1
|
Kowluru A. Regulatory roles of CARD9-BCL10-Rac1 (CBR) signalome in islet β-cell function in health and metabolic stress: Is there room for MALT1? Biochem Pharmacol 2023; 218:115889. [PMID: 37991197 PMCID: PMC10872519 DOI: 10.1016/j.bcp.2023.115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
It is widely accepted that pancreatic islet β-cell failure and the onset of type 2 diabetes (T2DM) constitute an intricate interplay between the genetic expression of the disease and a host of intracellular events including increased metabolic (oxidative, endoplasmic reticulum) stress under the duress of glucolipotoxicity. Emerging evidence implicates unique roles for Caspase Recruitment Domain containing protein 9 (CARD9) in the onset of metabolic diseases, including obesity and insulin resistance. Mechanistically, CARD9 has been implicated in the regulation of p38MAPK and NFkB signaling pathways culminating in cellular dysfunction. Several regulatory factors, including B-cell lymphoma/leukemia 10 (BCL10) have been identified as modulators of CARD9 function in multiple cell types. Despite this evidence on regulatory roles of CARD9-BCL10 signalome in the onset of various pathological states, putative roles of this signaling module in islet β-cell dysfunction in metabolic stress remain less understood. This brief review is aimed at highlighting roles for CARD9 in islet β-cell function under acute (physiological insulin secretion) and long-term (cell dysfunction) exposure to glucose. Emerging roles of other signaling proteins, such as Rac1, BCL10 and MALT1 as contributors to CARD9 signaling in the islet β-cells are also reviewed. Potential avenues for future research toward the development of novel therapeutics for the prevention CARD9-BCL10-Rac1 (CBR) signalome-induced β-cell defects under metabolic stress are discussed.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center, and Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
2
|
Haider MJA, Shave CD, Onyishi CU, Jagielski T, Lara-Reyna S, Frickel EM, May RC. Species- and strain-specific differences in the phagocytosis of Prototheca: insights from live-cell imaging. Infect Immun 2023; 91:e0006623. [PMID: 37594276 PMCID: PMC10501220 DOI: 10.1128/iai.00066-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/07/2023] [Indexed: 08/19/2023] Open
Abstract
The genus Prototheca is an extremely unusual group of achlorophyllic, obligately heterotrophic algae. Six species have been identified as pathogens of vertebrates, including cattle and humans. In cattle, P. bovis is the main infectious pathogen and is associated with bovine mastitis. In contrast, human infections typically involve P. wickerhamii and are associated with a spectrum of varying clinical presentations. Prototheca spp. enter the host from the environment and are therefore likely to be initially recognized by cells of the innate immune system. However, little is known about the nature of the interaction between Prototheca spp. and host phagocytes. In the present study, we adopt a live-cell imaging approach to investigate these interactions over time. Using environmental and clinical strains, we show that P. bovis cells are readily internalized and processed by macrophages, whereas these immune cells struggle to internalize P. wickerhamii. Serum opsonization of P. wickerhamii only marginally improves phagocytosis, suggesting that this species (but not P. bovis) may have evolved mechanisms to evade phagocytosis. Furthermore, we show that inhibition of the kinases Syk or PI3K, which are both critical for innate immune signaling, drastically reduces the uptake of P. bovis. Finally, we show that genetic ablation of MyD88, a signaling adaptor critical for Toll-like receptor signaling, has little impact on uptake but significantly prolongs phagosome maturation once P. bovis is internalized. Together, our data suggest that these two pathogenic Prototheca spp. have very different host-pathogen interactions which have potential therapeutic implications for the treatment of human and animal disease.
Collapse
Affiliation(s)
- Mohammed J. A. Haider
- Institute of Microbiology and Infection, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher D. Shave
- Institute of Microbiology and Infection, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chinaemerem U. Onyishi
- Institute of Microbiology and Infection, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tomasz Jagielski
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa, Warszawa, Poland
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Eva-Maria Frickel
- Institute of Microbiology and Infection, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Robin C. May
- Institute of Microbiology and Infection, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Wu T, Cai Z, Niu F, Qian B, Sun P, Yang N, Pang J, Mei H, Chang X, Chen F, Zhu Y, Li Y, Wu FG, Zhang Y, Lei T, Han X. Lentinan confers protection against type 1 diabetes by inducing regulatory T cell in spontaneous non-obese diabetic mice. Nutr Diabetes 2023; 13:4. [PMID: 37031163 PMCID: PMC10082833 DOI: 10.1038/s41387-023-00233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/10/2023] [Accepted: 03/16/2023] [Indexed: 04/10/2023] Open
Abstract
BACKGROUND Lentinan (LNT) is a complex fungal component that possesses effective antitumor and immunostimulating properties. However, there is a paucity of studies regarding the effects and mechanisms of LNT on type 1 diabetes. OBJECTIVE In the current study, we investigated whether an intraperitoneal injection of LNT can diminish the risk of developing type 1 diabetes (T1D) in non-obese diabetic (NOD) mice and further examined possible mechanisms of LNT's effects. METHODS Pre-diabetic female NOD mice 8 weeks of age, NOD mice with 140-160 mg/dL, 200-230 mg/dL or 350-450 mg/dL blood glucose levels were randomly divided into two groups and intraperitoneally injected with 5 mg/kg LNT or PBS every other day. Then, blood sugar levels, pancreas slices, spleen, PnLN and pancreas cells from treatment mice were examined. RESULTS Our results demonstrated that low-dosage injections (5 mg/kg) of LNT significantly suppressed immunopathology in mice with autoimmune diabetes but increased the Foxp3+ regulatory T cells (Treg cells) proportion in mice. LNT treatment induced the production of Tregs in the spleen and PnLN cells of NOD mice in vitro. Furthermore, the adoptive transfer of Treg cells extracted from LNT-treated NOD mice confirmed that LNT induced Treg function in vivo and revealed an enhanced suppressive capacity as compared to the Tregs isolated from the control group. CONCLUSION LNT was capable of stimulating the production of Treg cells from naive CD4 + T cells, which implies that LNT exhibits therapeutic values as a tolerogenic adjuvant and may be used to reverse hyperglycaemia in the early and late stages of T1D.
Collapse
Affiliation(s)
- Tijun Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Zhi Cai
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fandi Niu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Bin Qian
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 2111198, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Nan Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Jing Pang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Hongliang Mei
- Department of Pharmacy, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yating Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yaqin Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
4
|
Mora VP, Loaiza RA, Soto JA, Bohmwald K, Kalergis AM. Involvement of trained immunity during autoimmune responses. J Autoimmun 2022:102956. [DOI: 10.1016/j.jaut.2022.102956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
|
5
|
Li B, Pan LL, Pan X, Dong X, Ren Z, Zhang H, Chen W, de Vos P, Sun J. Opportunities and challenges of polyphenols and polysaccharides for type 1 diabetes intervention. Crit Rev Food Sci Nutr 2022; 64:2811-2823. [PMID: 36168918 DOI: 10.1080/10408398.2022.2126962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder characterized by the destruction of insulin-producing pancreatic β cell. It contributes to high mortality, frequent diabetic complications, poor quality of life in patients and also puts a significant economic burden on health care systems. Therefore, the development of new therapeutic strategies is urgently needed. Recently, certain dietary compounds with potential applications in food industry, particularly polyphenols and polysaccharides, have gained increasing attention with their prominent anti-diabetic effects on T1D by modulating β cell function, the gut microbiota and/or the immune system. In this review, we critically discuss the recent findings of several dietary polyphenols and polysaccharides with the potential to protect against T1D and the underlying anti-diabetic mechanisms. More importantly, we highlight the current trends, major issues, and future directions of industrial production of polyphenols- and polysaccharides-based functional foods for preventing or delaying T1D.
Collapse
Affiliation(s)
- Binbin Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li-Long Pan
- School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Zhengnan Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Dietary Supplementation with Eucommia ulmoides Leaf Extract Improved the Intestinal Antioxidant Capacity, Immune Response, and Disease Resistance against Streptococcus agalactiae in Genetically Improved Farmed Tilapia (GIFT; Oreochromis niloticus). Antioxidants (Basel) 2022; 11:antiox11091800. [PMID: 36139874 PMCID: PMC9495437 DOI: 10.3390/antiox11091800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
A 7-week rearing trial was designed to investigate the effects of Eucommia ulmoides leaf extract (ELE) on growth performance, body composition, antioxidant capacity, immune response, and disease susceptibility of diet-fed GIFT. The results showed that dietary ELE did not affect growth performance or whole-body composition (p > 0.05). Compared with the control group, plasma ALB contents increased in the 0.06% dietary ELE group (p < 0.05), and plasma ALT and AST activities decreased in the 0.08% dietary ELE group (p < 0.05). In terms of antioxidants, compared with GIFT fed the control diet, 0.06% dietary ELE upregulated the mRNA expression levels of Nrf2 pathway-related antioxidant genes, including CAT and SOD (p < 0.05), and 0.06% and 0.08% dietary ELE upregulated the mRNA levels of Hsp70 (p < 0.05). In terms of immunity, 0.06% dietary ELE suppressed intestinal TLR2, MyD88, and NF-κB mRNA levels (p < 0.05). Moreover, the mRNA levels of the anti-inflammatory cytokines TGF-β and IL-10 were upregulated by supplementation with 0.04% and 0.06% dietary ELE (p < 0.05). In terms of apoptosis, 0.06% and 0.08% ELE significantly downregulated the expression levels of FADD mRNA (p < 0.05). Finally, the challenge experiment with S. agalactiae showed that 0.06% dietary ELE could inhibit bacterial infection, and significantly improve the survival rate of GIFT (p < 0.05). This study demonstrated that the supplementation of 0.04−0.06% ELE in diet could promote intestinal antioxidant capacity, enhance the immune response and ultimately improve the disease resistance of GIFT against Streptococcus agalactiae.
Collapse
|
7
|
Haider MJA, Albaqsumi Z, Al-Mulla F, Ahmad R, Al-Rashed F. SOCS3 Regulates Dectin-2-Induced Inflammation in PBMCs of Diabetic Patients. Cells 2022; 11:cells11172670. [PMID: 36078084 PMCID: PMC9454960 DOI: 10.3390/cells11172670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022] Open
Abstract
The C-type lectin receptors (CLRs) Dectin-1 and Dectin-2 are involved in several innate immune responses and are expressed mainly in dendritic cells, monocytes, and macrophages. Dectin-1 activation exacerbates obesity, inflammation, and insulin resistance/type 2 diabetes (T2D). However, the role of Dectin-2 is not clear in T2D. This study aims to evaluate the expression and function of Dectin-2 in peripheral blood mononuclear cells (PBMCs) isolated from diabetic patients and non-diabetic controls. Flow-cytometry and qRT-PCR were performed to evaluate the expression of Dectin-2 in different leukocyte subpopulations isolated from T2D patients (n = 10) and matched non-diabetic controls (n = 11). The functional activity of Dectin-2 was identified in PBMCs. CRP, IL-1β, and TNF-α concentrations were determined by ELISA. siRNA transfection and Western blotting were performed to assess p-Syk and p-NF-kB expression. siRNA transfection was performed to knock down the gene of interest. Our results show that Dectin-2 expression was the highest in monocytes compared with other leukocyte subpopulations. The expression of Dectin-2 was significantly increased in the monocytes of T2D patients compared with non-diabetic controls. Dectin-2 expression positively correlated with markers of glucose homeostasis, including HOMA-IR and HbA1c. The expression of inflammatory markers was elevated in the PBMCs of T2D patients. Interestingly, SOCS3, a negative regulator of inflammation, was expressed significantly lowlier in the PBMCs of T2D patients. Moreover, SOCS3 expression was negatively correlated with Dectin-2 expression level. The further analysis of inflammatory signaling pathways showed a persistent activation of the Dectin-2-Syk-NFkB pathway that was instigated by the diminished expression of SOCS3. Dectin-2 activation failed to induce SOCS3 expression and suppress subsequent inflammatory responses in the PBMCs of diabetic patients. siRNA-mediated knockdown of SOCS3 in PBMCs displayed a similar inflammatory phenotype to diabetic PBMCs when exposed to Dectin-2 ligands. Altogether, our findings suggest that elevated Dectin-2 and its relationship with SOCS3 could be involved in the abnormal immune response observed in T2D patients.
Collapse
Affiliation(s)
- Mohammed J. A. Haider
- Department of Biological Sciences, Faculty of Science, Kuwait University, P.O. Box 5969, Kuwait City 13060, Kuwait
| | - Zahraa Albaqsumi
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Kuwait City 15462, Kuwait
| | - Fahd Al-Mulla
- Genetics & Bioinformatics, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Kuwait City 15462, Kuwait
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Kuwait City 15462, Kuwait
- Correspondence: (R.A.); (F.A.-R.); Tel.: +965-2224-2999 (ext. 3584) (R.A.); +965-2224-2999 (ext. 4335) (F.A.-R.)
| | - Fatema Al-Rashed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Kuwait City 15462, Kuwait
- Correspondence: (R.A.); (F.A.-R.); Tel.: +965-2224-2999 (ext. 3584) (R.A.); +965-2224-2999 (ext. 4335) (F.A.-R.)
| |
Collapse
|
8
|
Helke KL, Gudi RR, Vasu C, Delaney JR. Combination of Autophagy Selective Therapeutics With Doxil: An Assessment of Pathological Toxicity. FRONTIERS IN TOXICOLOGY 2022; 4:937150. [PMID: 35846434 PMCID: PMC9276957 DOI: 10.3389/ftox.2022.937150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Combination therapy of targeted drugs in cancer treatment is a field in constant flux, with research balancing side effects with efficacy. Efficacy from combination therapy is improved either through synthetic lethality or through prevention of recurrent clones. Previous research has shown (hydroxy-)chloroquine is insufficient to disrupt autophagy in tumors. Hence, either combinations or novel autophagy agents are desired. In vivo studies of ovarian cancer have revealed that chloroquine can be combined with up to four other autophagy drugs to suppress ovarian cancer growth. While cancer efficacy is now established for the autophagy drug combination, it is unclear what toxicities may require monitoring in human trials. Additive toxicity with chemotherapy is also unknown.Methods: To address toxicity in more depth than previous weight-monitoring studies, biochemical and histopathology studies were performed. Mouse groups were treated with autophagy drugs for 2 weeks, with or without the chemotherapy Doxil. After the last dose, mice were processed for blood biochemistry, white blood cell markers, and histopathology.Results: Data from a comprehensive blood biochemistry panel, flow cytometric measurements of blood cell markers, and histopathology are herein reported. While Doxil presented clear bone marrow and immunologic toxicity, autophagy drugs were overall less toxic and more variable in their presentation of potential toxicities. Only minor additive effects of autophagy drugs with Doxil were observed.Conclusion: Combinations of autophagy drugs may be considered for therapy in human oncology trials, with possible side effects to monitor informed by these murine pre-clinical data.
Collapse
Affiliation(s)
- Kristi L. Helke
- Departments of Comparative Medicine, and Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Radhika R. Gudi
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Joe R. Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
- *Correspondence: Joe R. Delaney,
| |
Collapse
|
9
|
Caseiro C, Dias JNR, de Andrade Fontes CMG, Bule P. From Cancer Therapy to Winemaking: The Molecular Structure and Applications of β-Glucans and β-1, 3-Glucanases. Int J Mol Sci 2022; 23:3156. [PMID: 35328577 PMCID: PMC8949617 DOI: 10.3390/ijms23063156] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
β-glucans are a diverse group of polysaccharides composed of β-1,3 or β-(1,3-1,4) linked glucose monomers. They are mainly synthesized by fungi, plants, seaweed and bacteria, where they carry out structural, protective and energy storage roles. Because of their unique physicochemical properties, they have important applications in several industrial, biomedical and biotechnological processes. β-glucans are also major bioactive molecules with marked immunomodulatory and metabolic properties. As such, they have been the focus of many studies attesting to their ability to, among other roles, fight cancer, reduce the risk of cardiovascular diseases and control diabetes. The physicochemical and functional profiles of β-glucans are deeply influenced by their molecular structure. This structure governs β-glucan interaction with multiple β-glucan binding proteins, triggering myriad biological responses. It is then imperative to understand the structural properties of β-glucans to fully reveal their biological roles and potential applications. The deconstruction of β-glucans is a result of β-glucanase activity. In addition to being invaluable tools for the study of β-glucans, these enzymes have applications in numerous biotechnological and industrial processes, both alone and in conjunction with their natural substrates. Here, we review potential applications for β-glucans and β-glucanases, and explore how their functionalities are dictated by their structure.
Collapse
Affiliation(s)
- Catarina Caseiro
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Joana Nunes Ribeiro Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | | | - Pedro Bule
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
10
|
Gaudreau MC, Gudi RR, Li G, Johnson BM, Vasu C. Gastrin producing syngeneic mesenchymal stem cells protect non-obese diabetic mice from type 1 diabetes. Autoimmunity 2022; 55:95-108. [PMID: 34882054 PMCID: PMC9875811 DOI: 10.1080/08916934.2021.2012165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Progressive destruction of pancreatic islet β-cells by immune cells is a primary feature of type 1 diabetes (T1D) and therapies that can restore the functional β-cell mass are needed to alleviate disease progression. Here, we report the use of mesenchymal stromal/stem cells (MSCs) for the production and delivery of Gastrin, a peptide hormone that is produced by intestinal cells and foetal islets and can increase β-Cell mass, to promote protection from T1D. A single injection of syngeneic MSCs that were engineered to express Gastrin (Gastrin-MSCs) caused a significant delay in hyperglycaemia in non-obese diabetic (NOD) mice compared to engineered control-MSCs. Similar treatment of early-hyperglycaemic mice caused the restoration of euglycemia for a considerable duration, and these therapeutic effects were associated with the protection of, and/or higher frequencies of, insulin-producing islets and less severe insulitis. While the overall immune cell phenotype was not affected profoundly upon treatment using Gastrin-MSCs or upon in vitro culture, pancreatic lymph node cells from Gastrin-MSC treated mice, upon ex vivo challenge with self-antigen, showed a Th2 and Th17 bias, and diminished the diabetogenic property in NOD-Rag1 deficient mice suggesting a disease protective immune modulation under Gastrin-MSC treatment associated protection from hyperglycaemia. Overall, this study shows the potential of production and delivery of Gastrin in vivo, by MSCs, in protecting insulin-producing β-cells and ameliorating the disease progression in T1D.
Collapse
Affiliation(s)
- Marie-Claude Gaudreau
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Radhika R. Gudi
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Gongbo Li
- Department of Surgery, University of Illinois at Chicago, Chicago, IL-60612
| | - Benjamin M. Johnson
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425,Department of Surgery, University of Illinois at Chicago, Chicago, IL-60612,Address Correspondence: Chenthamarakshan Vasu, Medical University of South Carolina, Microbiology and Immunology, 173 Ashley Avenue, MSC 509, BSB214B, Charleston, SC-29425, Phone: 843-792-1032, Fax: 843-792-9588,
| |
Collapse
|
11
|
Aghamiri SH, Komlakh K, Ghaffari M. The crosstalk among TLR2, TLR4 and pathogenic pathways; a treasure trove for treatment of diabetic neuropathy. Inflammopharmacology 2022; 30:51-60. [PMID: 35020096 DOI: 10.1007/s10787-021-00919-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/19/2021] [Indexed: 11/25/2022]
Abstract
Diabetes is correlated with organ failures as a consequence of microvascular diabetic complications, including neuropathy, nephropathy, and retinopathy. These difficulties come with serious clinical manifestations and high medical costs. Diabetic neuropathy (DN) is one of the most prevalent diabetes complications, affecting at least 50% of diabetic patients with long disease duration. DN has serious effects on patients' life since it interferes with their daily physical activities and causes psychological comorbidities. There are some potential risk factors for the development of neuropathic injuries. It has been shown that inflammatory mechanisms play a pivotal role in the progression of DN. Among inflammatory players, TLR2 and TLR4 have gained immense importance because of their ability in recognizing distinct molecular patterns of invading pathogens and also damage-associated molecular patterns (DAMPs) providing inflammatory context for the progression of a wide array of disorders. We, therefore, sought to explore the possible role of TLR2 and TLR4 in DN pathogenesis and if whether manipulating TLRs is likely to be successful in fighting off DN.
Collapse
Affiliation(s)
- Seyed Hossein Aghamiri
- Department of Neurology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khalil Komlakh
- Department of Neurosurgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehran Ghaffari
- Department of Neurology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Innate immune receptors in type 1 diabetes: the relationship to cell death-associated inflammation. Biochem Soc Trans 2021; 48:1213-1225. [PMID: 32510139 DOI: 10.1042/bst20200131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022]
Abstract
The importance of innate immunity in host defense and inflammatory responses has been clearly demonstrated after the discovery of innate immune receptors such as Toll-like receptors (TLRs) or Nucleotide-binding oligomerization domain-containing protein (Nod)-like receptors (NLRs). Innate immunity also plays a critical role in diverse pathological conditions including autoimmune diseases such as type 1 diabetes (T1D). In particular, the role of a variety of innate immune receptors in T1D has been demonstrated using mice with targeted disruption of such innate immune receptors. Here, we discuss recent findings showing the role of innate immunity in T1D that were obtained mostly from studies of genetic mouse models of innate immune receptors. In addition, the role of innate immune receptors involved in the pathogenesis of T1D in sensing death-associated molecular patterns (DAMPs) released from dead cells or pathogen-associated molecular patterns (PAMPs) will also be covered. Elucidation of the role of innate immune receptors in T1D and the nature of DAMPs sensed by such receptors may lead to the development of new therapeutic modalities against T1D.
Collapse
|
13
|
Sofi MH, Johnson BM, Gudi RR, Jolly A, Gaudreau MC, Vasu C. Polysaccharide A-Dependent Opposing Effects of Mucosal and Systemic Exposures to Human Gut Commensal Bacteroides fragilis in Type 1 Diabetes. Diabetes 2019; 68:1975-1989. [PMID: 31311801 PMCID: PMC6754247 DOI: 10.2337/db19-0211] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022]
Abstract
Bacteroides fragilis (BF) is an integral component of the human colonic commensal microbiota. BF is also the most commonly isolated organism from clinical cases of intra-abdominal abscesses, suggesting its potential to induce proinflammatory responses upon accessing the systemic compartment. Hence, we examined the impact of mucosal and systemic exposures to BF on type 1 diabetes (T1D) incidence in NOD mice. The impact of intestinal exposure to BF under a chemically induced enhanced gut permeability condition, which permits microbial translocation, in T1D was also examined. While oral administration of heat-killed (HK) BF to prediabetic mice caused enhanced immune regulation and suppression of autoimmunity, resulting in delayed hyperglycemia, mice that received HK BF by intravenous injection showed rapid disease progression. Importantly, polysaccharide A-deficient BF failed to produce these opposing effects upon oral and systemic deliveries. Furthermore, BF-induced modulation of disease progression was observed in wild-type, but not TLR2-deficient, NOD mice. Interestingly, oral administration of BF under enhanced gut permeability conditions resulted in accelerated disease progression and rapid onset of hyperglycemia in NOD mice. Overall, these observations suggest that BF-like gut commensals can cause proinflammatory responses upon gaining access to the systemic compartment and contribute to T1D in at-risk subjects.
Collapse
Affiliation(s)
- M Hanief Sofi
- Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC
| | - Benjamin M Johnson
- Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC
| | - Radhika R Gudi
- Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC
| | - Amy Jolly
- Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC
| | - Marie-Claude Gaudreau
- Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC
| | - Chenthamarakshan Vasu
- Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC
- Surgery, College of Medicine, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
14
|
Abstract
The C-type lectins are a superfamily of proteins that recognize a broad repertoire of ligands and that regulate a diverse range of physiological functions. Most research attention has focused on the ability of C-type lectins to function in innate and adaptive antimicrobial immune responses, but these proteins are increasingly being recognized to have a major role in autoimmune diseases and to contribute to many other aspects of multicellular existence. Defects in these molecules lead to developmental and physiological abnormalities, as well as altered susceptibility to infectious and non-infectious diseases. In this Review, we present an overview of the roles of C-type lectins in immunity and homeostasis, with an emphasis on the most exciting recent discoveries.
Collapse
|
15
|
Alagón Fernández Del Campo P, De Orta Pando A, Straface JI, López Vega JR, Toledo Plata D, Niezen Lugo SF, Alvarez Hernández D, Barrientos Fortes T, Gutiérrez-Kobeh L, Solano-Gálvez SG, Vázquez-López R. The Use of Probiotic Therapy to Modulate the Gut Microbiota and Dendritic Cell Responses in Inflammatory Bowel Diseases. ACTA ACUST UNITED AC 2019; 7:medsci7020033. [PMID: 30813381 PMCID: PMC6410300 DOI: 10.3390/medsci7020033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/28/2019] [Accepted: 02/13/2019] [Indexed: 12/23/2022]
Abstract
Recent investigations have shown that different conditions such as diet, the overuse of antibiotics or the colonization of pathogenic microorganisms can alter the population status of the intestinal microbiota. This modification can produce a change from homeostasis to a condition known as imbalance or dysbiosis; however, the role-played by dysbiosis and the development of inflammatory bowel diseases (IBD) has been poorly understood. It was actually not until a few years ago that studies started to develop regarding the role that dendritic cells (DC) of intestinal mucosa play in the sensing of the gut microbiota population. The latest studies have focused on describing the DC modulation, specifically on tolerance response involving T regulatory cells or on the inflammatory response involving reactive oxygen species and tissue damage. Furthermore, the latest studies have also focused on the protective and restorative effect of the population of the gut microbiota given by probiotic therapy, targeting IBD and other intestinal pathologies. In the present work, the authors propose and summarize a recently studied complex axis of interaction between the population of the gut microbiota, the sensing of the DC and its modulation towards tolerance and inflammation, the development of IBD and the protective and restorative effect of probiotics on other intestinal pathologies.
Collapse
Affiliation(s)
- Pablo Alagón Fernández Del Campo
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Alejandro De Orta Pando
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Juan Ignacio Straface
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - José Ricardo López Vega
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Diego Toledo Plata
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Sebastian Felipe Niezen Lugo
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Diego Alvarez Hernández
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Tomás Barrientos Fortes
- Director Facultad de Ciencias de la Salud, Universidad Anáhuac México, 52786 Cuidad de México, Mexico.
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología "Ignacio Chávez," Mexico City 14080, Mexico.
| | - Sandra Georgina Solano-Gálvez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Rosalino Vázquez-López
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| |
Collapse
|
16
|
Bu X, Lian X, Wang Y, Luo C, Tao S, Liao Y, Yang J, Chen A, Yang Y. Dietary yeast culture modulates immune response related to TLR2-MyD88-NF-kβ signaling pathway, antioxidant capability and disease resistance against Aeromonas hydrophila for Ussuri catfish (Pseudobagrus ussuriensis). FISH & SHELLFISH IMMUNOLOGY 2019; 84:711-718. [PMID: 30359752 DOI: 10.1016/j.fsi.2018.10.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/09/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present study was to investigate effects of dietary yeast culture on immune response related to TLR2-MyD88-NF-kβ signaling pathway, antioxidant capability and disease resistance against Aeromonas hydrophila for Ussuri catfish (Pseudobagrus ussuriensis). A total of 240 Ussuri catfish (mean weight of 7.39 ± 0.32 g) were randomly distributed into four groups that fed diets containing 0 (Y0), 10 (Y1), 20 (Y2) and 30 (Y3) g kg-1 yeast culture for 8 weeks. The results indicated that dietary 10 g kg-1 yeast culture supplementation significantly down-regulated mRNA levels of TLR2, MyD88, NF-kβ p65, IL-1β and IL-8 in the liver tissue compared with the control group (P < 0.05). Simultaneously, serum lysozyme (LZM) activity, respiratory burst activity (RBA) of phagocytes, plasma alkaline phosphatase (AKP) activity and immunoglobulin M (IgM) content were significantly improved in fish fed Y1 diet (P < 0.05). Fish fed Y1 diet had significantly higher serum alternative complement pathway activity (ACH50) and plasma complement 3 (C3) content than the Y3 group (P < 0.05). However, no significant differences were observed in plasma acid phosphatase (ACP) activity and complement 4 (C4) content among the groups (P > 0.05). Fish cumulative mortality rate (CMR) in the Y1 and Y2 groups were significantly lower than that in Y0 and Y3 groups (P < 0.05), and the lowest CMR was observed in the Y1 group after challenge by A. hydrophila. The highest hepatic superoxide dismutase and glutathione peroxidase activities, total antioxidant capacity and the lowest malondialdehyde content were found in Y1 group, but no significant difference was found in hepatic catalase activity among the groups (P > 0.05). These results demonstrate that dietary 10 g kg-1 yeast culture could effectively improve the immunity, antioxidant capability and disease resistance against A. hydrophila for Ussuri catfish and could down-regulate the mRNA expression levels of pro-inflammatory cytokines modulated by TLR2-MyD88-NF-kβ signaling pathway.
Collapse
Affiliation(s)
- Xianyong Bu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xuqiu Lian
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yi Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chengzeng Luo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shengqiang Tao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yilu Liao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiaming Yang
- Harbin Jiaming Fisheries Technology Co., Ltd., Harbin, 150030, PR China
| | - Aijing Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Yuhong Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
17
|
Epigenetic regulation of Toll-like receptors and its roles in type 1 diabetes. J Mol Med (Berl) 2018; 96:741-751. [PMID: 30003291 DOI: 10.1007/s00109-018-1660-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022]
Abstract
The immune system can be divided into adaptive immunity and innate immunity. Adaptive immunity has been confirmed to be involved in the pathogenesis of autoimmune diseases, including type 1 diabetes (T1D). However, the role of innate immunity in T1D has only been studied recently. T1D is caused by selective autoimmune destruction of pancreatic islet β cells. A series of studies have suggested that TLRs play a critical role in the pathogenesis of T1D. Aberrant TLR signaling will change immune homeostasis and result in immunopathological conditions such as endotoxin shock and autoimmune responses. Thus, TLR signaling pathways are supposed to be strictly and finely regulated. Epigenetics has recently been proven to be a new regulator of TLR expression. DNA methylation, histone modification, and microRNAs are the three main epigenetic modifications. This review will mainly focus on these epigenetic mechanisms of regulation of TLRs and the role of TLRs in the pathogenesis of T1D.
Collapse
|
18
|
Velasquez LN, Stüve P, Gentilini MV, Swallow M, Bartel J, Lycke NY, Barkan D, Martina M, Lujan HD, Kalay H, van Kooyk Y, Sparwasser TD, Berod L. Targeting Mycobacterium tuberculosis Antigens to Dendritic Cells via the DC-Specific-ICAM3-Grabbing-Nonintegrin Receptor Induces Strong T-Helper 1 Immune Responses. Front Immunol 2018; 9:471. [PMID: 29662482 PMCID: PMC5890140 DOI: 10.3389/fimmu.2018.00471] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis remains a major global health problem and efforts to develop a more effective vaccine have been unsuccessful so far. Targeting antigens (Ags) to dendritic cells (DCs) in vivo has emerged as a new promising vaccine strategy. In this approach, Ags are delivered directly to DCs via antibodies that bind to endocytic cell-surface receptors. Here, we explored DC-specific-ICAM3-grabbing-nonintegrin (DC-SIGN) targeting as a potential vaccine against tuberculosis. For this, we made use of the hSIGN mouse model that expresses human DC-SIGN under the control of the murine CD11c promoter. We show that in vitro and in vivo delivery of anti-DC-SIGN antibodies conjugated to Ag85B and peptide 25 of Ag85B in combination with anti-CD40, the fungal cell wall component zymosan, and the cholera toxin-derived fusion protein CTA1-DD induces strong Ag-specific CD4+ T-cell responses. Improved anti-mycobacterial immunity was accompanied by increased frequencies of Ag-specific IFN-γ+ IL-2+ TNF-α+ polyfunctional CD4+ T cells in vaccinated mice compared with controls. Taken together, in this study we provide the proof of concept that the human DC-SIGN receptor can be efficiently exploited for vaccine purposes to promote immunity against mycobacterial infections.
Collapse
Affiliation(s)
- Lis Noelia Velasquez
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Philipp Stüve
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Maria Virginia Gentilini
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Maxine Swallow
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Judith Bartel
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Nils Yngve Lycke
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Barkan
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Mariana Martina
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Córdoba, Córdoba, Argentina
| | - Hugo D Lujan
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Córdoba, Córdoba, Argentina
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Tim D Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| |
Collapse
|
19
|
The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nat Rev Immunol 2017; 18:105-120. [PMID: 29034905 DOI: 10.1038/nri.2017.111] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of autoimmune diseases has been steadily rising. Concomitantly, the incidence of most infectious diseases has declined. This observation gave rise to the hygiene hypothesis, which postulates that a reduction in the frequency of infections contributes directly to the increase in the frequency of autoimmune and allergic diseases. This hypothesis is supported by robust epidemiological data, but the underlying mechanisms are unclear. Pathogens are known to be important, as autoimmune disease is prevented in various experimental models by infection with different bacteria, viruses and parasites. Gut commensal bacteria also play an important role: dysbiosis of the gut flora is observed in patients with autoimmune diseases, although the causal relationship with the occurrence of autoimmune diseases has not been established. Both pathogens and commensals act by stimulating immunoregulatory pathways. Here, I discuss the importance of innate immune receptors, in particular Toll-like receptors, in mediating the protective effect of pathogens and commensals on autoimmunity.
Collapse
|
20
|
Julián MT, Alonso N, Colobran R, Sánchez A, Miñarro A, Pujol-Autonell I, Carrascal J, Rodríguez-Fernández S, Ampudia RM, Vives-Pi M, Puig-Domingo M. CD26/DPPIV inhibition alters the expression of immune response-related genes in the thymi of NOD mice. Mol Cell Endocrinol 2016; 426:101-12. [PMID: 26911933 DOI: 10.1016/j.mce.2016.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 12/22/2022]
Abstract
The transmembrane glycoprotein CD26 or dipeptidyl peptidase IV (DPPIV) is a multifunctional protein. In immune system, CD26 plays a role in T-cell function and is also involved in thymic maturation and emigration patterns. In preclinical studies, treatment with DPPIV inhibitors reduces insulitis and delays or even reverses the new -onset of type 1 diabetes (T1D) in non-obese diabetic (NOD) mice. However, the specific mechanisms involved in these effects remain unknown. The aim of the present study was to investigate how DPPIV inhibition modifies the expression of genes in the thymus of NOD mice by microarray analysis. Changes in the gene expression of β-cell autoantigens and Aire in thymic epithelial cells (TECs) were also evaluated by using qRT-PCR. A DPPIV inhibitor, MK626, was orally administered in the diet for 4 and 6 weeks starting at 6-8 weeks of age. Thymic glands from treated and control mice were obtained for each study checkpoint. Thymus transcriptome analysis revealed that 58 genes were significantly over-expressed in MK626-treated mice after 6 weeks of treatment. Changes in gene expression in the thymus were confined mainly to the immune system, including innate immunity, chemotaxis, antigen presentation and immunoregulation. Most of the genes are implicated in central tolerance mechanisms through several pathways. No differences were observed in the expression of Aire and β-cell autoantigens in TECs. In the current study, we demonstrate that treatment with the DPPIV inhibitor MK626 in NOD mice alters the expression of the immune response-related genes in the thymus, especially those related to immunological central tolerance, and may contribute to the prevention of T1D.
Collapse
Affiliation(s)
- María Teresa Julián
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Health Sciences Research Institute and Hospital, 08916, Badalona, Spain; Department of Medicine, Autonomous University of Barcelona, 08193, Barcelona, Spain
| | - Núria Alonso
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Health Sciences Research Institute and Hospital, 08916, Badalona, Spain; Department of Medicine, Autonomous University of Barcelona, 08193, Barcelona, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Roger Colobran
- Immunology Division, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Alex Sánchez
- Statistics Department, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain; Statistics and Bioinformatics Unit, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain
| | - Antoni Miñarro
- Statistics Department, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Irma Pujol-Autonell
- Immunology Department, Germans Trias i Pujol Health Sciences Research Institute, 08916, Badalona, Autonomous University of Barcelona, Spain
| | - Jorge Carrascal
- Immunology Department, Germans Trias i Pujol Health Sciences Research Institute, 08916, Badalona, Autonomous University of Barcelona, Spain
| | - Silvia Rodríguez-Fernández
- Immunology Department, Germans Trias i Pujol Health Sciences Research Institute, 08916, Badalona, Autonomous University of Barcelona, Spain
| | - Rosa María Ampudia
- Immunology Department, Germans Trias i Pujol Health Sciences Research Institute, 08916, Badalona, Autonomous University of Barcelona, Spain
| | - Marta Vives-Pi
- Immunology Department, Germans Trias i Pujol Health Sciences Research Institute, 08916, Badalona, Autonomous University of Barcelona, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Manel Puig-Domingo
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Health Sciences Research Institute and Hospital, 08916, Badalona, Spain; Department of Medicine, Autonomous University of Barcelona, 08193, Barcelona, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| |
Collapse
|
21
|
Cai Z, Wong CK, Dong J, Jiao D, Chu M, Leung PC, Lau CBS, Lau CP, Tam LS, Lam CWK. Anti-inflammatory activities of Ganoderma lucidum (Lingzhi) and San-Miao-San supplements in MRL/lpr mice for the treatment of systemic lupus erythematosus. Chin Med 2016; 11:23. [PMID: 27134645 PMCID: PMC4851790 DOI: 10.1186/s13020-016-0093-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/20/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Ganoderma lucidum (Lingzhi; LZ) and San-Miao-San (SMS) are Chinese medicines (CMs) used to treat inflammatory ailments and numbing syndrome/arthralgia syndrome (Bi Zheng), respectively. Given that the main symptoms of systemic lupus erythematosus (SLE) include inflammation of the joints, joint pain, edema and palpitations of the heart because of problems associated with Bi Zheng, it was envisaged that LZ and SMS could be used as potential treatments for this autoimmune disease. This study aims to investigate the anti-inflammatory activity of a combination formulation containing LZ and SMS (LZ-SMS) in SLE mice. METHODS Female adult Balb/c mice of 20-24 weeks of age were used as normal mice (n = 10), whereas female MRL/lpr mice of 12-24 weeks of age were divided into three groups (n = 10 in each group), including mild, moderate and severe SLE mice groups. The clinical characteristics of the SLE and Babl/c mice (i.e., body weight, joint thickness, lupus flare, proteinuria, leukocyturia and lymphadenopathy) were assessed. The plasma concentrations of anti-nuclear antibody (ANA) and anti-double stranded DNA antibody (anti-ds-DNA) were analyzed by an enzyme-linked immunosorbent assay, whereas the concentration of several key cytokines (IFN-γ, TNF-α, IL-6, IL-10, IL-2, IL-27, IL-12P70, IL-17A and IL-21) were analyzed by a Luminex multiplex assay. The gene expression profiles for differentiation of the T helper (Th) lymphocytes in splenic CD4(+) Th cells were assessed by RT-qPCR. Flow cytometry was used to measure the percentages of CD4(+)CD25(+)Foxp3(+) Treg cells and CD19(+)CD5(+)CD1d(+)IL-10(+) regulatory B (Breg) cells (IL-10(+) Bregs). RESULTS Concentrations of anti-ds-DNA in the plasma samples collected from the LZ-SMS-treated (500 mg/kg/day oral administration for 7 days followed with 50 mg/kg/day intraperitoneal administration for 7 days), moderate and severe SLE mice decreased significantly compared with the PBS treated mice (P < 0.05). The gene expression levels of the induced regulatory T (iTreg) and natural Treg (nTreg) cells were significantly higher than those of the Th17, Th1 and "conventional Th cells vs. Treg cells" regulated genes following the LZ-SMS treatment (P < 0.05). The percentages of CD4(+)CD25(+)Foxp3(+) Treg cells collected from the splenic, thymic and peripheral blood cells, as well as the percentages of IL-10(+) Bregs collected from the splenic and thymic cells increased significantly in the LZ-SMS-treated SLE mice (P < 0.05) compared with the untreated PBS group. The ratio of the percentage of CD4(+)CD25(+)Foxp3(+) Treg cells to the percentage of CD4(+)CD25(-) effector T cells collected from the splenic, thymic and peripheral blood cells in LZ-SMS-treated moderate and severe SLE mice increased significantly compared with the untreated PBS group (P < 0.05). Furthermore, a comparison with the PBS treatment group revealed significant decreases in the concentrations of several inflammatory cytokines, including IL-21, IL-10 and IL-17A (P < 0.05), as well as significant increases in the concentrations of IL-2 and IL-12P70 in the LZ-SMS treated SLE mice (P < 0.05). CONCLUSION LZ-SMS treatment led to significant increases in the percentages of CD4(+)CD25(+)Foxp3(+) Treg and IL-10(+) Breg cells, together with a reduction in the plasma concentrations of several inflammatory cytokines and the down-regulated expression of the corresponding cytokine related genes in SLE mice. The clinical characteristics of the LZ-SMS-treated SLE mice also improved significantly.
Collapse
Affiliation(s)
- Zhe Cai
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Dong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Delong Jiao
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Man Chu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Ping Chung Leung
- Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China
| | - Clara Bik San Lau
- Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China
| | - Ching Po Lau
- Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China
| | - Lai Shan Tam
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
22
|
Tai N, Wong FS, Wen L. The role of the innate immune system in destruction of pancreatic beta cells in NOD mice and humans with type I diabetes. J Autoimmun 2016; 71:26-34. [PMID: 27021275 DOI: 10.1016/j.jaut.2016.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 03/12/2016] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes (T1D) is an organ-specific autoimmune disease characterized by T cell-mediated destruction of the insulin-producing pancreatic β cells. A combination of genetic and environmental factors eventually leads to the loss of functional β cell mass and hyperglycemia. Both innate and adaptive immunity are involved in the development of T1D. In this review, we have highlighted the most recent findings on the role of innate immunity, especially the pattern recognition receptors (PRRs), in disease development. In murine models and human studies, different PRRs, such as toll-like receptors (TLRs) and nucleotide-binding domain, leucine-rich repeat-containing (or Nod-like) receptors (NLRs), have different roles in the pathogenesis of T1D. These PRRs play a critical role in defending against infection by sensing specific ligands derived from exogenous microorganisms to induce innate immune responses and shape adaptive immunity. Animal studies have shown that TLR7, TLR9, MyD88 and NLPR3 play a disease-predisposing role in T1D, while controversial results have been found with other PRRs, such as TLR2, TLR3, TLR4, TLR5 and others. Human studies also shown that TLR2, TLR3 and TLR4 are expressed in either islet β cells or infiltrated immune cells, indicating the innate immunity plays a role in β cell autoimmunity. Furthermore, some human genetic studies showed a possible association of TLR3, TLR7, TLR8 or NLRP3 genes, at single nucleotide polymorphism (SNP) level, with human T1D. Increasing evidence suggest that the innate immunity modulates β cell autoimmunity. Thus, targeting pathways of innate immunity may provide novel therapeutic strategies to fight this disease.
Collapse
Affiliation(s)
- Ningwen Tai
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, USA
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, USA.
| |
Collapse
|
23
|
Yu C, Burns JC, Robinson WH, Utz PJ, Ho PP, Steinman L, Frey AB. Identification of Candidate Tolerogenic CD8(+) T Cell Epitopes for Therapy of Type 1 Diabetes in the NOD Mouse Model. J Diabetes Res 2016; 2016:9083103. [PMID: 27069933 PMCID: PMC4812430 DOI: 10.1155/2016/9083103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/16/2016] [Indexed: 12/31/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease in which insulin-producing pancreatic islet β cells are the target of self-reactive B and T cells. T cells reactive with epitopes derived from insulin and/or IGRP are critical for the initiation and maintenance of disease, but T cells reactive with other islet antigens likely have an essential role in disease progression. We sought to identify candidate CD8(+) T cell epitopes that are pathogenic in type 1 diabetes. Proteins that elicit autoantibodies in human type 1 diabetes were analyzed by predictive algorithms for candidate epitopes. Using several different tolerizing regimes using synthetic peptides, two new predicted tolerogenic CD8(+) T cell epitopes were identified in the murine homolog of the major human islet autoantigen zinc transporter ZnT8 (aa 158-166 and 282-290) and one in a non-β cell protein, dopamine β-hydroxylase (aa 233-241). Tolerizing vaccination of NOD mice with a cDNA plasmid expressing full-length proinsulin prevented diabetes, whereas plasmids encoding ZnT8 and DβH did not. However, tolerizing vaccination of NOD mice with the proinsulin plasmid in combination with plasmids expressing ZnT8 and DβH decreased insulitis and enhanced prevention of disease compared to vaccination with the plasmid encoding proinsulin alone.
Collapse
MESH Headings
- Animals
- Autoantibodies/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cation Transport Proteins/genetics
- Cation Transport Proteins/immunology
- Cells, Cultured
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/therapy
- Disease Models, Animal
- Dopamine beta-Hydroxylase/genetics
- Dopamine beta-Hydroxylase/immunology
- Epitopes, T-Lymphocyte
- Female
- Genetic Therapy/methods
- Humans
- Immune Tolerance
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/pathology
- Lymphocyte Activation
- Mice, Inbred NOD
- Proinsulin/genetics
- Proinsulin/immunology
- Time Factors
- Vaccination
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Zinc Transporter 8
Collapse
Affiliation(s)
- Cailin Yu
- Department of Cell Biology, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Jeremy C. Burns
- Department of Cell Biology, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - William H. Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs, Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Paul J. Utz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peggy P. Ho
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan B. Frey
- Department of Cell Biology, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA
- *Alan B. Frey:
| |
Collapse
|
24
|
Abstract
The innate immune system includes several classes of pattern recognition receptors (PRRs), including membrane-bound Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs). These receptors detect pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) in the extracellular and intracellular space. Intracellular NLRs constitute inflammasomes, which activate and release caspase-1, IL-1β, and IL-18 thereby initiating an inflammatory response. Systemic and local low-grade inflammation and release of proinflammatory cytokines are implicated in the development and progression of diabetes mellitus and diabetic nephropathy. TLR2, TLR4, and the NLRP3 inflammasome can induce the production of various proinflammatory cytokines and are critically involved in inflammatory responses in pancreatic islets, and in adipose, liver and kidney tissues. This Review describes how innate immune system-driven inflammatory processes can lead to apoptosis, tissue fibrosis, and organ dysfunction resulting in insulin resistance, impaired insulin secretion, and renal failure. We propose that careful targeting of TLR2, TLR4, and NLRP3 signalling pathways could be beneficial for the treatment of diabetes mellitus and diabetic nephropathy.
Collapse
|
25
|
Murine pattern recognition receptor dectin-1 is essential in the development of experimental autoimmune uveoretinitis. Mol Immunol 2015. [PMID: 26216045 DOI: 10.1016/j.molimm.2015.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mycobacteria in complete Freund's adjuvant (CFA) are an essential component of immunization protocols in a number of autoimmune disease animal models including experimental autoimmune encephalomyelitis and uveoretinitis (EAE and EAU, respectively). We determined the role in EAU of two C-type lectin receptors on myeloid cells that recognize and respond to mycobacteria. Using receptor-specific antibodies and knockout mice, we demonstrated for the first time that the macrophage mannose receptor delays disease development but does not affect severity. In contrast, dectin-1 is critically involved in the development of CFA-mediated EAU. Disease severity is reduced in dectin-1 knockout mice and antibody blockade of dectin-1 during the induction, but not the effector phase, prevents EAU development. Significantly, similar blockade of dectin-1 in vivo has no effect in non-CFA-mediated, spontaneously induced or adoptive transfer models of EAU. Thus dectin-1 plays a critical role in the ability of complete Freund's adjuvant to induce EAU in mice.
Collapse
|
26
|
Hayashi T, Yao S, Crain B, Promessi VJ, Shyu L, Sheng C, Kang M, Cottam HB, Carson DA, Corr M. Induction of Tolerogenic Dendritic Cells by a PEGylated TLR7 Ligand for Treatment of Type 1 Diabetes. PLoS One 2015; 10:e0129867. [PMID: 26076454 PMCID: PMC4468074 DOI: 10.1371/journal.pone.0129867] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/13/2015] [Indexed: 01/23/2023] Open
Abstract
Autoimmune diabetes mellitus (DM) results from the destruction of pancreatic islet cells by activated T lymphocytes, which have been primed by activated dendritic cells (DC). Individualized therapy with ex vivo DC manipulation and reinfusion has been proposed as a treatment for DM, but this treatment is limited by cost, and requires specialized facilities. A means of in situ modulation of the DC phenotype in the host would be more accessible. Here we report a novel innate immune modulator, 1Z1, generated by conjugating a TLR7 ligand to six units of polyethylene glycol (PEG), which skews DC phenotype in vivo. 1Z1 was less potent in inducing cytokine production by DC than the parent ligand in vitro and in vivo. In addition, this drug only modestly increased DC surface expression of activation markers such as MHC class II, CD80, and CD86; however, the expression of negative regulatory molecules, such as programmed death ligand 1 (PD-L1), and interleukin-1 receptor-associated kinase M (IRAK-M) were markedly increased. In vivo transfer of 1Z1 treated DC into prediabetic NOD mice delayed pancreatic insulitis. Daily administration of 1Z1 effectively prevented the clinical onset of hyperglycemia and reduced histologic islet inflammation. Daily treatment with 1Z1 increased PD-L1 expression in the CD11c+ population in peri-pancreatic lymph nodes; however, it did not induce an increase in regulatory T cells. Pharmaceutical modulation of DC maturation and function in situ, thus represents an opportunity to treat autoimmune disease.
Collapse
Affiliation(s)
- Tomoko Hayashi
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Shiyin Yao
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Brian Crain
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Victor J Promessi
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Luke Shyu
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Caroline Sheng
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - McNancy Kang
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Howard B Cottam
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Dennis A Carson
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Maripat Corr
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, United States of America
| |
Collapse
|
27
|
Karumuthil-Melethil S, Sofi MH, Gudi R, Johnson BM, Perez N, Vasu C. TLR2- and Dectin 1-associated innate immune response modulates T-cell response to pancreatic β-cell antigen and prevents type 1 diabetes. Diabetes 2015; 64:1341-57. [PMID: 25377877 PMCID: PMC4375080 DOI: 10.2337/db14-1145] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The progression of autoimmune diseases is dictated by deviations in the fine balance between proinflammatory versus regulatory responses, and pathogen recognition receptors (PRRs) play a key role in maintaining this balance. Previously, we have reported that ligation of Toll-like receptor 2 (TLR2) and Dectin 1 on antigen-presenting cells by zymosan results in a regulatory immune response that prevents type 1 diabetes (T1D). Here, we show that TLR2 and Dectin 1 engagement by zymosan promotes regulatory T-cell (Treg) responses against the pancreatic β-cell-specific antigen (Ag). Unlike the TLR4 ligand, bacterial lipopolysaccharide, which induced proinflammatory cytokines and pathogenic T cells, zymosan induced a mixture of pro- and anti-inflammatory factors and Tregs, both in vitro and in vivo. Ag-specific T cells that are activated using zymosan-exposed dendritic cells (DCs) expressed Foxp3 and produced large amounts of IL-10, TGF-β1, and IL-17. NOD mice that received β-cell-Ag-loaded, zymosan-exposed DCs showed delayed hyperglycemia. Injection of NOD mice at the prediabetic age and early hyperglycemic stage with β-cell-Ag, along with zymosan, results in a superior protection of the NOD mice from diabetes as compared with mice that received zymosan alone. This therapeutic effect was associated with increased frequencies of IL-10-, IL-17-, IL-4-, and Foxp3-positive T cells, especially in the pancreatic lymph nodes. These results show that zymosan can be used as an immune regulatory adjuvant for modulating the T-cell response to pancreatic β-cell-Ag and reversing early-stage hyperglycemia in T1D.
Collapse
Affiliation(s)
| | - M Hanief Sofi
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC
| | - Radhika Gudi
- Department of Surgery, College of Medicine, Medical University of South Carolina, Charleston, SC
| | - Benjamin M Johnson
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC
| | - Nicolas Perez
- Department of Surgery, University of Illinois at Chicago, Chicago, IL
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC Department of Surgery, College of Medicine, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
28
|
Abstract
In the 40 years since their discovery, dendritic cells (DCs) have been recognized as central players in immune regulation. DCs sense microbial stimuli through pathogen-recognition receptors (PRRs) and decode, integrate, and present information derived from such stimuli to T cells, thus stimulating immune responses. DCs can also regulate the quality of immune responses. Several functionally specialized subsets of DCs exist, but DCs also display functional plasticity in response to diverse stimuli. In addition to sensing pathogens via PRRs, emerging evidence suggests that DCs can also sense stress signals, such as amino acid starvation, through ancient stress and nutrient sensing pathways, to stimulate adaptive immunity. Here, I discuss these exciting advances in the context of a historic perspective on the discovery of DCs and their role in immune regulation. I conclude with a discussion of emerging areas in DC biology in the systems immunology era and suggest that the impact of DCs on immunity can be usefully contextualized in a hierarchy-of-organization model in which DCs, their receptors and signaling networks, cell-cell interactions, tissue microenvironment, and the host macroenvironment represent different levels of the hierarchy. Immunity or tolerance can then be represented as a complex function of each of these hierarchies.
Collapse
Affiliation(s)
- Bali Pulendran
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329;
| |
Collapse
|
29
|
Ahmad R, Shihab PK, Thomas R, Alghanim M, Hasan A, Sindhu S, Behbehani K. Increased expression of the interleukin-1 receptor-associated kinase (IRAK)-1 is associated with adipose tissue inflammatory state in obesity. Diabetol Metab Syndr 2015; 7:71. [PMID: 26312071 PMCID: PMC4549832 DOI: 10.1186/s13098-015-0067-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/18/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The emerging role of TLR2/4 as immuno-metabolic receptors points to key involvement of TLR/IL-1R/MyD88 pathway in obesity/type-2 diabetes (T2D). IL1R-associated kinase (IRAK)-1 is a critical adapter protein (serine/threonine kinase) of this signaling pathway. The changes in adipose tissue expression of IRAK-1 in obesity/T2D remain unclear. We determined modulations in IRAK-1 gene/protein expression in the subcutaneous adipose tissues from lean, overweight and obese individuals with or without T2D. METHODS A total of 49 non-diabetic (22 obese, 19 overweight and 8 lean) and 42 T2D (31 obese, 9 overweight and 2 lean) adipose tissue samples were obtained by abdominal subcutaneous fat pad biopsy and IRAK-1 expression was determined using real-time RT-PCR, immunohistochemistry, and confocal microscopy. IRAK-1 mRNA expression was compared with adipose tissue proinflammatory mediators (TNF-α, IL-6, IL-18), macrophage markers (CD68, CD11c, CD163), and plasma markers (CCL-5, C-reactive protein, adiponectin, and triglycerides). The data were analyzed using t test, Pearson's correlation, and multiple stepwise linear regression test. RESULTS In non-diabetics, IRAK-1 gene expression was elevated in obese (P = 0.01) and overweight (P = 0.04) as compared with lean individuals and this increase correlated with body mass index (r = 0.45; P = 0.001) and fat percentage (r = 0.36; P = 0.01). In diabetics, IRAK-1 mRNA expression was also higher in obese as compared with lean subjects (P = 0.012). As also shown by immunohistochemistry/confocal microscopy in non-diabetics and by immunohistochemistry in diabetics, IRAK-1 protein expression was higher in obese than overweight and lean adipose tissues. IRAK-1 gene expression correlated positively/significantly with mRNAs of TNF-α (r = 0.46; P = 0.0008), IL-6 (r = 0.30; P = 0.03) and IL-18 (r = 0.31; P = 0.028) in non-diabetics; and only with TNF-α (r = 0.32; P = 0.03) in diabetics. IRAK-1 expression also correlated positively/significantly with CD68 (r = 0.32; P = 0.02), CD11c (r = 0.30; P = 0.03), and CD163 (r = 0.43; P = 0.001) in non-diabetics; and only with CD163 (r = 0.34; P = 0.02) in diabetics. IRAK-1 mRNA levels also correlated with plasma markers including CCL-5 (r = 0.39; P = 0.02), C-reactive protein (r = 0.48; P = 0.005), adiponectin (r = -0.36; P = 0.04), and triglycerides (r = 0.40; P = 0.02) in non-diabetics; and only with triglycerides (r = -0.36; P = 0.04) in diabetics. IRAK-1 expression related with TLR2 (r = 0.39; P = 0.007) and MyD88 (r = 0.36; P = 0.01) in non-diabetics; and MyD88 (r = 0.52; P = 0.0003) in diabetics. CONCLUSIONS The elevated IRAK-1 expression in obese adipose tissue showed consensus with local/circulatory inflammatory signatures and represented as a tissue marker for metabolic inflammation. The data have clinical significance as interventions causing IRAK-1 suppression may alleviate meta-inflammation in obesity/T2D.
Collapse
Affiliation(s)
- Rasheed Ahmad
- Laboratory of Immunology & Innovative Cell Therapy, Dasman Diabetes Institute (DDI), P.O. Box 1180, Dasman, 15462 Kuwait City, Kuwait
| | - Puthiyaveetil Kochumon Shihab
- Laboratory of Immunology & Innovative Cell Therapy, Dasman Diabetes Institute (DDI), P.O. Box 1180, Dasman, 15462 Kuwait City, Kuwait
| | - Reeby Thomas
- Laboratory of Immunology & Innovative Cell Therapy, Dasman Diabetes Institute (DDI), P.O. Box 1180, Dasman, 15462 Kuwait City, Kuwait
| | - Munera Alghanim
- Laboratory of Immunology & Innovative Cell Therapy, Dasman Diabetes Institute (DDI), P.O. Box 1180, Dasman, 15462 Kuwait City, Kuwait
| | - Amal Hasan
- Laboratory of Immunology & Innovative Cell Therapy, Dasman Diabetes Institute (DDI), P.O. Box 1180, Dasman, 15462 Kuwait City, Kuwait
| | - Sardar Sindhu
- Laboratory of Immunology & Innovative Cell Therapy, Dasman Diabetes Institute (DDI), P.O. Box 1180, Dasman, 15462 Kuwait City, Kuwait
| | - Kazem Behbehani
- Laboratory of Immunology & Innovative Cell Therapy, Dasman Diabetes Institute (DDI), P.O. Box 1180, Dasman, 15462 Kuwait City, Kuwait
| |
Collapse
|
30
|
Basto AP, Badenes M, Almeida SCP, Martins C, Duarte A, Santos DM, Leitão A. Immune response profile elicited by the model antigen ovalbumin expressed in fusion with the bacterial OprI lipoprotein. Mol Immunol 2014; 64:36-45. [PMID: 25467796 DOI: 10.1016/j.molimm.2014.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/23/2014] [Accepted: 10/25/2014] [Indexed: 12/11/2022]
Abstract
The use of immunogenic formulations targeting pattern recognition receptors towards modulation of immune responses is a promising strategy to develop better vaccines against infectious and malignant diseases. Molecules targeting TLR2 offer interesting properties that are relevant for vaccine development, including the possibility to covalently attach the lipidic ligands to the antigens. However, the type of immune response elicited by these formulations is still controversial. In this work, we used the model antigen ovalbumin (OVA) expressed in fusion with the bacterial lipoprotein OprI in order to characterize the immunomodulatory properties of this TLR ligand. Murine bone marrow-derived dendritic cells stimulated with OprI-OVA fusion lipoprotein produced high levels of the pro-inflammatory cytokines TNF-α and IL-6 and also IL-10, IL-12(p70) and IL-27, while TGF-β and IL-23 were not detected. Using OT-II and OT-I mice, an enhancement of MHC class II and class I antigen presentation was observed for the OVA antigen in fusion with OprI. Mice immunized by intraperitoneal route with this fusion lipoprotein in prime-boost protocols developed strong specific antibody responses including IgG1, IgG2c, IgG2b, IgG3 and IgE. These results, together with data obtained by restimulation of splenocytes from the immunized mice, point to an immune response profile that does not correspond to a strict Th1 or Th2 polarization. Finally, in a challenge experiment using a melanoma syngeneic mouse model (B16-OVA), prophylactic inoculation with OprI fused with the unrelated antigen eGFP increased the tumor growth, while the fusion with the tumor-associated antigen OVA delayed the tumor growth and increased mice survival.
Collapse
Affiliation(s)
- Afonso P Basto
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.
| | - Marina Badenes
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; Instituto Gulbenkian de Ciência, 2781-901 Oeiras, Portugal
| | - Sílvia C P Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Carlos Martins
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - António Duarte
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; Instituto Gulbenkian de Ciência, 2781-901 Oeiras, Portugal
| | - Dulce M Santos
- Instituto de Investigação Científica Tropical, CVZ, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; CIISA, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Alexandre Leitão
- Instituto de Investigação Científica Tropical, CVZ, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; CIISA, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.
| |
Collapse
|
31
|
Manoharan I, Hong Y, Suryawanshi A, Angus-Hill ML, Sun Z, Mellor AL, Munn DH, Manicassamy S. TLR2-dependent activation of β-catenin pathway in dendritic cells induces regulatory responses and attenuates autoimmune inflammation. THE JOURNAL OF IMMUNOLOGY 2014; 193:4203-13. [PMID: 25210120 DOI: 10.4049/jimmunol.1400614] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) sense microbes via multiple innate receptors. Signals from different innate receptors are coordinated and integrated by DCs to generate specific innate and adaptive immune responses against pathogens. Previously, we have shown that two pathogen recognition receptors, TLR2 and dectin-1, which recognize the same microbial stimulus (zymosan) on DCs, induce mutually antagonistic regulatory or inflammatory responses, respectively. How diametric signals from these two receptors are coordinated in DCs to regulate or incite immunity is not known. In this study, we show that TLR2 signaling via AKT activates the β-catenin/T cell factor 4 pathway in DCs and programs them to drive T regulatory cell differentiation. Activation of β-catenin/T cell factor 4 was critical to induce regulatory molecules IL-10 (Il-10) and vitamin A metabolizing enzyme retinaldehyde dehydrogenase 2 (Aldh1a2) and to suppress proinflammatory cytokines. Deletion of β-catenin in DCs programmed them to drive Th17/Th1 cell differentiation in response to zymosan. Consistent with these findings, activation of the β-catenin pathway in DCs suppressed chronic inflammation and protected mice from Th17/Th1-mediated autoimmune neuroinflammation. Thus, activation of β-catenin in DCs via the TLR2 receptor is a novel mechanism in DCs that regulates autoimmune inflammation.
Collapse
Affiliation(s)
- Indumathi Manoharan
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Yuan Hong
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Amol Suryawanshi
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | | | - Zuoming Sun
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Andrew L Mellor
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; and
| | - David H Munn
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Department of Pediatrics, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Santhakumar Manicassamy
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; and
| |
Collapse
|
32
|
Karumuthil-Melethil S, Gudi R, Johnson BM, Perez N, Vasu C. Fungal β-glucan, a Dectin-1 ligand, promotes protection from type 1 diabetes by inducing regulatory innate immune response. THE JOURNAL OF IMMUNOLOGY 2014; 193:3308-21. [PMID: 25143443 DOI: 10.4049/jimmunol.1400186] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
β-Glucans are naturally occurring polysaccharides in cereal grains, mushrooms, algae, or microbes, including bacteria, fungi, and yeast. Immune cells recognize these β-glucans through a cell surface pathogen recognition receptor called Dectin-1. Studies using β-glucans and other Dectin-1 binding components have demonstrated the potential of these agents in activating the immune cells for cancer treatment and controlling infections. In this study, we show that the β-glucan from Saccharomyces cerevisiae induces the expression of immune regulatory cytokines (IL-10, TGF-β1, and IL-2) and a tolerogenic enzyme (IDO) in bone marrow-derived dendritic cells as well as spleen cells. These properties can be exploited to modulate autoimmunity in the NOD mouse model of type 1 diabetes (T1D). Treatment of prediabetic NOD mice with low-dose β-glucan resulted in a profound delay in hyperglycemia, and this protection was associated with increase in the frequencies of Foxp3(+), LAP(+), and GARP(+) T cells. Upon Ag presentation, β-glucan-exposed dendritic cells induced a significant increase in Foxp3(+) and LAP(+) T cells in in vitro cultures. Furthermore, systemic coadministration of β-glucan plus pancreatic β cell Ag resulted in an enhanced protection of NOD mice from T1D as compared with treatment with β-glucan alone. These observations demonstrate that the innate immune response induced by low-dose β-glucan is regulatory in nature and can be exploited to modulate T cell response to β cell Ag for inducing an effective protection from T1D.
Collapse
Affiliation(s)
| | - Radhika Gudi
- Department of Surgery, College of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Benjamin M Johnson
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Nicolas Perez
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612
| | - Chenthamarakshan Vasu
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612; Department of Surgery, College of Medicine, Medical University of South Carolina, Charleston, SC 29425; and Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
33
|
Targeting TLR2 for vaccine development. J Immunol Res 2014; 2014:619410. [PMID: 25057505 PMCID: PMC4098989 DOI: 10.1155/2014/619410] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/16/2014] [Accepted: 06/04/2014] [Indexed: 02/07/2023] Open
Abstract
Novel and more effective immunization strategies against many animal diseases may profit from the current knowledge on the modulation of specific immunity through stimulation of innate immune receptors. Toll-like receptor (TLR)2-targeting formulations, such as synthetic lipopeptides and antigens expressed in fusion with lipoproteins, have been shown to have built-in adjuvant properties and to be effective at inducing cellular and humoral immune mechanisms in different animal species. However, contradictory data has arisen concerning the profile of the immune response elicited. The benefits of targeting TLR2 for vaccine development are thus still debatable and more studies are needed to rationally explore its characteristics. Here, we resume the main features of TLR2 and TLR2-induced immune responses, focusing on what has been reported for veterinary animals.
Collapse
|
34
|
Evangelista AF, Collares CVA, Xavier DJ, Macedo C, Manoel-Caetano FS, Rassi DM, Foss-Freitas MC, Foss MC, Sakamoto-Hojo ET, Nguyen C, Puthier D, Passos GA, Donadi EA. Integrative analysis of the transcriptome profiles observed in type 1, type 2 and gestational diabetes mellitus reveals the role of inflammation. BMC Med Genomics 2014; 7:28. [PMID: 24885568 PMCID: PMC4066312 DOI: 10.1186/1755-8794-7-28] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 03/27/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease, while type 2 (T2D) and gestational diabetes (GDM) are considered metabolic disturbances. In a previous study evaluating the transcript profiling of peripheral mononuclear blood cells obtained from T1D, T2D and GDM patients we showed that the gene profile of T1D patients was closer to GDM than to T2D. To understand the influence of demographical, clinical, laboratory, pathogenetic and treatment features on the diabetes transcript profiling, we performed an analysis integrating these features with the gene expression profiles of the annotated genes included in databases containing information regarding GWAS and immune cell expression signatures. METHODS Samples from 56 (19 T1D, 20 T2D, and 17 GDM) patients were hybridized to whole genome one-color Agilent 4x44k microarrays. Non-informative genes were filtered by partitioning, and differentially expressed genes were obtained by rank product analysis. Functional analyses were carried out using the DAVID database, and module maps were constructed using the Genomica tool. RESULTS The functional analyses were able to discriminate between T1D and GDM patients based on genes involved in inflammation. Module maps of differentially expressed genes revealed that modulated genes: i) exhibited transcription profiles typical of macrophage and dendritic cells; ii) had been previously associated with diabetic complications by association and by meta-analysis studies, and iii) were influenced by disease duration, obesity, number of gestations, glucose serum levels and the use of medications, such as metformin. CONCLUSION This is the first module map study to show the influence of epidemiological, clinical, laboratory, immunopathogenic and treatment features on the transcription profiles of T1D, T2D and GDM patients.
Collapse
Affiliation(s)
- Adriane F Evangelista
- Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil
| | - Cristhianna VA Collares
- Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil
- Division Clinical Immunology, Faculty of Medicine of Ribeirão Preto, (USP), 14049-900 Ribeirão Preto, SP, Brazil
| | - Danilo J Xavier
- Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil
| | - Claudia Macedo
- Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil
| | - Fernanda S Manoel-Caetano
- Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil
| | - Diane M Rassi
- Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil
| | - Maria C Foss-Freitas
- Division Clinical Immunology, Faculty of Medicine of Ribeirão Preto, (USP), 14049-900 Ribeirão Preto, SP, Brazil
| | - Milton C Foss
- Division Clinical Immunology, Faculty of Medicine of Ribeirão Preto, (USP), 14049-900 Ribeirão Preto, SP, Brazil
| | - Elza T Sakamoto-Hojo
- Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters, (USP), 14040-900 Ribeirão Preto, SP, Brazil
| | - Catherine Nguyen
- INSERM U1090, TAGC, Aix-Marseille Université IFR137, 13100 Marseille, France
| | - Denis Puthier
- INSERM U1090, TAGC, Aix-Marseille Université IFR137, 13100 Marseille, France
| | - Geraldo A Passos
- Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil
- Disciplines of Genetics and Molecular Biology, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, USP, 14040-904 Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil
- Division Clinical Immunology, Faculty of Medicine of Ribeirão Preto, (USP), 14049-900 Ribeirão Preto, SP, Brazil
| |
Collapse
|
35
|
Gülden E, Wen L. Toll-Like Receptor Activation in Immunity vs. Tolerance in Autoimmune Diabetes. Front Immunol 2014; 5:119. [PMID: 24715890 PMCID: PMC3970021 DOI: 10.3389/fimmu.2014.00119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/07/2014] [Indexed: 12/21/2022] Open
Affiliation(s)
- Elke Gülden
- Section of Endocrinology, Yale University School of Medicine , New Haven, CT , USA
| | - Li Wen
- Section of Endocrinology, Yale University School of Medicine , New Haven, CT , USA
| |
Collapse
|
36
|
Lu H. TLR Agonists for Cancer Immunotherapy: Tipping the Balance between the Immune Stimulatory and Inhibitory Effects. Front Immunol 2014; 5:83. [PMID: 24624132 PMCID: PMC3939428 DOI: 10.3389/fimmu.2014.00083] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/17/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Hailing Lu
- Tumor Vaccine Group, University of Washington , Seattle, WA , USA
| |
Collapse
|
37
|
Wang S, Zhou H, Feng T, Wu R, Sun X, Guan N, Qu L, Gao Z, Yan J, Xu N, Zhao J, Qi C. β-Glucan attenuates inflammatory responses in oxidized LDL-induced THP-1 cells via the p38 MAPK pathway. Nutr Metab Cardiovasc Dis 2014; 24:248-255. [PMID: 24418375 DOI: 10.1016/j.numecd.2013.09.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/27/2013] [Accepted: 09/16/2013] [Indexed: 01/17/2023]
Abstract
AIM To investigate the immunomodulatory effects of β-(1,3/1,6)-d-glucan on atherosclerosis as well as on the molecular mechanisms of its transition. METHODS AND RESULTS Human monocytic leukemia (THP-1) cells were differentiated into the macrophage phenotype by incubation with oxLDL in the absence or presence of β-glucan. β-glucan attenuated CD86 and CD80 expression and simultaneously reduced secretion of the inflammatory cytokines IL-2, IL-8, IL-12, TNF-α and IFN-γ. Western blot analysis showed that oxLDL treatment induced phosphorylation of p38 MAPK and ERK1/2 in PMA-differentiated THP-1 cells. However, β-glucan inhibited p38 MAPK activation. In experiments with monocytes derived from healthy donors, β-glucan inhibited IL-8, IL-12 and TNF-α production. The anti-inflammatory effects of β-glucan were also observed in atherosclerotic plaque cells. CONCLUSIONS β-glucan inhibited oxLDL-induced pro-inflammatory effects in macrophages via regulation of p38 MAPK phosphorylation. This novel finding may provide insight for new therapeutic strategies.
Collapse
Affiliation(s)
- S Wang
- Oncology Institute, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou 213003, China; Central Lab, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou 213003, China
| | - H Zhou
- Central Lab, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou 213003, China
| | - T Feng
- Oncology Institute, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou 213003, China
| | - R Wu
- Central Lab, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou 213003, China
| | - X Sun
- Oncology Institute, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou 213003, China; Central Lab, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou 213003, China
| | - N Guan
- Central Lab, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou 213003, China
| | - L Qu
- Department of Vascular Surgery, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Z Gao
- Department of Vascular Surgery, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - J Yan
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - N Xu
- Section of Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University, S-221 85 Lund, Sweden
| | - J Zhao
- Department of Cardiology, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou 213003, China.
| | - C Qi
- Oncology Institute, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou 213003, China; Central Lab, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou 213003, China.
| |
Collapse
|
38
|
Sofi MH, Gudi R, Karumuthil-Melethil S, Perez N, Johnson BM, Vasu C. pH of drinking water influences the composition of gut microbiome and type 1 diabetes incidence. Diabetes 2014; 63:632-44. [PMID: 24194504 PMCID: PMC3900548 DOI: 10.2337/db13-0981] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nonobese diabetic (NOD) mice spontaneously develop type 1 diabetes (T1D), progression of which is similar to that in humans, and therefore are widely used as a model for understanding the immunological basis of this disease. The incidence of T1D in NOD mice is influenced by the degree of cleanliness of the mouse colony and the gut microflora. In this report, we show that the T1D incidence and rate of disease progression are profoundly influenced by the pH of drinking water, which also affects the composition and diversity of commensal bacteria in the gut. Female NOD mice that were maintained on acidic pH water (AW) developed insulitis and hyperglycemia rapidly compared with those on neutral pH water (NW). Interestingly, forced dysbiosis by segmented filamentous bacteria (SFB)-positive fecal transfer significantly suppressed the insulitis and T1D incidence in mice that were on AW but not in those on NW. The 16S rDNA-targeted pyrosequencing revealed a significant change in the composition and diversity of gut flora when the pH of drinking water was altered. Importantly, autoantigen-specific T-cell frequencies in the periphery and proinflammatory cytokine response in the intestinal mucosa are significantly higher in AW-recipient mice compared with their NW counterparts. These observations suggest that pH of drinking water affects the composition of gut microflora, leading to an altered autoimmune response and T1D incidence in NOD mice.
Collapse
Affiliation(s)
- M. Hanief Sofi
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Radhika Gudi
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | | | - Nicolas Perez
- Department of Surgery, University of Illinois at Chicago, Chicago, IL
| | - Benjamin M. Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Medical University of South Carolina, Charleston, SC
- Corresponding author: Chenthamarakshan Vasu,
| |
Collapse
|
39
|
Yan H, Ohno N, Tsuji NM. The role of C-type lectin receptors in immune homeostasis. Int Immunopharmacol 2013; 16:353-7. [DOI: 10.1016/j.intimp.2013.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 12/19/2022]
|
40
|
Xie L, Sullivan AL, Collier JG, Glass CK. Serum response factor indirectly regulates type I interferon-signaling in macrophages. J Interferon Cytokine Res 2013; 33:588-96. [PMID: 23705899 DOI: 10.1089/jir.2012.0065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Serum response factor (SRF) is required for diverse aspects of development and homeostasis, but potential roles in the regulation of inflammation and immunity have not been systematically investigated. Here, we demonstrate that SRF is unexpectedly required for optimal responses of elicited peritoneal macrophages to type I interferons. Knockdown of SRF expression in these cells impairs induction of numerous interferon (IFN)-stimulated genes (ISGs) in response to zymosan, LPS, and poly I:C. This effect is primarily due to a defect in the ability of induced type I interferons to mediate secondary activation of ISGs. SRF does not appear to be required for expression of established components of the type I interferon signaling pathway, with IFN-β-dependent phosphorylation of STAT1 and STAT2 normally occurring in SRF-depleted macrophages. Collectively, these findings suggest that SRF can indirectly modulate type I interferon-signaling, without interfering with the classic JAK/STAT/ISGF3 pathway.
Collapse
Affiliation(s)
- Lan Xie
- 1 Medical Systems Biology Research Center, School of Medicine, Tsinghua University , Beijing, China
| | | | | | | |
Collapse
|
41
|
Tian J, Ma J, Ma K, Guo H, Baidoo SE, Zhang Y, Yan J, Lu L, Xu H, Wang S. β-Glucan enhances antitumor immune responses by regulating differentiation and function of monocytic myeloid-derived suppressor cells. Eur J Immunol 2013; 43:1220-30. [PMID: 23424024 DOI: 10.1002/eji.201242841] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 01/26/2013] [Accepted: 02/15/2013] [Indexed: 12/21/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) accumulate in tumor-bearing hosts and play a major role in tumor-induced immunosuppression, which hampers effective immuno-therapeutic approaches. β-Glucans have been reported to function as potent immuno-modulators to stimulate innate and adaptive immune responses, which contributes to their antitumor property. Here, we investigated the effect of particulate β-glucans on MDSCs and found that β-glucan treatment could promote the differentiation of M-MDSCs (monocytic MDSCs) into a more mature CD11c(+) F4/80(+) Ly6C(low) population via dectin-1 pathway in vitro, which is NF-κB dependent, and the suppressive function of M-MDSCs was significantly decreased. Treatment of orally administered yeast-derived particulate β-glucan drastically downregulated MDSCs but increased the infiltrated DCs and macrophages in tumor-bearing mice, thus eliciting CTL and Th1 responses, inhibiting the suppressive activity of regulatory T cells, thereby leading to the delayed tumor progression. We show here for the first time that β-glucans induce the differentiation of MDSCs and inhibit the regulatory function of MDSCs, therefore revealing a novel mechanism for β-glucans in immunotherapy and suggesting their potential clinical benefit.
Collapse
Affiliation(s)
- Jie Tian
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University School of Medical Science and Laboratory Medicine, Zhenjiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Concurrent exposure to a dectin-1 agonist suppresses the Th2 response to epicutaneously introduced antigen in mice. J Biomed Sci 2013; 20:1. [PMID: 23286586 PMCID: PMC3563454 DOI: 10.1186/1423-0127-20-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/30/2012] [Indexed: 12/12/2022] Open
Abstract
Background Epicutaneous sensitization with protein allergen that induces predominant Th2 responses is an important sensitization route in atopic dermatitis. Fungal components have been shown to modulate Th cell differentiation. However, the effects of fungal components on epicutaneous sensitization are unclear. Results In this study, we showed that co-administration of curdlan, a dectin-1 agonist, during epicutaneous ovalbumin sensitization of BALB/c mice decreased the IL-5 and IL-13 levels in supernatants of lymph node cell ovalbumin reactivation cultures. Mechanistically, curdlan co-administration decreased IL-4 and IL-1β expressions in draining lymph nodes. Curdlan co-administration also lower the migration of langerin+ CD103- epidermal Langerhans cells into draining lymph nodes at 96 hours post-sensitization which might be attributed to decreased expressions of IL-18 and IL-1β in patched skin. Moreover, adoptive transfer of CFSE-labeled transgenic CD4 T cells confirmed that curdlan co-administration decreased the proliferation and IL-4-production of ovalbumin -specific T cells primed by epidermal Langerhans cells. Conclusions These results indicated that concurrent exposure to a dectin-1 agonist suppresses the epicutaneously induced Th2 response by modulating the cytokine expression profiles in draining LNs and the migration of epidermal Langerhans cells. These results highlight the effects of fungal components on epicutaneous allergen sensitization in atopic diseases.
Collapse
|
43
|
Abstract
The increasing incidence of type 1 diabetes (T1D) and autoimmune diseases in industrialized countries cannot be exclusively explained by genetic factors. Human epidemiological studies and animal experimental data provide accumulating evidence for the role of environmental factors, such as infections, in the regulation of allergy and autoimmune diseases. The hygiene hypothesis has formally provided a rationale for these observations, suggesting that our co-evolution with pathogens has contributed to the shaping of the present-day human immune system. Therefore, improved sanitation, together with infection control, has removed immunoregulatory mechanisms on which our immune system may depend. Helminths are multicellular organisms that have developed a wide range of strategies to manipulate the host immune system to survive and complete their reproductive cycles successfully. Immunity to helminths involves profound changes in both the innate and adaptive immune compartments, which can have a protective effect in inflammation and autoimmunity. Recently, helminth-derived antigens and molecules have been tested in vitro and in vivo to explore possible applications in the treatment of inflammatory and autoimmune diseases, including T1D. This exciting approach presents numerous challenges that will need to be addressed before it can reach safe clinical application. This review outlines basic insight into the ability of helminths to modulate the onset and progression of T1D, and frames some of the challenges that helminth-derived therapies may face in the context of clinical translation.
Collapse
Affiliation(s)
- Paola Zaccone
- Department of Pathology, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QP, UK
| | | |
Collapse
|
44
|
Kawashima S, Hirose K, Iwata A, Takahashi K, Ohkubo A, Tamachi T, Ikeda K, Kagami SI, Nakajima H. β-glucan curdlan induces IL-10-producing CD4+ T cells and inhibits allergic airway inflammation. THE JOURNAL OF IMMUNOLOGY 2012; 189:5713-21. [PMID: 23136202 DOI: 10.4049/jimmunol.1201521] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A number of studies have suggested a correlation between a decreased incidence in infectious diseases and an increased incidence of allergic diseases, including asthma. Although several pathogen-derived products have been shown to possess therapeutic potential for allergic diseases, it remains largely unknown whether β-glucan, a cell wall component of a variety of fungi, yeasts, and bacteria, has a regulatory potential for allergic diseases. In this study, we examined the effect of curdlan, a linear β-(1-3)-glucan, on the development of allergic airway inflammation. We found that i.p. injection of curdlan significantly inhibited Ag-induced eosinophil recruitment and Th2 cytokine production in the airways. The activation of CD4(+) T cells in the presence of curdlan induced IL-10-producing CD4(+) T cells with high levels of c-Maf expression. Curdlan-induced development of IL-10-producing CD4(+) T cells required the presence of APCs and ICOS/ICOS ligand interaction. Curdlan-induced development of IL-10-producing CD4(+) T cells also required intrinsic expression of STAT6. Furthermore, the transfer of Ag-specific CD4(+) T cells that were stimulated in the presence of curdlan inhibited Ag-induced eosinophil recruitment into the airways. Taken together, these results suggest that curdlan is capable of inducing IL-10-producing CD4(+) T cells and inhibiting the development of eosinohilic airway inflammation, underscoring the therapeutic potential of curdlan for allergic diseases.
Collapse
Affiliation(s)
- Saki Kawashima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cortez-Espinosa N, García-Hernández MH, Reynaga-Hernández E, Cortés-García JD, Corral-Fernández NE, Rodríguez-Rivera JG, Bravo-Ramírez A, González-Amaro R, Portales-Pérez DP. Abnormal expression and function of Dectin-1 receptor in type 2 diabetes mellitus patients with poor glycemic control (HbA1c>8%). Metabolism 2012; 61:1538-46. [PMID: 22560862 DOI: 10.1016/j.metabol.2012.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 01/26/2023]
Abstract
Dectin-1 is a key innate receptor involved in various cellular responses and may have a direct role in chronic inflammatory conditions such as type 2 diabetes mellitus. The aim of this work was to evaluate the expression and function of Dectin-1 in peripheral blood mononuclear cells from T2D patients. Dectin-1 expression was analyzed by flow cytometry and RT-PCR in monocytes and lymphocyte subpopulations from T2D patients (n=34) and healthy subjects (n=29). Functional assays were used to assess cytokine synthesis, ROS levels and oxidative stress ratio. We found increased expression (MFI) of Dectin-1 in monocytes from T2D patients. Significantly higher Dectin-1 expression was also detected in CD4(+) T, CD8(+) T, B cells and NK cells from T2D patients compared to controls. In contrast, monocytes from T2D patients with poor glycemic control (HbA1c>8%) showed a diminished percentage of Dectin-1(+)/TLR2(+) cells. Negative correlations between the percent of Dectin-1(+)/TLR2(+) cells and fasting plasma glucose levels (FPG) and HbA1c levels were found. A significant reduction in basal levels of IL-10 was observed in patients with poor glycemic control (HbA1c>8%) compared to patients with appropriate glycemic control (HbA1c≤6.5%) and healthy controls, an effect that was not observed in monocytes stimulated with zymosan. Higher ROS levels in zymosan-stimulated cells from patients with poor glycemic control positively correlated with FPG levels, and the oxidative stress ratio was higher in T2D cells compared with controls. Our data indicate that Dectin-1 may be involved in the abnormal immune responses that are observed in patients with T2D.
Collapse
Affiliation(s)
- Nancy Cortez-Espinosa
- Laboratory of Immunology and Cellular and Molecular Biology, UASLP, San Luis Potosí, SLP, México
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Expression and function of dectin-1 is defective in monocytes from patients with systemic lupus erythematosus and rheumatoid arthritis. J Clin Immunol 2012; 33:368-77. [PMID: 23097038 DOI: 10.1007/s10875-012-9821-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/12/2012] [Indexed: 12/29/2022]
Abstract
The aim of this work was to study the expression and function of the innate immune receptor dectin-1 in patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). We studied twenty-six patients with SLE not receiving immunosuppressive therapy, twenty-six patients with RA, and fifteen controls. We found that monocytes from SLE patients showed a diminished expression of dectin-1 compared to healthy controls, and an inverse correlation between percent of dectin-1(+) cells and the disease activity score was detected. In addition, cells from SLE patients showed an abnormal calcium flux response induced by dectin-1 ligands as well as an enhanced release of IL-1β, IL-6 and TNF-α, but not IL-23, upon dectin-1 engagement. Monocytes from patients with RA also showed a diminished expression, and a defective function of dectin-1. Our data suggest that dectin-1 receptor defects could contribute to the pathogenesis of autoimmune inflammatory conditions.
Collapse
|
47
|
Tian J, Ma J, Ma K, Ma B, Tang X, Baidoo SE, Tong J, Yan J, Lu L, Xu H, Wang S. Up-regulation of GITRL on dendritic cells by WGP improves anti-tumor immunity in murine Lewis lung carcinoma. PLoS One 2012; 7:e46936. [PMID: 23077535 PMCID: PMC3471954 DOI: 10.1371/journal.pone.0046936] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 09/10/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND β-Glucans have been shown to function as a potent immunomodulator to stimulate innate and adaptive immune responses, which contributes to their anti-tumor property. However, their mechanisms of action are still elusive. Glucocorticoid-induced TNF receptor ligand (GITRL), a member of the TNF superfamily, binds to its receptor, GITR, on both effector and regulatory T cells, generates a positive co-stimulatory signal implicated in a wide range of T cell functions, which is important for the development of immune responses. METHODOLOGY/PRINCIPAL FINDINGS In this study, we found that whole β-glucan particles (WGPs) could activate dendritic cells (DCs) via dectin-1 receptor, and increase the expression of GITRL on DCs in vitro and in vivo. Furthermore, we demonstrated that the increased GITRL on DCs could impair the regulartory T cell (Treg)-mediated suppression and enhance effector T cell proliferation in a GITR/GITRL dependent way. In tumor models, DCs with high levels of GITRL were of great potential to prime cytotoxic T lymphocyte (CTL) responses and down-regulate the suppressive activity of Treg cells, thereby leading to the delayed tumor progression. CONCLUSIONS/SIGNIFICANCE These findings suggest that particulate β-glucans can be used as an immunomodulator to stimulate potent T cell-mediated adaptive immunity while down-regulate suppressive immune activity via GITR/GITRL interaction, leading to a more efficient defense mechanism against tumor development.
Collapse
MESH Headings
- Animals
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/pathology
- Gene Expression Regulation, Neoplastic/drug effects
- Immunity, Cellular/drug effects
- Immunologic Factors/immunology
- Immunologic Factors/isolation & purification
- Immunologic Factors/therapeutic use
- Lectins, C-Type/immunology
- Lung/drug effects
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Saccharomyces cerevisiae/chemistry
- Saccharomyces cerevisiae/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
- Tumor Necrosis Factors/genetics
- Tumor Necrosis Factors/immunology
- Up-Regulation/drug effects
- beta-Glucans/immunology
- beta-Glucans/isolation & purification
- beta-Glucans/therapeutic use
Collapse
Affiliation(s)
- Jie Tian
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University School of Medical Science and Laboratory Medicine, Zhenjiang, China
| | - Jie Ma
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University School of Medical Science and Laboratory Medicine, Zhenjiang, China
| | - Ke Ma
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University School of Medical Science and Laboratory Medicine, Zhenjiang, China
| | - Bin Ma
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University School of Medical Science and Laboratory Medicine, Zhenjiang, China
| | - Xinyi Tang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University School of Medical Science and Laboratory Medicine, Zhenjiang, China
| | - Samuel Essien Baidoo
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University School of Medical Science and Laboratory Medicine, Zhenjiang, China
| | - Jia Tong
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University School of Medical Science and Laboratory Medicine, Zhenjiang, China
| | - Jun Yan
- Tumor Immunobiology Program, James Graham Brown Cancer Center, University of Louisville, Kentucky, United States of America
| | - Liwei Lu
- Department of Pathology and Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
| | - Huaxi Xu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University School of Medical Science and Laboratory Medicine, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University School of Medical Science and Laboratory Medicine, Zhenjiang, China
| |
Collapse
|
48
|
Low dose zymosan ameliorates both chronic and relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol 2012; 254:28-38. [PMID: 23010280 DOI: 10.1016/j.jneuroim.2012.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/15/2012] [Accepted: 08/23/2012] [Indexed: 01/08/2023]
Abstract
Zymosan has previously been reported to have both pro-inflammatory and anti-inflammatory effects. Here we demonstrate that low dose zymosan prevented or reversed chronic and relapsing paralysis in EAE. In suppressing CNS autoimmune inflammation, zymosan not only regulated APC costimulator and MHC class II expression, but also promoted differentiation of regulatory T cells. Following adoptive transfer of zymosan-primed CD4(+) T cells, recipient mice were protected from EAE. In contrast, a MAPK inhibitor and a blocker of β-glucan, reversed the effects of zymosan. These results demonstrate that zymosan may be a promising beneficial agent for Multiple Sclerosis (MS).
Collapse
|
49
|
Grishman EK, White PC, Savani RC. Toll-like receptors, the NLRP3 inflammasome, and interleukin-1β in the development and progression of type 1 diabetes. Pediatr Res 2012; 71:626-32. [PMID: 22337228 DOI: 10.1038/pr.2012.24] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Traditionally, type 1 diabetes (T1D) has been thought of as a disease of cellular immunity, but there is increasing evidence that components of the innate immune system, controlled largely by Toll-like receptors (TLRs), play a significant role in T1D development. TLRs are pattern-recognition molecules on immune cells that recognize pathogens, leading to the production of cytokines such as interleukin-1β (IL1β, encoded by the IL1B gene). IL1β is increased in patients with newly diagnosed T1D and likely acts as an early inflammatory signal in T1D development. Because hyperglycemia is a hallmark of T1D, the effects of hyperglycemia on IL1β expression in peripheral blood mononuclear cells (PBMCs) and islet cells have been examined, but with inconsistent results, and the mechanisms leading to this increase remain unknown. Fatty acids stimulate IL1β expression and may promote inflammation, causing hyperglycemia and insulin resistance. The mechanisms by which IL1β is involved in T1D pathogenesis are controversial. Overall, studies in pancreatic β-cells suggest that IL1β-mediated damage to islet cells involves multiple downstream targets. Potential therapies to decrease the progression of T1D based on IL1β biology include pioglitazone, glyburide, IL1 receptor antagonists, and agents that remove IL1β from the circulation.
Collapse
Affiliation(s)
- Ellen K Grishman
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | |
Collapse
|
50
|
Zarpelon AC, Pinto LG, Cunha TM, Vieira SM, Carregaro V, Souza GR, Silva JS, Ferreira SH, Cunha FQ, Verri WA. Endothelin-1 induces neutrophil recruitment in adaptive inflammation via TNFα and CXCL1/CXCR2 in mice. Can J Physiol Pharmacol 2012; 90:187-99. [PMID: 22320712 DOI: 10.1139/y11-116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Endothelin mediates neutrophil recruitment during innate inflammation. Herein we address whether endothelin-1 (ET-1) is involved in neutrophil recruitment in adaptive inflammation in mice, and its mechanisms. Pharmacological treatments were used to determine the role of endothelin in neutrophil recruitment to the peritoneal cavity of mice challenged with antigen (ovalbumin) or ET-1. Levels of ET-1, tumour necrosis factor α (TNFα), and CXC chemokine ligand 1 (CXCL1) were determined by enzyme-linked immunosorbent assay. Neutrophil migration and flow cytometry analyses were performed 4 h after the intraperitoneal stimulus. ET-1 induced dose-dependent neutrophil recruitment to the peritoneal cavity. Treatment with the non-selective ET(A)/ET(B) receptor antagonist bosentan, and selective ET(A) or ET(B) receptor antagonists BQ-123 or BQ-788, respectively, inhibited ET-1- and ovalbumin-induced neutrophil migration to the peritoneal cavity. In agreement with the above, the antigen challenge significantly increased levels of ET-1 in peritoneal exudates. The ET-1- and ovalbumin-induced neutrophil recruitment were reduced in TNFR1 deficient mice, and by treatments targeting CXCL1 or CXC chemokine receptor 2 (CXCR2); further, treatment with bosentan, BQ-123, or BQ-788 inhibited ET-1- and antigen-induced production of TNFα and CXCL1. Furthermore, ET-1 and ovalbumin challenge induced an increase in the number of cells expressing the Gr1(+) markers in the granulocyte gate, CD11c(+) markers in the monocyte gate, and CD4(+) and CD45(+) (B220) markers in the lymphocyte gate in an ET(A)- and ET(B)-dependent manner, as determined by flow cytometry analysis, suggesting that ET-1 might be involved in the recruitment of neutrophils and other cells in adaptive inflammation. Therefore, the present study demonstrates that ET-1 is an important mediator for neutrophil recruitment in adaptive inflammation via TNFα and CXCL1/CXCR2-dependent mechanism.
Collapse
Affiliation(s)
- Ana C Zarpelon
- Departamento de Patologia, Centro de Ciencias Biologicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid PR445 KM380, 86051-990, Londrina, Parana, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|