes in the blood and pulmonary lesions of TB patients. The populations were identified based on the production of IFN-γ and/or IL-17 and the coexpression of CXCR3 (X3) and CCR6 (R6). In the blood, IL-17+ and IFN-γ+IL-17+ lymphocytes were barely detectable (median, <0.01% of CD4+ lymphocytes), whereas IFN-γ+ lymphocytes predominated (median, 0.45%). Most IFN-γ+ lymphocytes (52%) were X3+R6+, suggesting their "nonclassical" (ex-Th17) nature. In the lungs, IL-17+ and IFN-γ+IL-17+ lymphocytes were more frequent (0.3%, p < 0.005), yet IFN-γ+ cells predominated (11%). Phenotypically, lung CD4+ cells were X3+/loR6- The degree of differentiation of blood effector CD4+ lymphocytes (evaluated based on CD62L/CD27/CD28 coexpression) increased as follows: X3+R6+ < X3+R6- < X3-R6-, with X3-R6- cells being largely terminally differentiated CD62L-CD27-CD28- cells. Lung CD4+ lymphocytes were highly differentiated, recalling blood X3+/-R6- populations. Following in vitro stimulation with anti-CD3/anti-CD28 Abs, X3+R6+CD4+ lymphocytes converted into X3+R6- and X3-R6- cells. The results demonstrate that, during active TB, Th1 lymphocytes predominate in blood and lungs, document differences in X3/R6 expression by blood and lung CD4+ cells, and link the pattern of X3/R6 expression with the degree of cell differentiation. These findings add to the understanding of immune mechanisms operating during TB and are relevant for the development of better strategies to control it.
Collapse
Affiliation(s)
- Irina Yu Nikitina
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Alexander V Panteleev
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - George A Kosmiadi
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Yana V Serdyuk
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Tatiana A Nenasheva
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Alexander A Nikolaev
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Lubov A Gorelova
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Tatiana V Radaeva
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Yana Yu Kiseleva
- Department of Molecular Biology and Experimental Therapy of Tumors, Federal State Budgetary Institution Russian Scientific Center of Roentgenoradiology of the Ministry of Healthcare of the Russian Federation, Moscow 117997, Russia
| | - Vladimir K Bozhenko
- Department of Molecular Biology and Experimental Therapy of Tumors, Federal State Budgetary Institution Russian Scientific Center of Roentgenoradiology of the Ministry of Healthcare of the Russian Federation, Moscow 117997, Russia
| | - Irina V Lyadova
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| |
Collapse
|
40
|
Metzemaekers M, Vanheule V, Janssens R, Struyf S, Proost P. Overview of the Mechanisms that May Contribute to the Non-Redundant Activities of Interferon-Inducible CXC Chemokine Receptor 3 Ligands. Front Immunol 2018; 8:1970. [PMID: 29379506 PMCID: PMC5775283 DOI: 10.3389/fimmu.2017.01970] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
The inflammatory chemokines CXCL9, CXCL10, and CXCL11 are predominantly induced by interferon (IFN)-γ and share an exclusive chemokine receptor named CXC chemokine receptor 3 (CXCR3). With a prototype function of directing temporal and spatial migration of activated T cells and natural killer cells, and inhibitory effects on angiogenesis, these CXCR3 ligands have been implicated in infection, acute inflammation, autoinflammation and autoimmunity, as well as in cancer. Intense former research efforts led to recent and ongoing clinical trials using CXCR3 and CXCR3 ligand targeting molecules. Scientific evidence has claimed mutual redundancy, ligand dominance, collaboration or even antagonism, depending on the (patho)physiological context. Most research on their in vivo activity, however, illustrates that CXCL9, CXCL10, and CXCL11 each contribute to the activation and trafficking of CXCR3 expressing cells in a non-redundant manner. When looking into detail, one can unravel a multistep machinery behind final CXCR3 ligand functions. Not only can specific cell types secrete individual CXCR3 interacting chemokines in response to certain stimuli, but also the receptor and glycosaminoglycan interactions, major associated intracellular pathways and susceptibility to processing by particular enzymes, among others, seem ligand-specific. Here, we overview major aspects of the molecular properties and regulatory mechanisms of IFN-induced CXCR3 ligands, and propose that their in vivo non-redundancy is a reflection of the unprecedented degree of versatility that seems inherent to the IFN-related CXCR3 chemokine system.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Rik Janssens
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
De Waele J, Marcq E, Van Audenaerde JR, Van Loenhout J, Deben C, Zwaenepoel K, Van de Kelft E, Van der Planken D, Menovsky T, Van den Bergh JM, Willemen Y, Pauwels P, Berneman ZN, Lardon F, Peeters M, Wouters A, Smits EL. Poly(I:C) primes primary human glioblastoma cells for an immune response invigorated by PD-L1 blockade. Oncoimmunology 2017; 7:e1407899. [PMID: 29399410 DOI: 10.1080/2162402x.2017.1407899] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/31/2017] [Accepted: 11/17/2017] [Indexed: 02/08/2023] Open
Abstract
Prognosis of glioblastoma remains dismal, underscoring the need for novel therapies. Immunotherapy is generating promising results, but requires combination strategies to unlock its full potential. We investigated the immunomodulatory capacities of poly(I:C) on primary human glioblastoma cells and its combinatorial potential with programmed death ligand (PD-L) blockade. In our experiments, poly(I:C) stimulated expression of both PD-L1 and PD-L2 on glioblastoma cells, and a pro-inflammatory secretome, including type I interferons (IFN) and chemokines CXCL9, CXCL10, CCL4 and CCL5. IFN-β was partially responsible for the elevated PD-1 ligand expression on these cells. Moreover, real-time PCR and chloroquine-mediated blocking experiments indicated that poly(I:C) triggered Toll-like receptor 3 to elicit its effect. Cocultures of poly(I:C)-treated glioblastoma cells with peripheral blood mononuclear cells enhanced lymphocytic activation (CD69, IFN-γ) and cytotoxic capacity (CD107a, granzyme B). Additional PD-L1 blockade further propagated immune activation. Besides activating immunity, poly(I:C)-treated glioblastoma cells also doubled the attraction of CD8+ T cells, and to a lesser extent CD4+ T cells, via a mechanism which included CXCR3 and CCR5 ligands. Our results indicate that by triggering glioblastoma cells, poly(I:C) primes the tumor microenvironment for an immune response. Secreted cytokines allow for immune activation while chemokines attract CD8+ T cells to the front, which are postulated as a prerequisite for effective PD-1/PD-L1 blockade. Accordingly, additional blockade of the concurrently elevated tumoral PD-L1 further reinforces the immune activation. In conclusion, our data proposes poly(I:C) treatment combined with PD-L1 blockade to invigorate the immune checkpoint inhibition response in glioblastoma.
Collapse
Affiliation(s)
- Jorrit De Waele
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Elly Marcq
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium
| | | | - Jinthe Van Loenhout
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Christophe Deben
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Karen Zwaenepoel
- Department of Pathology, Antwerp University Hospital, Edegem, Antwerp, Belgium
| | - Erik Van de Kelft
- Department of Neurosurgery, AZ Nikolaas, Sint-Niklaas, East Flanders, Belgium
| | | | - Tomas Menovsky
- Department of Neurosurgery, Antwerp University Hospital, Edegem, Antwerp, Belgium
| | | | - Yannick Willemen
- Laboratory of Experimental Hematology, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Patrick Pauwels
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium.,Department of Pathology, Antwerp University Hospital, Edegem, Antwerp, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, University of Antwerp, Wilrijk, Antwerp, Belgium.,Department of Hematology, Antwerp University Hospital, Edegem, Antwerp, Belgium
| | - Filip Lardon
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium.,Department of Oncology, Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital, Antwerp, Edegem, Belgium
| | - An Wouters
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Evelien Lj Smits
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium.,Laboratory of Experimental Hematology, University of Antwerp, Wilrijk, Antwerp, Belgium
| |
Collapse
|
42
|
Boyé K, Pujol N, D Alves I, Chen YP, Daubon T, Lee YZ, Dedieu S, Constantin M, Bello L, Rossi M, Bjerkvig R, Sue SC, Bikfalvi A, Billottet C. The role of CXCR3/LRP1 cross-talk in the invasion of primary brain tumors. Nat Commun 2017; 8:1571. [PMID: 29146996 PMCID: PMC5691136 DOI: 10.1038/s41467-017-01686-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 10/10/2017] [Indexed: 11/09/2022] Open
Abstract
CXCR3 plays important roles in angiogenesis, inflammation, and cancer. However, the precise mechanism of regulation and activity in tumors is not well known. We focused on CXCR3-A conformation and on the mechanisms controlling its activity and trafficking and investigated the role of CXCR3/LRP1 cross talk in tumor cell invasion. Here we report that agonist stimulation induces an anisotropic response with conformational changes of CXCR3-A along its longitudinal axis. CXCR3-A is internalized via clathrin-coated vesicles and recycled by retrograde trafficking. We demonstrate that CXCR3-A interacts with LRP1. Silencing of LRP1 leads to an increase in the magnitude of ligand-induced conformational change with CXCR3-A focalized at the cell membrane, leading to a sustained receptor activity and an increase in tumor cell migration. This was validated in patient-derived glioma cells and patient samples. Our study defines LRP1 as a regulator of CXCR3, which may have important consequences for tumor biology.
Collapse
Affiliation(s)
- Kevin Boyé
- INSERM U1029, Pessac, 33615, France.,Université de Bordeaux, Pessac, 33615, France
| | - Nadège Pujol
- INSERM U1029, Pessac, 33615, France.,Université de Bordeaux, Pessac, 33615, France
| | | | - Ya-Ping Chen
- Institute of Bioinformatics and Structural Biology, NTHU, Hsinchu, 30055, Taiwan
| | - Thomas Daubon
- INSERM U1029, Pessac, 33615, France.,Université de Bordeaux, Pessac, 33615, France.,K.G. Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Bergen, 5009, Norway.,Department of Oncology, Luxembourg Institute of Health, Luxembourg, L-1526, Luxembourg
| | - Yi-Zong Lee
- Institute of Bioinformatics and Structural Biology, NTHU, Hsinchu, 30055, Taiwan
| | - Stephane Dedieu
- CNRS UMR 7369 MEDyC, Université de Reims Champagne-Ardenne, Reims, 51687, France
| | - Marion Constantin
- INSERM U1029, Pessac, 33615, France.,Université de Bordeaux, Pessac, 33615, France
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Humanitas Resarch Hospital, Milan, 20089, Italy
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Humanitas Resarch Hospital, Milan, 20089, Italy
| | - Rolf Bjerkvig
- K.G. Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Bergen, 5009, Norway.,Department of Oncology, Luxembourg Institute of Health, Luxembourg, L-1526, Luxembourg
| | - Shih-Che Sue
- Institute of Bioinformatics and Structural Biology, NTHU, Hsinchu, 30055, Taiwan
| | - Andreas Bikfalvi
- INSERM U1029, Pessac, 33615, France. .,Université de Bordeaux, Pessac, 33615, France.
| | - Clotilde Billottet
- INSERM U1029, Pessac, 33615, France. .,Université de Bordeaux, Pessac, 33615, France.
| |
Collapse
|
43
|
Kjaergaard M, Kragelund BB. Functions of intrinsic disorder in transmembrane proteins. Cell Mol Life Sci 2017; 74:3205-3224. [PMID: 28601983 PMCID: PMC11107515 DOI: 10.1007/s00018-017-2562-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022]
Abstract
Intrinsic disorder is common in integral membrane proteins, particularly in the intracellular domains. Despite this observation, these domains are not always recognized as being disordered. In this review, we will discuss the biological functions of intrinsically disordered regions of membrane proteins, and address why the flexibility afforded by disorder is mechanistically important. Intrinsically disordered regions are present in many common classes of membrane proteins including ion channels and transporters; G-protein coupled receptors (GPCRs), receptor tyrosine kinases and cytokine receptors. The functions of the disordered regions are many and varied. We will discuss selected examples including: (1) Organization of receptors, kinases, phosphatases and second messenger sources into signaling complexes. (2) Modulation of the membrane-embedded domain function by ball-and-chain like mechanisms. (3) Trafficking of membrane proteins. (4) Transient membrane associations. (5) Post-translational modifications most notably phosphorylation and (6) disorder-linked isoform dependent function. We finish the review by discussing the future challenges facing the membrane protein community regarding protein disorder.
Collapse
Affiliation(s)
- Magnus Kjaergaard
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark.
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.
- The Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Ahmadzai MM, Broadbent D, Occhiuto C, Yang C, Das R, Subramanian H. Canonical and Noncanonical Signaling Roles of β-Arrestins in Inflammation and Immunity. Adv Immunol 2017; 136:279-313. [PMID: 28950948 DOI: 10.1016/bs.ai.2017.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
β-Arrestins are a highly conserved family of cytosolic adaptor proteins that contribute to many immune functions by orchestrating the desensitization and internalization of cell-surface G protein-coupled receptors (GPCRs) via well-studied canonical interactions. In cells of the innate and adaptive immune system, β-arrestins also subserve a parallel but less understood role in which they propagate, rather than terminate, intracellular signal transduction cascades. Because β-arrestins are promiscuous in their binding, they are capable of interacting with several different GPCRs and downstream effectors; in doing so, they vastly expand the repertoire of cellular responses evoked by agonist binding and the scope of responses that may contribute to inflammation during infectious and sterile insults. In this chapter, we attempt to provide an overview of the canonical and noncanonical roles of β-arrestins in inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | - Canchai Yang
- Michigan State University, East Lansing, MI, United States
| | - Rupali Das
- Michigan State University, East Lansing, MI, United States
| | | |
Collapse
|
45
|
Fearon DT. Immune-Suppressing Cellular Elements of the Tumor Microenvironment. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-050216-034359] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Douglas T. Fearon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
- Weill Cornell Medicine, New York, NY 10065
| |
Collapse
|
46
|
Abstract
INTRODUCTION By virtue of its specificity for chemokines induced in Th1-associated pathologies, CXCR3 has attracted considerable attention as a target for therapeutic intervention. Several pharmacologically distinct small molecules with in vitro and in vivo potency have been described in the literature, although to date, none have shown efficacy in clinical trials. Areas covered: In this article, the author outlines the rationale for targeting CXCR3 and discusses the potential pitfalls in targeting receptors in poorly understood areas of chemokine biology. Furthermore, they cover emerging therapeutic areas outside of the 'traditional' Th1 arena in which CXCR3 antagonists may ultimately bear fruit. Finally, they discuss the design of recently discovered small molecules targeting CXCR3. Expert opinion: CXCR3 and its ligands appear to play roles in a multitude of diverse diseases in humans. In vitro studies suggest that CXCR3 is inherently 'druggable' and that potent, efficacious small molecules targeting CXCR3 antagonists will find a clinical niche. However, the well-trodden path to failure of small molecule chemokine receptor antagonists in clinical trials suggests that a cautious approach should be undertaken. Ideally, unequivocal evidence elucidating the precise role of CXCR3 should be obtained before targeting the receptor in a particular disease cohort.
Collapse
Affiliation(s)
- James E Pease
- a Inflammation, Repair & Development Section, National Heart & Lung Institute, Faculty of Medicine , Imperial College London , London , UK
| |
Collapse
|
47
|
Berchiche YA, Sakmar TP. CXC Chemokine Receptor 3 Alternative Splice Variants Selectively Activate Different Signaling Pathways. Mol Pharmacol 2016; 90:483-95. [PMID: 27512119 DOI: 10.1124/mol.116.105502] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/09/2016] [Indexed: 01/17/2023] Open
Abstract
The G protein-coupled receptor (GPCR) C-X-C chemokine receptor 3 (CXCR3) is a potential drug target that mediates signaling involved in cancer metastasis and inflammatory diseases. The CXCR3 primary transcript has three potential alternative splice variants and cell-type specific expression results in receptor variants that are believed to have different functional characteristics. However, the molecular pharmacology of ligand binding to CXCR3 alternative splice variants and their downstream signaling pathways remain poorly explored. To better understand the role of the functional consequences of alternative splicing of CXCR3, we measured signaling in response to four different chemokine ligands (CXCL4, CXCL9, CXCL10, and CXCL11) with agonist activity at CXCR3. Both CXCL10 and CXCL11 activated splice variant CXCR3A. Whereas CXCL10 displayed full agonistic activity for Gαi activation and extracellular signal regulated kinase (ERK) 1/2 phosphorylation and partial agonist activity for β-arrestin recruitment, CXCL9 triggered only modest ERK1/2 phosphorylation. CXCL11 induced CXCR3B-mediated β-arrestin recruitment and little ERK phosphorylation. CXCR3Alt signaling was limited to modest ligand-induced receptor internalization and ERK1/2 phosphorylation in response to chemokines CXCL11, CXCL10, and CXCL9. These results show that CXCR3 splice variants activate different signaling pathways and that CXCR3 variant function is not redundant, suggesting a mechanism for tissue specific biased agonism. Our data show an additional layer of complexity for chemokine receptor signaling that might be exploited to target specific CXCR3 splice variants.
Collapse
Affiliation(s)
- Yamina A Berchiche
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (Y.A.B.; T.P.S.); and Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden (T.P.S)
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (Y.A.B.; T.P.S.); and Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden (T.P.S)
| |
Collapse
|
48
|
Dai Z, Xing L, Cerise J, Wang EHC, Jabbari A, de Jong A, Petukhova L, Christiano AM, Clynes R. CXCR3 Blockade Inhibits T Cell Migration into the Skin and Prevents Development of Alopecia Areata. THE JOURNAL OF IMMUNOLOGY 2016; 197:1089-99. [PMID: 27412416 DOI: 10.4049/jimmunol.1501798] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 06/07/2016] [Indexed: 11/19/2022]
Abstract
Alopecia areata (AA) is an autoimmune disease of the hair follicle that results in hair loss of varying severity. Recently, we showed that IFN-γ-producing NKG2D(+)CD8(+) T cells actively infiltrate the hair follicle and are responsible for its destruction in C3H/HeJ AA mice. Our transcriptional profiling of human and mouse alopecic skin showed that the IFN pathway is the dominant signaling pathway involved in AA. We showed that IFN-inducible chemokines (CXCL9/10/11) are markedly upregulated in the skin of AA lesions, and further, that the IFN-inducible chemokine receptor, CXCR3, is upregulated on alopecic effector T cells. To demonstrate whether CXCL9/10/11 chemokines were required for development of AA, we treated mice with blocking Abs to CXCR3, which prevented the development of AA in the graft model, inhibiting the accumulation of NKG2D(+)CD8(+) T cells in the skin and cutaneous lymph nodes. These data demonstrate proof of concept that interfering with the Tc1 response in AA via blockade of IFN-inducible chemokines can prevent the onset of AA. CXCR3 blockade could be approached clinically in human AA with either biologic or small-molecule inhibition, the latter being particularly intriguing as a topical therapeutic.
Collapse
Affiliation(s)
- Zhenpeng Dai
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Luzhou Xing
- Department of Pathology, Columbia University, New York, NY 10032; and
| | - Jane Cerise
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Eddy Hsi Chun Wang
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Ali Jabbari
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Annemieke de Jong
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Lynn Petukhova
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Angela M Christiano
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Raphael Clynes
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
49
|
Grifka-Walk HM, Segal BM. T-bet promotes the accumulation of encephalitogenic Th17 cells in the CNS. J Neuroimmunol 2016; 304:35-39. [PMID: 27242075 DOI: 10.1016/j.jneuroim.2016.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/06/2016] [Indexed: 12/16/2022]
Abstract
T-bet enhances the encephalitogenicity of myelin-reactive CD4+ T cells, however its mechanism of action is unknown. In this study we show that T-bet confers a competitive advantage for the accumulation of IL-23 conditioned Th17 effector cells in the central nervous system (CNS). Impaired migration of T-bet deficient Th17 cells to the CNS is associated with altered expression of adhesion molecules and chemokine receptors on their cell surface. Our data suggest that therapeutic targeting of T-bet in individuals with Th17-mediated autoimmune demyelinating disease may inhibit inflammatory infiltration of the CNS and, hence, clinical exacerbations.
Collapse
Affiliation(s)
- Heather M Grifka-Walk
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan, 4014-B BSRB, 109 Zina Pitcher Drive, Ann Arbor, MI 48109-2200, USA; Graduate Program in Immunology, University of Michigan, 100 Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Benjamin M Segal
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan, 4014-B BSRB, 109 Zina Pitcher Drive, Ann Arbor, MI 48109-2200, USA; Graduate Program in Immunology, University of Michigan, 100 Medical Center Drive, Ann Arbor, MI 48109, USA; Neurology Service, VA Ann Arbor Healthcare System, 2215 Fuller Road, Ann Arbor, MI 48105, USA.
| |
Collapse
|
50
|
Milanos L, Brox R, Frank T, Poklukar G, Palmisano R, Waibel R, Einsiedel J, Dürr M, Ivanović-Burmazović I, Larsen O, Hjortø GM, Rosenkilde MM, Tschammer N. Discovery and Characterization of Biased Allosteric Agonists of the Chemokine Receptor CXCR3. J Med Chem 2016; 59:2222-43. [DOI: 10.1021/acs.jmedchem.5b01965] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lampros Milanos
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Regine Brox
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Theresa Frank
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Gašper Poklukar
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Ralf Palmisano
- Optical
Imaging Center Erlangen, Friedrich Alexander University, Hartmannstraße
14, 91052 Erlangen, Germany
| | - Reiner Waibel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Jürgen Einsiedel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Maximilian Dürr
- Department
of Chemistry and Pharmacy, Bioorganic Chemistry, Friedrich Alexander University, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Ivana Ivanović-Burmazović
- Department
of Chemistry and Pharmacy, Bioorganic Chemistry, Friedrich Alexander University, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Olav Larsen
- Department
of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Gertrud Malene Hjortø
- Department
of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Mette Marie Rosenkilde
- Department
of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Nuska Tschammer
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| |
Collapse
|