1
|
Zhou XY, Chen K, Zhang JA. Mast cells as important regulators in the development of psoriasis. Front Immunol 2022; 13:1022986. [PMID: 36405690 PMCID: PMC9669610 DOI: 10.3389/fimmu.2022.1022986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/24/2022] [Indexed: 08/22/2023] Open
Abstract
Psoriasis is a chronic inflammatory immune skin disease mediated by genetic and environmental factors. As a bridge between innate and adaptive immunity, mast cells are involved in the initiation, development, and maintenance of psoriasis by interactions and communication with a variety of cells. The current review describes interactions of mast cells with T cells, Tregs, keratinocytes, adipocytes, and sensory neurons in psoriasis to emphasize the important role of mast cell-centered cell networks in psoriasis.
Collapse
Affiliation(s)
| | | | - Jia-An Zhang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| |
Collapse
|
2
|
Noto CN, Hoft SG, DiPaolo RJ. Mast Cells as Important Regulators in Autoimmunity and Cancer Development. Front Cell Dev Biol 2021; 9:752350. [PMID: 34712668 PMCID: PMC8546116 DOI: 10.3389/fcell.2021.752350] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023] Open
Abstract
Mast cells are an essential part of the immune system and are best known as important modulators of allergic and anaphylactic immune responses. Upon activation, mast cells release a multitude of inflammatory mediators with various effector functions that can be both protective and damage-inducing. Mast cells can have an anti-inflammatory or pro-inflammatory immunological effect and play important roles in regulating autoimmune diseases including rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. Importantly, chronic inflammation and autoimmunity are linked to the development of specific cancers including pancreatic cancer, prostate cancer, colorectal cancer, and gastric cancer. Inflammatory mediators released from activated mast cells regulate immune responses and promote vascular permeability and the recruitment of immune cells to the site of inflammation. Mast cells are present in increased numbers in tissues affected by autoimmune diseases as well as in tumor microenvironments where they co-localize with T regulatory cells and T effector cells. Mast cells can regulate immune responses by expressing immune checkpoint molecules on their surface, releasing anti-inflammatory cytokines, and promoting vascularization of solid tumor sites. As a result of these immune modulating activities, mast cells have disease-modifying roles in specific autoimmune diseases and cancers. Therefore, determining how to regulate the activities of mast cells in different inflammatory and tumor microenvironments may be critical to discovering potential therapeutic targets to treat autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Christine N Noto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Stella G Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
3
|
Zhang Z, Kurashima Y. Two Sides of the Coin: Mast Cells as a Key Regulator of Allergy and Acute/Chronic Inflammation. Cells 2021; 10:cells10071615. [PMID: 34203383 PMCID: PMC8308013 DOI: 10.3390/cells10071615] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
It is well known that mast cells (MCs) initiate type I allergic reactions and inflammation in a quick response to the various stimulants, including—but not limited to—allergens, pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs). MCs highly express receptors of these ligands and proteases (e.g., tryptase, chymase) and cytokines (TNF), and other granular components (e.g., histamine and serotonin) and aggravate the allergic reaction and inflammation. On the other hand, accumulated evidence has revealed that MCs also possess immune-regulatory functions, suppressing chronic inflammation and allergic reactions on some occasions. IL-2 and IL-10 released from MCs inhibit excessive immune responses. Recently, it has been revealed that allergen immunotherapy modulates the function of MCs from their allergic function to their regulatory function to suppress allergic reactions. This evidence suggests the possibility that manipulation of MCs functions will result in a novel approach to the treatment of various MCs-mediated diseases.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- CU-UCSD Center for Mucosal Immunology, Department of Pathology/Medicine, Allergy and Vaccines, University of California, San Diego, CA 92093-0063, USA
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Correspondence: ; Tel.: +81-43-226-2848; Fax: +81-43-226-2183
| |
Collapse
|
4
|
El Ansari YS, Kanagaratham C, Lewis OL, Oettgen HC. IgE and mast cells: The endogenous adjuvant. Adv Immunol 2020; 148:93-153. [PMID: 33190734 DOI: 10.1016/bs.ai.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cells and IgE are most familiar as the effectors of type I hypersensitivity reactions including anaphylaxis. It is becoming clear however that this pair has important immunomodulatory effects on innate and adaptive cells of the immune system. In this purview, they act as endogenous adjuvants to ignite evolving immune responses, promote the transition of allergic disease into chronic illness and disrupt the development of active mechanisms of tolerance to ingested foods. Suppression of IgE-mediated mast cell activation can be exerted by molecules targeting IgE, FcɛRI or signaling kinases including Syk, or by IgG antibodies acting via inhibitory Fcγ receptors. In 2015 we reviewed the evidence for the adjuvant functions of mast cells. This update includes the original text, incorporates some important developments in the field over the past five years and discusses how interventions targeting these pathways might have promise in the development of strategies to treat allergic disease.
Collapse
Affiliation(s)
- Yasmeen S El Ansari
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Cynthia Kanagaratham
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Owen L Lewis
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Hans C Oettgen
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
5
|
Bernaldo de Quiros E, Seoane-Reula E, Alonso-Lebrero E, Pion M, Correa-Rocha R. The role of regulatory T cells in the acquisition of tolerance to food allergens in children. Allergol Immunopathol (Madr) 2018; 46:612-618. [PMID: 29739687 DOI: 10.1016/j.aller.2018.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/31/2018] [Accepted: 02/09/2018] [Indexed: 01/03/2023]
Abstract
Food allergy is a pathological immune reaction that identifies certain harmless food proteins, usually tolerated by the majority of the people, as a threat. The prevalence of these food allergies is increasing worldwide and currently affects 8% of children. Exacerbated reactions to milk, egg and peanut are the most frequent in the pediatric population. It is well known that allergic diseases are a type 2 T-helper (Th2) immune response, characterized by the elevated production of IgE antibodies. However, little is known about the immune mechanisms responsible for the development of clinical tolerance toward food allergens. Recent studies have suggested the key role of regulatory T cells (Tregs) in controlling allergic inflammation. In this review, we discuss the importance of Tregs in the pathogenesis of food allergy and the acquisition of oral tolerance in children. Further investigation in this area will be crucial for the identification of predictive markers and the development of new therapies, which will represent a clinical and social benefit for these allergic diseases.
Collapse
|
6
|
Immunological Mechanisms in Allergic Diseases and Allergen Tolerance: The Role of Treg Cells. J Immunol Res 2018; 2018:6012053. [PMID: 30013991 PMCID: PMC6022267 DOI: 10.1155/2018/6012053] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/09/2018] [Accepted: 05/27/2018] [Indexed: 12/11/2022] Open
Abstract
The immune system regulates itself to establish an appropriate immune response to potentially harmful pathogens while tolerating harmless environmental antigens and self-antigens. A central role in this balance is played by regulatory T cells (Tregs) through various ways of actions. By means of molecule secretion and cell-cell contact mechanisms, Tregs may have the capacity to modulate effector T cells and suppress the action of proinflammatory cytokines across a broad range of cell types. As a result, abnormal regulatory T cell function has been pointed as a main cause in the development of allergic diseases, a major public health problem in industrialized countries, with a high socioeconomic impact. This prevalence and impact have created an international interest in improving the allergy diagnosis and therapy. Additionally, research has sought to gain a better understanding of the molecular mechanisms underlining this kind of disease, in order to a better management. At this respect, the role of Treg cells is one of the most promising areas of research, mainly because of their potential use as new immunotherapeutical approaches. Therefore, the aim of this review is to update the existing knowledge of the role of Tregs in this pathology deepening in their implication in allergen-specific therapy (AIT).
Collapse
|
7
|
Toyoshima S, Wakamatsu E, Ishida Y, Obata Y, Kurashima Y, Kiyono H, Abe R. The spleen is the site where mast cells are induced in the development of food allergy. Int Immunol 2017; 29:31-45. [PMID: 28177443 DOI: 10.1093/intimm/dxx005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/25/2017] [Indexed: 12/18/2022] Open
Abstract
It has been reported that splenic immune responses play pivotal roles in the development of allergic diseases; however, the precise role of the spleen remains unclear. Herein, we demonstrated a novel role of the spleen in the pathogenesis of food allergy (FA). We found that mast cells (MCs) developed from progenitor cells present in spleen during an antigen-specific T-cell response in vitro. In a Th2 response-mediated FA model, significant expansion of MCs was also observed in spleen. The incidence of allergic diarrhea was profoundly reduced in splenectomized mice, whereas adoptive transfer of in vitro-induced splenic MCs into these mice restored allergic symptoms, suggesting that the splenic MCs functioned as the pathogenic cells in the development of FA. The in vitro-generated MCs required not only IL-3 but also IFN-γ, and treatment of FA-induced mice with anti-IFN-γ antibody suppressed expansion of MCs in spleen as well as diarrhea development, highlighting that IFN-γ in the spleen orchestrated the development of FA, which was followed by a Th2 response in the local lesion. Overall, we propose that the role of the spleen in the development of FA is to provide a unique site where antigen-specific T cells induce development of pathogenic MCs.
Collapse
Affiliation(s)
- Shota Toyoshima
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan.,Allergy and Immunology Project Group, Research Institute of Medical Science, Center for Institutional Research and Medical Education, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan
| | - Ei Wakamatsu
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | - Yasuo Ishida
- Department of Pathology, Teikyo University Chiba Medical Center, Ichihara, Chiba 299-0111, Japan
| | - Yuuki Obata
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | - Yosuke Kurashima
- Division of Mucosal Immunology, Department of Microbiology and Immunology.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Department of Innovative Medicine, Graduate School of Medicine.,Institute for Global Prominent Research.,Departments of Mucosal Immunology and Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Departments of Mucosal Immunology and Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| |
Collapse
|
8
|
Palomares O, Akdis M, Martín-Fontecha M, Akdis CA. Mechanisms of immune regulation in allergic diseases: the role of regulatory T and B cells. Immunol Rev 2017; 278:219-236. [DOI: 10.1111/imr.12555] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Oscar Palomares
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| | - Mar Martín-Fontecha
- Department of Organic Chemistry; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| |
Collapse
|
9
|
Hasby Saad MA, Radi DA, Hasby EA. Oral contraceptive pills: Risky or protective in case of Trichinella spiralis infection? Parasite Immunol 2017; 39. [PMID: 28524239 DOI: 10.1111/pim.12444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/16/2017] [Indexed: 02/05/2023]
Abstract
The aim of this study was to investigate how Trichinella spiralis infection can be affected by contraceptive pills in vivo. Methods included six groups of female Wistar rats; healthy, Trichinella infected, receiving combined contraceptive pills (COCPs), receiving progestin only pills (POPs), infected receiving COCPs and infected receiving POPs. Parasite burden was measured; adult worm counts, gravidity, larvae and reproductive capacity index). Histopathological examination, immunohistochemical detection of C-kit+ mast cells and Foxp3+ T-reg. cells in intestinal sections, eosinophils muscle infiltration and CPK level were performed. Rats infected and receiving COCPs showed a significant increase in parasitic burden, and infected receiving POPs showed a significant reduction compared to infected only, with a significant increase in nongravid females (Mean total worms=964.40±55.9, 742±52.63, 686±31.68, larvae/g=5030±198.75, 2490±143.18 and 4126±152,91, respectively). Intestinal sections from infected receiving COCPs showed intact mucosa (though the high inflammatory cells infiltrate), and significant increase in C-kit+ mast cells number and intensity (30.20±4.15 and 60.40±8.29), and Foxp3+ T-reg. cells (10±1.58). Infected receiving POPs showed a significantly less CPK (5886±574.40) and eosinophilic muscle infiltration (58±13.51). Oestrogen-containing pills established a favourable intestinal environment for Trichinella by enhancing Foxp+T-reg. cells and stabilizing C-kit+mast cells, while POPs gave a potential protection with less gravidity, larval burden and eosinophilic infiltrate.
Collapse
Affiliation(s)
- M A Hasby Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - D A Radi
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - E A Hasby
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
10
|
Varricchi G, Harker J, Borriello F, Marone G, Durham SR, Shamji MH. T follicular helper (Tfh ) cells in normal immune responses and in allergic disorders. Allergy 2016; 71:1086-94. [PMID: 26970097 DOI: 10.1111/all.12878] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2016] [Indexed: 12/21/2022]
Abstract
Follicular helper T cells (Tfh ) are located within germinal centers of lymph nodes. Cognate interaction between Tfh , B cells, and IL-21 drives B cells to proliferate and differentiate into plasma cells thereby leading to antibody production. Tfh cells and IL-21 are involved in infectious and autoimmune diseases, immunodeficiencies, vaccination, and cancer. Human peripheral blood CXCR5(+) CD4(+) T cells comprise different subsets of Tfh -like cells. Despite the importance of the IgE response in the pathogenesis of allergic disorders, little is known about the role of follicular and blood Tfh cells and IL-21 in human and experimental allergic disease. Here, we review recent advances regarding the phenotypic and functional characteristics of both follicular and blood Tfh cells and of the IL-21/IL-21R system in the context of allergic disorders.
Collapse
Affiliation(s)
- G. Varricchi
- Immunomodulation and Tolerance Group; Imperial College London; London UK
- Allergy and Clinical Immunology; Imperial College London; London UK
| | - J. Harker
- Inflammation, Repair & Development Section; Faculty of Medicine; National Heart and Lung Institute; Imperial College London; London UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma; London UK
| | - F. Borriello
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI); School of Medicine; University of Naples Federico II; Naples Italy
| | - G. Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI); School of Medicine; University of Naples Federico II; Naples Italy
- CNR Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’; Naples Italy
| | - S. R. Durham
- Immunomodulation and Tolerance Group; Imperial College London; London UK
- Allergy and Clinical Immunology; Imperial College London; London UK
| | - M. H. Shamji
- Immunomodulation and Tolerance Group; Imperial College London; London UK
- Allergy and Clinical Immunology; Imperial College London; London UK
| |
Collapse
|
11
|
Corthésy B, Lassus A, Terrettaz J, Tranquart F, Bioley G. Efficacy of a therapeutic treatment using gas-filled microbubble-associated phospholipase A2 in a mouse model of honeybee venom allergy. Allergy 2016; 71:957-66. [PMID: 26850222 DOI: 10.1111/all.12859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Venom immunotherapy is efficient to desensitize people suffering from insect sting allergies. However, the numerous injections required over several years and important risks of severe side reactions complicate the widespread use of immunotherapy. In the search for novel approaches to blunt the overwhelming pro-allergic Th2 response, we evaluated the therapeutic efficacy of a treatment based on a denatured form of the major allergen, phospholipase A2, associated with microbubbles (PLA2denat -MB) in a mouse model of honeybee venom allergy. METHODS Antibodies measured by ELISA, T-cell responses assessed by CFSE-based proliferation assays and ELISA, and basophil degranulation were examined after PLA2denat -MB-based therapeutic treatment of sensitized mice. Mice were challenged with a lethal dose of PLA2 to evaluate protection against anaphylaxis. RESULTS Therapeutic subcutaneous administration of two different PLA2denat -MB formulations, in contrast to PLA2denat alone, reduced allergic symptoms and protected all mice from anaphylaxis-mediated death after allergen challenge. At the functional level, the use of PLA2denat decreased IgE-mediated basophil degranulation as compared to the native form of the allergen. In comparison with PLA2denat alone, both PLA2denat -MB formulations decreased allergen-specific Th2 CD4 T-cell reactivity. At the mechanistic level, PLA2denat -MB containing 20% palmitic acid and PEG induced PLA2-specific IgA and increased Foxp3(+) Treg frequencies and TGF-β production, whereas the formulation bearing 80% palmitic acid triggered the production of IFN-γ, IgG2a, and IgG3. CONCLUSIONS In contrast to conventional PLA2 subcutaneous immunotherapy, the therapeutic administration of PLA2-MB treatment to mice that already had established allergy to PLA2 protects all subsequently challenged animals.
Collapse
Affiliation(s)
- B. Corthésy
- R&D Laboratory; Division of Immunology and Allergy; University State Hospital (CHUV); Epalinges Switzerland
| | - A. Lassus
- Bracco Suisse SA; Plan-Les-Ouates Switzerland
| | | | | | - G. Bioley
- R&D Laboratory; Division of Immunology and Allergy; University State Hospital (CHUV); Epalinges Switzerland
| |
Collapse
|
12
|
Shandilya UK, Sharma A, Kapila R, Kansal VK. Probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum modulates immunoglobulin levels and cytokines expression in whey proteins sensitised mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3180-3187. [PMID: 26459934 DOI: 10.1002/jsfa.7497] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/14/2015] [Accepted: 10/09/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Cow milk allergy is the most common food allergy in children. So far, no effective treatment is available to prevent or cure food allergy. This study investigated whether orally administrated probiotics could suppress sensitisation in whey proteins (WP)-induced allergy mouse model. Two types of probiotic Dahi were prepared by co-culturing Dahi bacteria (Lactococcus lactis ssp. cremoris NCDC-86 and Lactococcus lactis ssp. lactis biovar diacetylactis NCDC-60) along with selected strain of Lactobacillus acidophilus LaVK2 and Bifidobacterium bifidum BbVK3. Mice were fed with probiotic Dahi (La-Dahi and LaBb-Dahi) from 7 days before sensitisation with WP, respectively, in addition to milk protein-free basal diet, and control group received no supplements. RESULTS Feeding of probiotic Dahi suppressed the elevation of whey proteins-specific IgE and IgG response of WP-sensitised mice. In addition, sIgA levels were significantly (P < 0.001) increased in intestinal fluid collected from mice fed with La-Dahi. Production of T helper (Th)-1 cell-specific cytokines, i.e. interferon-γ (IFN-γ), interleukin (IL)-12, and IL-10 increased, while Th2-specific cytokines, i.e. IL-4 decreased in the supernatant of cultured splenocytes collected from mice fed with probiotic Dahi as compared to the other groups. Moreover, the splenic mRNA levels of IFN-γ, interleukin-10 were found to be significantly increased, while that of IL-4 decreased significantly in La-Dahi groups, as compared to control groups. CONCLUSION Results of the present study indicate that probiotic Dahi skewed Th2-specific immune response towards Th1-specific response and suppressed IgE in serum. Collectively, this study shows the potential use of probiotics intervention in reducing the allergic response to whey proteins in mice. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Umesh Kumar Shandilya
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, India
| | | | - Rajeev Kapila
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, India
| | - Vinod Kumar Kansal
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, India
| |
Collapse
|
13
|
Epicutaneous immunotherapy induces gastrointestinal LAP + regulatory T cells and prevents food-induced anaphylaxis. J Allergy Clin Immunol 2016; 139:189-201.e4. [PMID: 27417020 DOI: 10.1016/j.jaci.2016.03.057] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/09/2016] [Accepted: 03/22/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND The attempt to induce oral tolerance as a treatment for food allergy has been hampered by a lack of sustained clinical protection. Immunotherapy by nonoral routes, such as the skin, may be more effective for the development of maintained tolerance to food allergens. OBJECTIVE We sought to determine the efficacy and mechanism of tolerance induced by epicutaneous immunotherapy (EPIT) in a model of food-induced anaphylaxis. METHODS C3H/HeJ mice were sensitized to ovalbumin (OVA) orally or through the skin and treated with EPIT using OVA-Viaskin patches or oral immunotherapy using OVA. Mice were orally challenged with OVA to induce anaphylaxis. Antigen-specific regulatory T (Treg)-cell induction was assessed by flow cytometry using a transgenic T-cell transfer model. RESULTS By using an adjuvant-free model of food allergy generated by epicutaneous sensitization and reactions triggered by oral allergen challenge, we found that EPIT induced sustained protection against anaphylaxis. We show that the gastrointestinal tract is deficient in de novo generation of Treg cells in allergic mice. This defect was tissue-specific, and epicutaneous application of antigen generated a population of gastrointestinal-homing LAP+Foxp3- Treg cells. The mechanism of protection was found to be a novel pathway of direct TGF-β-dependent Treg-cell suppression of mast cell activation, in the absence of modulation of T- or B-cell responses. CONCLUSIONS Our data highlight the immune communication between skin and gastrointestinal tract, and identifies novel mechanisms by which epicutaneous tolerance can suppress food-induced anaphylaxis.
Collapse
|
14
|
van Esch BCAM, Abbring S, Diks MAP, Dingjan GM, Harthoorn LF, Vos AP, Garssen J. Post-sensitization administration of non-digestible oligosaccharides and Bifidobacterium breve M-16V reduces allergic symptoms in mice. Immun Inflamm Dis 2016; 4:155-165. [PMID: 27933160 PMCID: PMC4879462 DOI: 10.1002/iid3.101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 12/16/2022] Open
Abstract
To support dietary management of severe cow's milk allergic infants, a synbiotic mixture of non-digestible oligosaccharides and Bifidobacterium breve M-16V (B. breve) was designed from source materials that are completely cow's milk-free. It was investigated whether this specific synbiotic concept can reduce an established food allergic response in a research model for hen's egg allergy. Mice were orally sensitized once a week for 5 weeks to ovalbumin (OVA) using cholera toxin (CT) as an adjuvant. Non-sensitized mice received CT in PBS only. Sensitized mice were fed a control diet or a diet enriched with short-chain- (scFOS) and long-chain fructo-oligosaccharides (lcFOS), B. breve or scFOSlcFOS + B. breve for 3 weeks starting after the last sensitization. Non-sensitized mice received the control diet. Anaphylactic shock symptoms, acute allergic skin responses and serum specific IgE, mMCP-1 and galectin-9 were measured upon OVA challenge. Activated Th2-, Th1-cells and regulatory T-cells were quantified in spleen and mesenteric lymph nodes (MLN) and cytokine profiles were analyzed. Short chain fatty acids (SCFA) were measured in ceacal samples. The acute allergic skin response was reduced in mice fed the scFOSlcFOS + B. breve diet compared to mice fed any of the other diets. A reduction in mast cell degranulation (mMCP-1) and anaphylactic shock symptoms was also observed in these mice. Unstimulated splenocyte cultures produced increased levels of IL10 and IFNg in mice fed the scFOSlcFOS + B. breve diet. Correspondingly, increased percentages of activated Th1 cells were observed in the spleen. Allergen-specific re-stimulation of splenocytes showed a decrease in IL5 production. In summary; post-sensitization administration of scFOSlcFOS + B. breve was effective in reducing allergic symptoms after allergen challenge. These effects coincided with changes in regulatory and effector T-cell subsets and increases in the SCFA propionic acid. These results suggest immune modulatory benefits of dietary intervention with a unique combination of scFOSlcFOS + B. breve in established food allergy. Whether these effects translate to human applications is subject for ongoing clinical studies.
Collapse
Affiliation(s)
- Betty C. A. M. van Esch
- Faculty of ScienceDivison of PharmacologyUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Nutricia ResearchUtrechtThe Netherlands
| | - Suzanne Abbring
- Faculty of ScienceDivison of PharmacologyUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Mara A. P. Diks
- Faculty of ScienceDivison of PharmacologyUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Gemma M. Dingjan
- Faculty of ScienceDivison of PharmacologyUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | | | - A. Paul Vos
- Faculty of ScienceDivison of PharmacologyUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Nutricia ResearchNutricia Advanced Medical NutritionUtrechtthe Netherlands
| | - Johan Garssen
- Faculty of ScienceDivison of PharmacologyUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Nutricia ResearchUtrechtThe Netherlands
| |
Collapse
|
15
|
Polukort SH, Rovatti J, Carlson L, Thompson C, Ser-Dolansky J, Kinney SRM, Schneider SS, Mathias CB. IL-10 Enhances IgE-Mediated Mast Cell Responses and Is Essential for the Development of Experimental Food Allergy in IL-10-Deficient Mice. THE JOURNAL OF IMMUNOLOGY 2016; 196:4865-76. [PMID: 27183617 DOI: 10.4049/jimmunol.1600066] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/13/2016] [Indexed: 12/17/2022]
Abstract
IL-10 is a key pleiotropic cytokine that can both promote and curb Th2-dependent allergic responses. In this study, we demonstrate a novel role for IL-10 in promoting mast cell expansion and the development of IgE-mediated food allergy. Oral OVA challenge in sensitized BALB/c mice resulted in a robust intestinal mast cell response accompanied by allergic diarrhea, mast cell activation, and a predominance of Th2 cytokines, including enhanced IL-10 expression. In contrast, the development of intestinal anaphylaxis, including diarrhea, mast cell activation, and Th2 cytokine production, was significantly attenuated in IL-10(-/-) mice compared with wild-type (WT) controls. IL-10 also directly promoted the expansion, survival, and activation of mast cells; increased FcεRI expression on mast cells; and enhanced the production of mast cell cytokines. IL-10(-/-) mast cells had reduced functional capacity, which could be restored by exogenous IL-10. Similarly, attenuated passive anaphylaxis in IL-10(-/-) mice could be restored by IL-10 administration. The adoptive transfer of WT mast cells restored allergic symptoms in IL-10(-/-) mice, suggesting that the attenuated phenotype observed in these animals is due to a deficiency in IL-10-responding mast cells. Lastly, transfer of WT CD4 T cells also restored allergic diarrhea and intestinal mast cell numbers in IL-10(-/-) mice, suggesting that the regulation of IL-10-mediated intestinal mast cell expansion is T cell dependent. Our observations demonstrate a critical role for IL-10 in driving mucosal mast cell expansion and activation, suggesting that, in its absence, mast cell function is impaired, leading to attenuated food allergy symptoms.
Collapse
Affiliation(s)
- Stephanie H Polukort
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Jeffrey Rovatti
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Logan Carlson
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Chelsea Thompson
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Jennifer Ser-Dolansky
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199; and
| | - Shannon R M Kinney
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Sallie S Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199; and Department of Animal and Veterinary Sciences, University of Massachusetts at Amherst, Amherst, MA 01003
| | - Clinton B Mathias
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119; Department of Animal and Veterinary Sciences, University of Massachusetts at Amherst, Amherst, MA 01003
| |
Collapse
|
16
|
Suurmond J, van der Velden D, Kuiper J, Bot I, Toes RE. Mast cells in rheumatic disease. Eur J Pharmacol 2016; 778:116-24. [DOI: 10.1016/j.ejphar.2015.03.085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/13/2015] [Accepted: 03/25/2015] [Indexed: 12/18/2022]
|
17
|
Kim AR, Kim HS, Kim DK, Nam ST, Kim HW, Park YH, Lee D, Lee MB, Lee JH, Kim B, Beaven MA, Kim HS, Kim YM, Choi WS. Mesenteric IL-10-producing CD5+ regulatory B cells suppress cow's milk casein-induced allergic responses in mice. Sci Rep 2016; 6:19685. [PMID: 26785945 PMCID: PMC4726293 DOI: 10.1038/srep19685] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022] Open
Abstract
Food allergy is a hypersensitive immune reaction to food proteins. We have previously demonstrated the presence of IL-10-producing CD5(+) B cells and suggested their potential role in regulating cow's milk casein allergy in humans and IgE-mediated anaphylaxis in mice. In this study, we determined whether IL-10-producing CD5(+) regulatory B cells control casein-induced food allergic responses in mice and, if so, the underlying mechanisms. The induction of oral tolerance (OT) by casein suppressed casein-induced allergic responses including the decrease of body temperature, symptom score, diarrhea, recruitment of mast cells and eosinophils into jejunum, and other biological parameters in mice. Notably, the population of IL-10-producing CD5(+) B cells was increased in mesenteric lymph node (MLN), but not in spleen or peritoneal cavity (PeC) in OT mice. The adoptive transfer of CD5(+) B cells from MLN, but not those from spleen and PeC, suppressed the casein-induced allergic responses in an allergen-specific and IL-10-dependent manner. The inhibitory effect of IL-10-producing CD5(+) B cells on casein-induced allergic response was dependent on Foxp3(+) regulatory T cells. Taken together, mesenteric IL-10-producing regulatory B cells control food allergy via Foxp3(+) regulatory T cells and could potentially act as a therapeutic regulator for food allergy.
Collapse
Affiliation(s)
- A-Ram Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Hyuk Soon Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Do Kyun Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Seung Taek Nam
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Hyun Woo Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Young Hwan Park
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Dajeong Lee
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Min Bum Lee
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Jun Ho Lee
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Bokyung Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Michael A. Beaven
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD20892
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women’s University, Seoul 132-714, Korea
| | - Wahn Soo Choi
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| |
Collapse
|
18
|
Bioley G, Lassus A, Terrettaz J, Tranquart F, Corthésy B. Prophylactic immunization of mice with phospholipase A2-loaded gas-filled microbubbles is protective against Th2-mediated honeybee venom allergy. Clin Exp Allergy 2015; 46:153-62. [DOI: 10.1111/cea.12555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/24/2015] [Accepted: 04/06/2015] [Indexed: 12/28/2022]
Affiliation(s)
- G. Bioley
- R&D Laboratory; Division of Immunology and Allergy; University State Hospital (CHUV); Epalinges Switzerland
| | - A. Lassus
- Bracco Suisse SA; Plan-Les-Ouates Switzerland
| | | | | | - B. Corthésy
- R&D Laboratory; Division of Immunology and Allergy; University State Hospital (CHUV); Epalinges Switzerland
| |
Collapse
|
19
|
Castillo-Courtade L, Han S, Lee S, Mian FM, Buck R, Forsythe P. Attenuation of food allergy symptoms following treatment with human milk oligosaccharides in a mouse model. Allergy 2015; 70:1091-102. [PMID: 25966668 DOI: 10.1111/all.12650] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND The prebiotic nature of human milk oligosaccharides (HMOs) and increasing evidence of direct immunomodulatory effects of these sugars suggest that they may have some therapeutic potential in allergy. Here, we assess the effect of two HMOs, 2'-fucosyllactose and 6'-sialyllactose, on symptomatology and immune responses in an ovalbumin-sensitized mouse model of food allergy. METHODS The effects of oral treatment with 2'-fucosyllactose and 6'-sialyllactose on anaphylactic symptoms induced by oral ovalbumin (OVA) challenge in sensitized mice were investigated. Mast cell functions in response to oral HMO treatment were also measured in the passive cutaneous anaphylaxis model, and direct effects on IgE-mediated degranulation of mast cells were assessed. RESULTS Daily oral treatment with 2'-fucosyllactose or 6'-sialyllactose attenuated food allergy symptoms including diarrhea and hypothermia. Treatment with HMOs also suppressed antigen-induced increases in mouse mast cell protease-1 in serum and mast cell numbers in the intestine. These effects were associated with increases in the CD4(+) CD25(+) IL-10(+) cell populations in the Peyer's patches and mesenteric lymph nodes, while 6'-sialyllactose also induced increased IL-10 and decreased TNF production in antigen-stimulated splenocytes. Both 2'-fucosyllactose and 6'-sialyllactose reduced the passive cutaneous anaphylaxis response, but only 6'-sialyllactose directly inhibited mast cell degranulation in vitro, at high concentrations. CONCLUSIONS Our results suggest that 2'-fucosyllactose and 6'-sialyllactose reduce the symptoms of food allergy through induction of IL-10(+) T regulatory cells and indirect stabilization of mast cells. Thus, human milk oligosaccharides may have therapeutic potential in allergic disease.
Collapse
Affiliation(s)
| | - S. Han
- Department of Medicine; McMaster University; Hamilton ON Canada
| | - S. Lee
- Department of Medicine; McMaster University; Hamilton ON Canada
| | - F. M. Mian
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - R. Buck
- Division of Abbott Laboratories; Abbott Nutrition; Columbus OH USA
| | - P. Forsythe
- Department of Medicine; McMaster University; Hamilton ON Canada
- Firestone Institute for Respiratory Research; McMaster University; Hamilton ON Canada
| |
Collapse
|
20
|
Bulfone-Paus S, Bahri R. Mast Cells as Regulators of T Cell Responses. Front Immunol 2015; 6:394. [PMID: 26300882 PMCID: PMC4528181 DOI: 10.3389/fimmu.2015.00394] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/19/2015] [Indexed: 01/05/2023] Open
Abstract
Mast cells (MCs) are recognized to participate in the regulation of innate and adaptive immune responses. Owing to their strategic location at the host–environment interface, they control tissue homeostasis and are key cells for starting early host defense against intruders. Upon degranulation induced, e.g., by immunoglobulin E (IgE) and allergen-mediated engagement of the high-affinity IgE receptor, complement or certain neuropeptide receptors, MCs release a wide variety of preformed and newly synthesized products including proteases, lipid mediators, and many cytokines, chemokines, and growth factors. Interestingly, increasing evidence suggests a regulatory role for MCs in inflammatory diseases via the regulation of T cell activities. Furthermore, rather than only serving as effector cells, MCs are now recognized to induce T cell activation, recruitment, proliferation, and cytokine secretion in an antigen-dependent manner and to impact on regulatory T cells. This review synthesizes recent developments in MC–T cell interactions, discusses their biological and clinical relevance, and explores recent controversies in this field of MC research.
Collapse
Affiliation(s)
- Silvia Bulfone-Paus
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Institute of Inflammation and Repair, University of Manchester , Manchester , UK
| | - Rajia Bahri
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Institute of Inflammation and Repair, University of Manchester , Manchester , UK
| |
Collapse
|
21
|
Mast cell and autoimmune diseases. Mediators Inflamm 2015; 2015:246126. [PMID: 25944979 PMCID: PMC4402170 DOI: 10.1155/2015/246126] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 01/04/2023] Open
Abstract
Mast cells are important in innate immune system. They have been appreciated as potent contributors to allergic reaction. However, increasing evidence implicates the important role of mast cells in autoimmune disease like rheumatoid arthritis and multiple sclerosis. Here we review the current stage of knowledge about mast cells in autoimmune diseases.
Collapse
|
22
|
|
23
|
The sphingosine-1-phosphate/sphingosine-1-phosphate receptor 2 axis regulates early airway T-cell infiltration in murine mast cell-dependent acute allergic responses. J Allergy Clin Immunol 2014; 135:1008-1018.e1. [PMID: 25512083 DOI: 10.1016/j.jaci.2014.10.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 10/28/2014] [Accepted: 10/31/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid produced by mast cells (MCs) on cross-linking of their high-affinity receptors for IgE by antigen that can amplify MC responses by binding to its S1P receptors. An acute MC-dependent allergic reaction can lead to systemic shock, but the early events of its development in lung tissues have not been investigated, and S1P functions in the onset of allergic processes remain to be examined. OBJECTIVE We used a highly specific neutralizing anti-S1P antibody (mAb) and the sphingosine-1-phosphate receptor 2 (S1PR2) antagonist JTE-013 to study the signaling contributions of S1P and S1PR2 to MC- and IgE-dependent airway allergic responses in mice within minutes after antigen challenge. METHODS Allergic reaction was triggered by a single intraperitoneal dose of antigen in sensitized mice pretreated intraperitoneally with anti-S1P, isotype control mAb, JTE-013, or vehicle before antigen challenge. RESULTS Kinetics experiments revealed early pulmonary infiltration of mostly T cells around blood vessels of sensitized mice 20 minutes after antigen exposure. Pretreatment with anti-S1P mAb inhibited in vitro MC activation, as well as in vivo development of airway infiltration and MC activation, reducing serum levels of histamine, cytokines, and the chemokines monocyte chemoattractant protein 1/CCL2, macrophage inflammatory protein 1α/CCL3, and RANTES/CCL5. S1PR2 antagonism or deficiency or MC deficiency recapitulated these results. Both in vitro and in vivo experiments demonstrated MC S1PR2 dependency for chemokine release and the necessity for signal transducer and activator of transcription 3 activation. CONCLUSION Activation of S1PR2 by S1P and downstream signal transducer and activator of transcription 3 signaling in MCs regulate early T-cell recruitment to antigen-challenged lungs through chemokine production.
Collapse
|
24
|
Abstract
The science of food allergy has been rapidly evolving before our eyes in the past half century. Like other allergic disorders, the prevalence of food allergies has dramatically increased, and coupled with the increased public awareness of anaphylaxis due to food allergy, this has driven an explosion in basic and clinical research in this extremely broad subject. Treatment of food allergies has evolved and practices such as food challenges have become an integral part of an allergy practice. The impact of the increase of food allergy has driven package labeling laws, legislation on emergency treatment availability in schools and other public places, and school policy. But to this day, our knowledge of the pathogenesis of food allergy is still incomplete. There are the most obvious IgE-mediated immediate hypersensitivity reactions, but then multiple previously unidentified conditions such as eosinophilic esophagitis, food protein-induced enterocolitis syndrome, milk protein allergy, food-induced atopic dermatitis, oral allergy syndrome, and others have complicated the diagnosis and management of many of our patients who are unable to tolerate certain foods. Many of these conditions are not IgE-mediated, but may be T cell-driven diseases. The role of T regulatory cells and immune tolerance and the newly discovered immunological role of vitamin D have shed light on the variable clinical presentation of food allergy and the development of new methods of immunotherapy in an example of bench-to-bedside research. Component-resolved diagnostic techniques have already begun to allow us to more precisely define the epitopes that are targeted in food allergic patients. The development of biological modulators, research on genomics and proteomics, and epigenetic techniques all offer promising avenues for new modes of therapy of food allergy in the twenty-first century.
Collapse
Affiliation(s)
- Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA,
| | | | | |
Collapse
|
25
|
Kerperien J, Jeurink PV, Wehkamp T, van der Veer A, van de Kant HJG, Hofman GA, van Esch ECAM, Garssen J, Willemsen LEM, Knippels LMJ. Non-digestible oligosaccharides modulate intestinal immune activation and suppress cow's milk allergic symptoms. Pediatr Allergy Immunol 2014; 25:747-54. [PMID: 25410019 DOI: 10.1111/pai.12311] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cow's milk allergy is a common food allergy in childhood and no effective preventive or curative treatment is available. This study aimed at comparing single short-chain galacto- (scGOS), long-chain fructo- (lcFOS) or pectin-derived acidic oligosaccharides (pAOS) and/or mixtures of scGOS/lcFOS (GF) or scGOS/lcFOS/pAOS (GFA) to prevent or treat food allergy. METHODS In the preventive protocol, C3H/HeOuJ mice were fed diets containing single oligosaccharides or mixtures GF or GFA throughout the study protocol. In the treatment protocol, GF or GFA was provided for 4 wk starting after the last sensitization. The allergic skin response and anaphylaxis scores were determined, after oral challenge whey-specific immunoglobulins were measured, and qPCR for T-cell markers and Foxp3 counts using immunohistochemistry were performed on the small intestine and colon. RESULTS Only in the preventive setting, the GF or GFA mixture, but not the single oligosaccharides, reduced the allergic skin response and whey-IgG(1) levels in whey-sensitized mice, compared to the control diet. Both GF and GFA increased the number of Foxp3+ cells in the proximal small intestine of whey - compared to sham-sensitized mice. Expression of Th2 and Th17 mRNA markers increased in the middle part of the small intestine of whey-sensitized mice, which was prevented by GF. By contrast, GFA enhanced Tbet (Th1), IL-10 and TGF-β mRNA expression compared to GF which was maintained in the distal small intestine and/or colon. CONCLUSIONS Dietary supplementation with scGOS/lcFOS or scGOS/lcFOS/pAOS during sensitization, both effectively reduce allergic symptoms but differentially affect mucosal immune activation in whey-sensitized mice.
Collapse
Affiliation(s)
- J Kerperien
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bond G, Nowocin A, Sacks SH, Wong W. Kinetics of mast cell migration during transplantation tolerance. Transpl Immunol 2014; 32:40-5. [PMID: 25460809 DOI: 10.1016/j.trim.2014.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND After inflammatory stimulus, mast cells (MC) migrate to secondary lymphoid organs contributing to adaptive immune response. There is growing evidence that MC also contribute to transplant tolerance, but little is known about MC kinetics in the setting of transplant tolerance and rejection. Likewise it has been demonstrated that complement split products, which are known to act as chemoattractants for MC, are necessary for transplant tolerance. METHODS Naive skin and lymph nodes, skin grafts and draining lymph nodes from wild type and complement deficient mice treated with a tolerogenic protocol were analyzed. RESULTS Early after tolerance induction MC leave the graft and migrate to the draining lymph nodes. After this initial efflux, MC reappear in tolerant skin grafts in numbers exceeding that of naive skin. MC density in draining lymph nodes obtained from tolerant mice also increased post transplant. There was no difference in MC density, migration and degranulation status between wild type and complement deficient mice implicating that chemotaxis is not disturbed in complement deficient mice. CONCLUSION This study gives detailed insight in kinetics of MC migration during transplant tolerance induction and rejection providing further evidence for a role of MC in transplant tolerance.
Collapse
Affiliation(s)
- Gregor Bond
- MRC Centre for Transplantation, King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, London, UK
| | - Anna Nowocin
- MRC Centre for Transplantation, King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, London, UK
| | - Steven H Sacks
- MRC Centre for Transplantation, King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, London, UK
| | - Wilson Wong
- MRC Centre for Transplantation, King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, London, UK.
| |
Collapse
|
27
|
Regulatory T cells and immune regulation of allergic diseases: roles of IL-10 and TGF-β. Genes Immun 2014; 15:511-20. [PMID: 25056447 DOI: 10.1038/gene.2014.45] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 01/04/2023]
Abstract
The prevalence of allergic diseases has significantly increased in industrialized countries. Allergen-specific immunotherapy (AIT) remains as the only curative treatment. The knowledge about the mechanisms underlying healthy immune responses to allergens, the development of allergic reactions and restoration of appropriate immune responses to allergens has significantly improved over the last decades. It is now well-accepted that the generation and maintenance of functional allergen-specific regulatory T (Treg) cells and regulatory B (Breg) cells are essential for healthy immune responses to environmental proteins and successful AIT. Treg cells comprise different subsets of T cells with suppressive capacity, which control the development and maintenance of allergic diseases by various ways of action. Molecular mechanisms of generation of Treg cells, the identification of novel immunological organs, where this might occur in vivo, such as tonsils, and related epigenetic mechanisms are starting to be deciphered. The key role played by the suppressor cytokines interleukin (IL)-10 and transforming growth factor (TGF)-β produced by functional Treg cells during the generation of immune tolerance to allergens is now well established. Treg and Breg cells together have a role in suppression of IgE and induction of IgG4 isotype allergen-specific antibodies particularly mediated by IL-10. Other cell types such as subsets of dendritic cells, NK-T cells and natural killer cells producing high levels of IL-10 may also contribute to the generation of healthy immune responses to allergens. In conclusion, better understanding of the immune regulatory mechanisms operating at different stages of allergic diseases will significantly help the development of better diagnostic and predictive biomarkers and therapeutic interventions.
Collapse
|
28
|
Johnston LK, Chien KB, Bryce PJ. The immunology of food allergy. THE JOURNAL OF IMMUNOLOGY 2014; 192:2529-34. [PMID: 24610821 DOI: 10.4049/jimmunol.1303026] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Food allergies represent an increasingly prevalent human health problem, and therapeutic options remain limited, with avoidance being mainstay, despite its adverse effects on quality of life. A better understanding of the key immunological mechanisms involved in such responses likely will be vital for development of new therapies. This review outlines the current understanding of how the immune system is thought to contribute to prevention or development of food allergies. Drawing from animal studies, as well as clinical data when available, the importance of oral tolerance in sustaining immunological nonresponsiveness to food Ags, our current understanding of why oral tolerance may fail and sensitization may occur, and the knowledge of pathways that may lead to anaphylaxis and food allergy-associated responses are addressed.
Collapse
Affiliation(s)
- Laura K Johnston
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | | | | |
Collapse
|
29
|
van den Elsen LWJ, Meulenbroek LAPM, van Esch BCAM, Hofman GA, Boon L, Garssen J, Willemsen LEM. CD25+ regulatory T cells transfer n-3 long chain polyunsaturated fatty acids-induced tolerance in mice allergic to cow's milk protein. Allergy 2013; 68:1562-70. [PMID: 24410782 DOI: 10.1111/all.12300] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Recently, we have shown that dietary long-chain n-3 polyunsaturated fatty acids (n-3 LCPUFA) largely prevent allergic sensitization in a murine model for cow's milk allergy. The aim of this study was to assess the contribution of regulatory T cells (Treg) in the prevention of food allergy by n-3 LCPUFA. METHODS C3H/HeOuJ female donor mice were fed a control or fish oil diet before and during oral sensitization with cow's milk protein whey. Acute allergic skin response (ASR), anaphylaxis, body temperature, serum immunoglobulins, and mouse mast cell protease-1 (mmcp-1) were assessed. Splenocytes of sham- or whey-sensitized donor mice fed either control or fish oil diet were adoptively transferred to naïve recipient mice. Recipient mice received a whole splenocyte suspension, splenocytes ex vivo depleted of CD25+ cells, or MACS-isolated CD4+ CD25+ Treg. Recipient mice were sham- or whey-sensitized and fed control diet. RESULTS The ASR as well as whey-specific IgE and whey-specific IgG1 levels were reduced in whey-sensitized donor mice fed the fish oil diet as compared to the control diet. Splenocytes of control-diet-fed whey-sensitized donors transferred immunologic memory. By contrast, splenocytes of fish-oil-fed whey-sensitized - but not sham-sensitized - donors transferred tolerance to recipients as shown by a reduction in ASR and serum mmcp-1, and depletion of CD25+ Treg abrogated this. Transfer of CD25+ Treg confirmed the involvement of Treg in the suppression of allergic sensitization. CONCLUSIONS CD25+ Treg are crucial in whey allergy prevention by n-3 LCPUFA.
Collapse
Affiliation(s)
- L. W. J. van den Elsen
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht the Netherlands
| | - L. A. P. M. Meulenbroek
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht the Netherlands
- Department of Dermatology/Allergology; University Medical Centre Utrecht; Utrecht the Netherlands
| | - B. C. A. M. van Esch
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht the Netherlands
- Danone Research; Centre for Specialised Nutrition; Wageningen the Netherlands
| | - G. A. Hofman
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht the Netherlands
| | - L. Boon
- Bioceros BV; Utrecht the Netherlands
| | - J. Garssen
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht the Netherlands
- Danone Research; Centre for Specialised Nutrition; Wageningen the Netherlands
| | - L. E. M. Willemsen
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht the Netherlands
| |
Collapse
|
30
|
Jeurink PV, van Esch BCAM, Rijnierse A, Garssen J, Knippels LMJ. Mechanisms underlying immune effects of dietary oligosaccharides. Am J Clin Nutr 2013; 98:572S-7S. [PMID: 23824724 DOI: 10.3945/ajcn.112.038596] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The WHO refers to human milk as the nutritional gold standard for term infants. Human milk contains many immunomodulatory compounds, including oligosaccharides. Human-milk oligosaccharides can serve as prebiotics because the nondigestible oligosaccharides present in human milk show a clear bifidogenic effect on the gut microbiota. Dietary oligosaccharide structures that have prebiotic effects similar to human-milk oligosaccharides include galacto-oligosaccharides, fructo-oligosaccharides, and pectin-derived acidic oligosaccharides. Both animal studies and human clinical trials showed that dietary intervention with these dietary oligosaccharides in early life could lead to the prevention of atopic dermatitis, food allergy, and allergic asthma. The immune-modulating effects of these oligosaccharides are likely assisted via alteration of the intestinal microbiota or in a microbiota-independent manner by direct interaction on immune cells or both. In this review, an overview of the prebiotic role of dietary oligosaccharides on the microbiota and the microbiota-independent immune modulation by these prebiotics is provided. In addition, recent publications that report on the pathways by which the oligosaccharides might exert their direct immunomodulatory effect are summarized.
Collapse
Affiliation(s)
- Prescilla V Jeurink
- Danone Research-Centre for Specialised Nutrition, Immunology Platform, Wageningen, Netherlands.
| | | | | | | | | |
Collapse
|
31
|
Kanjarawi R, Dy M, Bardel E, Sparwasser T, Dubois B, Mecheri S, Kaiserlian D. Regulatory CD4+Foxp3+ T cells control the severity of anaphylaxis. PLoS One 2013; 8:e69183. [PMID: 23922690 PMCID: PMC3724852 DOI: 10.1371/journal.pone.0069183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/05/2013] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Anaphylaxis is a life-threatening outcome of immediate-type hypersensitivity to allergen, consecutive to mast cell degranulation by allergen-specific IgE. Regulatory T cells (Treg) can control allergic sensitization and mast cell degranulation, yet their clinical benefit on anaphylactic symptoms is poorly documented. Here we investigated whether Treg action during the effector arm of the allergic response alleviates anaphylaxis. METHODS We used a validated model of IgE-mediated passive systemic anaphylaxis, induced by intravenous challenge with DNP-HSA in mice passively sensitized with DNP-specific IgE. Anaphylaxis was monitored by the drop in body temperature as well as plasma histamine and serum mMCP1 levels. The role of Treg was analyzed using MHC class II-deficient (Aβ(°/°)) mice, treatment with anti-CD25 or anti-CD4 mAbs and conditional ablation of Foxp3(+) Treg in DEREG mice. Therapeutic efficacy of Treg was also evaluated by transfer experiments using FoxP3-eGFP knock-in mice. RESULTS Anaphylaxis did not occur in mast cell-deficient W/W(v) mutant mice and was only moderate and transient in mice deficient for histamine receptor-1. Defects in constitutive Treg, either genetic or induced by antibody or toxin treatment resulted in a more severe and/or sustained hypothermia, associated with a rise in serum mMCP1, but not histamine. Adoptive transfer of Foxp3(+) Treg from either naïve or DNP-sensitized donors similarly alleviated body temperature loss in Treg-deficient DEREG mice. CONCLUSION Constitutive Foxp3(+) Treg can control the symptomatic phase of mast cell and IgE-dependent anaphylaxis in mice. This might open up new therapeutic avenues using constitutive rather than Ag-specific Treg for inducing tolerance in allergic patients.
Collapse
Affiliation(s)
- Reem Kanjarawi
- CIRI, International Center for Infectiology Research, “Mucosal immunity, Vaccination & Biotherapies” Team, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- École Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Michel Dy
- CNRS/UMR 8147, université René Descartes, Hôpital Necker, Paris, France
| | - Emilie Bardel
- CIRI, International Center for Infectiology Research, “Mucosal immunity, Vaccination & Biotherapies” Team, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- École Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany
| | - Bertrand Dubois
- CIRI, International Center for Infectiology Research, “Mucosal immunity, Vaccination & Biotherapies” Team, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- École Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Salah Mecheri
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 2581, Paris, France
| | - Dominique Kaiserlian
- CIRI, International Center for Infectiology Research, “Mucosal immunity, Vaccination & Biotherapies” Team, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- École Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
- * E-mail:
| |
Collapse
|
32
|
Hong GU, Kim NG, Jeoung D, Ro JY. Anti-CD40 Ab- or 8-oxo-dG-enhanced Treg cells reduce development of experimental autoimmune encephalomyelitis via down-regulating migration and activation of mast cells. J Neuroimmunol 2013; 260:60-73. [PMID: 23622820 DOI: 10.1016/j.jneuroim.2013.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/08/2013] [Accepted: 04/01/2013] [Indexed: 11/18/2022]
Abstract
This study investigated whether anti-CD40 Ab and 8-oxo-dG attenuate mast cell migration and EAE development. Anti-CD40 Ab and 8-oxo-dG reduced EAE scores, mast cell numbers, expression of adhesion molecules, OX40L and Act1, levels of TNF-α, LTs, expression of cytokines, and co-localization of Treg cells and mast cells, all of which are increased in EAE-brain tissues. Each treatment enhanced Treg cells, expression of OX40, and cytokines related to suppressive function of Treg cells in EAE brain tissues. Act-BMMCs with Treg cells reduced expression of OX40L and CCL2/CCR2, VCAM-1, PECAM-1, [Ca²⁺]i levels, release of mediators, various signaling molecules, Act1 related to IL-17a signals versus those in act-BMMCs without Treg cells. The data suggest that IL-10- and IL-35-producing Foxp3⁺-Treg cells, enhanced by anti-CD40 Ab or 8-oxo-dG, suppress migration of mast cells through down-regulating the expression of adhesion molecules, and suppress mast cell activation through cell-to-cell cross-talk via OX40/OX40L in EAE development.
Collapse
Affiliation(s)
- Gwan Ui Hong
- Department of Pharmacology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, South Korea
| | | | | | | |
Collapse
|
33
|
Can we produce true tolerance in patients with food allergy? J Allergy Clin Immunol 2013; 131:14-22. [PMID: 23265693 DOI: 10.1016/j.jaci.2012.10.058] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/05/2012] [Accepted: 10/05/2012] [Indexed: 11/23/2022]
Abstract
Immune tolerance is defined as nonresponsiveness of the adaptive immune system to antigens. Immune mechanisms preventing inappropriate immune reactivity to innocuous antigens include deletion of reactive lymphocytes and generation of regulatory T (Treg) cells. The normal response to food antigens is the generation of antigen-specific Treg cells. In patients with food allergy, the dominant immune response is a T(H)2-skewed T-cell response and the generation of food-specific IgE antibodies from B cells. It is not known whether a failure of the Treg cell response is behind this inappropriate immune response, but interventions that boost the Treg cell response, such as mucosal immunotherapy, might lead to a restoration of immune tolerance to foods. Tolerance has been notoriously difficult to restore in animal disease models, but limited data from human trials suggest that tolerance (sustained nonresponsiveness) can be re-established in a subset of patients. Furthermore, studies on the natural history of food allergy indicate that spontaneous development of tolerance to foods over time is not uncommon. The current challenge is to understand the mechanisms responsible for restoration of natural or induced tolerance so that interventions can be developed to more successfully induce tolerance in the majority of patients with food allergy.
Collapse
|
34
|
Abstract
Mast cells are well known as principle effector cells of type I hypersensitivity responses. Beyond this role in allergic disease, these cells are now appreciated as playing an important role in many inflammatory conditions. This review summarizes the support for mast cell involvement in resisting bacterial infection, exacerbating autoimmunity and atherosclerosis, and promoting cancer progression. A commonality in these conditions is the ability of mast cells to elicit migration of many cell types, often through the production of inflammatory cytokines such as tumor necrosis factor. However, recent data also demonstrates that mast cells can suppress the immune response through interleukin-10 production. The data encourage those working in this field to expand their view of how mast cells contribute to immune homeostasis.
Collapse
|
35
|
Giovanna V, Carla C, Alfina C, Domenico PA, Elena L. The immunopathogenesis of cow's milk protein allergy (CMPA). Ital J Pediatr 2012; 38:35. [PMID: 22824011 PMCID: PMC3441837 DOI: 10.1186/1824-7288-38-35] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/09/2012] [Indexed: 11/10/2022] Open
Abstract
The most frequent symptoms among the manifestations of cow milk protein allergy (CMPA) are gastrointestinal. CMPA pathogenesis involves immunological mechanisms with participation of immunocompetent cells and production of immunoglobulin E (IgE). Nevertheless, recent studies have been focused on the description of other forms of CMPA, not-mediated by IgE reactions, mostly involving the T lymphocite immune system. Thus, in this field it is important to note how different kind of cells are involved in the immunopathogenesis of CMPA, such as antigen-specific T cells, T regulatory cells, cytokines secreted by the different T lymphocite subsets, B lymphocytes, antingen-presenting cells, mast cells, that together orchestrate the complex mechanism leading to the phenotipic expression of CMPA.The progress in the diagnosis of immunologic disorders allowed the recent literature to develop new models for immuno-mediate disorders, involving new cells (such as Treg cells) and thus allowing the acquisition of a new vision of the pathogenesis of atopic diseases.The aim of this review is to describe the immunopathogenetic aspects of CMPA in view of these new discoveries in the immunologic field, considering the immunologic pathway at the basis of both IgE- and not-IgE mediated CMPA.
Collapse
Affiliation(s)
- Vitaliti Giovanna
- Bronchopneumoallergology and Cystic Fibrosis O.U., Departement of Pediatrics, University of Catania, AOU Policlinico-OVE, Via Santa Sofia 78, 95123 Catania, Italy
| | - Cimino Carla
- Bronchopneumoallergology and Cystic Fibrosis O.U., Departement of Pediatrics, University of Catania, AOU Policlinico-OVE, Via Santa Sofia 78, 95123 Catania, Italy
| | - Coco Alfina
- Bronchopneumoallergology and Cystic Fibrosis O.U., Departement of Pediatrics, University of Catania, AOU Policlinico-OVE, Via Santa Sofia 78, 95123 Catania, Italy
| | - Praticò Andrea Domenico
- Bronchopneumoallergology and Cystic Fibrosis O.U., Departement of Pediatrics, University of Catania, AOU Policlinico-OVE, Via Santa Sofia 78, 95123 Catania, Italy
| | - Lionetti Elena
- Bronchopneumoallergology and Cystic Fibrosis O.U., Departement of Pediatrics, University of Catania, AOU Policlinico-OVE, Via Santa Sofia 78, 95123 Catania, Italy
| |
Collapse
|
36
|
Gri G, Frossi B, D'Inca F, Danelli L, Betto E, Mion F, Sibilano R, Pucillo C. Mast cell: an emerging partner in immune interaction. Front Immunol 2012; 3:120. [PMID: 22654879 PMCID: PMC3360165 DOI: 10.3389/fimmu.2012.00120] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/27/2012] [Indexed: 01/09/2023] Open
Abstract
Mast cells (MCs) are currently recognized as effector cells in many settings of the immune response, including host defense, immune regulation, allergy, chronic inflammation, and autoimmune diseases. MC pleiotropic functions reflect their ability to secrete a wide spectrum of preformed or newly synthesized biologically active products with pro-inflammatory, anti-inflammatory and/or immunosuppressive properties, in response to multiple signals. Moreover, the modulation of MC effector phenotypes relies on the interaction of a wide variety of membrane molecules involved in cell–cell or cell-extracellular-matrix interaction. The delivery of co-stimulatory signals allows MC to specifically communicate with immune cells belonging to both innate and acquired immunity, as well as with non-immune tissue-specific cell types. This article reviews and discusses the evidence that MC membrane-expressed molecules play a central role in regulating MC priming and activation and in the modulation of innate and adaptive immune response not only against host injury, but also in peripheral tolerance and tumor-surveillance or -escape. The complex expression of MC surface molecules may be regarded as a measure of connectivity, with altered patterns of cell–cell interaction representing functionally distinct MC states. We will focalize our attention on roles and functions of recently discovered molecules involved in the cross-talk of MCs with other immune partners.
Collapse
Affiliation(s)
- Giorgia Gri
- Immunology Laboratory, Department of Medical and Biological Science, University of Udine Udine, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Xu JM, Shi GP. Emerging role of mast cells and macrophages in cardiovascular and metabolic diseases. Endocr Rev 2012; 33:71-108. [PMID: 22240242 PMCID: PMC3365842 DOI: 10.1210/er.2011-0013] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 09/12/2011] [Indexed: 12/11/2022]
Abstract
Mast cells are essential in allergic immune responses. Recent discoveries have revealed their direct participation in cardiovascular diseases and metabolic disorders. Although more sophisticated mechanisms are still unknown, data from animal studies suggest that mast cells act similarly to macrophages and other inflammatory cells and contribute to human diseases through cell-cell interactions and the release of proinflammatory cytokines, chemokines, and proteases to induce inflammatory cell recruitment, cell apoptosis, angiogenesis, and matrix protein remodeling. Reduced cardiovascular complications and improved metabolic symptoms in animals receiving over-the-counter antiallergy medications that stabilize mast cells open another era of mast cell biology and bring new hope to human patients suffering from these conditions.
Collapse
Affiliation(s)
- Jia-Ming Xu
- Department of Medicine, Nanfang Hospital and Southern Medical University, Guangzhou 510515, China
| | | |
Collapse
|
38
|
Mekori YA, Hershko AY. T cell-mediated modulation of mast cell function: heterotypic adhesion-induced stimulatory or inhibitory effects. Front Immunol 2012; 3:6. [PMID: 22566892 PMCID: PMC3342371 DOI: 10.3389/fimmu.2012.00006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/09/2012] [Indexed: 12/20/2022] Open
Abstract
Close physical proximity between mast cells and T cells has been demonstrated in several T cell mediated inflammatory processes such as rheumatoid arthritis and sarcoidosis. However, the way by which mast cells are activated in these T cell-mediated immune responses has not been fully elucidated. We have identified and characterized a novel mast cell activation pathway initiated by physical contact with activated T cells, and showed that this pathway is associated with degranulation and cytokine release. The signaling events associated with this pathway of mast cell activation have also been elucidated confirming the activation of the Ras mitogen-activated protein kinase systems. More recently, we hypothesized and demonstrated that mast cells may also be activated by microparticles released from activated T cells that are considered as miniature version of a cell. By extension, microparticles might affect the activity of mast cells, which are usually not in direct contact with T cells at the inflammatory site. Recent works have also focused on the effects of regulatory T cells (Treg) on mast cells. These reports highlighted the importance of the cytokines IL-2 and IL-9, produced by mast cells and T cells, respectively, in obtaining optimal immune suppression. Finally, physical contact, associated by OX40–OX40L engagement has been found to underlie the down-regulatory effects exerted by Treg on mast cell function.
Collapse
Affiliation(s)
- Yoseph A Mekori
- Laboratory of Allergy and Clinical Immunology, Department of Medicine, The Herbert Center of Mast Cell Disorders, Meir Medical Center Kfar Saba, Israel
| | | |
Collapse
|
39
|
Shi MA, Shi GP. Different roles of mast cells in obesity and diabetes: lessons from experimental animals and humans. Front Immunol 2012; 3:7. [PMID: 22566893 PMCID: PMC3341969 DOI: 10.3389/fimmu.2012.00007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/09/2012] [Indexed: 12/18/2022] Open
Abstract
Mast cells (MCs) play an important role in allergic hyperresponsiveness and in defending microorganism infections. Recent studies of experimental animals and humans have suggested that MCs participate in obesity and diabetes. MC distribution and activities in adipose tissues may vary, depending on the locations of different adipose tissues. In addition to releasing inflammatory mediators to affect adipose tissue extracellular matrix remodeling and to promote inflammatory cell recruitment and proliferation, MCs directly and indirectly interact and activate adipose tissue cells, including adipocytes and recruited inflammatory cells. Plasma MC protease levels are significantly higher in obese patients than in lean subjects. Experimental obese animals lose body weight after MC inactivation. MC functions in diabetes are even more complicated, and depend on the type of diabetes and on different diabetic complications. Both plasma MC proteases and MC activation essential immunoglobulin E levels are significant risk factors for human pre-diabetes and diabetes mellitus. MC stabilization prevents diet-induced diabetes and improves pre-established diabetes in experimental animals. MC depletion or inactivation can improve diet-induced type 2 diabetes and some forms of type 1 diabetes, but also can worsen other forms of type 1 diabetes, at least in experimental animals. Observations from animal and human studies have suggested beneficial effects of treating diabetic patients with MC stabilizers. Some diabetic patients may benefit from enhancing MC survival and proliferation – hypotheses that merit detailed basic researches and clinical studies.
Collapse
Affiliation(s)
- Michael A Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School Boston, MA, USA
| | | |
Collapse
|
40
|
van Esch BCAM, Schouten B, de Kivit S, Hofman GA, Knippels LMJ, Willemsen LEM, Garssen J. Oral tolerance induction by partially hydrolyzed whey protein in mice is associated with enhanced numbers of Foxp3+ regulatory T-cells in the mesenteric lymph nodes. Pediatr Allergy Immunol 2011; 22:820-6. [PMID: 21933283 DOI: 10.1111/j.1399-3038.2011.01205.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hypoallergenic formulas are considered a good option for infants at risk for cow's milk allergy. The aim of this animal study was to investigate whether whey hydrolyzates (WH) have the capacity to induce oral tolerance to whey. METHODS Whey, partial or extensive WH was given via gavages to naïve mice prior to oral whey sensitization using cholera toxin as an adjuvant. The acute allergic skin response, mouse mast cell protease-1 (mMCP-1), whey-specific IgE, IgG(1) and effector Th2-cells, Th1-cells, and Foxp3(+) regulatory T-cells were determined in the mesenteric lymph nodes (MLN). MLN cells from tolerized mice were adoptively transferred to naïve recipient mice prior to whey sensitization. RESULTS In contrast to the extensive WH, pre-treatment of naïve mice with whey or partial WH reduced the acute allergic skin response and mast cell degranulation after whey challenge. However, only treatment with whey prevented the generation of serum-specific IgE/IgG(1) . In partial WH tolerized mice, Foxp3(+) regulatory T-cell numbers in the MLN were increased compared to whey-sensitized mice. Both whey and partial WH treatment showed a tendency toward a decreased number of effector Th2-cells. Transfer of MLN cells from tolerized mice protected recipient mice from developing an acute allergic skin response. CONCLUSION These results show that partial WH with limited sensitizing properties reduced the effector response upon whey challenge. This effect is transferable using MLN cells and was associated with enhanced Foxp3(+) regulatory T-cell numbers in the MLN. Partial WH retained the capacity to induce active immune suppression in mice which may be relevant for allergy prevention.
Collapse
Affiliation(s)
- Betty C A M van Esch
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
41
|
Khazaie K, Blatner NR, Khan MW, Gounari F, Gounaris E, Dennis K, Bonertz A, Tsai FN, Strouch MJ, Cheon E, Phillips JD, Beckhove P, Bentrem DJ. The significant role of mast cells in cancer. Cancer Metastasis Rev 2011; 30:45-60. [PMID: 21287360 DOI: 10.1007/s10555-011-9286-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mast cells (MC) are a bone marrow-derived, long-lived, heterogeneous cellular population that function both as positive and negative regulators of immune responses. They are arguably the most productive chemical factory in the body and influence other cells through both soluble mediators and cell-to-cell interaction. MC are commonly seen in various tumors and have been attributed alternatively with tumor rejection or tumor promotion. Tumor-infiltrating MC are derived both from sentinel and recruited progenitor cells. MC can directly influence tumor cell proliferation and invasion but also help tumors indirectly by organizing its microenvironment and modulating immune responses to tumor cells. Best known for orchestrating inflammation and angiogenesis, the role of MC in shaping adaptive immune responses has become a focus of recent investigations. MC mobilize T cells and antigen-presenting dendritic cells. They function as intermediaries in regulatory T cells (Treg)-induced tolerance but can also modify or reverse Treg-suppressive properties. The central role of MC in the control of innate and adaptive immunity endows them with the ability to tune the nature of host responses to cancer and ultimately influence the outcome of disease and fate of the cancer patient.
Collapse
Affiliation(s)
- Khashayarsha Khazaie
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, 303 East Superior Street, Lurie 3-250, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kanjarawi R, Dercamp C, Etchart N, Adel-Patient K, Nicolas JF, Dubois B, Kaiserlian D. Regulatory T Cells Control Type I Food Allergy to Beta-Lactoglobulin in Mice. Int Arch Allergy Immunol 2011; 156:387-96. [DOI: 10.1159/000323940] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 12/29/2010] [Indexed: 12/26/2022] Open
|
43
|
Ozdemir C, Kucuksezer UC, Akdis M, Akdis CA. Specific immunotherapy and turning off the T cell: how does it work? Ann Allergy Asthma Immunol 2011; 107:381-92. [PMID: 22018608 DOI: 10.1016/j.anai.2011.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/08/2011] [Accepted: 05/17/2011] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To examine T-regulatory (Treg) cell functions in allergic immune responses and their roles during allergen specific immunotherapy based on recent developments and current understanding of immune regulation. DATA SOURCES PubMed search of English-language articles regarding Treg cells and allergen specific immunotherapy. STUDY SELECTION Articles on the subject matter were selected and reviewed. RESULTS Allergen specific immunotherapy is the ultimate treatment modality targeting the immunopathogenic mechanisms of allergic disorders. A diminished allergen-specific T-cell proliferation and suppressed secretion of T(H)1- and T(H)2-type cytokines are the characteristic hallmarks. In addition, Treg cells inhibit the development of allergen-specific T(H)2 and T(H)1 cell responses and therefore exert key roles in healthy immune response to allergens. Treg cells potently suppress IgE production and directly or indirectly control the activity of effector cells of allergic inflammation, such as eosinophils, basophils, and mast cells. CONCLUSION As advancements in the field of allergen specific immunotherapy ensue, they may provide novel progression of more rational and safer approaches for the prevention and treatment of allergic disorders. Currently, the Treg cell field is an open research area to increase our understanding in mechanisms of peripheral tolerance to allergens.
Collapse
Affiliation(s)
- Cevdet Ozdemir
- Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | | | | | | |
Collapse
|
44
|
A potential role for CD25+ regulatory T-cells in the protection against casein allergy by dietary non-digestible carbohydrates. Br J Nutr 2011; 107:96-105. [DOI: 10.1017/s0007114511002637] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dietary non-digestible carbohydrates reduce the development of cows' milk allergy in mice. In the present study, the contribution of CD25+ regulatory T-cells (Treg) was investigated using in vivo Treg depletion and adoptive transfer studies. Mice were orally sensitised with casein and fed a diet containing 2 % short-chain galacto-, long-chain fructo- and acidic oligosaccharides (GFA) or a control diet. Donor splenocytes of mice sensitised with casein and fed the GFA or control diet were adoptively transferred to naive recipient mice, which were casein- or sham-sensitised and fed the control diet. In addition, in vivo or ex vivo CD25+ Treg depletion was performed using anti-CD25 (PC61). The acute allergic skin response upon intradermal casein challenge and casein-specific Ig were determined. Furthermore, T-helper (TH) 1 and TH2 cell numbers were analysed in the mesenteric lymph nodes. The oligosaccharide diet strongly reduced the development of the acute allergic skin response, which was abrogated by the in vivo anti-CD25 treatment. The diet enhanced the percentage of TH1 cells and tended to reduce the percentage of TH2 cells in casein-sensitised mice. Recipient mice were protected against the development of an acute allergic skin response when transferred with splenocytes from casein-sensitised GFA-fed donor mice before sensitisation. Ex vivo depletion of CD25+ Treg abrogated this transfer of tolerance. Splenocytes from sham-sensitised GFA-fed donor mice did not suppress the allergic response in recipient mice. In conclusion, CD25+ Treg contribute to the suppression of the allergic effector response in casein-sensitised mice induced by dietary intervention with non-digestible carbohydrates.
Collapse
|
45
|
Mast cells reside in myometrium and cervix, but are dispensable in mice for successful pregnancy and labor. Immunol Cell Biol 2011; 90:321-9. [DOI: 10.1038/icb.2011.40] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
New insights into the role of mast cells in autoimmunity: evidence for a common mechanism of action? Biochim Biophys Acta Mol Basis Dis 2011; 1822:57-65. [PMID: 21354470 DOI: 10.1016/j.bbadis.2011.02.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 02/17/2011] [Indexed: 11/20/2022]
Abstract
Mast cells are classically considered innate immune cells that act as first responders in many microbial infections and have long been appreciated as potent contributors to allergic reactions. However, recent advances in the realm of autoimmunity have made it clear that these cells are also involved in the pathogenic responses that exacerbate disease. In the murine models of multiple sclerosis, rheumatoid arthritis and bullous pemphigoid, both the pathogenic role of mast cells and some of their mechanisms of action are shared. Similar to their role in infection and a subset of allergic responses, mast cells are required for the efficient recruitment of neutrophils to sites of inflammation. Although this mast cell-dependent neutrophil response is protective in infection settings, it is postulated that neutrophils promote local vascular permeability and facilitate the entry of inflammatory cells that enhance tissue destruction at target sites. However, there is still much to learn. There is little information regarding mechanisms of mast cell activation in disease. Nor is it known how many mast cell-derived mediators are relevant and whether interactions with other cells are implicated in these diseases including T cells, B cells and astrocytes. Here we review the current state of knowledge about mast cells in autoimmune disease. We also discuss findings regarding newly discovered mast cell actions and factors that modulate mast cell function. We speculate that much of this new information will ultimately contribute to a greater understanding of the full range of mast cell actions in autoimmunity. This article is part of a Special Issue entitled: Mast cells in inflammation.
Collapse
|
47
|
Menzies FM, Shepherd MC, Nibbs RJ, Nelson SM. The role of mast cells and their mediators in reproduction, pregnancy and labour. Hum Reprod Update 2010; 17:383-96. [DOI: 10.1093/humupd/dmq053] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
48
|
Abstract
There has been an increased understanding, over the past 2 decades, that asthma is a chronic, immunologically mediated condition with a disturbance of the normal airway repair mechanism, which results in inflammatory changes and airway remodeling. The airway inflammation and remodeling together likely explain the clinical manifestations of asthma. The mechanisms by which the external environmental cues, together with the complex genetic actions, propagate the inflammatory process that characterize asthma are beginning to be understood. There is also an evolving awareness of the active participation of structural elements, such as the airway epithelium, airway smooth muscle, and endothelium, in this process. In tandem with this has come the realization that inflammatory cells respond in a coordinated, albeit dysfunctional manner, via an array of complex signaling pathways that facilitate communication between these cells; these structural elements within the lung and the bone marrow serve as reservoirs for and the source of inflammatory cells and their precursors. Although often viewed as separate mechanistic entities, so-called innate and acquired immunity often overlap in the propagation of the asthmatic response. This review examines the newer information on the pathophysiologic characteristics of asthma and focuses on papers published over the past 3 years that have helped to improve current levels of understanding.
Collapse
Affiliation(s)
- Desmond M Murphy
- Firestone Institute for Respiratory Health, St Joseph's Healthcare, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
49
|
Mor A, Shefler I, Salamon P, Kloog Y, Mekori YA. Characterization of ERK activation in human mast cells stimulated by contact with T cells. Inflammation 2010; 33:119-25. [PMID: 19908133 DOI: 10.1007/s10753-009-9165-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Close physical proximity between mast cells and T cells has been demonstrated in several human conditions. We have identified and characterized a novel mast cell activation pathway initiated by contact with T cells, and showed that this pathway is associated with cytokine release. It has been shown recently that Ras is activated in this pathway. Thus, in the present study we further explore the downstream events associated with Ras activation and cytokine release in human mast cells stimulated by contact with T cells. ERK activation in human mast cells stimulated by either contact with T cells or by crosslinking the FC epsilon receptor was studied. Photobleaching experiments were used to study ERK localization. Enzyme linked immunosorbent assay was used to study the cytokine release by human mast cells. We show that stimulation of human mast cells by contact with activated T cells results is sustained ERK activation. Furthermore, sustained ERK activation in these cells is associated with increased dwell time at the nucleus and with IL-8 release. Interestingly, when mast cells were stimulated by crosslinking the FC epsilon receptor I, ERK activation was transient. ERK activation was associated with a shorter dwell time at the nucleus and with TNF-alpha release. Thus, retaining ERK in the nucleus might be a mechanism utilized by human mast cells to generate different cytokines from a single signaling cascade.
Collapse
Affiliation(s)
- Adam Mor
- The Laboratory of Allergy and Clinical Immunology, Meir Medical Center, Kfar Saba, Israel.
| | | | | | | | | |
Collapse
|
50
|
Macey MR, Sturgill JL, Morales JK, Falanga YT, Morales J, Norton SK, Yerram N, Shim H, Fernando J, Gifillan AM, Gomez G, Schwartz L, Oskeritzian C, Spiegel S, Conrad D, Ryan JJ. IL-4 and TGF-beta 1 counterbalance one another while regulating mast cell homeostasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:4688-95. [PMID: 20304823 PMCID: PMC3339193 DOI: 10.4049/jimmunol.0903477] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mast cell responses can be altered by cytokines, including those secreted by Th2 and regulatory T cells (Treg). Given the important role of mast cells in Th2-mediated inflammation and recent demonstrations of Treg-mast cell interactions, we examined the ability of IL-4 and TGF-beta1 to regulate mast cell homeostasis. Using in vitro and in vivo studies of mouse and human mast cells, we demonstrate that IL-4 suppresses TGF-beta1 receptor expression and signaling, and vice versa. In vitro studies demonstrated that IL-4 and TGF-beta1 had balancing effects on mast cell survival, migration, and FcepsilonRI expression, with each cytokine cancelling the effects of the other. However, in vivo analysis of peritoneal inflammation during Nippostrongylus brasiliensis infection in mice revealed a dominant suppressive function for TGF-beta1. These data support the existence of a cytokine network involving the Th2 cytokine IL-4 and the Treg cytokine TGF-beta1 that can regulate mast cell homeostasis. Dysregulation of this balance may impact allergic disease and be amenable to targeted therapy.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Homeostasis/immunology
- Humans
- Interleukin-4/physiology
- Mast Cells/immunology
- Mast Cells/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/biosynthesis
- Protein Serine-Threonine Kinases/physiology
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/physiology
- Receptors, Interleukin-4/antagonists & inhibitors
- Receptors, Interleukin-4/biosynthesis
- Receptors, Interleukin-4/physiology
- Receptors, Transforming Growth Factor beta/antagonists & inhibitors
- Receptors, Transforming Growth Factor beta/biosynthesis
- Receptors, Transforming Growth Factor beta/physiology
- Tissue Culture Techniques
- Transforming Growth Factor beta1/antagonists & inhibitors
- Transforming Growth Factor beta1/biosynthesis
- Transforming Growth Factor beta1/physiology
Collapse
Affiliation(s)
- Matthew R. Macey
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
- Virginia Commonwealth University Allergy and Allergic Disease Cooperative Research Center, Virginia Commonwealth University, Richmond, VA 23284
| | - Jamie L. Sturgill
- Virginia Commonwealth University Allergy and Allergic Disease Cooperative Research Center, Virginia Commonwealth University, Richmond, VA 23284
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23284
| | - Johanna K. Morales
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
- Virginia Commonwealth University Allergy and Allergic Disease Cooperative Research Center, Virginia Commonwealth University, Richmond, VA 23284
| | - Yves T. Falanga
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
- Virginia Commonwealth University Allergy and Allergic Disease Cooperative Research Center, Virginia Commonwealth University, Richmond, VA 23284
| | - Joshua Morales
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Sarah K. Norton
- Virginia Commonwealth University Allergy and Allergic Disease Cooperative Research Center, Virginia Commonwealth University, Richmond, VA 23284
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23284
| | - Nitin Yerram
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
- Virginia Commonwealth University Allergy and Allergic Disease Cooperative Research Center, Virginia Commonwealth University, Richmond, VA 23284
| | - Hoon Shim
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
- Virginia Commonwealth University Allergy and Allergic Disease Cooperative Research Center, Virginia Commonwealth University, Richmond, VA 23284
| | - Josephine Fernando
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
- Virginia Commonwealth University Allergy and Allergic Disease Cooperative Research Center, Virginia Commonwealth University, Richmond, VA 23284
| | - Alasdair M. Gifillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Gregorio Gomez
- Virginia Commonwealth University Allergy and Allergic Disease Cooperative Research Center, Virginia Commonwealth University, Richmond, VA 23284
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23284
| | - Lawrence Schwartz
- Virginia Commonwealth University Allergy and Allergic Disease Cooperative Research Center, Virginia Commonwealth University, Richmond, VA 23284
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23284
| | - Carole Oskeritzian
- Virginia Commonwealth University Allergy and Allergic Disease Cooperative Research Center, Virginia Commonwealth University, Richmond, VA 23284
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23284
| | - Sarah Spiegel
- Virginia Commonwealth University Allergy and Allergic Disease Cooperative Research Center, Virginia Commonwealth University, Richmond, VA 23284
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23284
| | - Daniel Conrad
- Virginia Commonwealth University Allergy and Allergic Disease Cooperative Research Center, Virginia Commonwealth University, Richmond, VA 23284
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23284
| | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
- Virginia Commonwealth University Allergy and Allergic Disease Cooperative Research Center, Virginia Commonwealth University, Richmond, VA 23284
| |
Collapse
|