1
|
Johnson RM, Galicia KE, Wang H, Gonzalez R, Choudhry M, Kubasiak JC. BURN INJURY RESULTS IN MYELOID PRIMING DURING EMERGENCY HEMATOPOIESIS. Shock 2024; 62:783-789. [PMID: 39186762 DOI: 10.1097/shk.0000000000002458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
ABSTRACT Introduction: Hematopoiesis proceeds in a tiered pattern of differentiation, beginning with hematopoietic stem cells (HSC) and culminating in erythroid, myeloid, and lymphoid lineages. Pathologically altered lineage commitment can result in inadequate leukocyte production or dysfunctional cell lines. Drivers of emergency hematopoiesis after burn injury are inadequately defined. Burn injury induces a myeloid predominance associated with infection that worsens outcomes. This study aims to further profile bone marrow HSCs following burn injury in a murine model. Methods: C57BL/6 mice received burn or sham injury with ~12% total body surface area scald burn on the dorsal surface with subsequent sacrifice at 1, 2, 3, 7, and 10 days postinjury. Bone marrow from hindlimbs was analyzed for HSC populations via flow cytometry and analyzed using FlowJo Software (version 10.6). Event counts and frequencies were analyzed with multiple unpaired t tests and linear mixed-effect regression. Real-time polymerase chain reaction performed on isolated lineage-negative bone marrow cell RNA targeted PU.1, GATA-1, and GATA-3 with subsequent analysis conducted with QuantStudio 3 software. Statistical analysis and representation were performed on GraphPad software (Prism). Results: Flow cytometry revealed significantly elevated proportions of long-term HSCs at 3 days post-injury ( P < 0.05) and short-term HSCs at days 2, 3, and 10 (all P < 0.05) in burn-injured mice. There was a sustained, but not significant, increase in proportions in the multipotent progenitor (MPP) 2 and 3 subpopulations in the burn cohort compared to sham controls. The common myeloid progenitor (CMP) proportion was significantly higher on days 3 and 10 (both P < 0.01), whereas the granulocyte-macrophage progenitor (GMP) proportion increased on days 1, 2, and 10 ( P < 0.05, P < 0.01, P < 0.01, respectively). Although the megakaryocyte-erythrocyte progenitor (MEP) proportion appeared consistently lower in the burn cohort, this did not reach significance. mRNA analysis resulted in a downregulation of PU.1 on day 1 ( P = 0.0002) with an upregulation by day 7 ( P < 0.01). GATA-1 downregulation occurred by day 7 ( P < 0.05), and GATA3 showed downregulation on days 3 and 7 ( P < 0.05). Discussion: Full-thickness burn results in an emergency hematopoiesis via proportional increase of long-term HSC and short-term HSC/MPP1 subpopulations beginning in the early postinjury period. Subsequent lineage commitment displays a myeloid predominance with a shift toward myeloid progenitors with mRNA analysis corroborating this finding with associated upregulation of PU.1 and downregulation of GATA-1 and GATA-3. Further studies are needed to understand how burn-induced emergency hematopoiesis may predispose to infection by pathologic lineage selection.
Collapse
Affiliation(s)
| | | | - Huashan Wang
- Burn and Shock Trauma Research Institute, Loyola University Chicago, Maywood, Illinois
| | | | - Mashkoor Choudhry
- Burn and Shock Trauma Research Institute, Loyola University Chicago, Maywood, Illinois
| | | |
Collapse
|
2
|
Lintao RCV, Kammala AK, Radnaa E, Bettayeb M, Vincent KL, Patrikeev I, Yaklic J, Bonney EA, Menon R. Characterization of fetal microchimeric immune cells in mouse maternal hearts during physiologic and pathologic pregnancies. Front Cell Dev Biol 2023; 11:1256945. [PMID: 37808080 PMCID: PMC10556483 DOI: 10.3389/fcell.2023.1256945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction: During pregnancy, fetal cells can be incorporated into maternal tissues (fetal microchimerism), where they can persist postpartum. Whether these fetal cells are beneficial or detrimental to maternal health is unknown. This study aimed to characterize fetal microchimeric immune cells in the maternal heart during pregnancy and postpartum, and to identify differences in these fetal microchimeric subpopulations between normal and pregnancies complicated by spontaneous preterm induced by ascending infection. Methods: A Cre reporter mouse model, which when mated with wild-type C57BL/6J females resulted in cells and tissues of progeny expressing red fluorescent protein tandem dimer Tomato (mT+), was used to detect fetal microchimeric cells. On embryonic day (E)15, 104 colony-forming units (CFU) E. coli was administered intravaginally to mimic ascending infection, with delivery on or before E18.5 considered as preterm delivery. A subset of pregnant mice was sacrificed at E16 and postpartum day 28 to harvest maternal hearts. Heart tissues were processed for immunofluorescence microscopy and high-dimensional mass cytometry by time-of-flight (CyTOF) using an antibody panel of immune cell markers. Changes in cardiac physiologic parameters were measured up to 60 days postpartum via two-dimensional echocardiography. Results: Intravaginal E. coli administration resulted in preterm delivery of live pups in 70% of the cases. mT + expressing cells were detected in maternal uterus and heart, implying that fetal cells can migrate to different maternal compartments. During ascending infection, more fetal antigen-presenting cells (APCs) and less fetal hematopoietic stem cells (HSCs) and fetal double-positive (DP) thymocytes were observed in maternal hearts at E16 compared to normal pregnancy. These HSCs were cleared while DP thymocytes persisted 28 days postpartum following an ascending infection. No significant changes in cardiac physiologic parameters were observed postpartum except a trend in lowering the ejection fraction rate in preterm delivered mothers. Conclusion: Both normal pregnancy and ascending infection revealed distinct compositions of fetal microchimeric immune cells within the maternal heart, which could potentially influence the maternal cardiac microenvironment via (1) modulation of cardiac reverse modeling processes by fetal stem cells, and (2) differential responses to recognition of fetal APCs by maternal T cells.
Collapse
Affiliation(s)
- Ryan C. V. Lintao
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mohamed Bettayeb
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Kathleen L. Vincent
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Biomedical Engineering and Imaging Sciences Group, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Igor Patrikeev
- Biomedical Engineering and Imaging Sciences Group, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Jerome Yaklic
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Elizabeth A. Bonney
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
3
|
Mas G, Man N, Nakata Y, Martinez-Caja C, Karl D, Beckedorff F, Tamiro F, Chen C, Duffort S, Itonaga H, Mookhtiar AK, Kunkalla K, Valencia AM, Collings CK, Kadoch C, Vega F, Kogan SC, Shiekhattar R, Morey L, Bilbao D, Nimer SD. The SWI/SNF chromatin-remodeling subunit DPF2 facilitates NRF2-dependent antiinflammatory and antioxidant gene expression. J Clin Invest 2023; 133:e158419. [PMID: 37200093 PMCID: PMC10313367 DOI: 10.1172/jci158419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/16/2023] [Indexed: 05/20/2023] Open
Abstract
During emergency hematopoiesis, hematopoietic stem cells (HSCs) rapidly proliferate to produce myeloid and lymphoid effector cells, a response that is critical against infection or tissue injury. If unresolved, this process leads to sustained inflammation, which can cause life-threatening diseases and cancer. Here, we identify a role of double PHD fingers 2 (DPF2) in modulating inflammation. DPF2 is a defining subunit of the hematopoiesis-specific BAF (SWI/SNF) chromatin-remodeling complex, and it is mutated in multiple cancers and neurological disorders. We uncovered that hematopoiesis-specific Dpf2-KO mice developed leukopenia, severe anemia, and lethal systemic inflammation characterized by histiocytic and fibrotic tissue infiltration resembling a clinical hyperinflammatory state. Dpf2 loss impaired the polarization of macrophages responsible for tissue repair, induced the unrestrained activation of Th cells, and generated an emergency-like state of HSC hyperproliferation and myeloid cell-biased differentiation. Mechanistically, Dpf2 deficiency resulted in the loss of the BAF catalytic subunit BRG1 from nuclear factor erythroid 2-like 2-controlled (NRF2-controlled) enhancers, impairing the antioxidant and antiinflammatory transcriptional response needed to modulate inflammation. Finally, pharmacological reactivation of NRF2 suppressed the inflammation-mediated phenotypes and lethality of Dpf2Δ/Δ mice. Our work establishes an essential role of the DPF2-BAF complex in licensing NRF2-dependent gene expression in HSCs and immune effector cells to prevent chronic inflammation.
Collapse
Affiliation(s)
- Gloria Mas
- Sylvester Comprehensive Cancer Center and
| | - Na Man
- Sylvester Comprehensive Cancer Center and
| | - Yuichiro Nakata
- Sylvester Comprehensive Cancer Center and
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | - Felipe Beckedorff
- Sylvester Comprehensive Cancer Center and
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Chuan Chen
- Sylvester Comprehensive Cancer Center and
| | | | | | | | | | - Alfredo M. Valencia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Chemical Biology Program, Harvard University, Cambridge, Massachusetts, USA
| | - Clayton K. Collings
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Francisco Vega
- Sylvester Comprehensive Cancer Center and
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Scott C. Kogan
- Helen Diller Family Comprehensive Cancer Center and
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center and
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center and
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center and
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stephen D. Nimer
- Sylvester Comprehensive Cancer Center and
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
4
|
Burger S, Stenger T, Pierson M, Sridhar A, Huggins MA, Kucaba TA, Griffith TS, Hamilton SE, Schuldt NJ. Natural Microbial Exposure from the Earliest Natural Time Point Enhances Immune Development by Expanding Immune Cell Progenitors and Mature Immune Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1740-1751. [PMID: 37074206 PMCID: PMC10192123 DOI: 10.4049/jimmunol.2300061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/24/2023] [Indexed: 04/20/2023]
Abstract
Microbial experience fundamentally shapes immunity, particularly during the perinatal period when the immune system is underdeveloped, and novel microbial encounters are common. Most animal models are raised in specific pathogen-free (SPF) conditions with relatively uniform microbial communities. How SPF housing conditions alter early-life immune development relative to natural microbial exposure (NME) has not been thoroughly investigated. In this article, we compare immune development in SPF-raised mice with mice born from immunologically experienced mothers in microbially diverse environments. NME induced broad immune cell expansion, including naive cells, suggesting mechanisms besides activation-induced proliferation contribute to the increase in immune cell numbers. We found NME conditions also expanded immune cell progenitor cell populations in the bone marrow, suggesting microbial experience enhances immune development at the earliest stages of immune cell differentiation. Multiple immune functions characteristically impaired in infants were also enhanced by NME, including T cell memory and Th1 polarization, B cell class switching and Ab production, proinflammatory cytokine expression, and bacterial clearance after Listeria monocytogenes challenge. Collectively, our studies reveal numerous impairments in immune development in SPF conditions relative to natural immune development.
Collapse
Affiliation(s)
- Sarah Burger
- Center for Immunology, Minneapolis, MN, USA
- Department of Pediatrics, Minneapolis, MN, USA
| | - Terran Stenger
- Center for Immunology, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, Minneapolis, MN, USA
| | - Mark Pierson
- Center for Immunology, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, Minneapolis, MN, USA
| | - Adhvaith Sridhar
- Center for Immunology, Minneapolis, MN, USA
- Department of Pediatrics, Minneapolis, MN, USA
| | - Matthew A. Huggins
- Center for Immunology, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, Minneapolis, MN, USA
| | | | - Thomas S. Griffith
- Center for Immunology, Minneapolis, MN, USA
- Department of Urology, Minneapolis, MN, USA
- Microbiology, Immunology, and Cancer Biology PhD Program, Minneapolis, MN, USA
- Masonic Cancer Center, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Sara E. Hamilton
- Center for Immunology, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, Minneapolis, MN, USA
- Microbiology, Immunology, and Cancer Biology PhD Program, Minneapolis, MN, USA
- Masonic Cancer Center, Minneapolis, MN, USA
| | - Nathaniel J. Schuldt
- Center for Immunology, Minneapolis, MN, USA
- Department of Pediatrics, Minneapolis, MN, USA
- Masonic Cancer Center, Minneapolis, MN, USA
- Lead Contact
| |
Collapse
|
5
|
Yadav S, Priya A, Borade DR, Agrawal-Rajput R. Macrophage subsets and their role: co-relation with colony-stimulating factor-1 receptor and clinical relevance. Immunol Res 2022; 71:130-152. [PMID: 36266603 PMCID: PMC9589538 DOI: 10.1007/s12026-022-09330-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023]
Abstract
Macrophages are one of the first innate immune cells to reach the site of infection or injury. Diverse functions from the uptake of pathogen or antigen, its killing, and presentation, the release of pro- or anti-inflammatory cytokines, activation of adaptive immune cells, clearing off tissue debris, tissue repair, and maintenance of tissue homeostasis have been attributed to macrophages. Besides tissue-resident macrophages, the circulating macrophages are recruited to different tissues to get activated. These are highly plastic cells, showing a spectrum of phenotypes depending on the stimulus received from their immediate environment. The macrophage differentiation requires colony-stimulating factor-1 (CSF-1) or macrophage colony-stimulating factor (M-CSF), colony-stimulating factor-2 (CSF-2), or granulocyte–macrophage colony-stimulating factor (GM-CSF) and different stimuli activate them to different phenotypes. The richness of tissue macrophages is precisely controlled via the CSF-1 and CSF-1R axis. In this review, we have given an overview of macrophage origin via hematopoiesis/myelopoiesis, different phenotypes associated with macrophages, their clinical significance, and how they are altered in various diseases. We have specifically focused on the function of CSF-1/CSF-1R signaling in deciding macrophage fate and the outcome of aberrant CSF-1R signaling in relation to macrophage phenotype in different diseases. We further extend the review to briefly discuss the possible strategies to manipulate CSF-1R and its signaling with the recent updates.
Collapse
Affiliation(s)
- Shivani Yadav
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Astik Priya
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Diksha R Borade
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India.
| |
Collapse
|
6
|
Burns SS, Kumar R, Pasupuleti SK, So K, Zhang C, Kapur R. Il-1r1 drives leukemogenesis induced by Tet2 loss. Leukemia 2022; 36:2531-2534. [PMID: 35962058 PMCID: PMC9522579 DOI: 10.1038/s41375-022-01665-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Sarah S Burns
- Medical Scientist Training Program, Indiana University-Purdue University, Indianapolis, USA
- Medical and Molecular Genetics Graduate Program, Indiana University-Purdue University, Indianapolis, USA
- The Herman B. Wells Center for Pediatric Research, Indiana University-Purdue University, Indianapolis, USA
| | - Ramesh Kumar
- The Herman B. Wells Center for Pediatric Research, Indiana University-Purdue University, Indianapolis, USA
- Department of Pediatrics, Indiana University-Purdue University, Indianapolis, USA
| | - Santhosh Kumar Pasupuleti
- The Herman B. Wells Center for Pediatric Research, Indiana University-Purdue University, Indianapolis, USA
- Department of Pediatrics, Indiana University-Purdue University, Indianapolis, USA
| | - Kaman So
- Department of Biostatistics and Health Data Science, Indiana University-Purdue University, Indianapolis, USA
| | - Chi Zhang
- Medical and Molecular Genetics Graduate Program, Indiana University-Purdue University, Indianapolis, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indiana, USA
| | - Reuben Kapur
- Medical and Molecular Genetics Graduate Program, Indiana University-Purdue University, Indianapolis, USA.
- The Herman B. Wells Center for Pediatric Research, Indiana University-Purdue University, Indianapolis, USA.
- Department of Pediatrics, Indiana University-Purdue University, Indianapolis, USA.
- Molecular Biology and Biochemistry, Indiana University School of Medicine, Indiana, USA.
- Medical and Molecular Genetics, Indiana University School of Medicine, Indiana, USA.
- Microbiology and Immunology, Indiana University School of Medicine, Indiana, USA.
| |
Collapse
|
7
|
Li Z, Ma R, Ma S, Tian L, Lu T, Zhang J, Mundy-Bosse BL, Zhang B, Marcucci G, Caligiuri MA, Yu J. ILC1s control leukemia stem cell fate and limit development of AML. Nat Immunol 2022; 23:718-730. [PMID: 35487987 PMCID: PMC9106917 DOI: 10.1038/s41590-022-01198-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/23/2022] [Indexed: 12/13/2022]
Abstract
Type I innate lymphoid cells (ILC1s) are critical regulators of inflammation and immunity in mammalian tissues. However, their function in cancer is mostly undefined. Here, we show that a high density of ILC1s induces leukemia stem cell (LSC) apoptosis in mice. At a lower density, ILC1s prevent LSCs from differentiating into leukemia progenitors and promote their differentiation into non-leukemic cells, thus blocking the production of terminal myeloid blasts. All of these effects, which require ILC1s to produce interferon-γ after cell-cell contact with LSCs, converge to suppress leukemogenesis in vivo. Conversely, the antileukemia potential of ILC1s wanes when JAK-STAT or PI3K-AKT signaling is inhibited. The relevant antileukemic properties of ILC1s are also functional in healthy individuals and impaired in individuals with acute myeloid leukemia (AML). Collectively, these findings identify ILC1s as anticancer immune cells that might be suitable for AML immunotherapy and provide a potential strategy to treat AML and prevent relapse of the disease.
Collapse
Affiliation(s)
- Zhenlong Li
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Rui Ma
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Shoubao Ma
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Lei Tian
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Ting Lu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Bethany L Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Bin Zhang
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Michael A Caligiuri
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA.
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA.
- City of Hope Comprehensive Cancer Center, Los Angeles, CA, USA.
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA.
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA.
- City of Hope Comprehensive Cancer Center, Los Angeles, CA, USA.
- Department of Immuno-Oncology, City of Hope, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Moretti FA, Giardino G, Attenborough TCH, Gkazi AS, Margetts BK, la Marca G, Fairbanks L, Crompton T, Gaspar HB. Metabolite and thymocyte development defects in ADA-SCID mice receiving enzyme replacement therapy. Sci Rep 2021; 11:23221. [PMID: 34853379 PMCID: PMC8636570 DOI: 10.1038/s41598-021-02572-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022] Open
Abstract
Deficiency of adenosine deaminase (ADA, EC3.5.4.4), a housekeeping enzyme intrinsic to the purine salvage pathway, leads to severe combined immunodeficiency (SCID) both in humans and mice. Lack of ADA results in the intracellular accumulation of toxic metabolites which have effects on T cell development and function. While untreated ADA-SCID is a fatal disorder, there are different therapeutic options available to restore ADA activity and reconstitute a functioning immune system, including enzyme replacement therapy (ERT). Administration of ERT in the form of pegylated bovine ADA (PEG-ADA) has proved a life-saving though non-curative treatment for ADA-SCID patients. However, in many patients treated with PEG-ADA, there is suboptimal immune recovery with low T and B cell numbers. Here, we show reduced thymus cellularity in ADA-SCID mice despite weekly PEG-ADA treatment. This was associated with lack of effective adenosine (Ado) detoxification in the thymus. We also show that thymocyte development in ADA-deficient thymi is arrested at the DN3-to-DN4 stage transition with thymocytes undergoing dATP-induced apoptosis rather than defective TCRβ rearrangement or β-selection. Our studies demonstrate at a detailed level that exogenous once-a-week enzyme replacement does not fully correct intra-thymic metabolic or immunological abnormalities associated with ADA deficiency.
Collapse
Affiliation(s)
| | | | | | | | - Ben K Margetts
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Giancarlo la Marca
- Department of Experimental and Clinical Biomedical Sciences, University of Florence and Newborn Screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's Hospital, Florence, Italy
| | | | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - H Bobby Gaspar
- UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
9
|
Cosgrove J, Hustin LSP, de Boer RJ, Perié L. Hematopoiesis in numbers. Trends Immunol 2021; 42:1100-1112. [PMID: 34742656 DOI: 10.1016/j.it.2021.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022]
Abstract
Hematopoiesis is a dynamic process in which stem and progenitor cells give rise to the ~1013 blood and immune cells distributed throughout the human body. We argue that a quantitative description of hematopoiesis can help consolidate existing data, identify knowledge gaps, and generate new hypotheses. Here, we review known numbers in murine and, where possible, human hematopoiesis, and consolidate murine numbers into a set of reference values. We present estimates of cell numbers, division and differentiation rates, cell size, and macromolecular composition for each hematopoietic cell type. We also propose guidelines to improve the reporting of measurements and highlight areas in which quantitative data are lacking. Overall, we show how quantitative approaches can be used to understand key properties of hematopoiesis.
Collapse
Affiliation(s)
- Jason Cosgrove
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Lucie S P Hustin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Rob J de Boer
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Leïla Perié
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France.
| |
Collapse
|
10
|
Cass SP, Mekhael O, Thayaparan D, McGrath JJC, Revill SD, Fantauzzi MF, Wang P, Reihani A, Hayat AI, Stevenson CS, Dvorkin-Gheva A, Botelho FM, Stämpfli MR, Ask K. Increased Monocyte-Derived CD11b + Macrophage Subpopulations Following Cigarette Smoke Exposure Are Associated With Impaired Bleomycin-Induced Tissue Remodelling. Front Immunol 2021; 12:740330. [PMID: 34603325 PMCID: PMC8481926 DOI: 10.3389/fimmu.2021.740330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/30/2021] [Indexed: 01/16/2023] Open
Abstract
Rationale The accumulation of macrophages in the airways and the pulmonary interstitium is a hallmark of cigarette smoke-associated inflammation. Notably, pulmonary macrophages are not a homogenous population but consist of several subpopulations. To date, the manner in which cigarette smoke exposure affects the relative composition and functional capacity of macrophage subpopulations has not been elucidated. Methods Using a whole-body cigarette smoke exposure system, we investigated the impact of cigarette smoke on macrophage subpopulations in C57BL/6 mice using flow cytometry-based approaches. Moreover, we used bromodeoxyuridine labelling plus Il1a-/- and Il1r1-/- mice to assess the relative contribution of local proliferation and monocyte recruitment to macrophage accumulation. To assess the functional consequences of altered macrophage subpopulations, we used a model of concurrent bleomycin-induced lung injury and cigarette smoke exposure to examine tissue remodelling processes. Main Results Cigarette smoke exposure altered the composition of pulmonary macrophages increasing CD11b+ subpopulations including monocyte-derived alveolar macrophages (Mo-AM) as well as interstitial macrophages (IM)1, -2 and -3. The increase in CD11b+ subpopulations was observed at multiple cigarette smoke exposure timepoints. Bromodeoxyuridine labelling and studies in Il1a-/- mice demonstrated that increased Mo-AM and IM3 turnover in the lungs of cigarette smoke-exposed mice was IL-1α dependent. Compositional changes in macrophage subpopulations were associated with impaired induction of fibrogenesis including decreased α-smooth muscle actin positive cells following intratracheal bleomycin treatment. Mechanistically, in vivo and ex vivo assays demonstrated predominant macrophage M1 polarisation and reduced matrix metallopeptidase 9 activity in cigarette smoke-exposed mice. Conclusion Cigarette smoke exposure modified the composition of pulmonary macrophage by expanding CD11b+ subpopulations. These compositional changes were associated with attenuated fibrogenesis, as well as predominant M1 polarisation and decreased fibrotic activity. Overall, these data suggest that cigarette smoke exposure altered the composition of pulmonary macrophage subpopulations contributing to impaired tissue remodelling.
Collapse
Affiliation(s)
- Steven P Cass
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Olivia Mekhael
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Danya Thayaparan
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Joshua J C McGrath
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Spencer D Revill
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada.,Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Matthew F Fantauzzi
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Peiyao Wang
- Department Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Amir Reihani
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Aaron I Hayat
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Christopher S Stevenson
- Janssen Disease Interception Accelerator, Janssen Pharmaceutical Companies of Johnson and Johnson, Raritan, NJ, United States
| | - Anna Dvorkin-Gheva
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Fernando M Botelho
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Martin R Stämpfli
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada.,Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada.,Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
11
|
Almotiri A, Alzahrani H, Menendez-Gonzalez JB, Abdelfattah A, Alotaibi B, Saleh L, Greene A, Georgiou M, Gibbs A, Alsayari A, Taha S, Thomas LA, Shah D, Edkins S, Giles P, Stemmler MP, Brabletz S, Brabletz T, Boyd AS, Siebzehnrubl FA, Rodrigues NP. Zeb1 modulates hematopoietic stem cell fates required for suppressing acute myeloid leukemia. J Clin Invest 2021; 131:129115. [PMID: 33108352 PMCID: PMC7773410 DOI: 10.1172/jci129115] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Zeb1, a zinc finger E-box binding homeobox epithelial-mesenchymal transition (EMT) transcription factor, confers properties of "stemness," such as self-renewal, in cancer. Yet little is known about the function of Zeb1 in adult stem cells. Here, we used the hematopoietic system as a well-established paradigm of stem cell biology to evaluate Zeb1-mediated regulation of adult stem cells. We employed a conditional genetic approach using the Mx1-Cre system to specifically knock out (KO) Zeb1 in adult hematopoietic stem cells (HSCs) and their downstream progeny. Acute genetic deletion of Zeb1 led to rapid-onset thymic atrophy and apoptosis-driven loss of thymocytes and T cells. A profound cell-autonomous self-renewal defect and multilineage differentiation block were observed in Zeb1-KO HSCs. Loss of Zeb1 in HSCs activated transcriptional programs of deregulated HSC maintenance and multilineage differentiation genes and of cell polarity consisting of cytoskeleton-, lipid metabolism/lipid membrane-, and cell adhesion-related genes. Notably, epithelial cell adhesion molecule (EpCAM) expression was prodigiously upregulated in Zeb1-KO HSCs, which correlated with enhanced cell survival, diminished mitochondrial metabolism, ribosome biogenesis, and differentiation capacity and an activated transcriptomic signature associated with acute myeloid leukemia (AML) signaling. ZEB1 expression was downregulated in AML patients, and Zeb1 KO in the malignant counterparts of HSCs - leukemic stem cells (LSCs) - accelerated MLL-AF9- and Meis1a/Hoxa9-driven AML progression, implicating Zeb1 as a tumor suppressor in AML LSCs. Thus, Zeb1 acts as a transcriptional regulator in hematopoiesis, critically coordinating HSC self-renewal, apoptotic, and multilineage differentiation fates required to suppress leukemic potential in AML.
Collapse
Affiliation(s)
- Alhomidi Almotiri
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom.,College of Applied Medical Sciences-Dawadmi, Shaqra University, Dawadmi, Saudi Arabia
| | - Hamed Alzahrani
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | | | - Ali Abdelfattah
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Badi Alotaibi
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Lubaid Saleh
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Adelle Greene
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Mia Georgiou
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Alex Gibbs
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Amani Alsayari
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Sarab Taha
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Leigh-Anne Thomas
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Dhruv Shah
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Sarah Edkins
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, United Kingdom
| | - Peter Giles
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, United Kingdom
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Ashleigh S Boyd
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, Royal Free Hospital, and.,Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Florian A Siebzehnrubl
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| |
Collapse
|
12
|
CD11c regulates hematopoietic stem and progenitor cells under stress. Blood Adv 2021; 4:6086-6097. [PMID: 33351105 DOI: 10.1182/bloodadvances.2020002504] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
β2 integrins are well-known leukocyte adhesion molecules consisting of 4 members: CD11a-d. Their known biological functions range widely from leukocyte recruitment, phagocytosis, to immunological synapse formation, but the studies have been primarily focused on CD11a and CD11b. CD11c is 1 of the 4 members and is extremely homologous to CD11b. It has been well known as a dendritic cell marker, but the characterization of its function has been limited. We found that CD11c was expressed on the short-term hematopoietic stem cells and multipotent progenitor cells. The lack of CD11c did not affect the number of hematopoietic stem and progenitor cells (HSPCs) in healthy CD11c knockout mice. Different from other β2 integrin members, however, CD11c deficiency was associated with increased apoptosis and significant loss of HSPCs in sepsis and bone marrow transplantation. Although integrins are generally known for their overlapping and redundant roles, we showed that CD11c had a distinct role of regulating the expansion of HSPCs under stress. This study shows that CD11c, a well-known dendritic cell marker, is expressed on HSPCs and serves as their functional regulator. CD11c deficiency leads to the loss of HSPCs via apoptosis in sepsis and bone marrow transplantation.
Collapse
|
13
|
Fang X, Fang X, Mao Y, Ciechanover A, Xu Y, An J, Huang Z. A novel small molecule CXCR4 antagonist potently mobilizes hematopoietic stem cells in mice and monkeys. Stem Cell Res Ther 2021; 12:17. [PMID: 33413613 PMCID: PMC7791974 DOI: 10.1186/s13287-020-02073-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/06/2020] [Indexed: 12/28/2022] Open
Abstract
Background Hematopoietic stem cell (HSC) transplantation is an effective treatment strategy for many types of diseases. Peripheral blood (PB) is the most commonly used source of bone marrow (BM)-derived stem cells for current HSC transplantation. However, PB usually contains very few HSCs under normal conditions, as these cells are normally retained within the BM. This retention depends on the interaction between the CXC chemokine receptor 4 (CXCR4) expressed on the HSCs and its natural chemokine ligand, stromal cell-derived factor (SDF)-1α (also named CXCL12) present in the BM stromal microenvironment. In clinical practice, blocking this interaction with a CXCR4 antagonist can induce the rapid mobilization of HSCs from the BM into the PB. Methods C3H/HEJ, DBA/2, CD45.1+, and CD45.2+ mice and monkeys were employed in colony-forming unit (CFU) assays, flow cytometry assays, and competitive/noncompetitive transplantation assays, to assess the short-term mobilization efficacy of HF51116 and the long-term repopulating (LTR) ability of HSCs. Kinetics of different blood cells and the concentration of HF51116 in PB were also explored by blood routine examinations and pharmacokinetic assays. Results In this paper, we report that a novel small molecule CXCR4 antagonist, HF51116, which was designed and synthesized by our laboratory, can rapidly and potently mobilize HSCs from BM to PB in mice and monkeys. HF51116 not only mobilized HSCs when used alone but also synergized with the mobilizing effects of granulocyte colony-stimulating factor (G-CSF) after co-administration. Following mobilization by HF51116 and G-CSF, the long-term repopulating (LTR) and self-renewing HSCs were sufficiently engrafted in primary and secondary lethally irradiated mice and were able to rescue and support long-term mouse survival. In monkeys, HF51116 exhibited strong HSC mobilization activity and quickly reached the highest in vivo blood drug concentration. Conclusions These results demonstrate that HF51116 is a new promising stem cell mobilizer which specifically targets CXCR4 and merits further preclinical and clinical studies.
Collapse
Affiliation(s)
- Xiao Fang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiong Fang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yujia Mao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Aaron Ciechanover
- The Rapport Faculty of Medicine, Technion-Israel Institute of Technology, 3109601, Haifa, Israel.,Nobel Institute of Biomedicine, Zhuhai, 519080, China.,Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, China
| | - Yan Xu
- School of Life Sciences, Tsinghua University, Beijing, China.,Nobel Institute of Biomedicine, Zhuhai, 519080, China.,Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, China
| | - Jing An
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA, USA.
| | - Ziwei Huang
- School of Life Sciences, Tsinghua University, Beijing, China. .,Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, China. .,Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Wang X, Yang L, Wang YC, Xu ZR, Feng Y, Zhang J, Wang Y, Xu CR. Comparative analysis of cell lineage differentiation during hepatogenesis in humans and mice at the single-cell transcriptome level. Cell Res 2020; 30:1109-1126. [PMID: 32690901 PMCID: PMC7784864 DOI: 10.1038/s41422-020-0378-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
During embryogenesis, the liver is the site of hepatogenesis and hematopoiesis and contains many cell lineages derived from the endoderm and mesoderm. However, the characteristics and developmental programs of many of these cell lineages remain unclear, especially in humans. Here, we performed single-cell RNA sequencing of whole human and mouse fetal livers throughout development. We identified four cell lineage families of endoderm-derived, erythroid, non-erythroid hematopoietic, and mesoderm-derived non-hematopoietic cells, and defined the developmental pathways of the major cell lineage families. In both humans and mice, we identified novel markers of hepatic lineages and an ID3+ subpopulation of hepatoblasts as well as verified that hepatoblast differentiation follows the “default-directed” model. Additionally, we found that human but not mouse fetal hepatocytes display heterogeneity associated with expression of metabolism-related genes. We described the developmental process of erythroid progenitor cells during human and mouse hematopoiesis. Moreover, despite the general conservation of cell differentiation programs between species, we observed different cell lineage compositions during hematopoiesis in the human and mouse fetal livers. Taken together, these results reveal the dynamic cell landscape of fetal liver development and illustrate the similarities and differences in liver development between species, providing an extensive resource for inducing various liver cell lineages in vitro.
Collapse
Affiliation(s)
- Xin Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Department of Human Anatomy, Histology, and Embryology, and School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100871, China
| | - Li Yang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Department of Human Anatomy, Histology, and Embryology, and School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100871, China
| | - Yan-Chun Wang
- Haidian Maternal & Child Health Hospital, Beijing, 100080, China
| | - Zi-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Department of Human Anatomy, Histology, and Embryology, and School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100871, China
| | - Ye Feng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Department of Human Anatomy, Histology, and Embryology, and School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100871, China
| | - Jing Zhang
- Haidian Maternal & Child Health Hospital, Beijing, 100080, China
| | - Yi Wang
- Haidian Maternal & Child Health Hospital, Beijing, 100080, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Department of Human Anatomy, Histology, and Embryology, and School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
15
|
Hashemi E, Malarkannan S. Tissue-Resident NK Cells: Development, Maturation, and Clinical Relevance. Cancers (Basel) 2020; 12:cancers12061553. [PMID: 32545516 PMCID: PMC7352973 DOI: 10.3390/cancers12061553] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells belong to type 1 innate lymphoid cells (ILC1) and are essential in killing infected or transformed cells. NK cells mediate their effector functions using non-clonotypic germ-line-encoded activation receptors. The utilization of non-polymorphic and conserved activating receptors promoted the conceptual dogma that NK cells are homogeneous with limited but focused immune functions. However, emerging studies reveal that NK cells are highly heterogeneous with divergent immune functions. A distinct combination of several activation and inhibitory receptors form a diverse array of NK cell subsets in both humans and mice. Importantly, one of the central factors that determine NK cell heterogeneity and their divergent functions is their tissue residency. Decades of studies provided strong support that NK cells develop in the bone marrow. However, evolving evidence supports the notion that NK cells also develop and differentiate in tissues. Here, we summarize the molecular basis, phenotypic signatures, and functions of tissue-resident NK cells and compare them with conventional NK cells.
Collapse
Affiliation(s)
- Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA;
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA;
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence:
| |
Collapse
|
16
|
Chen C, Guderyon MJ, Li Y, Ge G, Bhattacharjee A, Ballard C, He Z, Masliah E, Clark RA, O'Connor JC, Li S. Non-toxic HSC Transplantation-Based Macrophage/Microglia-Mediated GDNF Delivery for Parkinson's Disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:83-98. [PMID: 31890743 PMCID: PMC6931095 DOI: 10.1016/j.omtm.2019.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
Abstract
Glial cell-line-derived neurotrophic factor (GDNF) is a potent neuroprotective agent in cellular and animal models of Parkinson’s disease (PD). However, CNS delivery of GDNF in clinical trials has proven challenging due to blood-brain barrier (BBB) impermeability, poor diffusion within brain tissue, and large brain size. We report that using non-toxic mobilization-enabled preconditioning, hematopoietic stem cell (HSC) transplantation-based macrophage-mediated gene delivery may provide a solution to overcome these obstacles. Syngeneic bone marrow HSCs were transduced ex vivo with a lentiviral vector expressing macrophage promoter-driven GDNF and transplanted into 14-week-old MitoPark mice exhibiting PD-like impairments. Transplant preconditioning with granulocyte colony-stimulating factor (G-CSF) and AMD3100 was used to vacate bone marrow stem cell niches. Chimerism reached ∼80% after seven transplantation cycles. Transgene-expressing macrophages infiltrated degenerating CNS regions of MitoPark mice (not wild-type littermate controls), resulting in increased GDNF levels in the midbrain. Macrophage GDNF delivery not only markedly improved motor and non-motor dysfunction, but also dramatically mitigated the loss of dopaminergic neurons in both substantia nigra and the ventral tegmental area and preserved axonal terminals in the striatum. Striatal dopamine levels were almost completely restored. Our data support further development of mobilization-enabled HSC transplantation (HSCT)-based macrophage-mediated GDNF gene delivery as a disease-modifying therapy for PD.
Collapse
Affiliation(s)
- Cang Chen
- Department of Medicine, The University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Michael J Guderyon
- Department of Medicine, The University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Yang Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo Ge
- Department of Medicine, The University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Anindita Bhattacharjee
- Department of Medicine, The University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Cori Ballard
- Department of Medicine, The University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Zhixu He
- Department of Pediatrics, Zunyi Medical University Affiliated Hospital and Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Science, Guiyang, Guizhou 550025, China
| | | | - Robert A Clark
- Department of Medicine, The University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.,Audie L. Murphy VA Hospital, 7400 Merton Minter Boulevard, San Antonio, TX 78229, USA
| | - Jason C O'Connor
- Department of Pharmacology, The University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.,Audie L. Murphy VA Hospital, 7400 Merton Minter Boulevard, San Antonio, TX 78229, USA
| | - Senlin Li
- Department of Medicine, The University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.,Department of Pharmacology, The University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.,Audie L. Murphy VA Hospital, 7400 Merton Minter Boulevard, San Antonio, TX 78229, USA
| |
Collapse
|
17
|
Emmons R, Xu G, Hernández-Saavedra D, Kriska A, Pan YX, Chen H, De Lisio M. Effects of obesity and exercise on colon cancer induction and hematopoiesis in mice. Am J Physiol Endocrinol Metab 2019; 316:E210-E220. [PMID: 30512990 DOI: 10.1152/ajpendo.00237.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Obesity-induced inflammation is associated with increased risk for colorectal cancer (CRC). The role of diet and exercise in modulating increased CRC risk in obesity and the potential role of altered hematopoiesis as a contributor to these effects remain unknown. The purpose of this study was to examine how weight loss induced during CRC induction with or without exercise alters CRC initiation and its relationship to altered hematopoiesis. Mice consumed either a control (CON) or a high-fat diet to induce obesity. All mice were then placed on the control diet during CRC induction with azoxymethane (AOM). Following AOM injection, mice originally on the high-fat diet were randomized into sedentary (HF-SED) or exercise trained (HF-EX) conditions. At euthanasia, body weight and fat mass were similar among all three groups ( P < 0.05). Compared with CON and HF-EX, HF-SED developed increased content of preneoplastic lesions ( P < 0.05), and HF-SED had significantly increased markers of colon inflammation compared with CON. Compared with both CON and HF-EX, HF-SED had decreased content of short-term hematopoietic stem cells and increased content of common myeloid progenitor cells (both P < 0.05). Similarly, HF-SED had increased bone marrow adiposity compared with CON and HF-EX ( P < 0.05), and proteomics analysis revealed an increased marker of bone marrow inflammation in HF-SED compared with CON and HF-EX. Our results suggest that the early removal of a high-fat diet reduces CRC incidence when combined with an exercise training intervention. This reduction in risk was related to lower colon inflammation with anti-inflammatory changes in hematopoiesis induced by exercise.
Collapse
Affiliation(s)
- Russell Emmons
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign , Urbana, Illinois
| | - Guanying Xu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign , Urbana, Illinois
| | | | - Adam Kriska
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign , Urbana, Illinois
| | - Yuan-Xiang Pan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign , Urbana, Illinois
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign , Urbana, Illinois
| | - Hong Chen
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign , Urbana, Illinois
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign , Urbana, Illinois
| | - Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign , Urbana, Illinois
| |
Collapse
|
18
|
Zinc Finger Protein 521 Regulates Early Hematopoiesis through Cell-Extrinsic Mechanisms in the Bone Marrow Microenvironment. Mol Cell Biol 2018; 38:MCB.00603-17. [PMID: 29915154 DOI: 10.1128/mcb.00603-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 06/11/2018] [Indexed: 01/06/2023] Open
Abstract
Zinc finger protein 521 (ZFP521), a DNA-binding protein containing 30 Krüppel-like zinc fingers, has been implicated in the differentiation of multiple cell types, including hematopoietic stem and progenitor cells (HSPC) and B lymphocytes. Here, we report a novel role for ZFP521 in regulating the earliest stages of hematopoiesis and lymphoid cell development via a cell-extrinsic mechanism. Mice with inactivated Zfp521 genes (Zfp521-/-) possess reduced frequencies and numbers of hematopoietic stem and progenitor cells, common lymphoid progenitors, and B and T cell precursors. Notably, ZFP521 deficiency changes bone marrow microenvironment cytokine levels and gene expression within resident HSPC, consistent with a skewing of hematopoiesis away from lymphopoiesis. These results advance our understanding of ZFP521's role in normal hematopoiesis, justifying further research to assess its potential as a target for cancer therapies.
Collapse
|
19
|
Corrigan DJ, Luchsinger LL, Justino de Almeida M, Williams LJ, Strikoudis A, Snoeck HW. PRDM16 isoforms differentially regulate normal and leukemic hematopoiesis and inflammatory gene signature. J Clin Invest 2018; 128:3250-3264. [PMID: 29878897 DOI: 10.1172/jci99862] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022] Open
Abstract
PRDM16 is a transcriptional coregulator involved in translocations in acute myeloblastic leukemia (AML), myelodysplastic syndromes, and T acute lymphoblastic leukemia that is highly expressed in and required for the maintenance of hematopoietic stem cells (HSCs), and can be aberrantly expressed in AML. Prdm16 is expressed as full-length (fPrdm16) and short (sPrdm16) isoforms, the latter lacking the N-terminal PR domain. The role of both isoforms in normal and malignant hematopoiesis is unclear. We show here that fPrdm16 was critical for HSC maintenance, induced multiple genes involved in GTPase signaling, and repressed inflammation, while sPrdm16 supported B cell development biased toward marginal zone B cells and induced an inflammatory signature. In a mouse model of human MLL-AF9 leukemia, fPrdm16 extended latency, while sPrdm16 shortened latency and induced a strong inflammatory signature, including several cytokines and chemokines that are associated with myelodysplasia and with a worse prognosis in human AML. Finally, in human NPM1-mutant and in MLL-translocated AML, high expression of PRDM16, which negatively impacts outcome, was associated with inflammatory gene expression, thus corroborating the mouse data. Our observations demonstrate distinct roles for Prdm16 isoforms in normal HSCs and AML, and identify sPrdm16 as one of the drivers of prognostically adverse inflammation in leukemia.
Collapse
Affiliation(s)
- David J Corrigan
- Columbia Center of Human Development.,Department of Microbiology and Immunology
| | | | | | - Linda J Williams
- Columbia Center of Human Development.,Department of Medicine, and
| | | | - Hans-Willem Snoeck
- Columbia Center of Human Development.,Department of Microbiology and Immunology.,Department of Medicine, and.,Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
20
|
Schiroli G, Ferrari S, Conway A, Jacob A, Capo V, Albano L, Plati T, Castiello MC, Sanvito F, Gennery AR, Bovolenta C, Palchaudhuri R, Scadden DT, Holmes MC, Villa A, Sitia G, Lombardo A, Genovese P, Naldini L. Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1. Sci Transl Med 2018; 9:9/411/eaan0820. [PMID: 29021165 DOI: 10.1126/scitranslmed.aan0820] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/26/2017] [Accepted: 09/12/2017] [Indexed: 12/25/2022]
Abstract
Targeted genome editing in hematopoietic stem/progenitor cells (HSPCs) is an attractive strategy for treating immunohematological diseases. However, the limited efficiency of homology-directed editing in primitive HSPCs constrains the yield of corrected cells and might affect the feasibility and safety of clinical translation. These concerns need to be addressed in stringent preclinical models and overcome by developing more efficient editing methods. We generated a humanized X-linked severe combined immunodeficiency (SCID-X1) mouse model and evaluated the efficacy and safety of hematopoietic reconstitution from limited input of functional HSPCs, establishing thresholds for full correction upon different types of conditioning. Unexpectedly, conditioning before HSPC infusion was required to protect the mice from lymphoma developing when transplanting small numbers of progenitors. We then designed a one-size-fits-all IL2RG (interleukin-2 receptor common γ-chain) gene correction strategy and, using the same reagents suitable for correction of human HSPC, validated the edited human gene in the disease model in vivo, providing evidence of targeted gene editing in mouse HSPCs and demonstrating the functionality of the IL2RG-edited lymphoid progeny. Finally, we optimized editing reagents and protocol for human HSPCs and attained the threshold of IL2RG editing in long-term repopulating cells predicted to safely rescue the disease, using clinically relevant HSPC sources and highly specific zinc finger nucleases or CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9). Overall, our work establishes the rationale and guiding principles for clinical translation of SCID-X1 gene editing and provides a framework for developing gene correction for other diseases.
Collapse
Affiliation(s)
- Giulia Schiroli
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | | | - Aurelien Jacob
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy
| | - Tiziana Plati
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy
| | - Maria C Castiello
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy
| | - Francesca Sanvito
- Pathology Unit, Department of Oncology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Andrew R Gennery
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Rahul Palchaudhuri
- Magenta Therapeutics, Cambridge, MA 02139, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | | | | | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy.,National Research Council, Institute of Genetic and Biomedical Research Milan Unit, 20138 Milan, Italy
| | | | - Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Pietro Genovese
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy.
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy. .,Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
21
|
Watanabe C, Shu GL, Giltiay NV, Clark EA. Regulation of B-lineage cells by caspase 6. Immunol Cell Biol 2018; 96:1072-1082. [PMID: 29863787 DOI: 10.1111/imcb.12172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/06/2018] [Accepted: 05/30/2018] [Indexed: 01/07/2023]
Abstract
The caspase (Casp) family of proteases regulate both lymphocyte apoptosis and activation. Here, we show that Casp6 regulates early B-cell development. One-week-old Casp6 knockout (Casp6 KO) mice have significantly more splenic B-cell subsets than wild-type (WT) mice. Adult Casp6 KO mice have normal levels of total splenic B cells but have increased numbers of B1a B cells and CD43+ "transitional" or splenic red pulp (RP) B cells. These results suggested that Casp6 may function to control B-cell numbers under nonhomeostatic conditions and during B-cell development. Consistent with this model, reconstitution of B cells was dysregulated in Casp6 KO mice after sublethal irradiation. Furthermore, bone marrow pro-B, pre-B and immature B-cell numbers were significantly higher in 1-week-old Casp6 KO mice than in 1-week-old WT mice. Casp6 KO pro-B cells proliferated more in response to IL-7 than WT pro-B cells, suggesting that Casp6 regulates early B-cell responses to IL-7. Indeed, adult and aged Casp6 KO mice had elevated numbers of IL-7αR+ Sca1+ precursors of common lymphoid progenitors, suggesting Casp6 may help regulate progenitors of B cells and early B-lineage cells. Casp6 regulates B-cell programs both during early development and after antigen stimulation in the periphery.
Collapse
Affiliation(s)
- Chie Watanabe
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA
| | - Geraldine L Shu
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA
| | - Natalia V Giltiay
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA.,Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Edward A Clark
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA.,Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
22
|
Kenswil KJG, Jaramillo AC, Ping Z, Chen S, Hoogenboezem RM, Mylona MA, Adisty MN, Bindels EMJ, Bos PK, Stoop H, Lam KH, van Eerden B, Cupedo T, Raaijmakers MHGP. Characterization of Endothelial Cells Associated with Hematopoietic Niche Formation in Humans Identifies IL-33 As an Anabolic Factor. Cell Rep 2018; 22:666-678. [DOI: 10.1016/j.celrep.2017.12.070] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 11/06/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
|
23
|
Developmental Control of NRAMP1 (SLC11A1) Expression in Professional Phagocytes. BIOLOGY 2017; 6:biology6020028. [PMID: 28467369 PMCID: PMC5485475 DOI: 10.3390/biology6020028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022]
Abstract
NRAMP1 (SLC11A1) is a professional phagocyte membrane importer of divalent metals that contributes to iron recycling at homeostasis and to nutritional immunity against infection. Analyses of data generated by several consortia and additional studies were integrated to hypothesize mechanisms restricting NRAMP1 expression to mature phagocytes. Results from various epigenetic and transcriptomic approaches were collected for mesodermal and hematopoietic cell types and compiled for combined analysis with results of genetic studies associating single nucleotide polymorphisms (SNPs) with variations in NRAMP1 expression (eQTLs). Analyses establish that NRAMP1 is part of an autonomous topologically associated domain delimited by ubiquitous CCCTC-binding factor (CTCF) sites. NRAMP1 locus contains five regulatory regions: a predicted super-enhancer (S-E) key to phagocyte-specific expression; the proximal promoter; two intronic areas, including 3' inhibitory elements that restrict expression during development; and a block of upstream sites possibly extending the S-E domain. Also the downstream region adjacent to the 3' CTCF locus boundary may regulate expression during hematopoiesis. Mobilization of the locus 14 predicted transcriptional regulatory elements occurs in three steps, beginning with hematopoiesis; at the onset of myelopoiesis and through myelo-monocytic differentiation. Basal expression level in mature phagocytes is further influenced by genetic variation, tissue environment, and in response to infections that induce various epigenetic memories depending on microorganism nature. Constitutively associated transcription factors (TFs) include CCAAT enhancer binding protein beta (C/EBPb), purine rich DNA binding protein (PU.1), early growth response 2 (EGR2) and signal transducer and activator of transcription 1 (STAT1) while hypoxia-inducible factors (HIFs) and interferon regulatory factor 1 (IRF1) may stimulate iron acquisition in pro-inflammatory conditions. Mouse orthologous locus is generally conserved; chromatin patterns typify a de novo myelo-monocytic gene whose expression is tightly controlled by TFs Pu.1, C/ebps and Irf8; Irf3 and nuclear factor NF-kappa-B p 65 subunit (RelA) regulate expression in inflammatory conditions. Functional differences in the determinants identified at these orthologous loci imply that species-specific mechanisms control gene expression.
Collapse
|
24
|
Ghosh D, Wikenheiser DJ, Kennedy B, McGovern KE, Stuart JD, Wilson EH, Stumhofer JS. An Atypical Splenic B Cell Progenitor Population Supports Antibody Production during Plasmodium Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2016; 197:1788-800. [PMID: 27448588 DOI: 10.4049/jimmunol.1502199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 06/17/2016] [Indexed: 12/26/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) function to replenish the immune cell repertoire under steady-state conditions and in response to inflammation due to infection or stress. Whereas the bone marrow serves as the primary niche for hematopoiesis, extramedullary mobilization and differentiation of HSPCs occur in the spleen during acute Plasmodium infection, a critical step in the host immune response. In this study, we identified an atypical HSPC population in the spleen of C57BL/6 mice, with a lineage(-)Sca-1(+)c-Kit(-) (LSK(-)) phenotype that proliferates in response to infection with nonlethal Plasmodium yoelii 17X. Infection-derived LSK(-) cells upon transfer into naive congenic mice were found to differentiate predominantly into mature follicular B cells. However, when transferred into infection-matched hosts, infection-derived LSK(-) cells gave rise to B cells capable of entering into a germinal center reaction, and they developed into memory B cells and Ab-secreting cells that were capable of producing parasite-specific Abs. Differentiation of LSK(-) cells into B cells in vitro was enhanced in the presence of parasitized RBC lysate, suggesting that LSK(-) cells expand and differentiate in direct response to the parasite. However, the ability of LSK(-) cells to differentiate into B cells was not dependent on MyD88, as myd88(-/-) LSK(-) cell expansion and differentiation remained unaffected after Plasmodium infection. Collectively, these data identify a population of atypical lymphoid progenitors that differentiate into B lymphocytes in the spleen and are capable of contributing to the ongoing humoral immune response against Plasmodium infection.
Collapse
Affiliation(s)
- Debopam Ghosh
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205; and
| | - Daniel J Wikenheiser
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205; and
| | - Brian Kennedy
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205; and
| | - Kathryn E McGovern
- Division of Biomedical Sciences, University of California, Riverside, CA 92521
| | - Johnasha D Stuart
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205; and
| | - Emma H Wilson
- Division of Biomedical Sciences, University of California, Riverside, CA 92521
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205; and
| |
Collapse
|
25
|
Investigating B Cell Development, Natural and Primary Antibody Responses in Ly-6A/Sca-1 Deficient Mice. PLoS One 2016; 11:e0157271. [PMID: 27322740 PMCID: PMC4913937 DOI: 10.1371/journal.pone.0157271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 05/26/2016] [Indexed: 11/24/2022] Open
Abstract
Ly-6A/Stem cell antigen-1 (Ly-6A/Sca-1) is a glycosylphosphatidylinositol-anchored protein expressed on many cell types including hematopoietic stem cells (HSCs) and early lymphoid-specific progenitors. Ly-6A/Sca-1 is expressed on CD4+ T cells and plays a role in regulating cellular responses to foreign antigens. The role of Ly-6A/Sca-1 in primary antibody responses has not been defined. To investigate whether Ly-6A/Sca-1 functions in humoral immunity, we first injected Ly-6A/Sca-1-deficient and wild-type control mice with chicken ovalbumin (c-Ova) protein mixed with an adjuvant. We then assessed the ability of the mice to generate a primary antibody response against cOva. We further examined the development of B cells and circulating antibody isotypes in non-immunized Ly-6A/Sca-1deficient mice to determine if Ly6A/Sca-1 functions in development irrespective of antigen-specific immune activation. Ly-6A/Sca-1/Sca-1-deficient mice did not show any significant changes in the number of B lymphocytes in the bone marrow and peripheral lymphoid tissues. Interestingly, Ly-6A/Sca-1/Sca-1-/- mice have significantly elevated serum levels of IgA with λ light chains compared to wild type controls. B cell clusters with high reactivity to anti-IgA λ monoclonal antibody were detected in the lamina propria of the gut, though this was not observed in the bone marrow and peripheral lymphoid tissues. Despite these differences, the Ly-6A/Sca-1deficient mice generated a similar primary antibody response when compared to the wild-type mice. In summary, we conclude that the primary antibody response to cOva antigen is similar in Ly-6A/Sca-1deficient and sufficient mice. In addition, we report significantly higher expression of the immunoglobulin λ light chain by B cells in lamina propria of Ly-6A/Sca-1deficient mice when compared to the wild-type control.
Collapse
|
26
|
Marsh T, Wong I, Sceneay J, Barakat A, Qin Y, Sjödin A, Alspach E, Nilsson B, Stewart SA, McAllister SS. Hematopoietic Age at Onset of Triple-Negative Breast Cancer Dictates Disease Aggressiveness and Progression. Cancer Res 2016; 76:2932-43. [PMID: 27197230 DOI: 10.1158/0008-5472.can-15-3332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/18/2016] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is considered an early onset subtype of breast cancer that carries with it a poorer prognosis in young rather than older women for reasons that remain poorly understood. Hematopoiesis in the bone marrow becomes altered with age and may therefore affect the composition of tumor-infiltrating hematopoietic cells and subsequent tumor progression. In this study, we investigated how age- and tumor-dependent changes to bone marrow-derived hematopoietic cells impact TNBC progression. Using multiple mouse models of TNBC tumorigenesis and metastasis, we found that a specific population of bone marrow cells (BMC) upregulated CSF-1R and secreted the growth factor granulin to support stromal activation and robust tumor growth in young mice. However, the same cell population in old mice expressed low levels of CSF1R and granulin and failed to promote tumor outgrowth, suggesting that age influences the tumorigenic capacity of BMCs in response to tumor-associated signals. Importantly, BMCs from young mice were sufficient to activate a tumor-supportive microenvironment and induce tumor progression in old mice. These results indicate that hematopoietic age is an important determinant of TNBC aggressiveness and provide rationale for investigating age-stratified therapies designed to prevent the protumorigenic effects of activated BMCs. Cancer Res; 76(10); 2932-43. ©2016 AACR.
Collapse
Affiliation(s)
- Timothy Marsh
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Irene Wong
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jaclyn Sceneay
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Amey Barakat
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Yuanbo Qin
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Andreas Sjödin
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Elise Alspach
- Department of Cell Biology and Physiology; Department of Medicine; and ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Björn Nilsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden. Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Sheila A Stewart
- Department of Cell Biology and Physiology; Department of Medicine; and ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Sandra S McAllister
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Harvard Stem Cell Institute, Cambridge, Massachusetts.
| |
Collapse
|
27
|
Klose CSN, Diefenbach A. Transcription factors controlling innate lymphoid cell fate decisions. Curr Top Microbiol Immunol 2015; 381:215-55. [PMID: 25038936 DOI: 10.1007/82_2014_381] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mucosal epithelium is in direct contact with symbiotic and pathogenic microorganisms. Therefore, the mucosal surface is the principal portal of entry for invading pathogens and immune cells accumulated in the intestine to prevent infections. In addition to these conventional immune system functions, it has become clear that immune cells during steady-state continuously integrate microbial and nutrient-derived signals from the environment to support organ homeostasis. A major role in both processes is played by a recently discovered group of lymphocytes referred to as innate lymphoid cells (ILCs) Innate lymphoid cells (ILCs) that are specifically enriched at mucosal surfaces but are rather rare in secondary lymphoid organs. In analogy to the dichotomy between CD8 and CD4 T cells, we propose to classify ILCs into interleukin-7 receptor α-negative cytotoxic ILCs and IL-7Rα(+) helper-like ILCs. Dysregulated immune responses triggered by the various ILC subsets have been linked to inflammatory diseases such as inflammatory bowel disease, atopic dermatitis and airway hyperresponsiveness. Here, we will review recent progress in determining the transcriptional and developmental programs that control ILC fate decisions.
Collapse
Affiliation(s)
- Christoph S N Klose
- Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | | |
Collapse
|
28
|
Ross EA, Flores-Langarica A, Bobat S, Coughlan RE, Marshall JL, Hitchcock JR, Cook CN, Carvalho-Gaspar MM, Mitchell AM, Clarke M, Garcia P, Cobbold M, Mitchell TJ, Henderson IR, Jones ND, Anderson G, Buckley CD, Cunningham AF. Resolving Salmonella infection reveals dynamic and persisting changes in murine bone marrow progenitor cell phenotype and function. Eur J Immunol 2014; 44:2318-30. [PMID: 24825601 PMCID: PMC4209805 DOI: 10.1002/eji.201344350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/07/2014] [Accepted: 05/08/2014] [Indexed: 11/15/2022]
Abstract
The generation of immune cells from BM precursors is a carefully regulated process. This is essential to limit the potential for oncogenesis and autoimmunity yet protect against infection. How infection modulates this is unclear. Salmonella can colonize systemic sites including the BM and spleen. This resolving infection has multiple IFN-γ-mediated acute and chronic effects on BM progenitors, and during the first week of infection IFN-γ is produced by myeloid, NK, NKT, CD4(+) T cells, and some lineage-negative cells. After infection, the phenotype of BM progenitors rapidly but reversibly alters, with a peak ∼ 30-fold increase in Sca-1(hi) progenitors and a corresponding loss of Sca-1(lo/int) subsets. Most strikingly, the capacity of donor Sca-1(hi) cells to reconstitute an irradiated host is reduced; the longer donor mice are exposed to infection, and Sca-1(hi) c-kit(int) cells have an increased potential to generate B1a-like cells. Thus, Salmonella can have a prolonged influence on BM progenitor functionality not directly related to bacterial persistence. These results reflect changes observed in leucopoiesis during aging and suggest that BM functionality can be modulated by life-long, periodic exposure to infection. Better understanding of this process could offer novel therapeutic opportunities to modulate BM functionality and promote healthy aging.
Collapse
Affiliation(s)
- Ewan A Ross
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Adriana Flores-Langarica
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Saeeda Bobat
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Ruth E Coughlan
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Jennifer L Marshall
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Jessica R Hitchcock
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Charlotte N Cook
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Manuela M Carvalho-Gaspar
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Andrea M Mitchell
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Mary Clarke
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Paloma Garcia
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Mark Cobbold
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Tim J Mitchell
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Ian R Henderson
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Nick D Jones
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Graham Anderson
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Christopher D Buckley
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Adam F Cunningham
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| |
Collapse
|
29
|
Chistiakov DA, Orekhov AN, Sobenin IA, Bobryshev YV. Plasmacytoid dendritic cells: development, functions, and role in atherosclerotic inflammation. Front Physiol 2014; 5:279. [PMID: 25120492 PMCID: PMC4110479 DOI: 10.3389/fphys.2014.00279] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/08/2014] [Indexed: 12/21/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a specialized subset of DCs that links innate and adaptive immunity. They sense viral and bacterial pathogens and release high levels of Type I interferons (IFN-I) in response to infection. pDCs were shown to contribute to inflammatory responses in the steady state and in pathology. In atherosclerosis, pDCs are involved in priming vascular inflammation and atherogenesis through production of IFN-I and chemokines that attract inflammatory cells to inflamed sites. pDCs also contribute to the proinflammatory activation of effector T cells, cytotoxic T cells, and conventional DCs. However, tolerogenic populations of pDCs are found that suppress atherosclerosis-associated inflammation through down-regulation of function and proliferation of proinflammatory T cell subsets and induction of regulatory T cells with potent immunomodulatory properties. Notably, atheroprotective tolerogenic DCs could be induced by certain self-antigens or bacterial antigens that suggests for great therapeutic potential of these DCs for development of DC-based anti-atherogenic vaccines.
Collapse
Affiliation(s)
- Dimitry A. Chistiakov
- Department of Medical Nanobiotechnology, Pirogov Russian State Medical UniversityMoscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical SciencesMoscow, Russia
- Institute for Atherosclerosis Research, Skolkovo Innovative CenterMoscow, Russia
| | - Igor A. Sobenin
- Institute for Atherosclerosis Research, Skolkovo Innovative CenterMoscow, Russia
- Laboratory of Medical Genetics, Russian Cardiology Research and Production ComplexMoscow, Russia
| | - Yuri V. Bobryshev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical SciencesMoscow, Russia
- Faculty of Medicine, University of New South WalesSydney, NSW, Australia
- School of Medicine, University of Western SydneyCampbelltown, NSW, Australia
| |
Collapse
|
30
|
Zhang Q, Esplin BL, Iida R, Garrett KP, Huang ZL, Medina KL, Kincade PW. RAG-1 and Ly6D independently reflect progression in the B lymphoid lineage. PLoS One 2013; 8:e72397. [PMID: 24023617 PMCID: PMC3758291 DOI: 10.1371/journal.pone.0072397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/23/2013] [Indexed: 01/29/2023] Open
Abstract
Common lymphoid progenitors (CLPs) are thought to represent major intermediates in the transition of hematopoietic stem cells (HSCs) to B lineage lymphocytes. However, it has been obvious for some time that CLPs are heterogeneous, and there has been controversy concerning their differentiation potential. We have now resolved four Flt3+ CLP subsets that are relatively homogenous and capable of forming B cells. Differentiation potential and gene expression patterns suggest Flt3+ CLPs lacking both Ly6D and RAG-1 are the least differentiated. In addition to B cells, they generate natural killer (NK) and dendritic cells (DCs). At the other extreme is a subset of the recently described Flt3+ Ly6D+ CLPs that have a history of RAG-1 expression and are B lineage restricted. These relatively abundant and potent CLPs were depleted within 48 hours of acute in vivo estrogen elevation, suggesting they descend from hormone regulated progenitors. This contrasts with the hormone insensitivity of other CLP subsets that include NK lineage progenitors. This progenitor heterogeneity and differentiation complexity may add flexibility in response to environmental changes. Expression of RAG-1 and display of Ly6D are both milestone events, but they are neither synchronized nor dependent on each other.
Collapse
Affiliation(s)
- Qingzhao Zhang
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Brandt L. Esplin
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Ryuji Iida
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Karla P. Garrett
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Zhixin L. Huang
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kay L. Medina
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Paul W. Kincade
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
31
|
A germline point mutation in Runx1 uncouples its role in definitive hematopoiesis from differentiation. Exp Hematol 2013; 41:980-991.e1. [PMID: 23823022 DOI: 10.1016/j.exphem.2013.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/14/2022]
Abstract
Definitive hematopoiesis requires the master hematopoietic transcription factor Runx1, which is a frequent target of leukemia-related chromosomal translocations. Several of the translocation-generated fusion proteins retain the DNA binding activity of Runx1, but lose subnuclear targeting and associated transactivation potential. Complete loss of these functions in vivo resembles Runx1 ablation, which causes embryonic lethality. We developed a knock-in mouse that expresses full-length Runx1 with a mutation in the subnuclear targeting cofactor interaction domain, Runx1(HTY350-352AAA). Mutant mice survive to adulthood, and hematopoietic stem cell emergence appears to be unaltered. However, defects are observed in multiple differentiated hematopoietic lineages at stages where Runx1 is known to play key roles. Thus, a germline mutation in Runx1 reveals uncoupling of its functions during developmental hematopoiesis from subsequent differentiation across multiple hematopoietic lineages in the adult. These findings indicate that subnuclear targeting and cofactor interactions with Runx1 are important in many compartments throughout hematopoietic differentiation.
Collapse
|
32
|
Kerenyi MA, Shao Z, Hsu YJ, Guo G, Luc S, O'Brien K, Fujiwara Y, Peng C, Nguyen M, Orkin SH. Histone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation. eLife 2013; 2:e00633. [PMID: 23795291 PMCID: PMC3687337 DOI: 10.7554/elife.00633] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/09/2013] [Indexed: 12/11/2022] Open
Abstract
Here, we describe that lysine-specific demethylase 1 (Lsd1/KDM1a), which demethylates histone H3 on Lys4 or Lys9 (H3K4/K9), is an indispensible epigenetic governor of hematopoietic differentiation. Integrative genomic analysis, combining global occupancy of Lsd1, genome-wide analysis of its substrates H3K4 monomethylation and dimethylation, and gene expression profiling, reveals that Lsd1 represses hematopoietic stem and progenitor cell (HSPC) gene expression programs during hematopoietic differentiation. We found that Lsd1 acts at transcription start sites, as well as enhancer regions. Loss of Lsd1 was associated with increased H3K4me1 and H3K4me2 methylation on HSPC genes and gene derepression. Failure to fully silence HSPC genes compromised differentiation of hematopoietic stem cells as well as mature blood cell lineages. Collectively, our data indicate that Lsd1-mediated concurrent repression of enhancer and promoter activity of stem and progenitor cell genes is a pivotal epigenetic mechanism required for proper hematopoietic maturation. DOI:http://dx.doi.org/10.7554/eLife.00633.001.
Collapse
Affiliation(s)
- Marc A Kerenyi
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Zhen Shao
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Yu-Jung Hsu
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Guoji Guo
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Sidinh Luc
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Kassandra O'Brien
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Yuko Fujiwara
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Cong Peng
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Minh Nguyen
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
- Harvard Stem Cell Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
33
|
Hoyler T, Connor CA, Kiss EA, Diefenbach A. T-bet and Gata3 in controlling type 1 and type 2 immunity mediated by innate lymphoid cells. Curr Opin Immunol 2013; 25:139-47. [DOI: 10.1016/j.coi.2013.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/08/2013] [Accepted: 02/14/2013] [Indexed: 12/21/2022]
|
34
|
Sanos SL, Diefenbach A. Innate lymphoid cells: from border protection to the initiation of inflammatory diseases. Immunol Cell Biol 2013; 91:215-24. [PMID: 23357882 DOI: 10.1038/icb.2013.3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Innate lymphoid cells (ILC) are a recently discovered group of innate lymphocytes found at mucosal surfaces. The transcriptional and effector programs of ILC strikingly resemble those of the various T-helper (Th) cell fates (that is, Th1, Th2, Th9, Th17, Th22). ILC are involved in protecting the mucosal borders by producing tissue protective factors. More recently, evidence has been provided that inappropriately activated ILC can be drivers of various inflammatory disorders. Here, we will highlight recent developments in our understanding of the transcriptional and developmental programs controlling ILC specification and fate decisions. We will also review the roles assigned to ILC in protecting barriers and in promoting inflammatory diseases. Finally, we will outline how the power of ILC may be harnessed for clinical application, and how interference with ILC function may be used as a new strategy to treat inflammatory diseases.
Collapse
Affiliation(s)
- Stephanie L Sanos
- IMMH, Institute of Medical Microbiology and Hygiene, University of Freiburg Medical Centre, Freiburg, Germany.
| | | |
Collapse
|
35
|
Hoyler T, Klose CS, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL, Voehringer D, Busslinger M, Diefenbach A. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 2012; 37:634-48. [PMID: 23063333 PMCID: PMC3662874 DOI: 10.1016/j.immuni.2012.06.020] [Citation(s) in RCA: 681] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/30/2012] [Indexed: 12/12/2022]
Abstract
Innate lymphoid cells (ILCs) reside at mucosal surfaces and control immunity to intestinal infections. Type 2 innate lymphoid cells (ILC2s) produce cytokines such as IL-5 and IL-13, are required for immune defense against helminth infections, and are involved in the pathogenesis of airway hyperreactivity. Here, we have investigated the role of the transcription factor GATA-3 for ILC2 differentiation and maintenance. We showed that ILC2s and their lineage-specified bone marrow precursors (ILC2Ps), as identified here, were characterized by continuous high expression of GATA-3. Analysis of mice with temporary deletion of GATA-3 in all ILCs showed that GATA-3 was required for the differentiation and maintenance of ILC2s but not for RORγt(+) ILCs. Thus, our data demonstrate that GATA-3 is essential for ILC2 fate decisions and reveal similarities between the transcriptional programs controlling ILC and T helper cell fates.
Collapse
Affiliation(s)
- Thomas Hoyler
- IMMH, Institute of Medical Microbiology and Hygiene, University of Freiburg, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany
- Research Training Group of Organogenesis (GRK1104), University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany
| | - Christoph S.N. Klose
- IMMH, Institute of Medical Microbiology and Hygiene, University of Freiburg, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
| | - Abdallah Souabni
- Research Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohrgasse 7, A-1020 Vienna, Austria
| | - Adriana Turqueti-Neves
- Department of Infection Biology, Institute for Medical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstrasse 3, D-91054 Erlangen, Germany
| | - Dietmar Pfeifer
- Core Facility Genomics, Department of Internal Medicine I, University of Freiburg Medical Center Freiburg, Hugstetter Strasse 55, D-79106 Freiburg, Germany
| | - Emma L. Rawlins
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - David Voehringer
- Department of Infection Biology, Institute for Medical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstrasse 3, D-91054 Erlangen, Germany
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohrgasse 7, A-1020 Vienna, Austria
| | - Andreas Diefenbach
- IMMH, Institute of Medical Microbiology and Hygiene, University of Freiburg, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany
- Research Training Group of Organogenesis (GRK1104), University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Hebelstrasse 25, D-79104 Freiburg, Germany
| |
Collapse
|
36
|
Halim TYF, MacLaren A, Romanish MT, Gold MJ, McNagny KM, Takei F. Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity 2012; 37:463-74. [PMID: 22981535 DOI: 10.1016/j.immuni.2012.06.012] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/30/2012] [Accepted: 06/08/2012] [Indexed: 01/23/2023]
Abstract
Natural helper (NH) cells are innate lymphoid cells (ILCs) that produce T helper-2 (Th2)-cell-type cytokines in the lung- and gut-associated lymphoid tissues. Currently, the lineage relationship between NH cells in different tissues and between NH cells and interleukin-22 (IL-22)-producing retinoic-acid-receptor-related orphan receptor (ROR)γt-positive ILCs is unclear. Here, we report that NH cells express RORα, but not RORγt. RORα-deficient, but not RORγt-deficient, mice lacked NH cells in all tissues, whereas all other lymphocytes, including RORγt(+) ILCs, were unaffected. NH-cell-deficient mice generated by RORα-deficient bone-marrow transplantation had normal Th2 cell responses but failed to develop acute lung inflammation in response to protease allergen, thus confirming the essential role of NH cells in allergic lung inflammation. We have also identified RORα-dependent NH cell progenitors in the bone marrow. Thus, all NH cells belong to a unique RORα-dependent cell lineage separate from other lymphoid cell lineages.
Collapse
Affiliation(s)
- Timotheus Y F Halim
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Peng C, Chen Y, Shan Y, Zhang H, Guo Z, Li D, Li S. LSK derived LSK- cells have a high apoptotic rate related to survival regulation of hematopoietic and leukemic stem cells. PLoS One 2012; 7:e38614. [PMID: 22675576 PMCID: PMC3366951 DOI: 10.1371/journal.pone.0038614] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
A balanced pool of hematopoietic stem cells (HSCs) in bone marrow is tightly regulated, and this regulation is disturbed in hematopoietic malignancies such as chronic myeloid leukemia (CML). The underlying mechanisms are largely unknown. Here we show that the Lin−Sca-1+c-Kit- (LSK−) cell population derived from HSC-containing Lin−Sca-1+c-Kit+ (LSK) cells has significantly higher numbers of apoptotic cells. Depletion of LSK cells by radiation or the cytotoxic chemical 5-fluorouracil results in an expansion of the LSK− population. In contrast, the LSK− population is reduced in CML mice, and depletion of leukemia stem cells (LSCs; BCR-ABL-expressing HSCs) by deleting Alox5 or by inhibiting heat shock protein 90 causes an increase in this LSK− population. The transition of LSK to LSK− cells is controlled by the Icsbp gene and its downstream gene Lyn, and regulation of this cellular transition is critical for the survival of normal LSK cells and LSCs. These results indicate a potential function of the LSK− cells in the regulation of LSK cells and LSCs.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Ly/metabolism
- Apoptosis/drug effects
- Apoptosis/radiation effects
- Arachidonate 5-Lipoxygenase/metabolism
- Benzamides
- Cell Lineage/drug effects
- Cell Lineage/radiation effects
- Cell Survival/drug effects
- Cell Survival/radiation effects
- Fluorouracil/pharmacology
- Fusion Proteins, bcr-abl/metabolism
- Gamma Rays
- HSP90 Heat-Shock Proteins/metabolism
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Hematopoietic Stem Cells/radiation effects
- Imatinib Mesylate
- Interferon Regulatory Factors/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Membrane Proteins/metabolism
- Mice
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/radiation effects
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Proto-Oncogene Proteins c-kit/metabolism
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Receptors, Cell Surface/metabolism
- Signal Transduction/drug effects
- Signal Transduction/radiation effects
- Signaling Lymphocytic Activation Molecule Family Member 1
- Time Factors
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Cong Peng
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Yaoyu Chen
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Yi Shan
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Haojian Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Zhiru Guo
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Dongguang Li
- School of Computer and Security Science, Edith Cowan University, Mount Lawley, Western Australia, Australia
| | - Shaoguang Li
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
38
|
Alpharetroviral self-inactivating vectors: long-term transgene expression in murine hematopoietic cells and low genotoxicity. Mol Ther 2012; 20:1022-32. [PMID: 22334016 DOI: 10.1038/mt.2011.309] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Comparative integrome analyses have highlighted alpharetroviral vectors with a relatively neutral, and thus favorable, integration spectrum. However, previous studies used alpharetroviral vectors harboring viral coding sequences and intact long-terminal repeats (LTRs). We recently developed self-inactivating (SIN) alpharetroviral vectors with an advanced split-packaging design. In a murine bone marrow (BM) transplantation model we now compared alpharetroviral, gammaretroviral, and lentiviral SIN vectors and showed that all vectors transduced hematopoietic stem cells (HSCs), leading to comparable, sustained multilineage transgene expression in primary and secondary transplanted mice. Alpharetroviral integrations were decreased near transcription start sites, CpG islands, and potential cancer genes compared with gammaretroviral, and decreased in genes compared with lentiviral integrations. Analyzing the transcriptome and intragenic integrations in engrafting cells, we observed stronger correlations between in-gene integration targeting and transcriptional activity for gammaretroviral and lentiviral vectors than for alpharetroviral vectors. Importantly, the relatively "extragenic" alpharetroviral integration pattern still supported long-term transgene expression upon serial transplantation. Furthermore, sensitive genotoxicity studies revealed a decreased immortalization incidence compared with gammaretroviral and lentiviral SIN vectors. We conclude that alpharetroviral SIN vectors have a favorable integration pattern which lowers the risk of insertional mutagenesis while supporting long-term transgene expression in the progeny of transplanted HSCs.
Collapse
|
39
|
Brickshawana A, Shapiro VS, Kita H, Pease LR. Lineage(-)Sca1+c-Kit(-)CD25+ cells are IL-33-responsive type 2 innate cells in the mouse bone marrow. THE JOURNAL OF IMMUNOLOGY 2011; 187:5795-804. [PMID: 22048767 DOI: 10.4049/jimmunol.1102242] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
IL-33 promotes type 2 immune responses, both protective and pathogenic. Recently, targets of IL-33, including several newly discovered type 2 innate cells, have been characterized in the periphery. In this study, we report that bone marrow cells from wild-type C57BL/6 mice responded with IL-5 and IL-13 production when cultured with IL-33. IL-33 cultures of bone marrow cells from Rag1 KO and Kit(W-sh/W-sh) mice also responded similarly; hence, eliminating the possible contributions of T, B, and mast cells. Rather, intracellular staining revealed that the IL-5- and IL-13-positive cells display a marker profile consistent with the Lineage(-)Sca-1(+)c-Kit(-)CD25(+) (LSK(-)CD25(+)) cells, a bone marrow cell population of previously unknown function. Freshly isolated LSK(-)CD25(+) cells uniformly express ST2, the IL-33 receptor. In addition, culture of sorted LSK(-)CD25(+) cells showed that they indeed produce IL-5 and IL-13 when cultured with IL-33 plus IL-2 and IL-33 plus IL-7. Furthermore, i.p. injections of IL-33 or IL-25 into mice induced LSK(-)CD25(+) cells to expand, in both size and frequency, and to upregulate ST2 and α(4)β(7) integrin, a mucosal homing marker. Thus, we identify the enigmatic bone marrow LSK(-)CD25(+) cells as IL-33 responsive, both in vitro and in vivo, with attributes similar to other type 2 innate cells described in peripheral tissues.
Collapse
|
40
|
Mortha A, Diefenbach A. Natural killer cell receptor-expressing innate lymphocytes: more than just NK cells. Cell Mol Life Sci 2011; 68:3541-55. [PMID: 21904914 PMCID: PMC11114688 DOI: 10.1007/s00018-011-0803-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 12/17/2022]
Abstract
Recently, additional subsets that extend the family of innate lymphocytes have been discovered. Among these newly identified innate lymphoid cells is a subset sharing phenotypic characteristics of natural killer cells and lymphoid tissue inducer cells. These cells co-express the transcription factor RORγt and activating NK cell receptors (NKR), but their lineage and functional qualities remain poorly defined. Here, we discuss recent proposals to place these NKR(+)RORγt(+) innate lymphocytes on hematopoietic lineage maps. An overview of the transcriptional circuitry determining fate decisions of innate lymphocytes and a summary of current concepts concerning plasticity and stability of innate lymphocyte effector fates are provided. We will conclude by discussing the function of RORγt-expressing innate lymphocytes during inflammatory bowel diseases and in the immune response to tumors.
Collapse
Affiliation(s)
- Arthur Mortha
- IMMH, Institute of Medical Microbiology and Hygiene, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, 79104 Freiburg, Germany
- Research Training Group (GRK1104) of Organogenesis, 79104 Freiburg, Germany
| | - Andreas Diefenbach
- IMMH, Institute of Medical Microbiology and Hygiene, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, 79104 Freiburg, Germany
- Research Training Group (GRK1104) of Organogenesis, 79104 Freiburg, Germany
| |
Collapse
|
41
|
Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response. Nat Rev Immunol 2011; 11:685-92. [PMID: 21904387 DOI: 10.1038/nri3062] [Citation(s) in RCA: 428] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cells of the innate and adaptive immune systems are the progeny of a variety of haematopoietic precursors, the most primitive of which is the haematopoietic stem cell. Haematopoietic stem cells have been thought of generally as dormant cells that are only called upon to divide under extreme conditions, such as bone marrow ablation through radiation or chemotherapy. However, recent studies suggest that haematopoietic stem cells respond directly and immediately to infections and inflammatory signals. In this Review, we summarize the current literature regarding the effects of infection on haematopoietic stem cell function and how these effects may have a pivotal role in directing the immune response from the bone marrow.
Collapse
|
42
|
Abstract
Natural killer (NK) cells are generated in the bone marrow (BM) from lymphoid progenitors. Although several different maturation states of committed NK cells have been described, the initial stages of NK-cell differentiation from the common lymphoid progenitor are not well understood. Here we describe the identification of the earliest committed NK-cell precursors in the BM. These precursors, termed pre-pro NK cells, lack the expression of most canonical NK cell-specific surface markers but express the transcription factor inhibitor of DNA binding 2 and high levels of the IL-7 receptor. In vitro differentiation studies demonstrate that pre-pro NK cells are committed to NK-cell lineage and appear to be upstream of the previously identified NK-cell progenitor population.
Collapse
|
43
|
Elkabets M, Gifford AM, Scheel C, Nilsson B, Reinhardt F, Bray MA, Carpenter AE, Jirström K, Magnusson K, Ebert BL, Pontén F, Weinberg RA, McAllister SS. Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice. J Clin Invest 2011; 121:784-99. [PMID: 21266779 DOI: 10.1172/jci43757] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 12/01/2010] [Indexed: 12/26/2022] Open
Abstract
Systemic instigation is a process by which endocrine signals sent from certain tumors (instigators) stimulate BM cells (BMCs), which are mobilized into the circulation and subsequently foster the growth of otherwise indolent carcinoma cells (responders) residing at distant anatomical sites. The identity of the BMCs and their specific contribution or contributions to responder tumor growth have been elusive. Here, we have demonstrated that Sca1+ cKit- hematopoietic BMCs of mouse hosts bearing instigating tumors promote the growth of responding tumors that form with a myofibroblast-rich, desmoplastic stroma. Such stroma is almost always observed in malignant human adenocarcinomas and is an indicator of poor prognosis. We then identified granulin (GRN) as the most upregulated gene in instigating Sca1+ cKit- BMCs relative to counterpart control cells. The GRN+ BMCs that were recruited to the responding tumors induced resident tissue fibroblasts to express genes that promoted malignant tumor progression; indeed, treatment with recombinant GRN alone was sufficient to promote desmoplastic responding tumor growth. Further, analysis of tumor tissues from a cohort of breast cancer patients revealed that high GRN expression correlated with the most aggressive triple-negative, basal-like tumor subtype and reduced patient survival. Our data suggest that GRN and the unique hematopoietic BMCs that produce it might serve as novel therapeutic targets.
Collapse
Affiliation(s)
- Moshe Elkabets
- Department of Medicine, Hematology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Baldridge MT, King KY, Goodell MA. Inflammatory signals regulate hematopoietic stem cells. Trends Immunol 2011; 32:57-65. [PMID: 21233016 DOI: 10.1016/j.it.2010.12.003] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/02/2010] [Accepted: 12/09/2010] [Indexed: 02/06/2023]
Abstract
Hematopoietic stem cells (HSCs) are the progenitors of all blood and immune cells, yet their role in immunity is not well understood. Most studies have focused on the ability of committed lymphoid and myeloid precursors to replenish immune cells during infection. Recent studies, however, have indicated that HSCs also proliferate in response to systemic infection and replenish effector immune cells. Inflammatory signaling molecules including interferons, tumor necrosis factor-α and Toll-like receptors are essential to the HSC response. Observing the biology of HSCs through the lens of infection and inflammation has led to the discovery of an array of immune-mediators that serve crucial roles in HSC regulation and function.
Collapse
Affiliation(s)
- Megan T Baldridge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
45
|
Ichii M, Shimazu T, Welner RS, Garrett KP, Zhang Q, Esplin BL, Kincade PW. Functional diversity of stem and progenitor cells with B-lymphopoietic potential. Immunol Rev 2010; 237:10-21. [PMID: 20727026 DOI: 10.1111/j.1600-065x.2010.00933.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Technical advances have made it possible to separate hematopoietic tissues such as the bone marrow into ever smaller populations, complicating our understanding of immune system replenishment. Patterns of surface marker expression and transcription profiles as well as results obtained with reporter mice suggest that lymphopoietic cells are not closely synchronized, and there is considerable cell to cell variation. Loss of differentiation options is gradual, and ultimate fate can be established at different stages of lineage progression. For example, individual hematopoietic stem cells can be biased such that some are very poor sources of lymphocytes as contrasted to ones with balanced outputs. Still other hematopoietic stem cells are effective at generating B and T cells but are defective with respect to expansion and difficult to distinguish from early lymphoid progenitors. That diversity carries forward to later events, and similar appearing cells in the immune system can arise from alternate differentiation pathways. In fact, new categories of lymphoid progenitors are still being discovered. Heterogeneity provides adaptability as hematopoiesis can be dramatically altered during infections, influencing numbers and types of cells that are produced.
Collapse
Affiliation(s)
- Michiko Ichii
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Trowbridge JJ, Guezguez B, Moon RT, Bhatia M. Wnt3a activates dormant c-Kit(-) bone marrow-derived cells with short-term multilineage hematopoietic reconstitution capacity. Stem Cells 2010; 28:1379-89. [PMID: 20521329 DOI: 10.1002/stem.457] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quiescent cells lacking expression of mature lineage makers and the c-Kit receptor reside in adult bone marrow. Despite their phenotypic similarity to hematopoietic stem cells, these Lin(-)Sca-1(+)c-Kit(-) cells lack myeloid and erythroid potential and long-term hematopoietic repopulating capacity, whereas, recent studies have functionally demonstrated that the Lin(-)Sca-1(+)c-Kit(-) population contains early lymphoid-committed progenitors. Examining the role of Wnt signaling in regulation of this population, we found that c-Kit(-) cells express diverse Wnt receptors and proliferate upon Wnt pathway activation in vitro and in vivo. Stimulation with Wnt3a, but not Wnt5a or Wnt11, promoted c-Kit(-) cells to give rise to myeloid and erythroid progenitors with robust self-renewal capacity measured by clonal replating. In addition, Wnt3a-stimulated c-Kit(-) cells gave rise to all hematopoietic lineages (lymphoid, myeloid, and erythroid) upon transplant into the liver of newborn recipient mice. Our study reveals that Wnt3a activates unique cell fate decisions of dormant c-Kit(-) that promotes short-term multilineage reconstitution capacity in vivo, thereby revealing a unique role for Wnt activation in hematopoiesis. Overall, our results highlight the potential of utilizing signaling molecules known to have instructive roles in regeneration to discover cell subsets residing in adult organisms with unexploited regenerative capacity.
Collapse
Affiliation(s)
- Jennifer J Trowbridge
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
47
|
Abstract
MicroRNAs influence hematopoietic differentiation, but little is known about their effects on the stem cell state. Here, we report that the microRNA processing enzyme Dicer is essential for stem cell persistence in vivo and a specific microRNA, miR-125a, controls the size of the stem cell population by regulating hematopoietic stem/progenitor cell (HSPC) apoptosis. Conditional deletion of Dicer revealed an absolute dependence for the multipotent HSPC population in a cell-autonomous manner, with increased HSPC apoptosis in mutant animals. An evolutionarily conserved microRNA cluster containing miR-99b, let-7e, and miR-125a was preferentially expressed in long-term hematopoietic stem cells. MicroRNA miR-125a alone was capable of increasing the number of hematopoietic stem cells in vivo by more than 8-fold. This result was accomplished through a differentiation stage-specific reduction of apoptosis in immature hematopoietic progenitors, possibly through targeting multiple proapoptotic genes. Bak1 was directly down-regulated by miR-125a and expression of a 3'UTR-less Bak1 blocked miR-125a-induced hematopoietic expansion in vivo. These data demonstrate cell-state-specific regulation by microRNA and identify a unique microRNA functioning to regulate the stem cell pool size.
Collapse
|
48
|
Fossati V, Kumar R, Snoeck HW. Progenitor cell origin plays a role in fate choices of mature B cells. THE JOURNAL OF IMMUNOLOGY 2009; 184:1251-60. [PMID: 20038638 DOI: 10.4049/jimmunol.0901922] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cells, the Ab-producing cells of the immune system, develop from hematopoietic stem cells (HSCs) through well-defined stages during which Ig genes are rearranged to generate a clonal BCR. Signaling through the BCR plays a role in the subsequent cell fate decisions leading to the generation of three distinct types of B cells: B1, marginal zone, and follicular B cells. Common lymphoid progenitors (CLPs) are descended from HSCs, and although recent observations suggest that CLPs may not be physiological T cell precursors, it is generally accepted that CLPs are obligate progenitors for B cells. In addition, a CLP-like progenitor of unknown significance that lacks expression of c-kit (kit(-)CLP) was recently identified in the mouse model. In this study, we show that CLPs, kit(-)CLPs and a population within the lin(-)Sca1(+)kit(+)flt3(-) HSC compartment generate mature B cell types in different proportions: CLPs and kit(-)CLPs show a stronger marginal zone/follicular ratio than lin(-)Sca1(+)kit(+)flt3(-) cells, whereas kit(-)CLPs show a stronger B1 bias than any other progenitor population. Furthermore, expression of Sca1 on B cells depends on their progenitor origin as B cells derived from CLPs and kit(-)CLPs express more Sca1 than those derived from lin(-)Sca1(+)kit(+)flt3(-) cells. These observations indicate a role for progenitor origin in B cell fate choices and suggest the existence of CLP-independent B cell development.
Collapse
Affiliation(s)
- Valentina Fossati
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
49
|
Ma Y, Zhao S, Zhu J, Bettano KA, Qu X, Marshall CG, Young JR, Kohl NE, Scott ML, Zhang W, Wang Y. Real-time bioluminescence imaging of polycythemia vera development in mice. Biochim Biophys Acta Mol Basis Dis 2009; 1792:1073-9. [PMID: 19715759 DOI: 10.1016/j.bbadis.2009.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 07/13/2009] [Accepted: 08/20/2009] [Indexed: 10/20/2022]
Abstract
Polycythemia vera (PV) is a myeloproliferative disorder involving hematopoietic stem cells. A recurrent somatic missense mutation in JAK2 (JAK2V617F) is thought to play a causal role in PV. Therefore, targeting Jak2 will likely provide a molecular mechanism-based therapy for PV. To facilitate the development of such new and specific therapeutics, a suitable and well-characterized preclinical animal model is essential. Although several mouse models of PV have been reported, the spatiotemporal kinetics of PV formation and progression has not been studied. To address this, we created a bone marrow transplant mouse model that co-expresses mutant Jak2 and luciferase 2 (Luc2) genes. Bioluminescent imaging (BLI) was used to visualize disease cells and analyze the kinetics of PV development in vivo. To better understand the molecular mechanism of PV, we generated mice carrying a kinase inactive mutant Jak2 (Jak2K882E), demonstrating that the PV disease was dependent on constitutive activation of the Jak2 kinase activity. We further showed that the Jak2V617F mutation caused increased stem cell renewal activity and impaired cell differentiation, which was at least in part due to deregulated transcriptional programming. The Jak2V617F-Luc2 PV mice will be a useful preclinical model to characterize novel JAK2 inhibitors for the treatment of PV.
Collapse
Affiliation(s)
- Yanhong Ma
- Department of Oncology, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chi AW, Bell JJ, Zlotoff DA, Bhandoola A. Untangling the T branch of the hematopoiesis tree. Curr Opin Immunol 2009; 21:121-6. [PMID: 19269149 DOI: 10.1016/j.coi.2009.01.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 01/26/2009] [Indexed: 12/17/2022]
Abstract
T cells develop in the thymus. Previous work suggested an early separation of lymphoid from myeloerythroid lineages during hematopoiesis and hypothesized the thymus was settled exclusively by lymphoid-restricted hematopoietic progenitors. Recent data have instead established the existence of lymphoid-myeloid progenitors, which possess lymphoid and myeloid lineage potentials but lack erythroid potential. Myeloid and lymphoid potentials are present at the clonal level in early thymic progenitors, confirming that progenitors settling the thymus include lymphoid-myeloid progenitors. These results revise our view of the T lineage branch of hematopoiesis and focus attention on the generation, circulation, and homing of lymphoid-myeloid progenitors to the thymus.
Collapse
Affiliation(s)
- Anthony W Chi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|