1
|
Guo H, Zhang S, Zhang B, Shang Y, Liu X, Wang M, Wang H, Fan Y, Tan K. Immunogenic landscape and risk score prediction based on unfolded protein response (UPR)-related molecular subtypes in hepatocellular carcinoma. Front Immunol 2023; 14:1202324. [PMID: 37457742 PMCID: PMC10348016 DOI: 10.3389/fimmu.2023.1202324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common type of cancer and causes a significant number of cancer-related deaths worldwide. The molecular mechanisms underlying the development of HCC are complex, and the heterogeneity of HCC has led to a lack of effective prognostic indicators and drug targets for clinical treatment of HCC. Previous studies have indicated that the unfolded protein response (UPR), a fundamental pathway for maintaining endoplasmic reticulum homeostasis, is involved in the formation of malignant characteristics such as tumor cell invasiveness and treatment resistance. The aims of our study are to identify new prognostic indicators and provide drug treatment targets for HCC in clinical treatment based on UPR-related genes (URGs). Methods Gene expression profiles and clinical information were downloaded from the TCGA, ICGC and GEO databases. Consensus cluster analysis was performed to classify the molecular subtypes of URGs in HCC patients. Univariate Cox regression and machine learning LASSO algorithm were used to establish a risk prognosis model. Kaplan-Meier and ROC analyses were used to evaluate the clinical prognosis of URGs. TIMER and XCell algorithms were applied to analyze the relationships between URGs and immune cell infiltration. Real time-PCR was performed to analyze the effect of sorafenib on the expression levels of four URGs. Results Most URGs were upregulated in HCC samples. According to the expression pattern of URGs, HCC patients were divided into two independent clusters. Cluster 1 had a higher expression level, worse prognosis, and higher expression of immunosuppressive factors than cluster 2. Patients in cluster 1 were more prone to immune escape during immunotherapy, and were more sensitive to chemotherapeutic drugs. Four key UPR genes (ATF4, GOSR2, PDIA6 and SRPRB) were established in the prognostic model and HCC patients with high risk score had a worse clinical prognosis. Additionally, patients with high expression of four URGs are more sensitive to sorafenib. Moreover, ATF4 was upregulated, while GOSR2, PDIA6 and SRPRB were downregulated in sorafenib-treated HCC cells. Conclusion The UPR-related prognostic signature containing four URGs exhibits high potential application value and performs well in the evaluation of effects of chemotherapy/immunotherapy and clinical prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yumei Fan
- *Correspondence: Yumei Fan, ; Ke Tan,
| | - Ke Tan
- *Correspondence: Yumei Fan, ; Ke Tan,
| |
Collapse
|
2
|
Vlachonikola E, Pechlivanis N, Karakatsoulis G, Sofou E, Gkoliou G, Jeromin S, Stavroyianni N, Ranghetti P, Scarfo L, Österholm C, Mansouri L, Notopoulou S, Siorenta A, Anagnostopoulos A, Ghia P, Haferlach C, Rosenquist R, Psomopoulos F, Kouvatsi A, Baliakas P, Stamatopoulos K, Chatzidimitriou A. T cell receptor gene repertoire profiles in subgroups of patients with chronic lymphocytic leukemia bearing distinct genomic aberrations. Front Oncol 2023; 13:1097942. [PMID: 36816924 PMCID: PMC9929157 DOI: 10.3389/fonc.2023.1097942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Background Microenvironmental interactions of the malignant clone with T cells are critical throughout the natural history of chronic lymphocytic leukemia (CLL). Indeed, clonal expansions of T cells and shared clonotypes exist between different CLL patients, strongly implying clonal selection by antigens. Moreover, immunogenic neoepitopes have been isolated from the clonotypic B cell receptor immunoglobulin sequences, offering a rationale for immunotherapeutic approaches. Here, we interrogated the T cell receptor (TR) gene repertoire of CLL patients with different genomic aberration profiles aiming to identify unique signatures that would point towards an additional source of immunogenic neoepitopes for T cells. Experimental design TR gene repertoire profiling using next generation sequencing in groups of patients with CLL carrying one of the following copy-number aberrations (CNAs): del(11q), del(17p), del(13q), trisomy 12, or gene mutations in TP53 or NOTCH1. Results Oligoclonal expansions were found in all patients with distinct recurrent genomic aberrations; these were more pronounced in cases bearing CNAs, particularly trisomy 12, rather than gene mutations. Shared clonotypes were found both within and across groups, which appeared to be CLL-biased based on extensive comparisons against TR databases from various entities. Moreover, in silico analysis identified TR clonotypes with high binding affinity to neoepitopes predicted to arise from TP53 and NOTCH1 mutations. Conclusions Distinct TR repertoire profiles were identified in groups of patients with CLL bearing different genomic aberrations, alluding to distinct selection processes. Abnormal protein expression and gene dosage effects associated with recurrent genomic aberrations likely represent a relevant source of CLL-specific selecting antigens.
Collapse
Affiliation(s)
- Elisavet Vlachonikola
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle, University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Pechlivanis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle, University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Karakatsoulis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece,Department of Mathematics, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Electra Sofou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece,Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Glykeria Gkoliou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece,Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Niki Stavroyianni
- Hematology Department and Hematopoietic Cell Transplantation (HCT) Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Pamela Ranghetti
- Division of Experimental Oncology, Università Vita-Salute San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale San Raffaele, Milan, Italy
| | - Lydia Scarfo
- Division of Experimental Oncology, Università Vita-Salute San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale San Raffaele, Milan, Italy
| | - Cecilia Österholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sofia Notopoulou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Alexandra Siorenta
- Immunology Department and National Tissue Typing Center, General Hospital of Athens “G. Gennimatas”, Athens, Greece
| | - Achilles Anagnostopoulos
- Hematology Department and Hematopoietic Cell Transplantation (HCT) Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Paolo Ghia
- Division of Experimental Oncology, Università Vita-Salute San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale San Raffaele, Milan, Italy
| | | | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden,Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - Fotis Psomopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Anastasia Kouvatsi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle, University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anastasia Chatzidimitriou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden,*Correspondence: Anastasia Chatzidimitriou,
| |
Collapse
|
3
|
Zanetti M, Xian S, Dosset M, Carter H. The Unfolded Protein Response at the Tumor-Immune Interface. Front Immunol 2022; 13:823157. [PMID: 35237269 PMCID: PMC8882736 DOI: 10.3389/fimmu.2022.823157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor-immune interface has surged to primary relevance in an effort to understand the hurdles facing immune surveillance and cancer immunotherapy. Reports over the past decades have indicated a role for the unfolded protein response (UPR) in modulating not only tumor cell fitness and drug resistance, but also local immunity, with emphasis on the phenotype and altered function of immune cells such as myeloid cells and T cells. Emerging evidence also suggests that aneuploidy correlates with local immune dysregulation. Recently, we reported that the UPR serves as a link between aneuploidy and immune cell dysregulation in a cell nonautonomous way. These new findings add considerable complexity to the organization of the tumor microenvironment (TME) and the origin of its altered function. In this review, we summarize these data and also discuss the role of aneuploidy as a negative regulator of local immunity.
Collapse
Affiliation(s)
- Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
- *Correspondence: Maurizio Zanetti, ; orcid.org/0000-0001-6346-8776
| | - Su Xian
- Division of Medical Genetics, Department of Medicine, Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA, United States
| | - Magalie Dosset
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
4
|
Chamberlain N, Anathy V. Pathological consequences of the unfolded protein response and downstream protein disulphide isomerases in pulmonary viral infection and disease. J Biochem 2020; 167:173-184. [PMID: 31790139 PMCID: PMC6988748 DOI: 10.1093/jb/mvz101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Protein folding within the endoplasmic reticulum (ER) exists in a delicate balance; perturbations of this balance can overload the folding capacity of the ER and disruptions of ER homoeostasis is implicated in numerous diseases. The unfolded protein response (UPR), a complex adaptive stress response, attempts to restore normal proteostasis, in part, through the up-regulation of various foldases and chaperone proteins including redox-active protein disulphide isomerases (PDIs). There are currently over 20 members of the PDI family each consisting of varying numbers of thioredoxin-like domains which, generally, assist in oxidative folding and disulphide bond rearrangement of peptides. While there is a large amount of redundancy in client proteins of the various PDIs, the size of the family would indicate more nuanced roles for the individual PDIs. However, the role of individual PDIs in disease pathogenesis remains uncertain. The following review briefly discusses recent findings of ER stress, the UPR and the role of individual PDIs in various respiratory disease states.
Collapse
Affiliation(s)
- Nicolas Chamberlain
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, 149 Beaumont Ave, Burlington, VT 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, 149 Beaumont Ave, Burlington, VT 05405, USA
| |
Collapse
|
5
|
Li A, Song NJ, Riesenberg BP, Li Z. The Emerging Roles of Endoplasmic Reticulum Stress in Balancing Immunity and Tolerance in Health and Diseases: Mechanisms and Opportunities. Front Immunol 2020; 10:3154. [PMID: 32117210 PMCID: PMC7026265 DOI: 10.3389/fimmu.2019.03154] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is an organelle equipped with mechanisms for proper protein folding, trafficking, and degradation to maintain protein homeostasis in the secretory pathway. As a defense mechanism, perturbation of ER proteostasis by ER stress agents activates a cascade of signaling pathways from the ER to the nucleus known as unfolded protein response (UPR). The primary goal of UPR is to induce transcriptional and translational programs to restore ER homeostasis for cell survival. As such, defects in UPR signaling have been implicated as a key contributor to multiple diseases including metabolic diseases, degenerative diseases, inflammatory disorders, and cancer. Growing evidence support the critical role of ER stress in regulating the fate as well as the magnitude of the immune response. Moreover, the availability of multiple UPR pharmacological inhibitors raises the hope that targeting UPR can be a new strategy for immune modulation and immunotherapy of diseases. This paper reviews the principal mechanisms by which ER stress affects immune cell biology and function, with a focus of discussion on UPR-associated immunopathology and the development of potential ER stress-targeted therapeutics.
Collapse
Affiliation(s)
- Anqi Li
- College of Medicine, The Ohio State University, Columbus, OH, United States.,The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - No-Joon Song
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Brian P Riesenberg
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Zihai Li
- College of Medicine, The Ohio State University, Columbus, OH, United States.,The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States.,Division of Medical Oncology, Department of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Lee SY, Oh JY, Kang TH, Shin HS, Cheng MA, Farmer E, Wu TC, Hung CF. Endoplasmic reticulum stress enhances the antigen-specific T cell immune responses and therapeutic antitumor effects generated by therapeutic HPV vaccines. J Biomed Sci 2019; 26:41. [PMID: 31133013 PMCID: PMC6535840 DOI: 10.1186/s12929-019-0536-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/07/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Endoplasmic reticulum stress has a profound effect on cancer cell proliferation and survival, and also has the capacity to activate cells of the adaptive immune system. Multimodal treatment methods that utilize and combine conventional cancer therapies with antigen-specific immunotherapies have emerged as promising approaches for the treatment and control of cancer. However, it is not well known whether endoplasmic reticulum stress-inducing agents can influence the efficacy of tumor antigen-targeting vaccines. METHODS In the past, we developed a therapeutic human papillomavirus (HPV) DNA vaccine that encodes for calreticulin (CRT) linked to the HPV16 E7 antigen (CRT/E7). In this study, we utilize the CRT/E7 and further encode for an endoplasmic reticulum (ER) stress-inducing agent, 3-bromopyruvate (3-BrPA), in a preclinical model, by harnessing its potential to enhance HPV16 E7-specific CD8+ T cell immune responses as well as antitumor effects against E7-expressing tumors (TC-1 cells). E7-specific CD8+ T cells were added to evaluate the cytotoxicity of luciferase-expressing TC-1 tumor cells treated with 3-BrPA in vitro, as measured with an IVIS Luminescence Imaging System. We also determined the levels of ER stress markers in 3-BrPA-treated TC-1 cells. TC-1 tumor-bearing mice were treated with either 3-BrPA (10 mg/kg, intraperitoneal injection) and/or CRT/E7 DNA vaccine (30 μg/mouse). RESULTS Treatment of E7-expressing TC-1 tumor cells with 3-BrPA induced significantly higher in vitro cytotoxicity and resulted in upregulation of endoplasmic reticulum stress markers (CHOP and GRP78). More importantly, combination treatment of 3-BrPA and the CRT/E7 DNA vaccine led to improved antigen-specific CD8+ T cell immune responses as well as therapeutic antitumor effects in TC-1 tumor-bearing mice. CONCLUSIONS Our data indicate that 3-BrPA can enhance therapeutic HPV vaccine potency in generating improved antigen-specific immune responses and antitumor effects. These findings have important implications for future clinical translation and provide novel strategies for the treatment of HPV-associated diseases.
Collapse
Affiliation(s)
- Sung Yong Lee
- Department of Respiratory & Critical Care Medicine, Korea University Medical Center, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Jee Youn Oh
- Department of Respiratory & Critical Care Medicine, Korea University Medical Center, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Tae Heung Kang
- Department of Immunology, Konkuk University Medical Center, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Hyun Seock Shin
- Department of Pathology, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Max A Cheng
- Department of Pathology, Johns Hopkins Medical Institutes, 1550 Orleans Street, Cancer Research Building II, Baltimore, MD, 21287, USA.,Department of Obstetrics & Gynecology, Johns Hopkins Medical Institutes, 1550 Orleans Street, Cancer Research Building II, Baltimore, MD, 21287, USA
| | - Emily Farmer
- Department of Pathology, Johns Hopkins Medical Institutes, 1550 Orleans Street, Cancer Research Building II, Baltimore, MD, 21287, USA.,Department of Obstetrics & Gynecology, Johns Hopkins Medical Institutes, 1550 Orleans Street, Cancer Research Building II, Baltimore, MD, 21287, USA
| | - T-C Wu
- Department of Pathology, Johns Hopkins Medical Institutes, 1550 Orleans Street, Cancer Research Building II, Baltimore, MD, 21287, USA.,Department of Obstetrics & Gynecology, Johns Hopkins Medical Institutes, 1550 Orleans Street, Cancer Research Building II, Baltimore, MD, 21287, USA.,Department of Molecular Microbiology & Immunology, Johns Hopkins Medical Institutes, 1550 Orleans Street, Cancer Research Building II, Baltimore, MD, 21287, USA.,Department of Oncology, Johns Hopkins University School of Medicine, CRB II Room 307, 1550 Orleans Street, Baltimore, MD, 21287, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins Medical Institutes, 1550 Orleans Street, Cancer Research Building II, Baltimore, MD, 21287, USA. .,Department of Oncology, Johns Hopkins University School of Medicine, CRB II Room 307, 1550 Orleans Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
7
|
Nemecz M, Constantin A, Dumitrescu M, Alexandru N, Filippi A, Tanko G, Georgescu A. The Distinct Effects of Palmitic and Oleic Acid on Pancreatic Beta Cell Function: The Elucidation of Associated Mechanisms and Effector Molecules. Front Pharmacol 2019; 9:1554. [PMID: 30719005 PMCID: PMC6348268 DOI: 10.3389/fphar.2018.01554] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
In this study, we aimed to identify the mechanisms underlying the different effects of palmitic acid and oleic acid on human pancreatic beta cell function. To address this problem, the oxidative stress, endoplasmic reticulum stress, inflammation, apoptosis and their mediator molecules have been investigated in the insulin releasing beta cells exposed to palmitic and/or oleic acid. Herein, we have demonstrated that in cultured 1.1B4 beta cells oleic acid promotes neutral lipid accumulation and insulin secretion, whereas palmitic acid is poorly incorporated into triglyceride and it does not stimulate insulin secretion from human pancreatic islets at physiologically glucose concentrations. In addition, palmitic acid caused: (1) oxidative stress through a mechanism involving increases in ROS production and MMP-2 protein expression/gelatinolytic activity associated with down-regulation of SOD2 protein; (2) endoplasmic reticulum stress by up-regulation of chaperone BiP protein and unfolded protein response (UPR) transcription factors (eIF2α, ATF6, XBP1u proteins) and by PTP-1B down-regulation in both mRNA and protein levels; (3) inflammation through enhanced synthesis of proinflammatory cytokines (IL6, IL8 proteins); and (4) apoptosis by enforced proteic expression of CHOP multifunctional transcription factor. Oleic acid alone had opposite effects due to its different capacity of controlling these metabolic pathways, in particular by reduction of the ROS levels and MMP-2 activity, down-regulation of BiP, eIF2α, ATF6, XBP1u, CHOP, IL6, IL8 and by SOD2 and PTP-1B overexpression. The supplementation of saturated palmitic acid with the monounsaturated oleic acid reversed the negative effects of palmitic acid alone regulating insulin secretion from pancreatic beta cells through ROS, MMP-2, ATF6, XBP1u, IL8 reduction and SOD2, PTP-1B activation. Our findings have shown the protective action of oleic acid against palmitic acid on beta cell lipotoxicity through promotion of triglyceride accumulation and insulin secretion and regulation of some effector molecules involved in oxidative stress, endoplasmic reticulum stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Miruna Nemecz
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Alina Constantin
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Madalina Dumitrescu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Nicoleta Alexandru
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Alexandru Filippi
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Gabriela Tanko
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Adriana Georgescu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| |
Collapse
|
8
|
So JS. Roles of Endoplasmic Reticulum Stress in Immune Responses. Mol Cells 2018; 41:705-716. [PMID: 30078231 PMCID: PMC6125421 DOI: 10.14348/molcells.2018.0241] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/03/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is a critical organelle for protein synthesis, folding and modification, and lipid synthesis and calcium storage. Dysregulation of ER functions leads to the accumulation of misfolded- or unfolded-protein in the ER lumen, and this triggers the unfolded protein response (UPR), which restores ER homeostasis. The UPR is characterized by three distinct downstream signaling pathways that promote cell survival or apoptosis depending on the stressor, the intensity and duration of ER stress, and the cell type. Mammalian cells express the UPR transducers IRE1, PERK, and ATF6, which control transcriptional and translational responses to ER stress. Direct links between ER stress and immune responses are also evident, but the mechanisms by which UPR signaling cascades are coordinated with immunity remain unclear. This review discusses recent investigations of the roles of ER stress in immune responses that lead to differentiation, maturation, and cytokine expression in immune cells. Further understanding of how ER stress contributes to the pathogenesis of immune disorders will facilitate the development of novel therapies that target UPR pathways.
Collapse
Affiliation(s)
- Jae-Seon So
- Department of Medical Biotechnology, Dongguk University Gyeongju, Gyeongju 38066,
Korea
| |
Collapse
|
9
|
Seelige R, Searles S, Bui JD. Innate sensing of cancer's non-immunologic hallmarks. Curr Opin Immunol 2017; 50:1-8. [PMID: 29032295 DOI: 10.1016/j.coi.2017.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/08/2017] [Indexed: 01/02/2023]
Abstract
A cancer mass consists of a complex composition of cancer cells, stromal cells, endothelial cells and also immune cells, which can represent more than half of the cellularity of a solid cancer. These immune cells become activated when they sense cancer antigens and stress ligands. Innate immune cells also detect various aspects of cellular stress that characterize a growing tumor mass. These key hallmarks of cellular stress are also detected by the cancer cell itself. In this review, we highlight studies that show that the cancer cell itself could be considered an 'innate cell' that senses and reacts to non-immunologic hallmarks of cancer, including displaced nucleic acids, proteotoxic stress, oxidative stress, and metabolic alterations.
Collapse
Affiliation(s)
- Ruth Seelige
- Department of Pathology, University of California, San Diego, CA 92093, USA
| | - Stephen Searles
- Department of Pathology, University of California, San Diego, CA 92093, USA
| | - Jack D Bui
- Department of Pathology, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
10
|
Darling NJ, Balmanno K, Cook SJ. ERK1/2 signalling protects against apoptosis following endoplasmic reticulum stress but cannot provide long-term protection against BAX/BAK-independent cell death. PLoS One 2017; 12:e0184907. [PMID: 28931068 PMCID: PMC5607168 DOI: 10.1371/journal.pone.0184907] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/01/2017] [Indexed: 11/19/2022] Open
Abstract
Disruption of protein folding in the endoplasmic reticulum (ER) causes ER stress. Activation of the unfolded protein response (UPR) acts to restore protein homeostasis or, if ER stress is severe or persistent, drive apoptosis, which is thought to proceed through the cell intrinsic, mitochondrial pathway. Indeed, cells that lack the key executioner proteins BAX and BAK are protected from ER stress-induced apoptosis. Here we show that chronic ER stress causes the progressive inhibition of the extracellular signal-regulated kinase (ERK1/2) signalling pathway. This is causally related to ER stress since reactivation of ERK1/2 can protect cells from ER stress-induced apoptosis whilst ERK1/2 pathway inhibition sensitises cells to ER stress. Furthermore, cancer cell lines harbouring constitutively active BRAFV600E are addicted to ERK1/2 signalling for protection against ER stress-induced cell death. ERK1/2 signalling normally represses the pro-death proteins BIM, BMF and PUMA and it has been proposed that ER stress induces BIM-dependent cell death. We found no evidence that ER stress increased the expression of these proteins; furthermore, BIM was not required for ER stress-induced death. Rather, ER stress caused the PERK-dependent inhibition of cap-dependent mRNA translation and the progressive loss of pro-survival proteins including BCL2, BCLXL and MCL1. Despite these observations, neither ERK1/2 activation nor loss of BAX/BAK could confer long-term clonogenic survival to cells exposed to ER stress. Thus, ER stress induces cell death by at least two biochemically and genetically distinct pathways: a classical BAX/BAK-dependent apoptotic response that can be inhibited by ERK1/2 signalling and an alternative ERK1/2- and BAX/BAK-independent cell death pathway.
Collapse
Affiliation(s)
- Nicola J. Darling
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - Kathryn Balmanno
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - Simon J. Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| |
Collapse
|
11
|
Valderrama C, Clark A, Urano F, Unanue ER, Carrero JA. Listeria monocytogenes induces an interferon-enhanced activation of the integrated stress response that is detrimental for resolution of infection in mice. Eur J Immunol 2017; 47:830-840. [PMID: 28267207 PMCID: PMC5450196 DOI: 10.1002/eji.201646856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/31/2017] [Accepted: 02/28/2017] [Indexed: 01/26/2023]
Abstract
Type I interferons (IFNs) induce a detrimental response during Listeria monocytogenes (L. monocytogenes) infection. We were interested in identifying mechanisms linking IFN signaling to negative host responses against L. monocytogenes infection. Herein, we found that infection of myeloid cells with L. monocytogenes led to a coordinated induction of type I IFNs and activation of the integrated stress response (ISR). Infected cells did not induce Xbp1 splicing or BiP upregulation, indicating that the unfolded protein response was not triggered. CHOP (Ddit3) gene expression was upregulated during the ISR activation induced by L. monocytogenes. Myeloid cells deficient in either type I IFN signaling or PKR activation had less upregulation of CHOP following infection. CHOP‐deficient mice showed lower expression of innate immune cytokines and were more resistant than wild‐type counterparts following L. monocytogenes infection. These findings indicate that L. monocytogenes infection induces type I IFNs, which activate the ISR through PKR, which contributes to a detrimental outcome in the infected host.
Collapse
Affiliation(s)
- Carolina Valderrama
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Microbiology, PhD Biomedical Sciences Program, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Amy Clark
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Fumihiko Urano
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Emil R Unanue
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Javier A Carrero
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
12
|
Obacz J, Avril T, Le Reste PJ, Urra H, Quillien V, Hetz C, Chevet E. Endoplasmic reticulum proteostasis in glioblastoma—From molecular mechanisms to therapeutic perspectives. Sci Signal 2017; 10:10/470/eaal2323. [DOI: 10.1126/scisignal.aal2323] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Papaioannou A, Chevet E. Driving Cancer Tumorigenesis and Metastasis Through UPR Signaling. Curr Top Microbiol Immunol 2017; 414:159-192. [PMID: 28710693 DOI: 10.1007/82_2017_36] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the tumor microenvironment, cancer cells encounter both external and internal factors that can lead to the accumulation of improperly folded proteins in the Endoplasmic Reticulum (ER) lumen, thus causing ER stress. When this happens, an adaptive mechanism named the Unfolded Protein Response (UPR) is triggered to help the cell cope with this change and restore protein homeostasis in the ER. Sequentially, one would expect that the activation of the three UPR branches, driven namely by IRE1, PERK, and ATF6, are crucial for the adaptation of cancer cells to the changing environment and thus for their survival and further propagation. Indeed, in the last few years, an increasing amount of studies has shown the implication of UPR signaling in different aspects of carcinogenesis and tumor progression. Features such as sustaining proliferation and resistance to cell death, genomic instability, altered metabolism, increased inflammation and tumor-immune infiltration, invasion and metastasis, and angiogenesis, defined as "the hallmarks of cancer", can be regulated by the UPR machinery. At the same time, new potential therapeutic interventions applicable to different kinds of cancers are being revealed. In order to describe the emerging role of UPR in cancer biology, these are the points that will be discussed in this chapter.
Collapse
Affiliation(s)
- Alexandra Papaioannou
- Inserm U1242 «Chemistry, Oncogenesis, Stress and Signaling», University of Rennes 1, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Avenue de la bataille Flandres Dunkerque, 35000, Rennes, France
| | - Eric Chevet
- Inserm U1242 «Chemistry, Oncogenesis, Stress and Signaling», University of Rennes 1, Rennes, France.
| |
Collapse
|
14
|
The crossroads of autoimmunity and immunodeficiency: Lessons from polygenic traits and monogenic defects. J Allergy Clin Immunol 2016; 137:3-17. [DOI: 10.1016/j.jaci.2015.11.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 01/16/2023]
|
15
|
Rodvold JJ, Mahadevan NR, Zanetti M. Immune modulation by ER stress and inflammation in the tumor microenvironment. Cancer Lett 2015; 380:227-36. [PMID: 26525580 DOI: 10.1016/j.canlet.2015.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/16/2015] [Accepted: 09/19/2015] [Indexed: 12/18/2022]
Abstract
It is now increasingly evident that the immune system represents a barrier to tumor emergence, growth, and recurrence. Although this idea was originally proposed almost 50 years ago as the "immune surveillance hypothesis", it is commonly recognized that, with few rare exceptions, tumor cells always prevail. Thus, one of the central unsolved paradoxes of tumor immunology is how a tumor escapes immune control, which is reflected in the lack of effective autochthonous or vaccine-induced anti-tumor T cell responses. In this review, we discuss the role of the endoplasmic reticulum (ER) stress response/unfolded protein response (UPR) in the immunomodulation of myeloid cells and T cells. Specifically, we will discuss how the tumor cell UPR polarizes myeloid cells in a cell-extrinsic manner, and how in turn, thus polarized myeloid cells negatively affect T cell activation and clonal expansion.
Collapse
Affiliation(s)
- Jeffrey J Rodvold
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0815
| | - Navin R Mahadevan
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0815
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0815.
| |
Collapse
|
16
|
Watkin LB, Jessen B, Wiszniewski W, Vece T, Jan M, Sha Y, Thamsen M, Santos-Cortez RLP, Lee K, Gambin T, Forbes L, Law CS, Stray-Petersen A, Cheng MH, Mace EM, Anderson MS, Liu D, Tang LF, Nicholas SK, Nahmod K, Makedonas G, Canter D, Kwok PY, Hicks J, Jones KD, Penney S, Jhangiani SN, Rosenblum MD, Dell SD, Waterfield MR, Papa FR, Muzny DM, Zaitlen N, Leal SM, Gonzaga-Jauregui C, Boerwinkle E, Eissa NT, Gibbs RA, Lupski JR, Orange JS, Shum AK. COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nat Genet 2015; 47:654-60. [PMID: 25894502 PMCID: PMC4513663 DOI: 10.1038/ng.3279] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/19/2015] [Indexed: 12/12/2022]
Abstract
Unbiased genetic studies have uncovered surprising molecular mechanisms in human cellular immunity and autoimmunity. We performed whole-exome sequencing and targeted sequencing in five families with an apparent mendelian syndrome of autoimmunity characterized by high-titer autoantibodies, inflammatory arthritis and interstitial lung disease. We identified four unique deleterious variants in the COPA gene (encoding coatomer subunit α) affecting the same functional domain. Hypothesizing that mutant COPA leads to defective intracellular transport via coat protein complex I (COPI), we show that COPA variants impair binding to proteins targeted for retrograde Golgi-to-ER transport. Additionally, expression of mutant COPA results in ER stress and the upregulation of cytokines priming for a T helper type 17 (TH17) response. Patient-derived CD4(+) T cells also demonstrate significant skewing toward a TH17 phenotype that is implicated in autoimmunity. Our findings uncover an unexpected molecular link between a vesicular transport protein and a syndrome of autoimmunity manifested by lung and joint disease.
Collapse
Affiliation(s)
- Levi B. Watkin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Birthe Jessen
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Wojciech Wiszniewski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Timothy Vece
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Max Jan
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Youbao Sha
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Maike Thamsen
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | | | - Kwanghyuk Lee
- Center for Statistical Genetics, Baylor College of Medicine, Houston, TX
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Lisa Forbes
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Christopher S. Law
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Asbjørg Stray-Petersen
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Mickie H. Cheng
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Emily M. Mace
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Mark S. Anderson
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Dongfang Liu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Ling Fung Tang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA
| | - Sarah K. Nicholas
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Karen Nahmod
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - George Makedonas
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Debra Canter
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA
- Department of Dermatology, University of California San Francisco, San Francisco, CA
| | - John Hicks
- Department of Pathology, Texas Children’s Hospital, Houston, TX
| | - Kirk D. Jones
- Department of Pathology, University of California San Francisco, San Francisco, CA
| | - Samantha Penney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | | - Michael D. Rosenblum
- Department of Dermatology, University of California San Francisco, San Francisco, CA
| | - Sharon D. Dell
- Division of Respiratory Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Feroz R. Papa
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Noah Zaitlen
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Suzanne M. Leal
- Center for Statistical Genetics, Baylor College of Medicine, Houston, TX
| | | | | | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Human Genetics Center and Institute of Molecular Medicine, University of Texas-Houston Health Science Center, Houston, TX
| | - N. Tony Eissa
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genetics Center and Institute of Molecular Medicine, University of Texas-Houston Health Science Center, Houston, TX
| | - James R. Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Jordan S. Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Anthony K. Shum
- Department of Medicine, University of California San Francisco, San Francisco, CA
| |
Collapse
|
17
|
Kato H, Nishitoh H. Stress responses from the endoplasmic reticulum in cancer. Front Oncol 2015; 5:93. [PMID: 25941664 PMCID: PMC4403295 DOI: 10.3389/fonc.2015.00093] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/31/2015] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is essential for multiple cellular functions. During cellular stress conditions, including nutrient deprivation and dysregulation of protein synthesis, unfolded/misfolded proteins accumulate in the ER lumen, resulting in activation of the unfolded protein response (UPR). The UPR also contributes to the regulation of various intracellular signaling pathways such as calcium signaling and lipid signaling. More recently, the mitochondria-associated ER membrane (MAM), which is a site of close contact between the ER and mitochondria, has been shown to function as a platform for various intracellular stress responses including apoptotic signaling, inflammatory signaling, the autophagic response, and the UPR. Interestingly, in cancer, these signaling pathways from the ER are often dysregulated, contributing to cancer cell metabolism. Thus, the signaling pathway from the ER may be a novel therapeutic target for various cancers. In this review, we discuss recent research on the roles of stress responses from the ER, including the MAM.
Collapse
Affiliation(s)
- Hironori Kato
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki , Miyazaki , Japan
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki , Miyazaki , Japan
| |
Collapse
|
18
|
The evolving paradigm of cell-nonautonomous UPR-based regulation of immunity by cancer cells. Oncogene 2015; 35:269-78. [PMID: 25893303 DOI: 10.1038/onc.2015.108] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 12/19/2022]
Abstract
The endoplasmic reticulum (ER) stress response/unfolded protein response (UPR) has been thought to influence tumorigenesis mainly through cell-intrinsic, pro-survival effects. In recent years, however, new evidence has emerged showing that the UPR is also the source of cell-extrinsic effects, particularly directed at those immune cells within the tumor microenvironment. Here we will review and discuss this new body of information with focus on the role of cell-extrinsic effects on innate and adaptive immunity, suggesting that the transmission of ER stress from cancer cells to myeloid cells in particular is an expedient used by cancer cells to control the immune microenvironment, which acquires pro-inflammatory as well as immune-suppressive characteristics. These new findings can now be seen in the broader context of similar phenomena described in Caenorhabditis elegans, and an analogy with quorum sensing and 'community effects' in prokaryotes and eukaryotes can be drawn, arguing that a cell-nonautonomous UPR-based regulation of heterologous cells may be phylogenetically conserved. Finally, we will discuss the role of aneuploidy as an inducer of proteotoxic stress and potential initiator of cell-nonautonomous UPR-based regulation. In presenting these new views, we wish to bring attention to the cell-extrinsic regulation of tumor growth, including tumor UPR-based cell-nonautonomous signaling as a mechanism of maintaining tumor heterogeneity and resistance to therapy, and suggest therapeutically targeting such mechanisms within the tumor microenvironment.
Collapse
|
19
|
Rausch MP, Sertil AR. A stressful microenvironment: opposing effects of the endoplasmic reticulum stress response in the suppression and enhancement of adaptive tumor immunity. Int Rev Immunol 2015; 34:104-22. [PMID: 25774773 DOI: 10.3109/08830185.2015.1018415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recent clinical success of immunotherapy in the treatment of certain types of cancer has demonstrated the powerful ability of the immune system to control tumor growth, leading to significantly improved patient survival. However, despite these promising results current immunotherapeutic strategies are still limited and have not yet achieved broad acceptance outside the context of metastatic melanoma. The limitations of current immunotherapeutic approaches can be attributed in part to suppressive mechanisms present in the tumor microenvironment that hamper the generation of robust antitumor immune responses thus allowing tumor cells to escape immune-mediated destruction. The endoplasmic reticulum (ER) stress response has recently emerged as a potent regulator of tumor immunity. The ER stress response is an adaptive mechanism that allows tumor cells to survive in the harsh growth conditions inherent to the tumor milieu such as low oxygen (hypoxia), low pH and low levels of glucose. Activation of ER stress can also alter the cancer cell response to therapies. In addition, the ER stress response promotes tumor immune evasion by inducing the production of protumorigenic inflammatory cytokines and impairing tumor antigen presentation. However, the ER stress response can boost antitumor immunity in some situations by enhancing the processing and presentation of tumor antigens and by inducing the release of immunogenic factors from stressed tumor cells. Here, we discuss the dualistic role of the ER stress response in the modulation of tumor immunity and highlight how strategies to either induce or block ER stress can be employed to improve the clinical efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Matthew P Rausch
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona , Phoenix, AZ , USA
| | | |
Collapse
|
20
|
Abstract
Protein quality control is regulated by the proteostasis network and cell stress response pathways to promote cellular health. In this review, van Oosten-Hawle and Morimoto cover recent advances in model systems that reveal how communication between subcellular compartments and across different cells and tissues maintains a functional proteome during stress. The authors propose that transcellular stress signaling provides a critical control mechanism for the proteostasis network to maintain organismal health and life span. Protein quality control is essential in all organisms and regulated by the proteostasis network (PN) and cell stress response pathways that maintain a functional proteome to promote cellular health. In this review, we describe how metazoans employ multiple modes of cell-nonautonomous signaling across tissues to integrate and transmit the heat-shock response (HSR) for balanced expression of molecular chaperones. The HSR and other cell stress responses such as the unfolded protein response (UPR) can function autonomously in single-cell eukaryotes and tissue culture cells; however, within the context of a multicellular animal, the PN is regulated by cell-nonautonomous signaling through specific sensory neurons and by the process of transcellular chaperone signaling. These newly identified forms of stress signaling control the PN between neurons and nonneuronal somatic tissues to achieve balanced tissue expression of chaperones in response to environmental stress and to ensure that metastable aggregation-prone proteins expressed within any single tissue do not generate local proteotoxic risk. Transcellular chaperone signaling leads to the compensatory expression of chaperones in other somatic tissues of the animal, perhaps preventing the spread of proteotoxic damage. Thus, communication between subcellular compartments and across different cells and tissues maintains proteostasis when challenged by acute stress and upon chronic expression of metastable proteins. We propose that transcellular chaperone signaling provides a critical control step for the PN to maintain cellular and organismal health span.
Collapse
|
21
|
PERK-dependent activation of JAK1 and STAT3 contributes to endoplasmic reticulum stress-induced inflammation. Mol Cell Biol 2014; 34:3911-25. [PMID: 25113558 DOI: 10.1128/mcb.00980-14] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Neuroinflammation and endoplasmic reticulum (ER) stress are associated with many neurological diseases. Here, we have examined the interaction between ER stress and JAK/STAT-dependent inflammation in glial cells. We show that ER stress is present in the central nervous system (CNS) concomitant with inflammation and astrogliosis in the multiple sclerosis (MS) mouse model of experimental autoimmune encephalomyelitis (EAE). Astrocytes do not easily succumb to ER stress but rather activate an inflammatory program involving activation of STAT3 in a JAK1-dependent fashion. ER stress-induced activation of the JAK1/STAT3 axis leads to expression of interleukin 6 (IL-6) and several chemokines. Moreover, the activation of STAT3 signaling is dependent on PERK, a central component of the ER stress response, which we show is phosphorylated by JAK1. Disruption of PERK abrogates ER stress-induced activation of STAT3 and subsequent gene expression. Additionally, ER-stressed astrocytes, via paracrine signaling, can stimulate activation of microglia, leading to production of IL-6 and oncostatin M (OSM). These IL-6 cytokines can then synergize with ER stress in astrocytes to drive inflammation. Together, this work describes a new PERK/JAK1/STAT3 signaling pathway that elicits a feed-forward inflammatory loop involving astrocytes and microglia to drive neuroinflammation, which may be relevant in diseases such as MS.
Collapse
|
22
|
Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 2014; 21:396-413. [PMID: 24702237 PMCID: PMC4076992 DOI: 10.1089/ars.2014.5851] [Citation(s) in RCA: 947] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE The endoplasmic reticulum (ER) is a specialized organelle for the folding and trafficking of proteins, which is highly sensitive to changes in intracellular homeostasis and extracellular stimuli. Alterations in the protein-folding environment cause accumulation of misfolded proteins in the ER that profoundly affect a variety of cellular signaling processes, including reduction-oxidation (redox) homeostasis, energy production, inflammation, differentiation, and apoptosis. The unfolded protein response (UPR) is a collection of adaptive signaling pathways that evolved to resolve protein misfolding and restore an efficient protein-folding environment. RECENT ADVANCES Production of reactive oxygen species (ROS) has been linked to ER stress and the UPR. ROS play a critical role in many cellular processes and can be produced in the cytosol and several organelles, including the ER and mitochondria. Studies suggest that altered redox homeostasis in the ER is sufficient to cause ER stress, which could, in turn, induce the production of ROS in the ER and mitochondria. CRITICAL ISSUES Although ER stress and oxidative stress coexist in many pathologic states, whether and how these stresses interact is unknown. It is also unclear how changes in the protein-folding environment in the ER cause oxidative stress. In addition, how ROS production and protein misfolding commit the cell to an apoptotic death and contribute to various degenerative diseases is unknown. FUTURE DIRECTIONS A greater fundamental understanding of the mechanisms that preserve protein folding homeostasis and redox status will provide new information toward the development of novel therapeutics for many human diseases.
Collapse
Affiliation(s)
- Stewart Siyan Cao
- 1 Degenerative Diseases Program, Sanford Burnham Medical Research Institute , La Jolla, California
| | | |
Collapse
|
23
|
Clarke HJ, Chambers JE, Liniker E, Marciniak SJ. Endoplasmic reticulum stress in malignancy. Cancer Cell 2014; 25:563-73. [PMID: 24823636 DOI: 10.1016/j.ccr.2014.03.015] [Citation(s) in RCA: 352] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 02/03/2014] [Accepted: 03/12/2014] [Indexed: 12/20/2022]
Abstract
The combination of relative nutrient deprivation and dysregulation of protein synthesis make malignant cells especially prone to protein misfolding. Endoplasmic reticulum stress, which results from protein misfolding within the secretory pathway, has a profound effect on cancer cell proliferation and survival. In this review, we examine the evidence implicating endoplasmic reticulum dysfunction in the pathology of cancer and discuss how recent findings may help to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Hanna J Clarke
- Department of Medicine, Cambridge Institute for Medical Research (CIMR), Wellcome Trust/MRC Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Joseph E Chambers
- Department of Medicine, Cambridge Institute for Medical Research (CIMR), Wellcome Trust/MRC Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Elizabeth Liniker
- Department of Medicine, Cambridge Institute for Medical Research (CIMR), Wellcome Trust/MRC Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Stefan J Marciniak
- Department of Medicine, Cambridge Institute for Medical Research (CIMR), Wellcome Trust/MRC Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
24
|
Di Penta A, Chiba A, Alloza I, Wyssenbach A, Yamamura T, Villoslada P, Miyake S, Vandenbroeck K. A trifluoromethyl analogue of celecoxib exerts beneficial effects in neuroinflammation. PLoS One 2013; 8:e83119. [PMID: 24349442 PMCID: PMC3859644 DOI: 10.1371/journal.pone.0083119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/31/2013] [Indexed: 12/31/2022] Open
Abstract
Celecoxib is a selective cyclooxygenase-2 (COX2) inhibitor. We have previously shown that celecoxib inhibits experimental autoimmune encephalomyelitis (EAE) in COX-2-deficient mice, suggestive for a mode of action involving COX2-independent pathways. In the present study, we tested the effect of a trifluoromethyl analogue of celecoxib (TFM-C) with 205-fold lower COX-2 inhibitory activity in two models of neuroinflammation, i.e. cerebellar organotypic cultures challenged with LPS and the EAE mouse model for multiple sclerosis. TFM-C inhibited secretion of IL-1β, IL-12 and IL-17, enhanced that of TNF-α and RANTES, reduced neuronal axonal damage and protected from oxidative stress in the organotypic model. TFM-C blocked TNF-α release in microglial cells through a process involving intracellular retention, but induced TNF-α secretion in primary astrocyte cultures. Finally, we demonstrate that TFM-C and celecoxib ameliorated EAE with equal potency. This coincided with reduced secretion of IL-17 and IFN-γ by MOG-reactive T-cells and of IL-23 and inflammatory cytokines by bone marrow-derived dendritic cells. Our study reveals that non-coxib analogues of celecoxib may have translational value in the treatment of neuro-inflammatory conditions.
Collapse
Affiliation(s)
- Alessandra Di Penta
- Neurogenomiks Laboratory, University of Basque Country (UPV/ EHU), Zamudio, Spain
- Achucarro Basque Center for Neuroscience, Zamudio, Spain
| | - Asako Chiba
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Iraide Alloza
- Neurogenomiks Laboratory, University of Basque Country (UPV/ EHU), Zamudio, Spain
- Achucarro Basque Center for Neuroscience, Zamudio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ane Wyssenbach
- Neurotek Laboratory, University of Basque Country (UPV/EHU), Zamudio, Spain
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Pablo Villoslada
- Center of Neuroimmunology, Institute of Biomedical Research August Pi Sunyer (IDIBAPS) – Hospital Clinic of Barcelona, Barcelona, Spain
| | - Sachiko Miyake
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Koen Vandenbroeck
- Neurogenomiks Laboratory, University of Basque Country (UPV/ EHU), Zamudio, Spain
- Achucarro Basque Center for Neuroscience, Zamudio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- * E-mail:
| |
Collapse
|
25
|
Zanetti M. Cell-extrinsic effects of the tumor unfolded protein response on myeloid cells and T cells. Ann N Y Acad Sci 2013; 1284:6-11. [PMID: 23651187 DOI: 10.1111/nyas.12103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tumor-infiltrating myeloid cells, macrophages, and dendritic cells (DCs) are key regulators of tumor immunity and growth. The origin of tumor-derived signals that instruct myeloid cells in the tumor microenvironment is only partially understood. The endoplasmic reticulum (ER) stress response, or unfolded protein response (UPR), provides survival advantages to tumor growth. However, the cell-extrinsic effects of the tumor UPR on immune cells have not been explored. Our laboratory recently showed that the tumor UPR can be transmitted by yet unidentified factor(s) to myeloid cells, macrophages, and DCs. ER stress transmission to receiver myeloid cells upregulates the production of proinflammatory cytokines, and contextually of arginase I, leading to a proinflammatory/suppressive phenotype. DCs imprinted by tumor-borne ER stress transmissible factor(s) have decreased cross-presentation of antigen and defective cross-priming, causing T cell activation without proliferation. When DCs imprinted by transmissible ER stress are admixed with tumor cells and injected in vivo, facilitation of tumor growth is observed. Thus, tumor-borne ER stress plays a hitherto unappreciated role at the tumor/immune interface that ultimately facilitates tumor growth.
Collapse
Affiliation(s)
- Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
26
|
Gao M, Ma Y, Liu D. Rutin suppresses palmitic acids-triggered inflammation in macrophages and blocks high fat diet-induced obesity and fatty liver in mice. Pharm Res 2013; 30:2940-50. [PMID: 23783345 DOI: 10.1007/s11095-013-1125-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/12/2013] [Indexed: 12/15/2022]
Abstract
PURPOSE To elucidate the mechanism of rutin in blocking macrophage-mediated inflammation and high fat diet-induced obesity and fatty liver. METHODS Both in vitro and in vivo approaches were taken in evaluating the effects of rutin on palmitic acids-triggered inflammation in cultured macrophages, and on weight gain and development of fatty liver of mice fed a high fat diet. RESULTS Palmitic acids increase mRNA levels of pro-inflammatory cytokines, and elevate the production of TNFα in cultured macrophages. Pre-exposure of rutin to cells greatly suppressed these elevations. The suppressed inflammation by rutin was correlated with a decrease in transcription of genes responsible for ER stress and production of reactive oxygen species. In vivo, rutin protects mice from high fat diet-induced obesity, fatty liver and insulin resistance. The protective effects were associated with lack of hypertrophy and crown-like structures in the white adipose tissue, decreased mRNA levels of marker genes for macrophages including F4/80, Cd11c and Cd68, and repressed transcription of genes involved in chronic inflammation such as Mcp1 and Tnfα in white adipose tissue. In addition, rutin increases the expression of genes responsible for energy expenditure in brown adipose tissue including Pgc1α and Dio2. Furthermore, rutin suppresses transcription of Srebp1c and Cd36 in the liver, leading to a blockade of fatty liver development. CONCLUSION These results suggest that supplementation of rutin is a promising strategy for blocking macrophage-mediated inflammation and inflammation-induced obesity and its associated complications.
Collapse
Affiliation(s)
- Mingming Gao
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, University of Georgia, 450 Pharmacy South 250 West Green Street, Athens, Georgia, 30602, USA
| | | | | |
Collapse
|
27
|
Abstract
Host cytokine responses to Brucella abortus infection are elicited predominantly by the deployment of a type IV secretion system (T4SS). However, the mechanism by which the T4SS elicits inflammation remains unknown. Here we show that translocation of the T4SS substrate VceC into host cells induces proinflammatory responses. Ectopically expressed VceC interacted with the endoplasmic reticulum (ER) chaperone BiP/Grp78 and localized to the ER of HeLa cells. ER localization of VceC required a transmembrane domain in its N terminus. Notably, the expression of VceC resulted in reorganization of ER structures. In macrophages, VceC was required for B. abortus-induced inflammation by induction of the unfolded protein response by a process requiring inositol-requiring transmembrane kinase/endonuclease 1. Altogether, these findings suggest that translocation of the T4SS effector VceC induces ER stress, which results in the induction of proinflammatory host cell responses during B. abortus infection. IMPORTANCE Brucella species are pathogens that require a type IV secretion system (T4SS) to survive in host cells and to maintain chronic infection. By as-yet-unknown pathways, the T4SS also elicits inflammatory responses in infected cells. Here we show that inflammation caused by the T4SS results in part from the sensing of a T4SS substrate, VceC, that localizes to the endoplasmic reticulum (ER), an intracellular site of Brucella replication. Possibly via binding of the ER chaperone BiP, VceC causes ER stress with concomitant expression of proinflammatory cytokines. Thus, induction of the unfolded protein response may represent a novel pathway by which host cells can detect pathogens deploying a T4SS.
Collapse
|
28
|
Zhu XM, Yao FH, Yao YM, Dong N, Yu Y, Sheng ZY. Endoplasmic reticulum stress and its regulator XBP-1 contributes to dendritic cell maturation and activation induced by high mobility group box-1 protein. Int J Biochem Cell Biol 2012; 44:1097-105. [PMID: 22504285 DOI: 10.1016/j.biocel.2012.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/23/2012] [Accepted: 03/27/2012] [Indexed: 12/14/2022]
Abstract
High mobility group box-1 protein (HMGB1) had been proved to induce maturation and activation of dendritic cell (DC), however, the endogenous changes and mechanisms underlying are unknown. Since endoplasmic reticulum stress (ERS) activates an adaptive unfolded protein response (UPR) that facilitates cellular survival and repair, we hypothesized that HMGB1 may regulate the function of DC by modulating ERS. In our study, HMGB1 stimulation induced significant ERS responses in DCs in a time- and dose-dependent manner, demonstrated by the up-regulation of a number of ERS markers. Gene silence of XBP-1 in splenic DCs decreased the levels of CD80, CD86 as well as major histocompatibility complex (MHC)-II expression and cytokine secretion after HMGB1 treatment, when compared with untransfected or nontargeting-transfected DCs (all P<0.05). Moreover, XBP-1 silenced DCs after treatment with HMGB1 failed to stimulate notable proliferation and differentiation of T cells, unlike normal DCs or nontargeting-transfected DCs (all P<0.05). Gene silence of XBP-1 resulted in down-regulation of the receptor for advanced glycation end products (RAGE) expression on the surface of splenic DCs induced by HMGB1 stimulation (P<0.05). These findings demonstrate an important role for ERS and its regulator XBP-1 in HMGB1-induced maturation and activation of DCs.
Collapse
Affiliation(s)
- Xiao-mei Zhu
- Department of Microbiology and Immunology, Burns Institute, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, PR China
| | | | | | | | | | | |
Collapse
|
29
|
Chiba A, Mizuno M, Tomi C, Tajima R, Alloza I, di Penta A, Yamamura T, Vandenbroeck K, Miyake S. A 4-trifluoromethyl analogue of celecoxib inhibits arthritis by suppressing innate immune cell activation. Arthritis Res Ther 2012; 14:R9. [PMID: 22251404 PMCID: PMC3392797 DOI: 10.1186/ar3683] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 12/13/2011] [Accepted: 01/17/2012] [Indexed: 12/17/2022] Open
Abstract
Introduction Celecoxib, a highly specific cyclooxygenase-2 (COX-2) inhibitor has been reported to have COX-2-independent immunomodulatory effects. However, celecoxib itself has only mild suppressive effects on arthritis. Recently, we reported that a 4-trifluoromethyl analogue of celecoxib (TFM-C) with 205-fold lower COX-2-inhibitory activity inhibits secretion of IL-12 family cytokines through a COX-2-independent mechanism that involves Ca2+-mediated intracellular retention of the IL-12 polypeptide chains. In this study, we explored the capacity of TFM-C as a new therapeutic agent for arthritis. Methods To induce collagen-induced arthritis (CIA), DBA1/J mice were immunized with bovine type II collagen (CII) in Freund's adjuvant. Collagen antibody-induced arthritis (CAIA) was induced in C57BL/6 mice by injecting anti-CII antibodies. Mice received 10 μg/g of TFM-C or celecoxib every other day. The effects of TFM-C on clinical and histopathological severities were assessed. The serum levels of CII-specific antibodies were measured by ELISA. The effects of TFM-C on mast cell activation, cytokine producing capacity by macophages, and neutrophil recruitment were also evaluated. Results TFM-C inhibited the severity of CIA and CAIA more strongly than celecoxib. TFM-C treatments had little effect on CII-specific antibody levels in serum. TFM-C suppressed the activation of mast cells in arthritic joints. TFM-C also suppressed the production of inflammatory cytokines by macrophages and leukocyte influx in thioglycollate-induced peritonitis. Conclusion These results indicate that TFM-C may serve as an effective new disease-modifying drug for treatment of arthritis, such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Asako Chiba
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Endoplasmic reticulum (ER) stress may be both a trigger and consequence of chronic inflammation. Chronic inflammation is often associated with diseases that arise because of primary misfolding mutations and ER stress. Similarly, ER stress and activation of the unfolded protein response (UPR) is a feature of many chronic inflammatory and autoimmune diseases. In this review, we describe how protein misfolding and the UPR trigger inflammation, how environmental ER stressors affect antigen presenting cells and immune effector cells, and present evidence that inflammatory factors exacerbate protein misfolding and ER stress. Examples from both animal models of disease and human diseases are used to illustrate the complex interactions between ER stress and inflammation, and opportunities for therapeutic targeting are discussed. Finally, recommendations are made for future research with respect to the interaction of ER stress and inflammation. Autoimmunity occurs when an organism develops an immune response against itself, resulting in an inflammatory reaction which damages organs such as brain, joints or pancreas. This results in diseases such as Type 1 diabetes, vasculitis, or rheumatoid arthritis. A fine balance exists in order to accommodate the control of microbial pathogens and commensals, and immune self‐tolerance. The March 2012 issue will include a review series on Autoimmune Disease, particularly featuring articles on clinical translation, and the current state of research in this area. Articles include reasons for the increased incidence of certain autoimmune diseases and allergic diseases in Western society and the advances made by the application of novel and high throughput technologies to the analysis of diseased tissues. The accompanying web focus presents links to related articles from across Nature Publishing Group.
Collapse
|
31
|
Rodvold JJ, Mahadevan NR, Zanetti M. Lipocalin 2 in cancer: when good immunity goes bad. Cancer Lett 2011; 316:132-8. [PMID: 22075378 DOI: 10.1016/j.canlet.2011.11.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/29/2011] [Accepted: 11/01/2011] [Indexed: 10/15/2022]
Abstract
The innate immune molecule Lipocalin 2 (LCN2) was initially shown to combat bacterial infection by binding bacterial siderophores, hence impairing microbial iron sequestration. In recent years, it has become apparent that LCN2 is over-expressed in cancers of diverse histological origin and that it facilitates tumorigenesis by promoting survival, growth, and metastasis. Herein, we discuss emerging evidence that substantiates two functional roles for LCN2 in cancer: promotion of the epithelial-to-mesenchymal transition (EMT) that facilitates an invasive phenotype and metastasis, and sequestration of iron that results in cell survival and tumorigenesis. Further, we present evidence that upregulated LCN2 expression in solid tumors is induced by hypoxia and pro-inflammation, microenvironmental noxae that converge to cause an endoplasmic reticulum (ER) stress response. Taken together, it appears that tumor cells exploit the beneficial innate immune function of LCN2 to support uncontrolled growth. This duplicity in function highlights LCN2 and its upstream driver, the ER stress response, as key targets for cancer therapy.
Collapse
Affiliation(s)
- Jeffrey J Rodvold
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0815, United States
| | | | | |
Collapse
|
32
|
Mahadevan NR, Zanetti M. Tumor stress inside out: cell-extrinsic effects of the unfolded protein response in tumor cells modulate the immunological landscape of the tumor microenvironment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:4403-9. [PMID: 22013206 PMCID: PMC11299296 DOI: 10.4049/jimmunol.1101531] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The unfolded protein response (UPR) is a eukaryotic cellular adaptive mechanism that functions to cope with stress of the endoplasmic reticulum (ER). Accumulating evidence demonstrates that the tumor microenvironment contains stressors that elicit a UPR, which has been demonstrated to be a cell-intrinsic mechanism crucial for tumorigenesis. In addition, the UPR is a source of proinflammatory signaling whose downstream mediators may hamper antitumor immunity. We discuss how the UPR may impair Ag presentation, which could result in defective T cell priming, also leading to tumor escape and growth. Further, we discuss the recent finding that ER stress and attendant proinflammation can be transmitted from ER-stressed tumor cells to myeloid cells. The ideas presented suggest that, in addition to being a cell-intrinsic mechanism of tumor survival, the tumor UPR can serve as a cell-extrinsic regulator of tumorigenesis by remodeling the immune response in the tumor microenvironment.
Collapse
Affiliation(s)
- Navin R Mahadevan
- Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
33
|
Mahadevan NR, Rodvold J, Almanza G, Pérez AF, Wheeler MC, Zanetti M. ER stress drives Lipocalin 2 upregulation in prostate cancer cells in an NF-κB-dependent manner. BMC Cancer 2011; 11:229. [PMID: 21649922 PMCID: PMC3146445 DOI: 10.1186/1471-2407-11-229] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 06/07/2011] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Tumor cells adapt to endoplasmic reticulum (ER) stress through a set of conserved intracellular pathways, as part of a process termed the unfolded protein response (UPR). The expression of UPR genes/proteins correlates with increasing progression and poor clinical outcome of several tumor types, including prostate cancer. UPR signaling can activate NF-κB, a master regulator of transcription of pro-inflammatory, tumorigenic cytokines. Previous studies have shown that Lipocalin 2 (Lcn2) is upregulated in several epithelial cancers, including prostate cancer, and recently Lcn2 was implicated as a key mediator of breast cancer progression. Here, we hypothesize that the tumor cell UPR regulates Lcn2 production. METHODS We interrogated Lcn2 regulation in murine and human prostate cancer cells undergoing pharmacological and physiological ER stress, and tested UPR and NF-κB dependence by using pharmacological inhibitors of these signaling pathways. RESULTS Induction of ER stress using thapsigargin (Tg), a canonical pharmacologic ER stress inducer, or via glucose deprivation, a physiologic ER stressor present in the tumor microenvironment, upregulates LCN2 production in murine and human prostate cancer cells. Inhibition of the UPR using 4-phenylbutyric acid (PBA) dramatically decreases Lcn2 transcription and translation. Inhibition of NF-κB in prostate cancer cells undergoing Tg-mediated ER stress by BAY 11-7082 abrogates Lcn2 upregulation. CONCLUSIONS We conclude that the UPR activates Lcn2 production in prostate cancer cells in an NF-κB-dependent manner. Our results imply that the observed upregulation of Lipocalin 2 in various types of cancer cells may be the direct consequence of concomitant UPR activation, and that the ER stress/Lipocalin 2 axis is a potential new target for intervention in cancer progression.
Collapse
Affiliation(s)
- Navin R Mahadevan
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0815, USA
| | | | | | | | | | | |
Collapse
|
34
|
Transmission of endoplasmic reticulum stress and pro-inflammation from tumor cells to myeloid cells. Proc Natl Acad Sci U S A 2011; 108:6561-6. [PMID: 21464300 DOI: 10.1073/pnas.1008942108] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Metabolic, infectious, and tumor cell-intrinsic noxae can all evoke the endoplasmic reticulum (ER) stress response in tumor cells, which is critical for tumor cell growth and cancer progression. Evidence exists that the ER stress response can drive a proinflammatory program in tumor cells and macrophages but, to our knowledge, a role for the tumor ER stress response in influencing macrophages and inflammation in the tumor microenvironment has not been suggested. Here we show that macrophages cultured in conditioned medium from ER-stressed tumor cells become activated, and themselves undergo ER stress with the up-regulation of Grp78, Gadd34, Chop, and Xbp-1 splicing, suggesting a general activation of the ER stress-signaling pathways. Furthermore, these macrophages recapitulate, amplify and expand the proinflammatory response of tumor cells. We term this phenomenon "transmissible" ER stress. Although neither Toll-like receptor (TLR)2 nor interleukin 6 receptor (IL6R) signaling is involved, a reduction was observed in the transmission of ER stress to TLR4 KO macrophages, consistent with the fact that a second signal through TLR4 combined with exposure to tumor ER stress-conditioned medium results in a faster ER stress response and an enhancement of proinflammatory cytokine production in macrophages. The injection of tumor ER stress-conditioned medium into WT mice elicited a generalized ER stress response in the liver. We suggest that transmissible ER stress is a mechanism through which tumor cells can control myeloid cells by directing them toward a proinflammatory phenotype, thus facilitating tumor progression.
Collapse
|
35
|
Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. Proc Natl Acad Sci U S A 2010; 107:17698-703. [PMID: 20876114 DOI: 10.1073/pnas.1011736107] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The endoplasmic reticulum (ER) stress response detects malfunctions in cellular physiology, and microbial pattern recognition receptors recognize external threats posed by infectious agents. This study has investigated whether proinflammatory cytokine expression by monocyte-derived dendritic cells is affected by the induction of ER stress. Activation of ER stress, in combination with Toll-like receptor (TLR) agonists, markedly enhanced expression of mRNA of the unique p19 subunit of IL-23, and also significantly augmented secretion of IL-23 protein. These effects were not seen for IL-12 secretion. The IL-23 gene was found to be a target of the ER stress-induced transcription factor C/EBP homologous protein (CHOP), which exhibited enhanced binding in the context of both ER stress and TLR stimulation. Knockdown of CHOP in U937 cells significantly reduced the synergistic effects of TLR and ER stress on IL-23p19 expression, but did not affect expression of other LPS-responsive genes. The integration of ER stress signals and the requirement for CHOP in the induction of IL-23 responses was also investigated in a physiological setting: infection of myeloid cells with Chlamydia trachomatis resulted in the expression of CHOP mRNA and induced the binding of CHOP to the IL-23 promoter. Furthermore, knockdown of CHOP significantly reduced the expression of IL-23 in response to this intracellular bacterium. Therefore, the effects of pathogens and other environmental factors on ER stress can profoundly affect the nature of innate and adaptive immune responses.
Collapse
|
36
|
Mahadevan NR, Fernandez A, Rodvold JJ, Almanza G, Zanetti M. Prostate cancer cells undergoing ER stress in vitro and in vivo activate transcription of pro-inflammatory cytokines. J Inflamm Res 2010; 3:99-103. [PMID: 22096360 PMCID: PMC3218737 DOI: 10.2147/jir.s11190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Several micro-environmental and cell-intrinsic stimuli cause tumor cells to undergo endoplasmic reticulum (ER) stress in vivo. The occurrence of an ER stress response has been associated with tumor progression and angiogenesis. Recently, we found that pharmacological induction of ER stress in B lymphoma cells upregulates the transcription of several pro-inflammatory cytokines. Results Here, we show that transgenic adenocarcinoma of the mouse prostate (TRAMP) C1 murine prostate cancer cells induced to undergo ER stress in vitro activate the transcription of interleukin 6 (IL-6), interleukin 23p19 (IL-23p19), and tumor necrosis factor α (TNF-α). Furthermore we show that TRAMP C1 tumors growing in vivo spontaneously experience ER stress and that transcription of IL-6, IL-23p19, and TNF-α correlates with the in vivo ER stress response. Conclusions These results suggest that an ER stress response in prostate cancer cells activates a program of pro-inflammatory cytokine transcription. A possible implication of this finding is that cancer cells may use the ER stress response to modify their microenvironment.
Collapse
Affiliation(s)
- Navin R Mahadevan
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, USA
| | | | | | | | | |
Collapse
|
37
|
Franco A, Almanza G, Burns JC, Wheeler M, Zanetti M. Endoplasmic reticulum stress drives a regulatory phenotype in human T-cell clones. Cell Immunol 2010; 266:1-6. [DOI: 10.1016/j.cellimm.2010.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/31/2010] [Accepted: 09/16/2010] [Indexed: 11/28/2022]
|
38
|
Domon H, Takahashi N, Honda T, Nakajima T, Tabeta K, Abiko Y, Yamazaki K. Up-regulation of the endoplasmic reticulum stress-response in periodontal disease. Clin Chim Acta 2009; 401:134-40. [DOI: 10.1016/j.cca.2008.12.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 12/03/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
|
39
|
Pellicciotta I, Cortez-Gonzalez X, Sasik R, Reiter Y, Hardiman G, Langlade-Demoyen P, Zanetti M. Presentation of telomerase reverse transcriptase, a self-tumor antigen, is down-regulated by histone deacetylase inhibition. Cancer Res 2008; 68:8085-93. [PMID: 18829567 PMCID: PMC11344586 DOI: 10.1158/0008-5472.can-08-1014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone deacetylases (HDAC) modify the architecture of chromatin, leading to decreased gene expression, an effect that is reversed by HDAC inhibition. The balance between deacetylation and acetylation is central to many biological events including the regulation of cell proliferation and cancer but also the differentiation of immune T cells. The effects of HDAC inhibition on the interaction between antitumor effector T cells and tumor cells are not known. Here, we studied presentation of a universal self-tumor antigen, telomerase reverse transcriptase, in human tumor cells during HDAC inhibition. We found that HDAC inhibition with trichostatin A was associated with a decreased presentation and diminished killing of tumor cells by CTLs. Using gene array analysis, we found that HDAC inhibition resulted in a decrease of genes coding for proteasome catalytic proteins and for tapasin, an endoplasmic reticulum resident protein involved in the MHC class I pathway of endogenous antigen presentation. Our findings indicate that epigenetic changes in tumor cells decrease self-tumor antigen presentation and contribute to reduced recognition and killing of tumor cells by cytotoxic T lymphocytes. This mechanism could contribute to tumor escape from immune surveillance.
Collapse
Affiliation(s)
- Ilenia Pellicciotta
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla CA
| | - Xochitl Cortez-Gonzalez
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla CA
| | - Roman Sasik
- BIOGEM, University of California, San Diego, 9500 Gilman Drive, La Jolla CA
| | - Yoram Reiter
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gary Hardiman
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Pierre Langlade-Demoyen
- Unite’ de Retrovirologie Moleculaire, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris France
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla CA
| |
Collapse
|