1
|
van de Wall S, Anthony SM, Hancox LS, Pewe LL, Langlois RA, Zehn D, Badovinac VP, Harty JT. Dynamic landscapes and protective immunity coordinated by influenza-specific lung-resident memory CD8 + T cells revealed by intravital imaging. Immunity 2024; 57:1878-1892.e5. [PMID: 39043185 DOI: 10.1016/j.immuni.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/09/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024]
Abstract
Lung-tissue-resident memory (TRM) CD8+ T cells are critical for heterosubtypic immunity against influenza virus (IAV) reinfection. How TRM cells surveil the lung, respond to infection, and interact with other cells remains unresolved. Here, we used IAV infection of mice in combination with intravital and static imaging to define the spatiotemporal dynamics of lung TRM cells before and after recall infection. CD69+CD103+ TRM cells preferentially localized to lung sites of prior IAV infection, where they exhibited patrolling behavior. After rechallenge, lung TRM cells formed tight clusters in an antigen-dependent manner. Transcriptomic analysis of IAV-specific TRM cells revealed the expression of several factors that regulate myeloid cell biology. In vivo rechallenge experiments demonstrated that protection elicited by TRM cells is orchestrated in part by interferon (IFN)-γ-mediated recruitment of inflammatory monocytes into the lungs. Overall, these data illustrate the dynamic landscapes of CD103+ lung TRM cells that mediate early protective immunity against IAV infection.
Collapse
Affiliation(s)
- Stephanie van de Wall
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Scott M Anthony
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lisa S Hancox
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lecia L Pewe
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ryan A Langlois
- University of Minnesota, Department of Microbiology and Immunology and the Center for Immunology, Minneapolis, MN, USA
| | - Dietmar Zehn
- TUM Center for Infection Prevention (ZIP) and Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Vladimir P Badovinac
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - John T Harty
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
2
|
Dong C, Zhu W, Wei L, Kim JK, Ma Y, Kang SM, Wang BZ. Enhancing cross-protection against influenza by heterologous sequential immunization with mRNA LNP and protein nanoparticle vaccines. Nat Commun 2024; 15:5800. [PMID: 38987276 PMCID: PMC11237032 DOI: 10.1038/s41467-024-50087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
Enhancing influenza vaccine cross-protection is imperative to alleviate the significant public health burden of influenza. Heterologous sequential immunization may synergize diverse vaccine formulations and routes to improve vaccine potency and breadth. Here we investigate the effects of immunization strategies on the generation of cross-protective immune responses in female Balb/c mice, utilizing mRNA lipid nanoparticle (LNP) and protein-based PHC nanoparticle vaccines targeting influenza hemagglutinin. Our findings emphasize the crucial role of priming vaccination in shaping Th bias and immunodominance hierarchies. mRNA LNP prime favors Th1-leaning responses, while PHC prime elicits Th2-skewing responses. We demonstrate that cellular and mucosal immune responses are pivotal correlates of cross-protection against influenza. Notably, intranasal PHC immunization outperforms its intramuscular counterpart in inducing mucosal immunity and conferring cross-protection. Sequential mRNA LNP prime and intranasal PHC boost demonstrate optimal cross-protection against antigenically drifted and shifted influenza strains. Our study offers valuable insights into tailoring immunization strategies to optimize influenza vaccine effectiveness.
Collapse
Affiliation(s)
- Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA, 30303, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA, 30303, USA
| | - Lai Wei
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA, 30303, USA
| | - Joo Kyung Kim
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA, 30303, USA
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA, 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA, 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA, 30303, USA.
| |
Collapse
|
3
|
Kim SH, Españo E, Padasas BT, Son JH, Oh J, Webby RJ, Lee YR, Park CS, Kim JK. Influenza Virus-Derived CD8 T Cell Epitopes: Implications for the Development of Universal Influenza Vaccines. Immune Netw 2024; 24:e19. [PMID: 38974213 PMCID: PMC11224667 DOI: 10.4110/in.2024.24.e19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 07/09/2024] Open
Abstract
The influenza virus poses a global health burden. Currently, an annual vaccine is used to reduce influenza virus-associated morbidity and mortality. Most influenza vaccines have been developed to elicit neutralizing Abs against influenza virus. These Abs primarily target immunodominant epitopes derived from hemagglutinin (HA) or neuraminidase (NA) of the influenza virus incorporated in vaccines. However, HA and NA are highly variable proteins that are prone to antigenic changes, which can reduce vaccine efficacy. Therefore, it is essential to develop universal vaccines that target immunodominant epitopes derived from conserved regions of the influenza virus, enabling cross-protection among different virus variants. The internal proteins of the influenza virus serve as ideal targets for universal vaccines. These internal proteins are presented by MHC class I molecules on Ag-presenting cells, such as dendritic cells, and recognized by CD8 T cells, which elicit CD8 T cell responses, reducing the likelihood of disease and influenza viral spread by inducing virus-infected cell apoptosis. In this review, we highlight the importance of CD8 T cell-mediated immunity against influenza viruses and that of viral epitopes for developing CD8 T cell-based influenza vaccines.
Collapse
Affiliation(s)
- Sang-Hyun Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Erica Españo
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | | | - Ju-Ho Son
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Jihee Oh
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38195, USA
| | - Young-Ran Lee
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Korea
| | - Chan-Su Park
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| |
Collapse
|
4
|
Song W, Zhao L, Liu S, Jia Y, Ma L, Liao M, Dai M. Analysis of H5N8 influenza virus infection in chicken with mApple reporter genes in vivo and in vitro. Vet Microbiol 2024; 292:110052. [PMID: 38492531 DOI: 10.1016/j.vetmic.2024.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
H5N8 highly pathogenic avian influenza virus (HPAIV) has caused huge losses to the global poultry industry and critically threatens public health. Chickens are the important host for the transmission. However, the distribution of H5N8 avian influenza virus (AIV) in chicken and the infected cell types are limitedly studied. Therefore, in this study, we detected viral replication and infection by generating recombinant H5N8 AIV expressing an easily tracked mApple fluorescent reporter. The results showed that recombinant viruses passaged four times in chicken embryos successfully expressed mApple proteins detected by fluorescence microscopy and WB, which verified that the constructed recombinant viruses were stable. Compared to parental virus, although recombinant virus attenuated for replication in MDCK cells, it can still replicate effectively, and form visible plaques. Importantly, the experiments on infection of chicken PBMCs in vitro showed a strong correlation between mApple positivity rate and NP positivity rate (r = 0.7594, P =0.0176), demonstrating that mApple reporter could be used as an indicator to accurately reflect AIV infection. Then we infected monocytes/macrophages in PBMCs in vitro and detected the mApple positive percentage was 55.1%-80.4%, which confirmed the chicken primary monocytic/macrophages are important target cells for avian influenza virus infection. In chicken, compared with parental virus, the recombinant virus-infected chickens had lower viral titers in oropharyngeal cloacal and organs, but it can cause significant pathogenicity in chicken and the mortality rate was approximately 66%. In addition, the results of bioluminescent imaging showed that the fluorescence in the lungs was strongest at 5 days post-infection (DPI). Finally, we discovered the mApple positive expression in chicken lung immune cells (CD45+ cells), especially some T cells (CD4 and CD8 T cells) also carrying mApple, which indicates that the H5N8 AIV showed a tropism for immune cells including chicken T cells causing potentially aggressive against cellular immunity. We have provided a simple visualization for further exploration of H5N8 AIV infected chicken immune cells, which contributes to further understanding pathogenic mechanism of H5N8 AIV infection in chicken.
Collapse
Affiliation(s)
- Wei Song
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; UK-China Centre of Exellence for Research on Avain Diseases, Guangzhou 510642, China
| | - Li Zhao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; UK-China Centre of Exellence for Research on Avain Diseases, Guangzhou 510642, China
| | - Sairu Liu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; UK-China Centre of Exellence for Research on Avain Diseases, Guangzhou 510642, China
| | - Yusheng Jia
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; UK-China Centre of Exellence for Research on Avain Diseases, Guangzhou 510642, China
| | - Lulu Ma
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; UK-China Centre of Exellence for Research on Avain Diseases, Guangzhou 510642, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; UK-China Centre of Exellence for Research on Avain Diseases, Guangzhou 510642, China.
| | - Manman Dai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; UK-China Centre of Exellence for Research on Avain Diseases, Guangzhou 510642, China.
| |
Collapse
|
5
|
St-Louis P, Martin C, Khatri V, Bourgault S, Archambault D. Intranasal delivery of a self-adjuvanted nanovaccine composed of the curli filaments and the highly conserved M2e epitope confers protection against influenza a virus in mice. Vaccine 2024; 42:2144-2149. [PMID: 38461047 DOI: 10.1016/j.vaccine.2024.02.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Intranasal administration of vaccines is an attractive delivery route to fight viral respiratory infections. However, there are only a few intranasal vaccines used in human, emphasizing the critical need to identify novel safe mucosal adjuvants and antigen delivery systems to expand their usage. We recently revealed an immunostimulating nanoparticle based on a fragment (R4R5) of the Curli-specific gene A (CsgA) protein that confers protection against influenza A virus (IAV) when conjugated to three repeats of the highly conserved M2e epitope and administrated intramuscularly. Herein, the efficacy of this 3M2e-R4R5 nanovaccine was investigated upon administration by intranasal instillation. By triggering robust M2e-specific humoral and cellular responses, both systemic and locally in the respiratory tract, and by priming alveolar macrophages, the intranasal vaccine protected mice against a lethal IAV challenge without the use of additional adjuvant. Thus, CsgA-based nanostructures could serve as a safe and self-adjuvanted antigen delivery system for mucosal immunization.
Collapse
Affiliation(s)
- Philippe St-Louis
- Department of Biological Sciences, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada; Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada; The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada; Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada
| | - Clément Martin
- Department of Biological Sciences, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada; Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada; The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada; Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada
| | - Vinay Khatri
- Department of Biological Sciences, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada; Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada; The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada; Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada; The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada; Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada.
| | - Denis Archambault
- Department of Biological Sciences, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada; The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada; Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada.
| |
Collapse
|
6
|
Kackos CM, DeBeauchamp J, Davitt CJH, Lonzaric J, Sealy RE, Hurwitz JL, Samsa MM, Webby RJ. Seasonal quadrivalent mRNA vaccine prevents and mitigates influenza infection. NPJ Vaccines 2023; 8:157. [PMID: 37828126 PMCID: PMC10570305 DOI: 10.1038/s41541-023-00752-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Annually, seasonal influenza is responsible for millions of infections and hundreds of thousands of deaths. The current method for managing influenza is vaccination using a standardized amount of the influenza virus' primary surface antigen, hemagglutinin (HA), as the intended target of the immune response. This vaccination strategy results in vaccines with variable efficacy year to year due to antigenic drift of HA, which can be further exacerbated by manufacturing processes optimizing growth of vaccine virus in eggs. Due to these limitations, alternative vaccine platforms are actively being explored to improve influenza vaccine efficacy, including cell-based, recombinant protein, and mRNA vaccines. mRNA's rapid, in vitro production makes it an appealing platform for influenza vaccination, and the success of SARS-CoV-2 mRNA vaccines in the clinic has encouraged the development of mRNA vaccines for other pathogens. Here, the immunogenicity and protective efficacy of a quadrivalent mRNA vaccine encoding HA from four seasonal influenza viruses, A/California/07/2009 (H1N1), A/Hong Kong/4801/2014 (H3N2), B/Brisbane/60/2008 (B-Victoria lineage), and B/Phuket/3073/2013 (B-Yamagata lineage), was evaluated. In mice, a 120 μg total dose of this quadrivalent mRNA vaccine induced robust antibody titers against each subtype that were commensurate with titers when each antigen was administered alone. Following A/California/04/2009 challenge, mice were fully protected from morbidity and mortality, even at doses as low as 1 μg of each antigen. Additionally, a single administration of 10 μg of quadrivalent mRNA was sufficient to prevent weight loss caused by A/California/04/2009. These results support the promise of this mRNA vaccine for prevention and mitigation of influenza vaccine.
Collapse
Affiliation(s)
- Christina M Kackos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Children's Research Hospital Graduate School of Biomedical Sciences, Memphis, TN, USA
| | - Jennifer DeBeauchamp
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Robert E Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Julia L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
7
|
Longet S, Paul S. Pivotal role of tissue-resident memory lymphocytes in the control of mucosal infections: can mucosal vaccination induce protective tissue-resident memory T and B cells? Front Immunol 2023; 14:1216402. [PMID: 37753095 PMCID: PMC10518612 DOI: 10.3389/fimmu.2023.1216402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Affiliation(s)
- Stephanie Longet
- Centre International de Recherche en Infectiologie, Team Groupe sur l'immunité des muqueuses et agents pathogènes (GIMAP), Université Jean Monnet, Université Claude Bernard Lyon, Inserm, Saint-Etienne, France
| | - Stephane Paul
- Centre International de Recherche en Infectiologie, Team Groupe sur l'immunité des muqueuses et agents pathogènes (GIMAP), Université Jean Monnet, Université Claude Bernard Lyon, Inserm, Saint-Etienne, France
- Centre d'investigation clinique (CIC) 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
- Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
8
|
Cheon IS, Son YM, Sun J. Tissue-resident memory T cells and lung immunopathology. Immunol Rev 2023; 316:63-83. [PMID: 37014096 PMCID: PMC10524334 DOI: 10.1111/imr.13201] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Rapid reaction to microbes invading mucosal tissues is key to protect the host against disease. Respiratory tissue-resident memory T (TRM ) cells provide superior immunity against pathogen infection and/or re-infection, due to their presence at the site of pathogen entry. However, there has been emerging evidence that exuberant TRM -cell responses contribute to the development of various chronic respiratory conditions including pulmonary sequelae post-acute viral infections. In this review, we have described the characteristics of respiratory TRM cells and processes underlying their development and maintenance. We have reviewed TRM -cell protective functions against various respiratory pathogens as well as their pathological activities in chronic lung conditions including post-viral pulmonary sequelae. Furthermore, we have discussed potential mechanisms regulating the pathological activity of TRM cells and proposed therapeutic strategies to alleviate TRM -cell-mediated lung immunopathology. We hope that this review provides insights toward the development of future vaccines or interventions that can harness the superior protective abilities of TRM cells, while minimizing the potential for immunopathology, a particularly important topic in the era of coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- In Su Cheon
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea 17546
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
9
|
Jia J, Li H, Huang Z, Yu J, Zheng Y, Cao B. Comprehensive immune landscape of lung-resident memory CD8 + T cells after influenza infection and reinfection in a mouse model. Front Microbiol 2023; 14:1184884. [PMID: 37415817 PMCID: PMC10320391 DOI: 10.3389/fmicb.2023.1184884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Background Resident phenotypic memory CD8+ T cells are crucial for immune defense against pathogens. However, little is known about the potential transitions and regulation mechanisms of their function after influenza virus infection and reinfection. In this study, we utilized integrated transcriptome data and in vivo experiments to investigate the key characteristics behind it. Methods Two single-cell RNA sequencing (scRNA-seq) datasets of lung CD8+ T cells and one RNA-seq dataset of lung tissue after infection or reinfection were included. After Seurat procedures classifying CD8+ T subsets, the scCODE algorithm was used to identify the differentially expressed genes for GSVA, GO, and KEGG pathway enrichment. Monocle 3 and CellChat were used to infer pseudotime cell trajectory and cell interactions. The ssGSEA method was used to estimate the relative proportions of immune cells. The findings were confirmed with a mouse model via flow cytometry and RT-PCR analysis. Results Our study refined the landscape of CD8+ T-cell subsets in the lung, showing that CD8+ Trm cells accumulated in the lung within 14 days after influenza infection. The classical CD8+ Trm cells co-expressed a high level of CD49a and even maintained 90 days after primary infection. The ratio of CD8+ Trm cells decreased 1 day after influenza reinfection, which may be parallel with their potential transition into effector types, as observed in trajectory inference analysis. KEGG analysis suggested that PD-L1 expression and PD-1 checkpoint pathway were upregulated in CD8+ Trm cells on day 14 after infection. GO and GSVA analyses revealed that PI3K-Akt-mTOR and type I interferon signaling pathways were enriched in CD8+ Tem and Trm cells after reinfection. Additionally, CCL signaling pathways were involved in cell interaction between CD8+ Trm cells and other cells, with Ccl4-Ccr5 and Ccl5-Ccr5 ligand/receptor pairs being important between CD8+ Trm and other memory subsets after infection and reinfection. Conclusion Our data suggest that resident memory CD8+ T cells with CD49a co-expression account for a large proportion after influenza infection, and they can be rapidly reactivated against reinfection. Function differences exist in CD8+ Trm and Tem cells after influenza infection and reinfection. Ccl5-Ccr5 ligand/receptor pair is important in cell interactions between CD8+ Trm and other subsets.
Collapse
Affiliation(s)
- Ju Jia
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Zhisheng Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiapei Yu
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Ying Zheng
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Bin Cao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Humphries DC, O’Connor RA, Stewart HL, Quinn TM, Gaughan EE, Mills B, Williams GO, Stone JM, Finlayson K, Chabaud-Riou M, Boudet F, Dhaliwal K, Pavot V. Specific in situ immuno-imaging of pulmonary-resident memory lymphocytes in human lungs. Front Immunol 2023; 14:1100161. [PMID: 36845117 PMCID: PMC9951616 DOI: 10.3389/fimmu.2023.1100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Pulmonary-resident memory T cells (TRM) and B cells (BRM) orchestrate protective immunity to reinfection with respiratory pathogens. Developing methods for the in situ detection of these populations would benefit both research and clinical settings. Methods To address this need, we developed a novel in situ immunolabelling approach combined with clinic-ready fibre-based optical endomicroscopy (OEM) to detect canonical markers of lymphocyte tissue residency in situ in human lungs undergoing ex vivo lung ventilation (EVLV). Results Initially, cells from human lung digests (confirmed to contain TRM/BRM populations using flow cytometry) were stained with CD69 and CD103/CD20 fluorescent antibodies and imaged in vitro using KronoScan, demonstrating it's ability to detect antibody labelled cells. We next instilled these pre-labelled cells into human lungs undergoing EVLV and confirmed they could still be visualised using both fluorescence intensity and lifetime imaging against background lung architecture. Finally, we instilled fluorescent CD69 and CD103/CD20 antibodies directly into the lung and were able to detect TRM/BRM following in situ labelling within seconds of direct intra-alveolar delivery of microdoses of fluorescently labelled antibodies. Discussion In situ, no wash, immunolabelling with intra-alveolar OEM imaging is a novel methodology with the potential to expand the experimental utility of EVLV and pre-clinical models.
Collapse
Affiliation(s)
- Duncan C. Humphries
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom,Research & Development, Sanofi, Marcy L’Etoile, France
| | - Richard A. O’Connor
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hazel L. Stewart
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tom M. Quinn
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Erin E. Gaughan
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Beth Mills
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gareth O.S. Williams
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - James M. Stone
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom,Centre for Photonic and Physics, Bath University, Bath, United Kingdom
| | - Keith Finlayson
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Kevin Dhaliwal
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom,*Correspondence: Kevin Dhaliwal, ; Vincent Pavot,
| | - Vincent Pavot
- Research & Development, Sanofi, Marcy L’Etoile, France,*Correspondence: Kevin Dhaliwal, ; Vincent Pavot,
| |
Collapse
|
11
|
Cipolla EM, Yue M, Nickolich KL, Huckestein BR, Antos D, Chen W, Alcorn JF. Heterotypic Influenza Infections Mitigate Susceptibility to Secondary Bacterial Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:760-771. [PMID: 35914833 PMCID: PMC9378502 DOI: 10.4049/jimmunol.2200261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/17/2022] [Indexed: 01/04/2023]
Abstract
Influenza-associated bacterial superinfections have devastating impacts on the lung and can result in increased risk of mortality. New strains of influenza circulate throughout the population yearly, promoting the establishment of immune memory. Nearly all individuals have some degree of influenza memory before adulthood. Due to this, we sought to understand the role of immune memory during bacterial superinfections. An influenza heterotypic immunity model was established using influenza A/Puerto Rico/8/34 and influenza A/X31. We report in this article that influenza-experienced mice are more resistant to secondary bacterial infection with methicillin-resistant Staphylococcus aureus as determined by wasting, bacterial burden, pulmonary inflammation, and lung leak, despite significant ongoing lung remodeling. Multidimensional flow cytometry and lung transcriptomics revealed significant alterations in the lung environment in influenza-experienced mice compared with naive animals. These include changes in the lung monocyte and T cell compartments, characterized by increased expansion of influenza tetramer-specific CD8+ T cells. The protection that was seen in the memory-experienced mouse model is associated with the reduction in inflammatory mechanisms, making the lung less susceptible to damage and subsequent bacterial colonization. These findings provide insight into how influenza heterotypic immunity reshapes the lung environment and the immune response to a rechallenge event, which is highly relevant to the context of human infection.
Collapse
Affiliation(s)
- Ellyse M Cipolla
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA; and
| | - Molin Yue
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Kara L Nickolich
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA; and
| | - Brydie R Huckestein
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA; and
| | - Danielle Antos
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA; and
| | - Wei Chen
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - John F Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA; and
| |
Collapse
|
12
|
Chen J, Wang P, Yuan L, Zhang L, Zhang L, Zhao H, Chen C, Wang X, Han J, Chen Y, Jia J, Lu Z, Hong J, Lu Z, Wang Q, Chen R, Qi R, Ma J, Zhou M, Yu H, Zhuang C, Liu X, Han Q, Wang G, Su Y, Yuan Q, Cheng T, Wu T, Ye X, Zhang T, Li C, Zhang J, Zhu H, Chen Y, Chen H, Xia N. A live attenuated virus-based intranasal COVID-19 vaccine provides rapid, prolonged, and broad protection against SARS-CoV-2. Sci Bull (Beijing) 2022; 67:1372-1387. [PMID: 35637645 PMCID: PMC9134758 DOI: 10.1016/j.scib.2022.05.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 12/11/2022]
Abstract
Remarkable progress has been made in developing intramuscular vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, they are limited with respect to eliciting local immunity in the respiratory tract, which is the primary infection site for SARS-CoV-2. To overcome the limitations of intramuscular vaccines, we constructed a nasal vaccine candidate based on an influenza vector by inserting a gene encoding the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2, named CA4-dNS1-nCoV-RBD (dNS1-RBD). A preclinical study showed that in hamsters challenged 1 d after single-dose vaccination or 9 months after booster vaccination, dNS1-RBD largely mitigated lung pathology, with no loss of body weight. Moreover, such cellular immunity is relatively unimpaired for the most concerning SARS-CoV-2 variants, especially for the latest Omicron variant. In addition, this vaccine also provides cross-protection against H1N1 and H5N1 influenza viruses. The protective immune mechanism of dNS1-RBD could be attributed to the innate immune response in the nasal epithelium, local RBD-specific T cell response in the lung, and RBD-specific IgA and IgG response. Thus, this study demonstrates that the intranasally delivered dNS1-RBD vaccine candidate may offer an important addition to the fight against the ongoing coronavirus disease 2019 pandemic and influenza infection, compensating limitations of current intramuscular vaccines.
Collapse
Affiliation(s)
- Junyu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Pui Wang
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Liang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Limin Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hui Zhao
- National Institute for Food and Drug Control, Beijing 102629, China
| | - Congjie Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xijing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jinle Han
- Beijing Wantai Biological Pharmacy Enterprise Co., Ltd., Beijing 102206, China
| | - Yaode Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jizong Jia
- Beijing Wantai Biological Pharmacy Enterprise Co., Ltd., Beijing 102206, China
| | - Zhen Lu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Junping Hong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zicen Lu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qian Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Rirong Chen
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou 515063, China
- EKIH Pathogen Research Institute, Shenzhen 518067, China
| | - Ruoyao Qi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jian Ma
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Min Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Huan Yu
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou 515063, China
- EKIH Pathogen Research Institute, Shenzhen 518067, China
| | - Chunlan Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaohui Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qiangyuan Han
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Guosong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yingying Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiangzhong Ye
- Beijing Wantai Biological Pharmacy Enterprise Co., Ltd., Beijing 102206, China
| | - Tianying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Changgui Li
- National Institute for Food and Drug Control, Beijing 102629, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Huachen Zhu
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou 515063, China
- EKIH Pathogen Research Institute, Shenzhen 518067, China
| | - Yixin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Honglin Chen
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
13
|
T cell responses to SARS-CoV-2 in humans and animals. J Microbiol 2022; 60:276-289. [PMID: 35157219 PMCID: PMC8852923 DOI: 10.1007/s12275-022-1624-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 02/08/2023]
Abstract
SARS-CoV-2, the causative agent of COVID-19, first emerged in 2019. Antibody responses against SARS-CoV-2 have been given a lot of attention. However, the armamentarium of humoral and T cells may have differing roles in different viral infections. Though the exact role of T cells in COVID-19 remains to be elucidated, prior experience with human coronavirus has revealed an essential role of T cells in the outcomes of viral infections. Moreover, an increasing body of evidence suggests that T cells might be effective against SARS-CoV-2. This review summarizes the role of T cells in mouse CoV, human pathogenic respiratory CoV in general and SARS-CoV-2 in specific.
Collapse
|
14
|
Roth GA, Picece VCTM, Ou BS, Luo W, Pulendran B, Appel EA. Designing spatial and temporal control of vaccine responses. NATURE REVIEWS. MATERIALS 2022; 7:174-195. [PMID: 34603749 PMCID: PMC8477997 DOI: 10.1038/s41578-021-00372-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 05/02/2023]
Abstract
Vaccines are the key technology to combat existing and emerging infectious diseases. However, increasing the potency, quality and durability of the vaccine response remains a challenge. As our knowledge of the immune system deepens, it becomes clear that vaccine components must be in the right place at the right time to orchestrate a potent and durable response. Material platforms, such as nanoparticles, hydrogels and microneedles, can be engineered to spatially and temporally control the interactions of vaccine components with immune cells. Materials-based vaccination strategies can augment the immune response by improving innate immune cell activation, creating local inflammatory niches, targeting lymph node delivery and controlling the time frame of vaccine delivery, with the goal of inducing enhanced memory immunity to protect against future infections. In this Review, we highlight the biological mechanisms underlying strong humoral and cell-mediated immune responses and explore materials design strategies to manipulate and control these mechanisms.
Collapse
Affiliation(s)
- Gillie A. Roth
- Department of Bioengineering, Stanford University, Stanford, CA USA
| | - Vittoria C. T. M. Picece
- Department of Materials Science & Engineering, Stanford University, Stanford, CA USA
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Ben S. Ou
- Department of Bioengineering, Stanford University, Stanford, CA USA
| | - Wei Luo
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, CA USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, CA USA
- ChEM-H Institute, Stanford University, Stanford, CA USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA USA
| | - Eric A. Appel
- Department of Bioengineering, Stanford University, Stanford, CA USA
- Department of Materials Science & Engineering, Stanford University, Stanford, CA USA
- ChEM-H Institute, Stanford University, Stanford, CA USA
- Department of Paediatrics — Endocrinology, Stanford University School of Medicine, Stanford, CA USA
| |
Collapse
|
15
|
Tissue-resident immunity in the lung: a first-line defense at the environmental interface. Semin Immunopathol 2022; 44:827-854. [PMID: 36305904 PMCID: PMC9614767 DOI: 10.1007/s00281-022-00964-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
The lung is a vital organ that incessantly faces external environmental challenges. Its homeostasis and unimpeded vital function are ensured by the respiratory epithelium working hand in hand with an intricate fine-tuned tissue-resident immune cell network. Lung tissue-resident immune cells span across the innate and adaptive immunity and protect from infectious agents but can also prove to be pathogenic if dysregulated. Here, we review the innate and adaptive immune cell subtypes comprising lung-resident immunity and discuss their ontogeny and role in distinct respiratory diseases. An improved understanding of the role of lung-resident immunity and how its function is dysregulated under pathological conditions can shed light on the pathogenesis of respiratory diseases.
Collapse
|
16
|
Mattoo SUS, Myoung J. A Promising Vaccination Strategy against COVID-19 on the Horizon: Heterologous Immunization. J Microbiol Biotechnol 2021; 31:1601-1614. [PMID: 34949742 PMCID: PMC9705928 DOI: 10.4014/jmb.2111.11026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
To overcome the ongoing COVID-19 pandemic, vaccination campaigns are the highest priority of majority of countries. Limited supply and worldwide disproportionate availability issues for the approved vaccines, together with concerns about rare side-effects have recently initiated the switch to heterologous vaccination, commonly known as mixing of vaccines. The COVID-19 vaccines are highly effective in the general population. However, none of the vaccines is 100% efficacious or effective, with variants posing more challenges, resulting in breakthrough cases. This review summarizes the current knowledge of immune responses to variants of concern (VOC) and breakthrough infections. Furthermore, we discuss the scope of heterologous vaccination and future strategies to tackle the COVID-19 pandemic, including fractionation of vaccine doses and alternative route of vaccination.
Collapse
Affiliation(s)
- Sameer-ul-Salam Mattoo
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea,Corresponding author Phone: +82-63-9004055 Fax: +82-63-9004012 E-mail:
| |
Collapse
|
17
|
Mallampalli RK, Adair J, Elhance A, Farkas D, Chafin L, Long ME, De M, Mora AL, Rojas M, Peters V, Bednash JS, Tsai M, Londino JD. Interferon Lambda Signaling in Macrophages Is Necessary for the Antiviral Response to Influenza. Front Immunol 2021; 12:735576. [PMID: 34899695 PMCID: PMC8655102 DOI: 10.3389/fimmu.2021.735576] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/04/2021] [Indexed: 01/14/2023] Open
Abstract
Interferon lambda (IFNλ) signaling is a promising therapeutic target against viral infection in murine models, yet little is known about its molecular regulation and its cognate receptor, interferon lambda receptor 1 (IFNLR1) in human lung. We hypothesized that the IFNλ signaling axis was active in human lung macrophages. In human alveolar macrophages (HAMs), we observed increased IFNLR1 expression and robust increase in interferon-stimulated gene (ISG) expression in response to IFNλ ligand. While human monocytes express minimal IFNLR1, differentiation of monocytes into macrophages with macrophage colony-stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF) increased IFNLR1 mRNA, IFNLR1 protein expression, and cellular response to IFNλ ligation. Conversely, in mice, M-CSF or GM-CSF stimulated macrophages failed to produce ISGs in response to related ligands, IFNL2 or IFNL3, suggesting that IFNLR1 signaling in macrophages is species-specific. We next hypothesized that IFNλ signaling was critical in influenza antiviral responses. In primary human airway epithelial cells and precision-cut human lung slices, influenza infection substantially increased IFNλ levels. Pretreatment of both HAMs and differentiated human monocytes with IFNL1 significantly inhibited influenza infection. IFNLR1 knockout in the myeloid cell line, THP-1, exhibited reduced interferon responses to either direct or indirect exposure to influenza infection suggesting the indispensability of IFNLR1 for antiviral responses. These data demonstrate the presence of IFNλ - IFNLR1 signaling axis in human lung macrophages and a critical role of IFNλ signaling in combating influenza infection.
Collapse
Affiliation(s)
- Rama K. Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Jessica Adair
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Ajit Elhance
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Daniela Farkas
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Lexie Chafin
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Matthew E. Long
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States,Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Mithu De
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Ana L. Mora
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Mauricio Rojas
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Victor Peters
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Joseph S. Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - MuChun Tsai
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - James D. Londino
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States,*Correspondence: James D. Londino,
| |
Collapse
|
18
|
Bošnjak B, Odak I, Barros-Martins J, Sandrock I, Hammerschmidt SI, Permanyer M, Patzer GE, Greorgiev H, Gutierrez Jauregui R, Tscherne A, Schwarz JH, Kalodimou G, Ssebyatika G, Ciurkiewicz M, Willenzon S, Bubke A, Ristenpart J, Ritter C, Tuchel T, Meyer zu Natrup C, Shin DL, Clever S, Limpinsel L, Baumgärtner W, Krey T, Volz A, Sutter G, Förster R. Intranasal Delivery of MVA Vector Vaccine Induces Effective Pulmonary Immunity Against SARS-CoV-2 in Rodents. Front Immunol 2021; 12:772240. [PMID: 34858430 PMCID: PMC8632543 DOI: 10.3389/fimmu.2021.772240] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023] Open
Abstract
Antigen-specific tissue-resident memory T cells (Trms) and neutralizing IgA antibodies provide the most effective protection of the lungs from viral infections. To induce those essential components of lung immunity against SARS-CoV-2, we tested various immunization protocols involving intranasal delivery of a novel Modified Vaccinia virus Ankara (MVA)-SARS-2-spike vaccine candidate. We show that a single intranasal MVA-SARS-CoV-2-S application in mice strongly induced pulmonary spike-specific CD8+ T cells, albeit restricted production of neutralizing antibodies. In prime-boost protocols, intranasal booster vaccine delivery proved to be crucial for a massive expansion of systemic and lung tissue-resident spike-specific CD8+ T cells and the development of Th1 - but not Th2 - CD4+ T cells. Likewise, very high titers of IgG and IgA anti-spike antibodies were present in serum and broncho-alveolar lavages that possessed high virus neutralization capacities to all current SARS-CoV-2 variants of concern. Importantly, the MVA-SARS-2-spike vaccine applied in intramuscular priming and intranasal boosting treatment regimen completely protected hamsters from developing SARS-CoV-2 lung infection and pathology. Together, these results identify intramuscular priming followed by respiratory tract boosting with MVA-SARS-2-S as a promising approach for the induction of local, respiratory as well as systemic immune responses suited to protect from SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Ivan Odak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Marc Permanyer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Hristo Greorgiev
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Jan Hendrik Schwarz
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - George Ssebyatika
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, Lübeck, Germany
| | | | | | - Anja Bubke
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | - Tamara Tuchel
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Dai-Lun Shin
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sabrina Clever
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Leonard Limpinsel
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Thomas Krey
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, Lübeck, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Asisa Volz
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, Hannover, Germany
| |
Collapse
|
19
|
Toward a universal influenza virus vaccine: Some cytokines may fulfill the request. Cytokine 2021; 148:155703. [PMID: 34555604 DOI: 10.1016/j.cyto.2021.155703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/21/2023]
Abstract
The influenza virus annually causes widespread damages to the health and economy of the global community. Vaccination is currently the most crucial strategy in reducing the number of patients. Genetic variations, the high diversity of pandemic viruses, and zoonoses make it challenging to select suitable strains for annual vaccine production. If new pandemic viruses emerge, it will take a long time to produce a vaccine according to the new strains. In the present study, intending to develop a universal influenza vaccine, new bicistronic DNA vaccines were developed that expressed NP or NPm antigen with one of modified IL-18/ IL-17A/ IL-22 cytokine adjuvants. NPm is a mutant form of the antigen that has the ability for cytoplasmic accumulation. In order to investigate and differentiate the role of each of the components of Th1, Th2, Th17, and Treg cellular immune systems in the performance of vaccines, Treg competent and Treg suppressed mouse groups were used. Mice were vaccinated with Foxp3-FC immunogen to produce Treg suppressed mouse groups. The potential of the vaccines to stimulate the immune system was assessed by IFN-γ/IL-17A Dual FluoroSpot. The vaccine's ability to induce humoral immune response was determined by measuring IgG1, IgG2a, and IgA-specific antibodies against the antigen. Kinetics of Th1, Th2, and Th17 cellular immune responses after vaccination, were assessed by evaluating the expression changes of IL-17A, IFN-γ, IL-18, IL-22, IL-4, and IL-2 cytokines by semi-quantitative real-time RT-PCR. To assess the vaccines' ability to induce heterosubtypic immunity, challenge tests with homologous and heterologous viruses were performed and then the virus titer was measured in the lungs of animals. Evaluation of the data obtained from this study showed that the DNA-vaccines coding NPm have more ability to induces a potent cross-cellular immune response and protective immunity than DNA-vaccines coding NP. Although the use of IL-18/ IL-17A/ IL-22 genetic adjuvants enhanced immune responses and protective immunity, Administration of NPm in combination with modified IL-18 (Igk-mIL18-IgFC) induced the most effective immunity in Treg competent mice group.
Collapse
|
20
|
Humphries DC, O’Connor RA, Larocque D, Chabaud-Riou M, Dhaliwal K, Pavot V. Pulmonary-Resident Memory Lymphocytes: Pivotal Orchestrators of Local Immunity Against Respiratory Infections. Front Immunol 2021; 12:738955. [PMID: 34603321 PMCID: PMC8485048 DOI: 10.3389/fimmu.2021.738955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
There is increasing evidence that lung-resident memory T and B cells play a critical role in protecting against respiratory reinfection. With a unique transcriptional and phenotypic profile, resident memory lymphocytes are maintained in a quiescent state, constantly surveying the lung for microbial intruders. Upon reactivation with cognate antigen, these cells provide rapid effector function to enhance immunity and prevent infection. Immunization strategies designed to induce their formation, alongside novel techniques enabling their detection, have the potential to accelerate and transform vaccine development. Despite most data originating from murine studies, this review will discuss recent insights into the generation, maintenance and characterisation of pulmonary resident memory lymphocytes in the context of respiratory infection and vaccination using recent findings from human and non-human primate studies.
Collapse
Affiliation(s)
- Duncan C. Humphries
- Centre for Inflammation Research, Queen’s Medical Research Institute, Edinburgh BioQuarter, The University of Edinburgh, Edinburgh, United Kingdom
- Sanofi Pasteur, R&D, Marcy l’Etoile, Lyon, France
| | - Richard A. O’Connor
- Centre for Inflammation Research, Queen’s Medical Research Institute, Edinburgh BioQuarter, The University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Kevin Dhaliwal
- Centre for Inflammation Research, Queen’s Medical Research Institute, Edinburgh BioQuarter, The University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
21
|
Isakova-Sivak I, Stepanova E, Mezhenskaya D, Matyushenko V, Prokopenko P, Sychev I, Wong PF, Rudenko L. Influenza vaccine: progress in a vaccine that elicits a broad immune response. Expert Rev Vaccines 2021; 20:1097-1112. [PMID: 34348561 DOI: 10.1080/14760584.2021.1964961] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The licensed seasonal influenza vaccines predominantly induce neutralizing antibodies against immunodominant hypervariable epitopes of viral surface proteins, with limited protection against antigenically distant influenza viruses. Strategies have been developed to improve vaccines' performance in terms of broadly reactive and long-lasting immune response induction. AREAS COVERED We have summarized the advancements in the development of cross-protective influenza vaccines and discussed the challenges in evaluating them in preclinical and clinical trials. Here, the literature regarding the current stage of development of universal influenza vaccine candidates was reviewed. EXPERT OPINION Although various strategies aim to redirect adaptive immune responses from variable immunodominant to immunosubdominant antigens, more conserved epitopes are being investigated. Approaches that improve antibody responses to conserved B cell epitopes have increased the protective efficacy of vaccines within a subtype or phylogenetic group of influenza viruses. Vaccines that elicit significant levels of T cells recognizing highly conserved viral epitopes possess a high cross-protective potential and may cover most circulating influenza viruses. However, the development of T cell-based universal influenza vaccines is challenging owing to the diversity of MHCs in the population, unpredictable degree of immunodominance, lack of adequate animal models, and difficulty in establishing T cell immunity in humans. ABBREVIATIONS cHA: chimeric HA; HBc: hepatitis B virus core protein; HA: hemagglutinin; HLA: human leucocyte antigen; IIV: inactivated influenza vaccine; KLH: keyhole limpet hemocyanin; LAH: long alpha helix; LAIV: live attenuated influenza vaccine; M2e: extracellular domain of matrix 2 protein; MHC: major histocompatibility complex; mRNA: messenger ribonucleic acid; NA: neuraminidase; NS1: non-structural protein 1; qNIV: quadrivalent nanoparticle influenza vaccine; TRM: tissue-resident memory T cells; VE: vaccine effectiveness; VLP: virus-like particles; VSV: vesicular stomatitis virus.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Ekaterina Stepanova
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Daria Mezhenskaya
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Victoria Matyushenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Polina Prokopenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Ivan Sychev
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Pei-Fong Wong
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Larisa Rudenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
22
|
Kasmani MY, Cui W. Inhibiting BRD4 to generate BETter T cell memory. J Exp Med 2021; 218:e20210877. [PMID: 34132742 PMCID: PMC8212782 DOI: 10.1084/jem.20210877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BRD4 is a bromodomain-containing protein that binds acetylated histones to regulate transcription. In this issue of JEM, Milner et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20202512) show that BRD4 plays a critical role in the effector function of CD8 T cells responding to infection and cancer.
Collapse
|
23
|
Roy RK, Yadav R, Jain A, Tripathi V, Jain M, Singh S, Prakash H. Yin and yang of immunological memory in controlling infections: Overriding self defence mechanisms. Int Rev Immunol 2021; 41:240-252. [PMID: 33872093 DOI: 10.1080/08830185.2021.1912037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunological memory is critical for host immunity and decisive for individual to respond exponentially to previously encountered infection. Both T and B cell memory are known to orchestrate immunological memory with their central and effector memory arms contributing in prolonged immunity/defence mechanisms of host. While central memory helps in maintaining prolonged immunity for a particular infection, effector memory helps in keeping local/seasonal infection in control. In addition to this, generation of long-lived plasma cells is pivotal for generating neutralizing antibodies which can enhance recall and B cell memory to control re-infection. In view of this, scaling up memory response is one of the major objectives for the expected outcome of vaccination. In this line, this review deals with the significance of memory cells, molecular pathways of their development, maintenance, epigenetic regulation and negative regulation in various infections. We have also highlighted the significance of both T and B cell memory responses in the vaccination approaches against range of infections which is not fully explored so far.[Box: see text].
Collapse
Affiliation(s)
- Roshan Kumar Roy
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Rakhi Yadav
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Vishwas Tripathi
- School of Biotechnology, Gautam Buddha University, Gautam Buddha Nagar, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Sandhya Singh
- Amity Institute of Physiology and Allied Sciences, Amity University, Noida, India
| | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| |
Collapse
|
24
|
Latino I, Gonzalez SF. Spatio-temporal profile of innate inflammatory cells and mediators during influenza virus infection. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Nguyen TH, McAuley JL, Kim Y, Zheng MZ, Gherardin NA, Godfrey DI, Purcell DF, Sullivan LC, Westall GP, Reading PC, Kedzierska K, Wakim LM. Influenza, but not SARS-CoV-2, infection induces a rapid interferon response that wanes with age and diminished tissue-resident memory CD8 + T cells. Clin Transl Immunology 2021; 10:e1242. [PMID: 33532071 PMCID: PMC7837404 DOI: 10.1002/cti2.1242] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/27/2022] Open
Abstract
Older individuals exhibit a diminished ability to respond to and clear respiratory pathogens and, as such, experience a higher rate of lung infections with a higher mortality rate. It is unclear why respiratory pathogens impact older people disproportionately. Using human lung tissue from donors aged 22-68 years, we assessed how the immune cell landscape in lungs changes throughout life and investigated how these immune cells respond following in vitro exposure to influenza virus and SARS-CoV-2, two clinically relevant respiratory viruses. While the frequency of most immune cell subsets profiled in the human lung remained stable with age, memory CD8+ T cells declined, with the tissue-resident memory (Trm) CD8+ T-cell subset being most susceptible to age-associated attrition. Infection of lung tissue with influenza virus resulted in an age-associated attenuation in the antiviral immune response, with aged donors producing less type I interferon (IFN), GM-CSF and IFNγ, the latter correlated with a reduction of IFNγ-producing memory CD8+ T cells. In contrast, irrespective of donor age, exposure of human lung cells to SARS-CoV-2, a pathogen for which all donors were immunologically naïve, did not trigger activation of local immune cells and did not result in the induction of an early IFN response. Our findings show that the attrition of tissue-bound pathogen-specific Trm in the lung that occurs with advanced age, or their absence in immunologically naïve individuals, results in a diminished early antiviral immune response which creates a window of opportunity for respiratory pathogens to gain a greater foothold.
Collapse
Affiliation(s)
- Thi Ho Nguyen
- Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Julie L McAuley
- Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Youry Kim
- Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Ming Zm Zheng
- Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging University of Melbourne Melbourne VIC Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging University of Melbourne Melbourne VIC Australia
| | - Damian Fj Purcell
- Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Lucy C Sullivan
- Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia.,Lung Transplant Service Alfred Hospital Melbourne VIC Australia
| | - Glen P Westall
- Lung Transplant Service Alfred Hospital Melbourne VIC Australia.,Department of Medicine Monash University Melbourne VIC Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia.,WHO Collaborating Centre for Reference and Research on Influenza Victorian Infectious Diseases Reference Laboratory Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| |
Collapse
|
26
|
Son YM, Cheon IS, Wu Y, Li C, Wang Z, Gao X, Chen Y, Takahashi Y, Fu YX, Dent AL, Kaplan MH, Taylor JJ, Cui W, Sun J. Tissue-resident CD4 + T helper cells assist the development of protective respiratory B and CD8 + T cell memory responses. Sci Immunol 2021; 6:6/55/eabb6852. [PMID: 33419791 DOI: 10.1126/sciimmunol.abb6852] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/11/2020] [Indexed: 11/02/2022]
Abstract
Much remains unknown about the roles of CD4+ T helper cells in shaping localized memory B cell and CD8+ T cell immunity in the mucosal tissues. Here, we report that lung T helper cells provide local assistance for the optimal development of tissue-resident memory B and CD8+ T cells after the resolution of primary influenza virus infection. We have identified a population of T cells in the lung that exhibit characteristics of both follicular T helper and TRM cells, and we have termed these cells as resident helper T (TRH) cells. Optimal TRH cell formation was dependent on transcription factors involved in T follicular helper and resident memory T cell development including BCL6 and Bhlhe40. We show that TRH cells deliver local help to CD8+ T cells through IL-21-dependent mechanisms. Our data have uncovered the presence of a tissue-resident helper T cell population in the lung that plays a critical role in promoting the development of protective B cell and CD8+ T cell responses.
Collapse
Affiliation(s)
- Young Min Son
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - In Su Cheon
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yue Wu
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chaofan Li
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zheng Wang
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaochen Gao
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yao Chen
- Versiti Blood Research Institute, Milwaukee, WI 53213, USA
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yang-Xin Fu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Weiguo Cui
- Versiti Blood Research Institute, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jie Sun
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA. .,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
27
|
Hao X, Li S, Chen L, Dong M, Wang J, Hu J, Gu M, Wang X, Hu S, Peng D, Liu X, Shang S. Establishing a Multicolor Flow Cytometry to Characterize Cellular Immune Response in Chickens Following H7N9 Avian Influenza Virus Infection. Viruses 2020; 12:v12121396. [PMID: 33291218 PMCID: PMC7762099 DOI: 10.3390/v12121396] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Avian influenza virus (AIV) emerged and has continued to re-emerge, continuously posing great threats to animal and human health. The detection of hemagglutination inhibition (HI) or virus neutralization antibodies (NA) is essential for assessing immune protection against AIV. However, the HI/NA-independent immune protection is constantly observed in vaccines’ development against H7N9 subtype AIV and other subtypes in chickens and mammals, necessitating the analysis of the cellular immune response. Here, we established a multi-parameter flow cytometry to examine the innate and adaptive cellular immune responses in chickens after intranasal infection with low pathogenicity H7N9 AIV. This assay allowed us to comprehensively define chicken macrophages, dendritic cells, and their MHC-II expression, NK cells, γδ T cells, B cells, and distinct T cell subsets in steady state and during infection. We found that NK cells and KUL01+ cells significantly increased after H7N9 infection, especially in the lung, and the KUL01+ cells upregulated MHC-II and CD11c expression. Additionally, the percentages and numbers of γδ T cells and CD8 T cells significantly increased and exhibited an activated phenotype with significant upregulation of CD25 expression in the lung but not in the spleen and blood. Furthermore, B cells showed increased in the lung but decreased in the blood and spleen in terms of the percentages or/and numbers, suggesting these cells may be recruited from the periphery after H7N9 infection. Our study firstly disclosed that H7N9 infection induced local and systemic cellular immune responses in chickens, the natural host of AIV, and that the flow cytometric assay developed in this study is useful for analyzing the cellular immune responses to AIVs and other avian infectious diseases and defining the correlates of immune protection.
Collapse
Affiliation(s)
- Xiaoli Hao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
| | - Lina Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
| | - Maoli Dong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
| | - Jiongjiong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
| | - Jiao Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shunlin Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.L.); (S.S.); Tel.: +86-514-879-914-16 (X.L.); +86-514-879-770-81 (S.S.)
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.L.); (S.S.); Tel.: +86-514-879-914-16 (X.L.); +86-514-879-770-81 (S.S.)
| |
Collapse
|
28
|
Toy R, Keenum MC, Pradhan P, Phang K, Chen P, Chukwu C, Nguyen LAH, Liu J, Jain S, Kozlowski G, Hosten J, Suthar MS, Roy K. TLR7 and RIG-I dual-adjuvant loaded nanoparticles drive broadened and synergistic responses in dendritic cells in vitro and generate unique cellular immune responses in influenza vaccination. J Control Release 2020; 330:866-877. [PMID: 33160004 DOI: 10.1016/j.jconrel.2020.10.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023]
Abstract
Although the existing flu vaccines elicit strong antigen-specific antibody responses, they fail to provide effective, long term protection - partly due to the absence of robust cellular memory immunity. We hypothesized that co-administration of combination adjuvants, mirroring the flu-virus related innate signaling pathways, could elicit strong cellular immunity. Here, we show that the small molecule adjuvant R848 and the RNA adjuvant PUUC, targeting endosomal TLR7s and cytoplasmic RLRs respectively, when delivered together in polymer nanoparticles (NP), elicits a broadened immune responses in mouse bone marrow-derived dendritic cells (mBMDCs) and a synergistic response in both mouse and human plasmacytoid dendritic cells (pDCs). In mBMDCs, NP-R848-PUUC induced both NF-κB and interferon signaling. Interferon responses to co-delivered R848 and PUUC were additive in human peripheral blood mononuclear cells (PBMCs) and synergistic in human FLT3-differentiated mBMDCs and CAL-1 pDCs. Vaccination with NPs loaded with H1N1 Flu antigen, R848, and PUUC increased percentage of CD8+ T-cells in the lungs, percentage of antigen-specific CD4-T-cells in the spleen, and enhanced overall cytokine-secreting T cell percentages upon antigen restimulation. Also, in the spleen, T lymphopenia, especially after in vitro restimulation with dual adjuvants, was observed, indicating highly antigen-reactive T cells. Our results demonstrate that simultaneous engagement of TLR7 and RIG-I pathways using particulate carriers is a potential approach to improve cellular immunity in flu vaccination.
Collapse
Affiliation(s)
- Randall Toy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - M Cole Keenum
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Pallab Pradhan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Katelynn Phang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Patrick Chen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Chinwendu Chukwu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Lily Anh H Nguyen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jiaying Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sambhav Jain
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Gabrielle Kozlowski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Justin Hosten
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Mehul S Suthar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
29
|
Bazhan S, Antonets D, Starostina E, Ilyicheva T, Kaplina O, Marchenko V, Durymanov A, Oreshkova S, Karpenko L. Immunogenicity and Protective Efficacy of Influenza A DNA Vaccines Encoding Artificial Antigens Based on Conservative Hemagglutinin Stem Region and M2 Protein in Mice. Vaccines (Basel) 2020; 8:vaccines8030448. [PMID: 32784907 PMCID: PMC7565880 DOI: 10.3390/vaccines8030448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Development of a universal vaccine capable to induce antibody responses against a broad range of influenza virus strains attracts growing attention. Hemagglutinin stem and the exposed fragment of influenza virus M2 protein are promising targets for induction of cross-protective humoral and cell-mediated response, since they contain conservative epitopes capable to induce antibodies and cytotoxic T lymphocytes (CTLs) to a wide range of influenza virus subtypes. Methods: In this study, we generated DNA vaccine constructs encoding artificial antigens AgH1, AgH3, and AgM2 designed on the basis of conservative hemagglutinin stem fragments of two influenza A virus subtypes, H1N1 and H3N2, and conservative M2 protein, and evaluate their immunogenicity and protective efficacy. To obtain DNA vaccine constructs, genes encoding the designed antigens were cloned into a pcDNA3.1 vector. Expression of the target genes in 293T cells transfected with DNA vaccine constructs has been confirmed by synthesis of specific mRNA. Results: Immunization of BALB/c mice with DNA vaccines encoding these antigens was shown to evoke humoral and T-cell immune responses as well as a moderated statistically significant cross-protective effect against two heterologous viruses A/California/4/2009 (H1N1pdm09) and A/Aichi/2/68 (H3N2). Conclusions: The results demonstrate a potential approach to creating a universal influenza vaccine based on artificial antigens.
Collapse
Affiliation(s)
- Sergei Bazhan
- Theoretical Department, State Research Center of Virology and Biotechnology “Vector”, Koltsovo 630559, Novosibirsk Region, Russia;
- Correspondence: ; Tel.: +7-383-363-47-00 (ext. 2001)
| | - Denis Antonets
- Theoretical Department, State Research Center of Virology and Biotechnology “Vector”, Koltsovo 630559, Novosibirsk Region, Russia;
| | - Ekaterina Starostina
- Bioengineering Department, State Research Center of Virology and Biotechnology “Vector”, Koltsovo 630559, Novosibirsk Region, Russia; (E.S.); (O.K.); (S.O.); (L.K.)
| | - Tatyana Ilyicheva
- Department of Zoonotic Infections and Influenza, State Research Center of Virology and Biotechnology “Vector”, Koltsovo 630559, Novosibirsk Region, Russia; (T.I.); (V.M.); (A.D.)
| | - Olga Kaplina
- Bioengineering Department, State Research Center of Virology and Biotechnology “Vector”, Koltsovo 630559, Novosibirsk Region, Russia; (E.S.); (O.K.); (S.O.); (L.K.)
| | - Vasiliy Marchenko
- Department of Zoonotic Infections and Influenza, State Research Center of Virology and Biotechnology “Vector”, Koltsovo 630559, Novosibirsk Region, Russia; (T.I.); (V.M.); (A.D.)
| | - Alexander Durymanov
- Department of Zoonotic Infections and Influenza, State Research Center of Virology and Biotechnology “Vector”, Koltsovo 630559, Novosibirsk Region, Russia; (T.I.); (V.M.); (A.D.)
| | - Svetlana Oreshkova
- Bioengineering Department, State Research Center of Virology and Biotechnology “Vector”, Koltsovo 630559, Novosibirsk Region, Russia; (E.S.); (O.K.); (S.O.); (L.K.)
| | - Larisa Karpenko
- Bioengineering Department, State Research Center of Virology and Biotechnology “Vector”, Koltsovo 630559, Novosibirsk Region, Russia; (E.S.); (O.K.); (S.O.); (L.K.)
| |
Collapse
|
30
|
Pai S, Muruganandah V, Kupz A. What lies beneath the airway mucosal barrier? Throwing the spotlight on antigen-presenting cell function in the lower respiratory tract. Clin Transl Immunology 2020; 9:e1158. [PMID: 32714552 PMCID: PMC7376394 DOI: 10.1002/cti2.1158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
The global prevalence of respiratory infectious and inflammatory diseases remains a major public health concern. Prevention and management strategies have not kept pace with the increasing incidence of these diseases. The airway mucosa is the most common portal of entry for infectious and inflammatory agents. Therefore, significant benefits would be derived from a detailed understanding of how immune responses regulate the filigree of the airways. Here, the role of different antigen‐presenting cells (APC) in the lower airways and the mechanisms used by pathogens to modulate APC function during infectious disease is reviewed. Features of APC that are unique to the airways and the influence they have on uptake and presentation of antigen to T cells directly in the airways are discussed. Current information on the crucial role that airway APC play in regulating respiratory infection is summarised. We examine the clinical implications of APC dysregulation in the airways on asthma and tuberculosis, two chronic diseases that are the major cause of illness and death in the developed and developing world. A brief overview of emerging therapies that specifically target APC function in the airways is provided.
Collapse
Affiliation(s)
- Saparna Pai
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia
| | - Visai Muruganandah
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia
| |
Collapse
|
31
|
Melgaço JG, Azamor T, Ano Bom APD. Protective immunity after COVID-19 has been questioned: What can we do without SARS-CoV-2-IgG detection? Cell Immunol 2020; 353:104114. [PMID: 32361409 PMCID: PMC7187813 DOI: 10.1016/j.cellimm.2020.104114] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/30/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces a severe acute respiratory syndrome that is called COVID-19. Clinical manifestations of COVID-19 include diarrhea, pneumonia, lymphopenia, exhausted lymphocytes, and pro-inflammatory cytokine production. Immunology is part of the process of clinical evolution, but there are some questions around immunity-based protection: (1) why some infected people have only mild symptoms of the disease or are asymptomatic; (2) why delayed and weak antibody responses are associated with severe outcomes; and (3) why positivity in molecular tests does not represent protective antibody IgG. Perhaps T cell responses may be the key to solving those questions. SARS-CoV-2-specific memory T cells persist in peripheral blood and may be capable of providing effective information about protective immunity. The T cells studies can be helpful in elucidating the pathways for development of vaccines, therapies, and diagnostics for COVID-19 and for filling these immunology knowledge gaps.
Collapse
Affiliation(s)
- Juliana Gil Melgaço
- Laboratory of Immunological Technology, Immunobiological Technology Institute, Bio-Manguinhos, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Tamiris Azamor
- Laboratory of Immunological Technology, Immunobiological Technology Institute, Bio-Manguinhos, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
| | - Ana Paula Dinis Ano Bom
- Laboratory of Immunological Technology, Immunobiological Technology Institute, Bio-Manguinhos, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Somerville L, Cardani A, Braciale TJ. Alveolar Macrophages in Influenza A Infection Guarding the Castle with Sleeping Dragons. Infect Dis Ther 2020; 1. [PMID: 33681871 DOI: 10.31038/idt.2020114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Lindsay Somerville
- Pulmonary and Critical Care Medicine, University of Virginia Health System, Charlottesville, Virginia, United States of America.,Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
| | - Amber Cardani
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America.,Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Thomas J Braciale
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America.,Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America.,Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
33
|
Balz K, Trassl L, Härtel V, Nelson PP, Skevaki C. Virus-Induced T Cell-Mediated Heterologous Immunity and Vaccine Development. Front Immunol 2020; 11:513. [PMID: 32296430 PMCID: PMC7137989 DOI: 10.3389/fimmu.2020.00513] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
Heterologous immunity (H.I.) is a consequence of an encounter with a specific antigen, which can alter the subsequent immune response to a different antigen. This can happen at the innate immune system level—often called trained immunity or innate immune memory—and/or at the adaptive immune system level involving T memory cells and antibodies. Viruses may also induce T cell-mediated H.I., which can confer protection or drive immunopathology against other virus subtypes, related or unrelated viruses, other pathogens, auto- or allo-antigens. It is important to understand the underlying mechanisms for the development of antiviral “universal” vaccines and broader T cell responses rather than just subtype-specific antibody responses as in the case of influenza. Furthermore, knowledge about determinants of vaccine-mediated H.I. may inform public health policies and provide suggestions for repurposing existing vaccines. Here, we introduce H.I. and provide an overview of evidence on virus- and antiviral vaccine-induced T cell-mediated cross-reactive responses. We also discuss the factors influencing final clinical outcome of virus-mediated H.I. as well as non-specific beneficial effects of live attenuated antiviral vaccines such as measles and vaccinia. Available epidemiological and mechanistic data have implications both for the development of new vaccines and for personalized vaccinology, which are presented. Finally, we formulate future research priorities and opportunities.
Collapse
Affiliation(s)
- Kathrin Balz
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Lilith Trassl
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Valerie Härtel
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Philipp P Nelson
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Chrysanthi Skevaki
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| |
Collapse
|
34
|
Local heroes or villains: tissue-resident memory T cells in human health and disease. Cell Mol Immunol 2020; 17:113-122. [PMID: 31969685 DOI: 10.1038/s41423-019-0359-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident memory T (TRM) cells are increasingly associated with the outcomes of health and disease. TRM cells can mediate local immune protection against infections and cancer, which has led to interest in TRM cells as targets for vaccination and immunotherapies. However, these cells have also been implicated in mediating detrimental pro-inflammatory responses in autoimmune skin diseases such as psoriasis, alopecia areata, and vitiligo. Here, we summarize the biology of TRM cells established in animal models and in translational human studies. We review the beneficial effects of TRM cells in mediating protective responses against infection and cancer and the adverse role of TRM cells in driving pathology in autoimmunity. A further understanding of the breadth and mechanisms of TRM cell activity is essential for the safe design of strategies that manipulate TRM cells, such that protective responses can be enhanced without unwanted tissue damage, and pathogenic TRM cells can be eliminated without losing local immunity.
Collapse
|
35
|
Jansen JM, Gerlach T, Elbahesh H, Rimmelzwaan GF, Saletti G. Influenza virus-specific CD4+ and CD8+ T cell-mediated immunity induced by infection and vaccination. J Clin Virol 2019; 119:44-52. [DOI: 10.1016/j.jcv.2019.08.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023]
|
36
|
Nelson SA, Sant AJ. Imprinting and Editing of the Human CD4 T Cell Response to Influenza Virus. Front Immunol 2019; 10:932. [PMID: 31134060 PMCID: PMC6514101 DOI: 10.3389/fimmu.2019.00932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022] Open
Abstract
Immunity to influenza is unique among pathogens, in that immune memory is established both via intermittent lung localized infections with highly variable influenza virus strains and by intramuscular vaccinations with inactivated protein-based vaccines. Studies in the past decades have suggested that the B cell responses to influenza infection and vaccination are highly biased by an individual's early history of influenza infection. This reactivity likely reflects both the competitive advantage that memory B cells have in an immune response and the relatively limited diversity of epitopes in influenza hemagglutinin that are recognized by B cells. In contrast, CD4 T cells recognize a wide array of epitopes, with specificities that are heavily influenced by the diversity of influenza antigens available, and a multiplicity of functions that are determined by both priming events and subsequent confrontations with antigens. Here, we consider the events that prime and remodel the influenza-specific CD4 T cell response in humans that have highly diverse immune histories and how the CD4 repertoire may be edited in terms of functional potential and viral epitope specificity. We discuss the consequences that imprinting and remodeling may have on the potential of different human hosts to rapidly respond with protective cellular immunity to infection. Finally, these issues are discussed in the context of future avenues of investigation and vaccine strategies.
Collapse
Affiliation(s)
| | - Andrea J. Sant
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
37
|
Oltz EM. Immunity to Influenza: Closing in on a Moving Target. THE JOURNAL OF IMMUNOLOGY 2019; 202:325-326. [PMID: 30617112 DOI: 10.4049/jimmunol.1890024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|