1
|
Chen Z, Jiang P, Su D, Zhao Y, Zhang M. Therapeutic inhibition of the JAK-STAT pathway in the treatment of inflammatory bowel disease. Cytokine Growth Factor Rev 2024; 79:1-15. [PMID: 39179485 DOI: 10.1016/j.cytogfr.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/26/2024]
Abstract
Inflammatory bowel disease (IBD) encompasses a group of non-specific chronic intestinal inflammatory conditions of unclear etiology. The current treatment and long-term management primarily involve biologics. Nevertheless, some patients experience treatment failure or intolerance to biologics [1], making these patients a primary focus of IBD research. The Janus kinase (JAK)-Signal Transducers and Activator of Transcription (STAT) signal transduction pathway is crucial to the regulation of immune and inflammatory responses [2], and plays an important role in the pathogenesis of IBD. JAK inhibitors alleviate IBD by suppressing the transmission of JAK-STAT signaling pathway. As the first small-molecule oral inhibitor for IBD, JAK inhibitors greatly improved the treatment of IBD and have demonstrated significant efficacy, with tofacitinib and upadacitinib being approved for the treatment of ulcerative colitis (UC) [3]. JAK inhibitors can effectively alleviate intestinal inflammation in IBD patients who have failed to receive biologics, which may bring new treatment opportunities for refractory IBD patients. This review aims to elucidate the crucial roles of JAK-STAT signal transduction pathway in IBD pathogenesis, examine its role in various cell types within IBD, and explore the research progress of JAK inhibitors as therapeutic agents, paving the road for new IBD treatment strategies.
Collapse
Affiliation(s)
- Zihan Chen
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Ping Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210093, China
| | - Dan Su
- FUJIFILM Diosynth Biotechnologies, Watertown, 02472, MA, United States
| | - Yu Zhao
- University of Chicago, Pritzker School of Molecular Engineering, Chicago, IL, 60637
| | - Mingming Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.
| |
Collapse
|
2
|
Liu M, Wang S, Liang Y, Fan Y, Wang W. Genetic polymorphisms in genes involved in the type I interferon system (STAT4 and IRF5): association with Asian SLE patients. Clin Rheumatol 2024; 43:2403-2416. [PMID: 38963465 DOI: 10.1007/s10067-024-07046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/21/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Systemic lupus erythematosus (SLE) is a common autoimmune disease with a polymorphic clinical presentation involving multisystem damages with significant differences in prevalence and disease severity among different ethnic groups. Although genetic, hormonal, and environmental factors have been demonstrated to contribute a lot to SLE, the pathogenesis of SLE is still unknown. Numerous evidence revealed that gene variants within the type I interferons (IFN) signaling pathway performed the great genetic associations with autoimmune diseases including SLE. To date, through genome-wide association studies (GWAS), genetic association studies showed that more than 100 susceptibility genes have been linked to the pathogenesis of SLE, among which TYK2, STAT1, STAT4, and IRF5 are important molecules directly connected to the type I interferon signaling system. The review summarized the genetic associations and the detailed risk loci of STAT4 and IRF5 with Asian SLE patients, explored the genotype distributions associated with the main clinical manifestations of SLE, and sorted out the potential reasons for the differences in susceptibility in Asia and Europe. Moreover, the therapies targeting STAT4 and IRF5 were also evaluated in order to propose more personalized and targeted treatment plans in SLE.
Collapse
Affiliation(s)
- Mengyao Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shenglong Wang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yujiao Liang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yongsheng Fan
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Weijie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
3
|
Abstract
The JAK signaling pathway plays a major role in the immunopathology of autoimmune diseases, including inflammatory bowel disease. JAK enzymes provide novel targets for rapidly effective inflammatory bowel disease therapy, particularly in ulcerative colitis. Upadacitinib is a targeted JAK1 inhibitor. In multiple phase III clinical trials, upadacitinib has demonstrated significant improvement in clinical and endoscopic outcomes and quality of life for patients with moderate-to-severe ulcerative colitis. In this drug evaluation we describe the role of the JAK signaling pathway in ulcerative colitis, the mechanism of action of upadacitinib and the current clinical evidence for its use in ulcerative colitis; we also review its safety and tolerability, including for special populations.
Collapse
Affiliation(s)
- Ariel A Jordan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter Dr Higgins
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Gastroenterology & Hepatology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Krovi SH, Kuchroo VK. Activation pathways that drive CD4 + T cells to break tolerance in autoimmune diseases . Immunol Rev 2022; 307:161-190. [PMID: 35142369 PMCID: PMC9255211 DOI: 10.1111/imr.13071] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases are characterized by dysfunctional immune systems that misrecognize self as non-self and cause tissue destruction. Several cell types have been implicated in triggering and sustaining disease. Due to a strong association of major histocompatibility complex II (MHC-II) proteins with various autoimmune diseases, CD4+ T lymphocytes have been thoroughly investigated for their roles in dictating disease course. CD4+ T cell activation is a coordinated process that requires three distinct signals: Signal 1, which is mediated by antigen recognition on MHC-II molecules; Signal 2, which boosts signal 1 in a costimulatory manner; and Signal 3, which helps to differentiate the activated cells into functionally relevant subsets. These signals are disrupted during autoimmunity and prompt CD4+ T cells to break tolerance. Herein, we review our current understanding of how each of the three signals plays a role in three different autoimmune diseases and highlight the genetic polymorphisms that predispose individuals to autoimmunity. We also discuss the drawbacks of existing therapies and how they can be addressed to achieve lasting tolerance in patients.
Collapse
Affiliation(s)
- Sai Harsha Krovi
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Takahara M, Takaki A, Hiraoka S, Takei K, Yasutomi E, Igawa S, Yamamoto S, Oka S, Ohmori M, Yamasaki Y, Inokuchi T, Kinugasa H, Harada K, Udono H, Okada H. Metformin ameliorates chronic colitis in a mouse model by regulating interferon-γ-producing lamina propria CD4 + T cells through AMPK activation. FASEB J 2022; 36:e22139. [PMID: 35064693 DOI: 10.1096/fj.202100831rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/04/2021] [Accepted: 12/20/2021] [Indexed: 07/30/2024]
Abstract
Metformin, a commonly prescribed drug for type 2 diabetes mellitus, has been shown to activate AMP-activated protein kinase (AMPK). Notably, AMPK activation has recently been observed to be associated with anti-inflammatory responses. Metformin is also reported to elicit anti-inflammatory responses in CD4+ T cells, resulting in improvement in experimental chronic inflammatory diseases, such as systemic lupus erythematosus. To investigate the effect of metformin on inflammatory bowel disease (IBD), we developed a T cell-transfer model of chronic colitis in which SCID mice were injected with CD4+ CD45RBhigh T cells to induce colitis. We examined the effects of metformin via in vitro and in vivo experiments on lamina propria (LP) CD4+ T cells. We observed that metformin suppresses the frequency of interferon (IFN) -γ-producing LP CD4+ T cells in vitro, which were regulated by AMPK activation, a process possibly induced by the inhibition of oxidative phosphorylation. Furthermore, we examined the effects of metformin on an in vivo IBD model. Metformin-treated mice showed AMPK activation in LP CD4+ T cells and ameliorated colitis. Our study demonstrates that metformin-induced AMPK activation in mucosal CD4+ T cells contributes to the improvement of IBD by suppressing IFN-γ production. Moreover, our results indicate that AMPK may be a target molecule for the regulation of mucosal immunity and inflammation. Thus, AMPK-activating drugs such as metformin may be potential therapeutic agents for the treatment of IBD.
Collapse
Affiliation(s)
- Masahiro Takahara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sakiko Hiraoka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kensuke Takei
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Eriko Yasutomi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shoko Igawa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shumpei Yamamoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shohei Oka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masayasu Ohmori
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasushi Yamasaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshihiro Inokuchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hideaki Kinugasa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keita Harada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Heiichiro Udono
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
6
|
Gachpazan M, Akhlaghipour I, Rahimi HR, Saburi E, Mojarrad M, Abbaszadegan MR, Moghbeli M. Genetic and molecular biology of systemic lupus erythematosus among Iranian patients: an overview. AUTO- IMMUNITY HIGHLIGHTS 2021; 12:2. [PMID: 33516274 PMCID: PMC7847600 DOI: 10.1186/s13317-020-00144-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a clinicopathologically heterogeneous chronic autoimmune disorder affecting different organs and tissues. It has been reported that there is an increasing rate of SLE incidence among Iranian population. Moreover, the Iranian SLE patients have more severe clinical manifestations compared with other countries. Therefore, it is required to introduce novel methods for the early detection of SLE in this population. Various environmental and genetic factors are involved in SLE progression. MAIN BODY In present review we have summarized all of the reported genes which have been associated with clinicopathological features of SLE among Iranian patients. CONCLUSIONS Apart from the reported cytokines and chemokines, it was interestingly observed that the apoptosis related genes and non-coding RNAs were the most reported genetic abnormalities associated with SLE progression among Iranians. This review clarifies the genetics and molecular biology of SLE progression among Iranian cases. Moreover, this review paves the way of introducing an efficient panel of genetic markers for the early detection and better management of SLE in this population.
Collapse
Affiliation(s)
- Meisam Gachpazan
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Lee KMC, Achuthan AA, Hamilton JA. GM-CSF: A Promising Target in Inflammation and Autoimmunity. Immunotargets Ther 2020; 9:225-240. [PMID: 33150139 PMCID: PMC7605919 DOI: 10.2147/itt.s262566] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
The cytokine, granulocyte macrophage-colony stimulating factor (GM-CSF), was firstly identified as being able to induce in vitro the proliferation and differentiation of bone marrow progenitors into granulocytes and macrophages. Much preclinical data have indicated that GM-CSF has a wide range of functions across different tissues in its action on myeloid cells, and GM-CSF deletion/depletion approaches indicate its potential as an important therapeutic target in several inflammatory and autoimmune disorders, for example, rheumatoid arthritis. In this review, we discuss briefly the biology of GM-CSF, raise some current issues and questions pertaining to this biology, summarize the results from preclinical models of a range of inflammatory and autoimmune disorders and list the latest clinical trials evaluating GM-CSF blockade in such disorders.
Collapse
Affiliation(s)
- Kevin M C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Yang C, Mai H, Peng J, Zhou B, Hou J, Jiang D. STAT4: an immunoregulator contributing to diverse human diseases. Int J Biol Sci 2020; 16:1575-1585. [PMID: 32226303 PMCID: PMC7097918 DOI: 10.7150/ijbs.41852] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription 4 (STAT4) is a member of the STAT family and localizes to the cytoplasm. STAT4 is phosphorylated after a variety of cytokines bind to the membrane, and then dimerized STAT4 translocates to the nucleus to regulate gene expression. We reviewed the essential role played by STAT4 in a wide variety of cells and the pathogenesis of diverse human diseases, especially many kinds of autoimmune and inflammatory diseases, via activation by different cytokines through the Janus kinase (JAK)-STAT signaling pathway.
Collapse
Affiliation(s)
- Chou Yang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Haoming Mai
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Jinxin Peng
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Deke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| |
Collapse
|
9
|
Goldberg R, Scotta C, Cooper D, Nissim-Eliraz E, Nir E, Tasker S, Irving PM, Sanderson J, Lavender P, Ibrahim F, Corcoran J, Prevost T, Shpigel NY, Marelli-Berg F, Lombardi G, Lord GM. Correction of Defective T-Regulatory Cells From Patients With Crohn's Disease by Ex Vivo Ligation of Retinoic Acid Receptor-α. Gastroenterology 2019; 156:1775-1787. [PMID: 30710527 DOI: 10.1053/j.gastro.2019.01.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Crohn's disease (CD) is characterized by an imbalance of effector and regulatory T cells in the intestinal mucosa. The efficacy of anti-adhesion therapies led us to investigate whether impaired trafficking of T-regulatory (Treg) cells contributes to the pathogenesis of CD. We also investigated whether proper function could be restored to Treg cells by ex vivo expansion in the presence of factors that activate their regulatory activities. METHODS We measured levels of the integrin α4β7 on Treg cells isolated from peripheral blood or lamina propria of patients with CD and healthy individuals (controls). Treg cells were expanded ex vivo and incubated with rapamycin with or without agonists of the retinoic acid receptor-α (RARA), and their gene expression profiles were analyzed. We also studied the cells in cytokine challenge, suppression, and flow chamber assays and in SCID mice with human intestinal xenografts. RESULTS We found that Treg cells from patients with CD express lower levels of the integrin α4β7 than Treg cells from control patients. The pathway that regulates the expression of integrin subunit α is induced by retinoic acid (RA). Treg cells from patients with CD incubated with rapamycin and an agonist of RARA (RAR568) expressed high levels of integrin α4β7, as well as CD62L and FOXP3, compared with cells incubated with rapamycin or rapamycin and all-trans retinoic acid. These Treg cells had increased suppressive activities in assays and migrated under conditions of shear flow; they did not produce inflammatory cytokines, and RAR568 had no effect on cell stability or lineage commitment. Fluorescently labeled Treg cells incubated with RAR568 were significantly more likely to traffic to intestinal xenografts than Treg cells expanded in control medium. CONCLUSIONS Treg cells from patients with CD express lower levels of the integrin α4β7 than Treg cells from control patients. Incubation of patients' ex vivo expanded Treg cells with rapamycin and an RARA agonist induced expression of α4β7 and had suppressive and migratory activities in culture and in intestinal xenografts in mice. These cells might be developed for treatment of CD. ClinicalTrials.gov, Number: NCT03185000.
Collapse
Affiliation(s)
- Rimma Goldberg
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Guy's and St Thomas' NHS Foundation Trust, London, UK; School of Immunology and Microbial Sciences, King's College London, London, UK; National Institute for Health Research Biomedical Research Centre, Guy's and St Thomas' NHS Trust and King's College London, London, UK
| | - Cristiano Scotta
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Dianne Cooper
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Einat Nissim-Eliraz
- Department of Respiratory Medicine and Allergy, King's College London, London, UK
| | - Eilam Nir
- Department of Respiratory Medicine and Allergy, King's College London, London, UK
| | - Scott Tasker
- School of Immunology and Microbial Sciences, King's College London, London, UK; National Institute for Health Research Biomedical Research Centre, Guy's and St Thomas' NHS Trust and King's College London, London, UK
| | - Peter M Irving
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jeremy Sanderson
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Paul Lavender
- Department of Respiratory Medicine and Allergy, King's College London, London, UK
| | - Fowzia Ibrahim
- Department of Rheumatology, King's College London School of Medicine, Weston Education Centre, King's College London, London, UK
| | - Jonathan Corcoran
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | - Toby Prevost
- Imperial Clinical Trials Unit, Imperial College London, London, UK
| | - Nahum Y Shpigel
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Giovanna Lombardi
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Graham M Lord
- School of Immunology and Microbial Sciences, King's College London, London, UK; National Institute for Health Research Biomedical Research Centre, Guy's and St Thomas' NHS Trust and King's College London, London, UK.
| |
Collapse
|
10
|
Imam T, Park S, Kaplan MH, Olson MR. Effector T Helper Cell Subsets in Inflammatory Bowel Diseases. Front Immunol 2018; 9:1212. [PMID: 29910812 PMCID: PMC5992276 DOI: 10.3389/fimmu.2018.01212] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/15/2018] [Indexed: 12/30/2022] Open
Abstract
The gastrointestinal tract is a site of high immune challenge, as it must maintain a delicate balance between tolerating luminal contents and generating an immune response toward pathogens. CD4+ T cells are key in mediating the host protective and homeostatic responses. Yet, CD4+ T cells are also known to be the main drivers of inflammatory bowel disease (IBD) when this balance is perturbed. Many subsets of CD4+ T cells have been identified as players in perpetuating chronic intestinal inflammation. Over the last few decades, understanding of how each subset of Th cells plays a role has dramatically increased. Simultaneously, this has allowed development of therapeutic innovation targeting specific molecules rather than broad immunosuppressive agents. Here, we review the emerging evidence of how each subset functions in promoting and sustaining the chronic inflammation that characterizes IBD.
Collapse
Affiliation(s)
- Tanbeena Imam
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sungtae Park
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Mark H Kaplan
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Matthew R Olson
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
11
|
Ebrahimiyan H, Rezaei R, Mostafaei S, Aslani S, Goulielmos GN, Jamshidi A, Mahmoudi M. Association study between STAT4 polymorphisms and susceptibility to systemic lupus erythematosus disease: A systematic review and meta-analysis. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Nan Y, Wu C, Zhang YJ. Interferon Independent Non-Canonical STAT Activation and Virus Induced Inflammation. Viruses 2018; 10:v10040196. [PMID: 29662014 PMCID: PMC5923490 DOI: 10.3390/v10040196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/07/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023] Open
Abstract
Interferons (IFNs) are a group of secreted proteins that play critical roles in antiviral immunity, antitumor activity, activation of cytotoxic T cells, and modulation of host immune responses. IFNs are cytokines, and bind receptors on cell surfaces to trigger signal transduction. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, a complex pathway involved in both viral and host survival strategies. On the one hand, viruses have evolved strategies to escape from antiviral host defenses evoked by IFN-activated JAK/STAT signaling. On the other hand, viruses have also evolved to exploit the JAK/STAT pathway to evoke activation of certain STATs that somehow promote viral pathogenesis. In this review, recent progress in our understanding of the virus-induced IFN-independent STAT signaling and its potential roles in viral induced inflammation and pathogenesis are summarized in detail, and perspectives are provided.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA.
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
13
|
Zhang Y, Chen Y, Yun H, Liu Z, Su M, Lai R. STAT1β enhances STAT1 function by protecting STAT1α from degradation in esophageal squamous cell carcinoma. Cell Death Dis 2017; 8:e3077. [PMID: 28981100 PMCID: PMC5682650 DOI: 10.1038/cddis.2017.481] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 02/05/2023]
Abstract
STAT1, which carries tumor suppressor functions in several models, consists of two isoforms, namely STAT1α and STAT1β. The biological function and significance of STAT1β has never been examined in human cancer. We examined STAT1β function in esophageal squamous cell carcinoma (ESCC) by transfecting a STAT1β gene into various ESCC cell lines. The interaction between STAT1α and STAT1β was examined by using co-immunoprecipitation and confocal microscopy. The prognostic significance of STAT1β expression, detectable by immunohistochemistry and western blot, was evaluated in a large cohort of ESCC patients. Enforced expression of STAT1β induced and prolonged the expression and phosphorylation of STAT1α in ESCC cells, and these effects were amplified by gamma-interferon (IFN-γ). We also found that STAT1β interacts with STAT1α and decreases STAT1α degradation by the proteasome. Moreover, STAT1β substantially increased the DNA binding and transcription activity of STAT1. STAT1β also sensitized ESCC cells to chemotherapeutic agents, including cisplatin and 5-flurouracil. Using western blot and immunohistochemistry, we found that STAT1β was frequently decreased in esophageal cancer, as compared to their adjacent benign esophageal epithelial tissue. Loss of STAT1β significantly correlated with lymph node metastasis, invasion and shorter overall survival in ESCC patients. Therefore, STAT1β plays a key role in enhancing the tumor suppressor function of STAT1α, in ESCC, in a manner that can be amplified by IFN-γ.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong Province, China
- Department of Pathology, Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong 515041, China. Tel: 0086 89920746; Fax: +86 754 88 900 429; E-mail:
| | - Yelong Chen
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong Province, China
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, China
| | - Hailong Yun
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Zhaoyong Liu
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, China
| | - Min Su
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Goswami R, Kaplan M. STAT Transcription Factors in T Cell Control of Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:123-180. [DOI: 10.1016/bs.ircmb.2016.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Shiomi A, Usui T, Mimori T. GM-CSF as a therapeutic target in autoimmune diseases. Inflamm Regen 2016; 36:8. [PMID: 29259681 PMCID: PMC5725926 DOI: 10.1186/s41232-016-0014-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been known as a hematopoietic growth factor and immune modulator. Recent studies revealed that GM-CSF also had pro-inflammatory functions and contributed to the pathogenicity of Th17 cells in the development of Th17-mediated autoimmune diseases. GM-CSF inhibition in some animal models of autoimmune diseases showed significant beneficial effects. Therefore, several agents targeting GM-CSF are being developed and are expected to be a useful strategy for the treatment of autoimmune diseases. Particularly, in clinical trials for rheumatoid arthritis (RA) patients, GM-CSF inhibition showed rapid and significant efficacy with no serious side effects. This article summarizes recent findings of GM-CSF and information of clinical trials targeting GM-CSF in autoimmune diseases.
Collapse
Affiliation(s)
- Aoi Shiomi
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54-Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Takashi Usui
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54-Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54-Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| |
Collapse
|
16
|
Zamani MR, Salmaninejad A, Akbari Asbagh F, Masoud A, Rezaei N. STAT4 single nucleotide gene polymorphisms and susceptibility to endometriosis-related infertility. Eur J Obstet Gynecol Reprod Biol 2016; 203:20-4. [PMID: 27235632 DOI: 10.1016/j.ejogrb.2016.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/01/2016] [Accepted: 05/04/2016] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Endometriosis is a multifactorial benign gynecologic disorder, characterized by the ectopic growth of misplaced endometrial cells with complex genetic inheritance and changing of some immune based factors and also shares some autoimmune characteristics. However, it is not clear yet that how and when these immunological factors affect the initiation or progression of the disease. It has been shown that STAT4 is a predisposing gene in the development of some autoimmune diseases. METHOD The study group comprised 114 patients with endometriosis and 92 sex-, age-, and ethnicity-matched healthy controls of Iranian ancestry. Four SNPs (rs7574865, rs7601754, rs7582694 and rs11889341) were genotyped using the MGB TaqMan. RESULTS A significant association in rs7582694 between C allele (P=0.002, OR=1.986, 95% CI: 1.262-3.126) and endometriosis was found in our study, while the G allele (P=0.002, OR=0.0503, 95% CI: 0.319-0.792) was significantly decreased in the patients population. The GC genotype (P=0.004, OR=2.234, 95% CI: 1.301-4.150) was also significantly overrepresented in the patients with endometriosis, while the frequency of GG genotype was significantly lower in the patient group, compared to the controls (P=0.007, OR=0.457, 95% CI: 0.256-0.813). CONCLUSIONS Our results for the first time showed a significant association between rs7582694 alleles and genotypes and susceptibility to endometriosis in a population.
Collapse
Affiliation(s)
- Mohammad Reza Zamani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Autoimmunity and Malignancy (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arash Salmaninejad
- Network of Immunity in Infection, Autoimmunity and Malignancy (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Medical Genetics Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Firouzeh Akbari Asbagh
- Department of Obstetrics and Gynecology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Masoud
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Autoimmunity and Malignancy (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Integrating Immunologic Signaling Networks: The JAK/STAT Pathway in Colitis and Colitis-Associated Cancer. Vaccines (Basel) 2016; 4:vaccines4010005. [PMID: 26938566 PMCID: PMC4810057 DOI: 10.3390/vaccines4010005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022] Open
Abstract
Cytokines are believed to be crucial mediators of chronic intestinal inflammation in inflammatory bowel diseases (IBD) such as Crohn's disease (CD) and ulcerative colitis (UC). Many of these cytokines trigger cellular effects and functions through signaling via janus kinase (JAK) and signal transducer and activator of transcription (STAT) molecules. In this way, JAK/STAT signaling controls important events like cell differentiation, secretion of cytokines or proliferation and apoptosis in IBD in both adaptive and innate immune cells. Moreover, JAK/STAT signaling, especially via the IL-6/STAT3 axis, is believed to be involved in the transition of inflammatory lesions to tumors leading to colitis-associated cancer (CAC). In this review, we will introduce the main cellular players and cytokines that contribute to pathogenesis of IBD by JAK/STAT signaling, and will highlight the integrative function that JAK/STATs exert in this context as well as their divergent role in different cells and processes. Moreover, we will explain current concepts of the implication of JAK/STAT signaling in CAC and finally discuss present and future therapies for IBD that interfere with JAK/STAT signaling.
Collapse
|
18
|
Yamada A, Arakaki R, Saito M, Tsunematsu T, Kudo Y, Ishimaru N. Role of regulatory T cell in the pathogenesis of inflammatory bowel disease. World J Gastroenterol 2016; 22:2195-205. [PMID: 26900284 PMCID: PMC4734996 DOI: 10.3748/wjg.v22.i7.2195] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 11/11/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Regulatory T (Treg) cells play key roles in various immune responses. For example, Treg cells contribute to the complex pathogenesis of inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis during onset or development of that disease. Many animal models of IBD have been used to investigate factors such as pathogenic cytokines, pathogenic bacteria, and T-cell functions, including those of Treg cells. In addition, analyses of patients with IBD facilitate our understanding of the precise mechanism of IBD. This review article focuses on the role of Treg cells and outlines the pathogenesis and therapeutic strategies of IBD based on previous reports.
Collapse
|
19
|
Liu QF, Li Y, Zhao QH, Wang ZY, Hu S, Yang CQ, Ye K, Li L. Association of STAT4 rs7574865 polymorphism with susceptibility to inflammatory bowel disease: A systematic review and meta-analysis. Clin Res Hepatol Gastroenterol 2015; 39:627-36. [PMID: 26066297 DOI: 10.1016/j.clinre.2015.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/24/2015] [Accepted: 04/21/2015] [Indexed: 02/09/2023]
Abstract
OBJECTIVE Association of Signal transducers and activators of transcription-4 (STAT4) gene polymorphism with susceptibility to inflammatory bowel disease have been investigated in a number of epidemiological studies, but the results are inclusive. The aim of this meta-analysis was to more precisely estimate the relationship. METHODS The databases of Pubmed and CBM updated to October, 2014 were retrieved. Random- or fixed-effect model was used to estimate odd radio (OR) and corresponding 95% confidence interval (95%CI) on the basis of heterogeneity. RESULTS Seven articles containing 2196 Crohn's disease (CD) cases, 1588 ulcerative colitis (UC) cases and 4126 controls were identified. We detected a significant association between STAT4 rs7574865 polymorphism and IBD susceptibility in overall population (GG vs. GT+TT, OR=0.855, 95% CI=0.760-0.962, P=0.009), but not in Caucasian and Asian population, respectively. No association was detected between rs7574865 polymorphism and CD susceptibility in overall, Asian and Caucasian population, respectively. Interestingly, a significant association was detected between rs7574865 with UC susceptibility in overall population (G vs. T, OR=0.881, 95% CI=0.798-0.972, P=0.012; GG vs. GT+TT, OR=0.788, 95% CI=0.679-0.914, P=0.002; GG vs. TT, OR=0.683, 95% CI=0.498-0.937, P=0.018) and Caucasians (GG vs. GT+TT, OR=0.833, 95% CI=0.701-0.990, P=0.038; GG+GT vs. TT, OR=0.667, 95% CI=0.456-0.975, P=0.037; GG vs. TT, OR=0.636, 95% CI=0.433-0.934, P=0.021), respectively, and a possible association was found in Asian population (GG vs. GT+TT, OR=0.709, 95% CI=0.503-0.998, P=0.049). CONCLUSIONS STAT4 rs7574865 gene is IBD risk factor, and this gene polymorphism is associated with UC susceptibility, especially in Caucasians. To confirm these findings, further studies with more sample size are required for a definitive conclusion.
Collapse
Affiliation(s)
- Qi-Fei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui Province 230601, China
| | - Yi Li
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui Province 230601, China
| | - Qi-Hong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui Province 230601, China
| | - Zheng-Yu Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui Province 230601, China
| | - Shuang Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui Province 230601, China
| | - Chao-Qun Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui Province 230601, China
| | - Kui Ye
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui Province 230601, China
| | - Li Li
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui Province 230601, China.
| |
Collapse
|
20
|
Abstract
BACKGROUND Crohn's disease (CD) and ulcerative colitis (UC) are the major forms of inflammatory bowel disease, and pathogenesis involves a complex interplay among genetic, environmental, and immunological factors. We evaluated isoform expression of the IL-12-activated transcription factor STAT4 in children with CD and UC. METHODS We collected biopsy samples from both patients newly diagnosed with CD and with UC. We further collected blood samples from patients newly diagnosed with CD and with UC as well as from patients who had a flare-up after being in clinical remission, and we examined the ratios of STAT4β/STAT4α mRNA. In addition to STAT4 isoforms, we measured the expression of the cytokines TNFα, IFNγ, granulocyte macrophage-colony stimulating factor, and IL-17 using polymerase chain reaction of biopsy samples and multiplex analysis of patient serum samples. RESULTS Ratios of STAT4β/STAT4α were increased in specific gastrointestinal tract segments in both patients with CD and those with UC that correlate with the location and severity of inflammation. In contrast, we did not observe changes in STAT4β/STAT4α ratios in biopsy specimens from patients with eosinophilic esophagitis. We also observed increased STAT4β/STAT4α ratios in the peripheral blood mononuclear cells of patients with UC and those with CD, compared with healthy controls. Ratios were normalized after patients were treated with steroids. CONCLUSIONS Collectively, these data indicate that STAT4 isoforms could be an important noninvasive biomarker in the diagnosis and treatment of inflammatory bowel disease and that expression of these isoforms might provide further insight into the pathogenesis of IBD.
Collapse
|
21
|
STAT4 controls GM-CSF production by both Th1 and Th17 cells during EAE. J Neuroinflammation 2015; 12:128. [PMID: 26123499 PMCID: PMC4491892 DOI: 10.1186/s12974-015-0351-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/19/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, mice genetically deficient in the transcription factor signal transducer and activator of transcription 4 (STAT4) are resistant to disease. In contrast, deletion or inhibition of the Th1-associated cytokines IL-12 or IFNγ which act upstream and downstream of STAT4, respectively, does not ameliorate disease. These discordant findings imply that STAT4 may act in a non-canonical role during EAE. Recently, STAT4 has been shown to regulate GM-CSF production by CD4 T cells and this cytokine is necessary for the induction of EAE. However, it is not known if STAT4 controls GM-CSF production by both Th1 and Th17 effector CD4 T cells. METHODS This study utilized the MOG(35-55) peptide immunization model of EAE. Intracellular cytokine staining and novel mixed bone marrow chimeric mice were used to study the CD4 T cell-intrinsic role of STAT4 during disease. STAT4 chromatin-immunoprecipitation (ChIP-PCR) experiments were performed to show STAT4 directly interacts with the Csf2 gene loci. RESULTS Herein, we demonstrate that STAT4 controls CD4 T cell-intrinsic GM-CSF production by both Th1 and Th17 CD4 T cells during EAE as well as in vitro. Importantly, we show that STAT4 interacts with the Csf2 locus in MOG(35-55)-activated effector CD4 T cells demonstrating direct modulation of GM-CSF. CONCLUSIONS Overall, these studies illustrate a previously unrecognized role of STAT4 to regulate GM-CSF production by not only Th1 cells, but also Th17 effector CD4 T cell subsets during EAE pathogenesis. Critically, these data highlight for the first time that STAT4 is able to modulate the effector profile of Th17 CD4 T cell subsets, which redefines our current understanding of STAT4 as a Th1-centric factor.
Collapse
|
22
|
Mirkazemi S, Akbarian M, Jamshidi AR, Mansouri R, Ghoroghi S, Salimi Y, Tahmasebi Z, Mahmoudi M. Association of STAT4 rs7574865 with susceptibility to systemic lupus erythematosus in Iranian population. Inflammation 2014; 36:1548-52. [PMID: 23912645 DOI: 10.1007/s10753-013-9698-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease with complex genetic inheritance that affecting different organs and systems. STAT4 has been newly identified as a susceptible gene in the development of SLE. According to recent studies, STAT4 has been associated with SLE in various populations. We investigated whether STAT4 single nucleotide polymorphisms (SNPs) were associated with susceptibility and clinical features of SLE in Iranian patients. The study group comprised 280 patients with SLE and 281 sex-, age-, and ethnicity-matched healthy controls of Iranian ancestry. Two SNPs (rs7574865 and rs7601754) were genotyped using the TaqMan MGB Allelic Discrimination method. Our results showed a significant association between rs7574865 T allele (odds ratio (OR) = 1.50, 95 % CI = 1.18-1.92, P = 0.002) and susceptibility to SLE. The rs7574865TT genotype (P = 0.02, OR = 1.94, 95 % CI = 1.74-3.19) and GT genotype (P = 0.008, OR = 1.71, 95 % CI = 1.19-2.45) showed a significant association with the risk of SLE in the Iranian population. We concluded that STAT4 rs7574865 is associated with SLE susceptibility in the Iranian population and this SNP might be a factor in the pathogenesis of SLE. However, further studies are required to investigate the mechanism by which polymorphisms in this gene lead to SLE.
Collapse
Affiliation(s)
- Sedigheh Mirkazemi
- Immunology Department, Shahid Sadoughi University of Medical Sciences (International Campus), Yazd, Iran
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
INTRODUCTION STAT4, which acts as the major signaling transducing STATs in response to IL-12, is a central mediator in generating inflammation during protective immune responses and immune-mediated diseases. AREAS COVERED This review summarizes that STAT4 is essential for the differentiation and function of a wide variety of immune cells, including natural killer cells, mast cells, dendritic cells and T helper cells. In addition, STAT4-mediated signaling promoted the production of autoimmune-associated components, which are implicated in the pathogenesis of autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis and psoriasis. EXPERT OPINION Due to its crucial roles in inflammation and autoimmunity, STAT4 may have promise as an effective therapeutic target for autoimmune diseases. Understanding the molecular mechanisms driving STAT4, together with knowledge on the ability of current immunosuppressive treatment to target this process, may open an avenue to novel therapeutic options.
Collapse
Affiliation(s)
- Yan Liang
- Anhui Medical University, School of Public Health, Department of Epidemiology and Biostatistics , Anhui, PR China
| | | | | |
Collapse
|
24
|
STAT1β is not dominant negative and is capable of contributing to gamma interferon-dependent innate immunity. Mol Cell Biol 2014; 34:2235-48. [PMID: 24710278 DOI: 10.1128/mcb.00295-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transcription factor STAT1 is essential for interferon (IFN)-mediated immunity in humans and mice. STAT1 function is tightly regulated, and both loss- and gain-of-function mutations result in severe immune diseases. The two alternatively spliced isoforms, STAT1α and STAT1β, differ with regard to a C-terminal transactivation domain, which is absent in STAT1β. STAT1β is considered to be transcriptionally inactive and to be a competitive inhibitor of STAT1α. To investigate the functions of the STAT1 isoforms in vivo, we generated mice deficient for either STAT1α or STAT1β. As expected, the functions of STAT1α and STAT1β in IFN-α/β- and IFN-λ-dependent antiviral activity are largely redundant. In contrast to the current dogma, however, we found that STAT1β is transcriptionally active in response to IFN-γ. In the absence of STAT1α, STAT1β shows more prolonged IFN-γ-induced phosphorylation and promoter binding. Both isoforms mediate protective, IFN-γ-dependent immunity against the bacterium Listeria monocytogenes, although with remarkably different efficiencies. Our data shed new light on the potential contributions of the individual STAT1 isoforms to STAT1-dependent immune responses. Knowledge of STAT1β's function will help fine-tune diagnostic approaches and help design more specific strategies to interfere with STAT1 activity.
Collapse
|
25
|
Mollo SB, Ingram JT, Kress RL, Zajac AJ, Harrington LE. Virus-specific CD4 and CD8 T cell responses in the absence of Th1-associated transcription factors. J Leukoc Biol 2013; 95:705-713. [PMID: 24231259 DOI: 10.1189/jlb.0813429] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/25/2013] [Accepted: 10/14/2013] [Indexed: 12/24/2022] Open
Abstract
Effector and memory CD4 and CD8 T cell responses are critical for the control of many intracellular pathogens. The development of these populations is governed by transcription factors that molecularly control their differentiation, function, and maintenance. Two transcription factors known to be involved in these processes are Tbet and STAT4. Although Tbet has been shown to regulate CD8 T cell fate decisions and effector CD4 T cell choices, the contribution of STAT4 is less well understood. To address this, we examined the impact of STAT4 on T cell responses in the presence or absence of Tbet, following LCMV infection by using mice lacking Tbet, STAT4, or both transcription factors. STAT4 was not required for Tbet or Eomes expression; however, virus-specific effector CD8 T cells are skewed toward a memory-precursor phenotype in the absence of STAT4. This altered proportion of memory precursors did not result in an increase in memory CD8 T cells after the resolution of the infection. We also demonstrate that virus-specific effector and memory CD4 T cells formed independently of Tbet and STAT4, although a slight reduction in the number of antigen-specific CD4 T cells was apparent in mice lacking both transcription factors. Collectively, we have discovered distinct roles for Tbet and STAT4 in shaping the phenotype and function of virus-specific T cell responses.
Collapse
Affiliation(s)
- Sarah B Mollo
- Departments of Cell, Developmental, and Integrative Biology
| | - Jennifer T Ingram
- Biology, and.,Microbiology, University of Alabama at Birmingham, Alabama, USA
| | - Robert L Kress
- Departments of Cell, Developmental, and Integrative Biology
| | - Allan J Zajac
- Microbiology, University of Alabama at Birmingham, Alabama, USA
| | | |
Collapse
|
26
|
Abnormal genetic and epigenetic changes in signal transducer and activator of transcription 4 in the pathogenesis of inflammatory bowel diseases. Dig Dis Sci 2012; 57:2600-7. [PMID: 22569826 DOI: 10.1007/s10620-012-2199-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 04/14/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Changes in the expression of signal transducer and activator of transcription 4 (STAT4) contribute to the development of a variety of autoimmune diseases including inflammatory bowel diseases (IBDs). Moreover, epigenetic modifications, including DNA methylation, are considered a basis for differentiation of T helper cells and regulation of cytokines. In this study, we investigated the methylation status of STAT4 gene in IBD patients and the associations between its genetic and epigenetic alterations in IBD patients. METHODS Blood and colonic mucosa samples were obtained from Korean patients with IBD and healthy controls. Peripheral blood mononuclear cells (PBMCs) were isolated, and total RNA and genomic DNA were isolated from the PBMCs and colon mucosa tissues. The mRNA level and DNA methylation status of the promoter were determined by real-time RT-PCR and pyrosequencing, respectively. The chosen SNPs (rs11889341, rs7574865, rs8179673, rs6752770, rs925847, rs10168266, rs10181656, and rs11685878) were genotyped using the TaqMan nuclease assay. RESULTS Elevated expression of STAT4 was observed in the colonic mucosa and PBMCs of IBD patients. IBD patients showed a lower degree of methylation of the STAT4 promoter than did the healthy controls. Moreover, a significant correlation between risk alleles and methylation status at -172 of the STAT4 promoter was observed, and mRNA levels of STAT4 in IBD patients were correlated inversely with the T-risk allele (rs7574865). CONCLUSIONS Our data demonstrated that the DNA methylation status of STAT4 is associated with genetic polymorphisms, providing insights into the interactions between genetic and epigenetic aberrances in STAT4 that contribute to the development of IBD.
Collapse
|
27
|
Evidence for STAT4 as a common autoimmune gene: rs7574865 is associated with colonic Crohn's disease and early disease onset. PLoS One 2010; 5:e10373. [PMID: 20454450 PMCID: PMC2861592 DOI: 10.1371/journal.pone.0010373] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 04/01/2010] [Indexed: 12/19/2022] Open
Abstract
Background Recent studies demonstrated an association of STAT4 variants with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), indicating that multiple autoimmune diseases share common susceptibility genes. We therefore investigated the influence of STAT4 variants on the susceptibility and phenotype of inflammatory bowel diseases (IBD) in a large patient and control cohort. Methodology/Principal Findings Genomic DNA from 2704 individuals of Caucasian origin including 857 patients with Crohn's disease (CD), 464 patients with ulcerative colitis (UC), and 1383 healthy, unrelated controls was analyzed for seven SNPs in the STAT4 gene (rs11889341, rs7574865, rs7568275, rs8179673, rs10181656, rs7582694, rs10174238). In addition, a detailed genotype-phenotype analysis was performed. Our analysis revealed an association of the STAT4 SNP rs7574865 with overall decreased susceptibility to CD (p = 0.047, OR 0.86 [95% CI 0.74–0.99]). However, compared to CD patients carrying the wild type genotype, the STAT4 SNP rs7574865 was significantly associated with early CD onset (p = 0.021) and colonic CD (p = 0.008; OR = 4.60, 95% CI 1.63–12.96). For two other STAT4 variants, there was a trend towards protection against CD susceptibility (rs7568275, p = 0.058, OR 0.86 [95% CI 0.74–1.00]; rs10174238, p = 0.057, OR 0.86 [95% CI 0.75–1.00]). In contrast, we did not observe any association with UC susceptibility. Evidence for weak gene-gene interaction of STAT4 with the IL23R SNP rs11209026 was lost after Bonferroni correction. Conclusions/Significance Our results identified the STAT4 SNP rs7574865 as a disease-modifying gene variant in colonic CD. However, in contrast to SLE and RA, the effect of rs7574865 on CD susceptibility is only weak.
Collapse
|
28
|
STAT4 gene influences genetic predisposition to ulcerative colitis but not Crohn's disease in the Spanish population: a replication study. Hum Immunol 2010; 71:515-9. [PMID: 20153791 DOI: 10.1016/j.humimm.2010.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 01/21/2010] [Accepted: 02/01/2010] [Indexed: 12/12/2022]
Abstract
Recently, the signal transducer and activator of transcription 4 (STAT4) gene has been associated with multiple autoimmune diseases. Interestingly, a recent work showed that the T allele of the rs7574865 STAT4 SNP was associated with inflammatory bowel disease (IBD) in a Spanish population. The aim of the present study was to reevaluate the role of the STAT4 rs7574865 polymorphism on IBD. The present case-control study included 498 Crohn's disease (CD) patients, 402 ulcerative colitis (UC) patients, and 1296 healthy matched controls. Genotyping was performed using a PCR system with a pre-developed TaqMan allelic discrimination assay for the rs7574865 STAT4 SNP. Moreover, a meta-analysis was performed with the previous work in a Spanish population and the current study, including a final sample size of 1574 IBD patients (820 with CD and 754 with UC) and 2012 healthy controls. No evidence of association was found for the current case-control study (CD: p = 0.23, OR = 0.9, 95% CI = 0.75-1.1; UC: p = 0.17, OR = 1.14, 95% CI = 0.95-1.38). However, the meta-analysis showed that the STAT4 rs7574865 T allele was significantly associated with susceptibility to UC (p = 0.012 pooled; OR = 1.20, 95% CI = 1.04-1.39) but not CD (p = 0.71 pooled; OR = 0.93, 95% CI = 0.65-1.34). Our data suggest that the rs7574865 STAT4 SNP is a genetic susceptibility variant for UC but not CD in the Spanish population.
Collapse
|
29
|
O'Malley JT, Sehra S, Thieu VT, Yu Q, Chang HC, Stritesky GL, Nguyen ET, Mathur AN, Levy DE, Kaplan MH. Signal transducer and activator of transcription 4 limits the development of adaptive regulatory T cells. Immunology 2009; 127:587-95. [PMID: 19604309 DOI: 10.1111/j.1365-2567.2008.03037.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
T-cell responses to a cytokine milieu instruct the development of multiple effector phenotypes. While transforming growth factor-beta(1) (TGF-beta(1)) inhibits the development of T helper type 1 (Th1) and Th2 cells, we demonstrate that like interleukin-6 (IL-6) and IL-4, IL-12 can inhibit the development of TGF-beta(1)-induced Foxp3-expressing adaptive T regulatory (aTreg) cells. Signal transducer and activator of transcription 4 (STAT4) is critical for the response to IL-12, although there is a parallel pathway involving T box expressed in T cells (T-bet), and cells from mice double-deficient in STAT4 and T-bet are refractory to the inhibition of aTreg-cell development by IL-12. While the ability of these cytokines to promote Th differentiation may contribute to this effect, we observe that culture with IL-12, or other instructive cytokines, results in an increase in repressive chromatin modifications at the Foxp3 locus that limit STAT5 binding to Foxp3, without observed effects on IL-2 signalling pathways. In a model of allergic lung inflammation there are increased percentages of Treg cells in the lungs of Stat4(-/-) mice, compared with wild-type mice, and increases in Treg cells correlate with decreased allergic inflammation. Overall, these results suggest an important role for STAT4 in regulating Treg-cell development.
Collapse
Affiliation(s)
- John T O'Malley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
IL-12 activates STAT4, which is a critical regulator of inflammation and T helper type I (Th1) lineage development in murine systems. The requirement for STAT4 in the generation of human Th1 cells has not been examined thoroughly. Compared with control Th1 cultures, expression of the Th1 genes IFNgamma, IL-12Rbeta2, and TNFalpha is greatly reduced in Th1 cultures of CD4 T cells isolated from lymphoma patients after autologous stem cell transplantation who have acquired STAT4 deficiency. Moreover, IL-4 and IL-5 production is increased in patient Th1 cultures though there are no defects in the development of Th2 cells. Reconstitution of STAT4 in patient T cells allowed recovery of IFNgamma and IL-12Rbeta2 expression, whereas ectopic expression of IL-12Rbeta2 did not rescue STAT4 expression, and increased IFNgamma production only to levels intermediate between control and patient samples. These results demonstrate that, as in murine systems, STAT4 is required for optimal human Th1 lineage development.
Collapse
|