1
|
Liu J, Hou W, Zong Z, Chen Y, Liu X, Zhang R, Deng H. Supplementation of nicotinamide mononucleotide diminishes COX-2 associated inflammatory responses in macrophages by activating kynurenine/AhR signaling. Free Radic Biol Med 2024; 214:69-79. [PMID: 38336100 DOI: 10.1016/j.freeradbiomed.2024.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Cyclooxygenase-2 (COX-2) is an inducible enzyme responsible for prostaglandin synthesis during inflammation and immune responses. Our previous results show that NAD+ level decreased in activated macrophages while nicotinamide mononucleotide (NMN) supplementation suppressed the inflammatory responses via restoring NAD+ level and downregulating COX-2. However, whether NMN downregulates COX-2 in mouse model of inflammation, and its underlying mechanism needs to be further explored. In the present study, we established LPS- and alum-induced inflammation model and demonstrated that NMN suppressed the inflammatory responses in vivo. Quantitative proteomics in mouse peritoneal macrophages identified that NMN activated AhR signaling pathway in activated macrophages. Furthermore, we revealed that NMN supplementation led to IDO1 activation and kynurenine accumulation, which caused AhR nuclear translocation and activation. On the other hand, AhR or IDO1 knockout abolished the effects of NMN on suppressing COX-2 expression and inflammatory responses in macrophages. In summary, our results demonstrated that NMN suppresses inflammatory responses by activating IDO-kynurenine-AhR pathway, and suggested that administration of NMN in early-stage immuno-activation may cause an adverse health effect.
Collapse
Affiliation(s)
- Jing Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenxuan Hou
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhaoyun Zong
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohui Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ran Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Sun XX, Nosrati Z, Ko J, Lee CM, Bennewith KL, Bally MB. Induced Vascular Normalization-Can One Force Tumors to Surrender to a Better Microenvironment? Pharmaceutics 2023; 15:2022. [PMID: 37631236 PMCID: PMC10458586 DOI: 10.3390/pharmaceutics15082022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Immunotherapy has changed the way many cancers are being treated. Researchers in the field of immunotherapy and tumor immunology are investigating similar questions: How can the positive benefits achieved with immunotherapies be enhanced? Can this be achieved through combinations with other agents and if so, which ones? In our view, there is an urgent need to improve immunotherapy to make further gains in the overall survival for those patients that should benefit from immunotherapy. While numerous different approaches are being considered, our team believes that drug delivery methods along with appropriately selected small-molecule drugs and drug candidates could help reach the goal of doubling the overall survival rate that is seen in some patients that are given immunotherapeutics. This review article is prepared to address how immunotherapies should be combined with a second treatment using an approach that could realize therapeutic gains 10 years from now. For context, an overview of immunotherapy and cancer angiogenesis is provided. The major targets in angiogenesis that have modulatory effects on the tumor microenvironment and immune cells are highlighted. A combination approach that, for us, has the greatest potential for success involves treatments that will normalize the tumor's blood vessel structure and alter the immune microenvironment to support the action of immunotherapeutics. So, this is reviewed as well. Our focus is to provide an insight into some strategies that will engender vascular normalization that may be better than previously described approaches. The potential for drug delivery systems to promote tumor blood vessel normalization is considered.
Collapse
Affiliation(s)
- Xu Xin Sun
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Interdisciplinary Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- NanoMedicines Innovation Network, Vancouver, BC V6T 1Z3, Canada
- Cuprous Pharmaceuticals, Vancouver, BC V6N 3P8, Canada
| | - Zeynab Nosrati
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Interdisciplinary Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Cuprous Pharmaceuticals, Vancouver, BC V6N 3P8, Canada
| | - Janell Ko
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
| | - Che-Min Lee
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kevin L. Bennewith
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marcel B. Bally
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Interdisciplinary Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- NanoMedicines Innovation Network, Vancouver, BC V6T 1Z3, Canada
- Cuprous Pharmaceuticals, Vancouver, BC V6N 3P8, Canada
- Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
3
|
Năstase AM, Barrett MP, Cárdenas WB, Cordeiro FB, Zambrano M, Andrade J, Chang J, Regato M, Carrillo E, Botana L, Moreno J, Regnault C, Milne K, Spence PJ, Rowe JA, Rogers S. Alignment of multiple metabolomics LC-MS datasets from disparate diseases to reveal fever-associated metabolites. PLoS Negl Trop Dis 2023; 17:e0011133. [PMID: 37486920 PMCID: PMC10399774 DOI: 10.1371/journal.pntd.0011133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/01/2023] [Indexed: 07/26/2023] Open
Abstract
Acute febrile illnesses are still a major cause of mortality and morbidity globally, particularly in low to middle income countries. The aim of this study was to determine any possible metabolic commonalities of patients infected with disparate pathogens that cause fever. Three liquid chromatography-mass spectrometry (LC-MS) datasets investigating the metabolic effects of malaria, leishmaniasis and Zika virus infection were used. The retention time (RT) drift between the datasets was determined using landmarks obtained from the internal standards generally used in the quality control of the LC-MS experiments. Fitted Gaussian Process models (GPs) were used to perform a high level correction of the RT drift between the experiments, which was followed by standard peakset alignment between the samples with corrected RTs of the three LC-MS datasets. Statistical analysis, annotation and pathway analysis of the integrated peaksets were subsequently performed. Metabolic dysregulation patterns common across the datasets were identified, with kynurenine pathway being the most affected pathway between all three fever-associated datasets.
Collapse
Affiliation(s)
- Ana-Maria Năstase
- School of Infection & Immunity, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Michael P Barrett
- School of Infection & Immunity, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Washington B Cárdenas
- Laboratorio para Investigaciones Biomedicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Fernanda Bertuccez Cordeiro
- Laboratorio para Investigaciones Biomedicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Mildred Zambrano
- Servicio de Infectología e Epidemiología, Hospital de Niños Dr. Roberto Gilbert, Guayaquil, Ecuador
| | - Joyce Andrade
- Servicio de Infectología e Epidemiología, Hospital de Niños Dr. Roberto Gilbert, Guayaquil, Ecuador
| | - Juan Chang
- Servicio de Infectología e Epidemiología, Hospital de Niños Dr. Roberto Gilbert, Guayaquil, Ecuador
| | - Mary Regato
- Instituto Nacional de Investigación en Salud Pública (INSPI), Guayaquil, Ecuador
| | - Eugenia Carrillo
- WHO Collaborating Centre for Leishmaniasis, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Botana
- WHO Collaborating Centre for Leishmaniasis, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Clément Regnault
- School of Infection & Immunity, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Kathryn Milne
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Philip J Spence
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - J Alexandra Rowe
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon Rogers
- School of Computing Science, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
4
|
Murwanti R, Denda-Nagai K, Sugiura D, Mogushi K, Gendler SJ, Irimura T. Prevention of Inflammation-Driven Colon Carcinogenesis in Human MUC1 Transgenic Mice by Vaccination with MUC1 DNA and Dendritic Cells. Cancers (Basel) 2023; 15:cancers15061920. [PMID: 36980805 PMCID: PMC10047104 DOI: 10.3390/cancers15061920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The preventive efficacy of MUC1-specific DNA immunization on inflammation-driven colon carcinogenesis in human MUC1 transgenic (MUC1.Tg) mice was investigated. Mice were vaccinated with MUC1 DNA mixed with autologous bone-marrow-derived dendritic cells (BMDCs), and then colonic tumors were induced by azoxymethane (AOM) injection and oral administration of dextran sulfate sodium (DSS). Two types of tumors, squamous metaplasia and tubular adenoma, were observed. Both expressed high levels of MUC1 as indicated by the binding of anti-MUC1 antibodies with different specificities, whereas MUC1 expression was not detected in normal colonic mucosa. When mice were immunized with MUC1 DNA + BMDCs, tumor incidence, tumor number, and tumor size were significantly reduced. In contrast, vaccination with MUC1 DNA alone or BMDCs alone was ineffective in reducing tumor burden. Inflammation caused by DSS was not suppressed by the MUC1 DNA + BMDCs vaccination. Furthermore, MUC1 protein expression levels, as judged by anti-MUC1 antibody binding in tumors grown after vaccination, did not significantly differ from the control. In conclusion, an inflammation-driven carcinogenesis model was established in MUC1.Tg mice, closely resembling human colon carcinogenesis. In this model, vaccination with MUC1 DNA + BMDCs was effective in overriding MUC1 tolerance and reducing the tumor burden by a mechanism not affecting the level of colonic inflammation.
Collapse
Affiliation(s)
- Retno Murwanti
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55283, Indonesia
| | - Kaori Denda-Nagai
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Daisuke Sugiura
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kaoru Mogushi
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sandra J Gendler
- Department of Immunology, Mayo Clinic Arizona, 13400 E. Shea Blvd., Scottsdale, AZ 85259, USA
| | - Tatsuro Irimura
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Division of Glycobiologics, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
5
|
Dean PT, Hooks SB. Pleiotropic effects of the COX-2/PGE2 axis in the glioblastoma tumor microenvironment. Front Oncol 2023; 12:1116014. [PMID: 36776369 PMCID: PMC9909545 DOI: 10.3389/fonc.2022.1116014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive form of malignant glioma. The GBM tumor microenvironment (TME) is a complex ecosystem of heterogeneous cells and signaling factors. Glioma associated macrophages and microglia (GAMs) constitute a significant portion of the TME, suggesting that their functional attributes play a crucial role in cancer homeostasis. In GBM, an elevated GAM population is associated with poor prognosis and therapeutic resistance. Neoplastic cells recruit these myeloid populations through release of chemoattractant factors and dysregulate their induction of inflammatory programs. GAMs become protumoral advocates through production a variety of cytokines, inflammatory mediators, and growth factors that can drive cancer proliferation, invasion, immune evasion, and angiogenesis. Among these inflammatory factors, cyclooxygenase-2 (COX-2) and its downstream product, prostaglandin E2 (PGE2), are highly enriched in GBM and their overexpression is positively correlated with poor prognosis in patients. Both tumor cells and GAMs have the ability to signal through the COX-2 PGE2 axis and respond in an autocrine/paracrine manner. In the GBM TME, enhanced signaling through the COX-2/PGE2 axis leads to pleotropic effects that impact GAM dynamics and drive tumor progression.
Collapse
|
6
|
Zheng M, Zhang W, Chen X, Guo H, Wu H, Xu Y, He Q, Ding L, Yang B. The impact of lipids on the cancer–immunity cycle and strategies for modulating lipid metabolism to improve cancer immunotherapy. Acta Pharm Sin B 2022; 13:1488-1497. [PMID: 37139414 PMCID: PMC10149904 DOI: 10.1016/j.apsb.2022.10.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 01/11/2023] Open
Abstract
Lipids have been found to modulate tumor biology, including proliferation, survival, and metastasis. With the new understanding of tumor immune escape that has developed in recent years, the influence of lipids on the cancer-immunity cycle has also been gradually discovered. First, regarding antigen presentation, cholesterol prevents tumor antigens from being identified by antigen presenting cells. Fatty acids reduce the expression of major histocompatibility complex class I and costimulatory factors in dendritic cells, impairing antigen presentation to T cells. Prostaglandin E2 (PGE2) reduce the accumulation of tumor-infiltrating dendritic cells. Regarding T-cell priming and activation, cholesterol destroys the structure of the T-cell receptor and reduces immunodetection. In contrast, cholesterol also promotes T-cell receptor clustering and relative signal transduction. PGE2 represses T-cell proliferation. Finally, regarding T-cell killing of cancer cells, PGE2 and cholesterol weaken granule-dependent cytotoxicity. Moreover, fatty acids, cholesterol, and PGE2 can improve the activity of immunosuppressive cells, increase the expression of immune checkpoints and promote the secretion of immunosuppressive cytokines. Given the regulatory role of lipids in the cancer-immunity cycle, drugs that modulate fatty acids, cholesterol and PGE2 have been envisioned as effective way in restoring antitumor immunity and synergizing with immunotherapy. These strategies have been studied in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Mingming Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanjun Xu
- Department of Medical Thoracic Oncology, the Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
- Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Corresponding authors. Tel./fax: +86 571 88208400.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
- Corresponding authors. Tel./fax: +86 571 88208400.
| |
Collapse
|
7
|
Abd El-Fattah EE. IDO/kynurenine pathway in cancer: possible therapeutic approaches. Lab Invest 2022; 20:347. [PMID: 35918736 PMCID: PMC9344609 DOI: 10.1186/s12967-022-03554-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022]
Abstract
Cancer is one of the leading causes of death in both men and women worldwide. One of the main changes associated with cancer progression, metastasis, recurrence, and chemoresistance is the change in the tumor immune microenvironment, especially immunosuppression. Cancer immunosuppression appears in multiple forms, such as inhibition of immuno-stimulant cells with downregulation of immuno-stimulant mediators or through stimulation of immuno-suppressive cells with upregulation of immunosuppressive mediators. One of the most immunosuppressive mediators that approved potency in lung cancer progression is indoleamine 2,3-dioxygenase (IDO) and its metabolite kynurenine (Kyn). The current review tries to elucidate the role of IDO/Kyn on cancer proliferation, apoptosis, angiogenesis, oxidative stress, and cancer stemness. Besides, our review investigates the new therapeutic modalities that target IDO/Kyn pathway and thus as drug candidates for targeting lung cancer and drugs that potentiate IDO/Kyn pathway and thus can be cancer-promoting agents.
Collapse
Affiliation(s)
- Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| |
Collapse
|
8
|
Current Limitations and Novel Perspectives in Pancreatic Cancer Treatment. Cancers (Basel) 2022; 14:cancers14040985. [PMID: 35205732 PMCID: PMC8870068 DOI: 10.3390/cancers14040985] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary This review article presents a synopsis of the key clinical developments, their limitations, and future perspectives in the treatment of pancreatic cancer. In the first part, we summarize the available treatments for pancreatic cancer patients according to tumor stage, as well as the most relevant clinical trials over the past two decades. Despite this progress, there is still much to be improved in terms of patient survival. Therefore, in the second part, we consider various components of the tumor microenvironment in pancreatic cancer, looking for the key drivers of therapy resistance and tumor progression, which may lead to the discovery of new potential targets. We also discuss the most prominent molecules targeting the stroma and immune compartment that are being investigated in either preclinical or clinical trials. Finally, we also outline interesting venues for further research, such as possible combinations of therapies that may have the potential for clinical application. Abstract Pancreatic cancer is one of the deadliest cancers worldwide, largely due to its aggressive development. Consequently, treatment options are often palliative, as only one-fifth of patients present with potentially curable tumors. The only available treatment with curative intent is surgery followed by adjuvant chemotherapy. However, even for patients that are eligible for surgery, the 5-year OS remains below 10%. Hence, there is an urgent need to find new therapeutic regimens. In the first part of this review, we discuss the tumor staging method and its impact on the corresponding current standard-of-care treatments for PDAC. We also consider the key clinical trials over the last 20 years that have improved patient survival. In the second part, we provide an overview of the major components and cell types involved in PDAC, as well as their respective roles and interactions with each other. A deeper knowledge of the interactions taking place in the TME may lead to the discovery of potential new therapeutic targets. Finally, we discuss promising treatment strategies targeting specific components of the TME and potential combinations thereof. Overall, this review provides an overview of the current challenges and future perspectives in the treatment of pancreatic cancer.
Collapse
|
9
|
Jonescheit H, Oberg HH, Gonnermann D, Hermes M, Sulaj V, Peters C, Kabelitz D, Wesch D. Influence of Indoleamine-2,3-Dioxygenase and Its Metabolite Kynurenine on γδ T Cell Cytotoxicity against Ductal Pancreatic Adenocarcinoma Cells. Cells 2020; 9:E1140. [PMID: 32384638 PMCID: PMC7290398 DOI: 10.3390/cells9051140] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a malignant gastrointestinal disease. The enzyme indoleamine-2,3-dioxgenase (IDO) is often overexpressed in PDAC and its downstream metabolite kynurenine has been reported to inhibit T cell activation and proliferation. Since γδ T cells are of high interest for T cell-based immunotherapy against PDAC, we studied the impact of IDO and kynurenine on γδ T cell cytotoxicity against PDAC cells. METHODS IDO expression was determined in PDAC cells by flow cytometry and Western blot analysis. PDAC cells were cocultured with γδ T cells in medium or were stimulated with phosphorylated antigens or bispecific antibody in the presence or absence of IDO inhibitors. Additionally, γδ T cells were treated with recombinant kynurenine. Read-out assays included degranulation, cytotoxicity and cytokine measurement as well as cell cycle analysis. RESULTS Since IDO overexpression was variable in PDAC, IDO inhibitors improved γδ T cell cytotoxicity only against some but not all PDAC cells. γδ T cell degranulation and cytotoxicity were significantly decreased after their treatment with recombinant kynurenine. CONCLUSIONS Bispecific antibody drastically enhanced γδ T cell cytotoxicity against all PDAC cells, which can be further enhanced by IDO inhibitors against several PDAC cells, suggesting a striking heterogeneity in PDAC escape mechanisms towards γδ T cell-mediated anti-tumor response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, D-24105 Kiel, Germany; (H.J.); (H.-H.O.); (D.G.); (M.H.); (V.S.); (C.P.); (D.K.)
| |
Collapse
|
10
|
Curry JM, Besmer DM, Erick TK, Steuerwald N, Das Roy L, Grover P, Rao S, Nath S, Ferrier JW, Reid RW, Mukherjee P. Indomethacin enhances anti-tumor efficacy of a MUC1 peptide vaccine against breast cancer in MUC1 transgenic mice. PLoS One 2019; 14:e0224309. [PMID: 31693710 PMCID: PMC6834267 DOI: 10.1371/journal.pone.0224309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/10/2019] [Indexed: 01/27/2023] Open
Abstract
In recent years, vaccines against tumor antigens have shown potential for combating invasive cancers, including primary tumors and metastatic lesions. This is particularly pertinent for breast cancer, which is the second-leading cause of cancer-related death in women. MUC1 is a glycoprotein that is normally expressed on glandular epithelium, but is overexpressed and under-glycosylated in most human cancers, including the majority of breast cancers. This under-glycosylation exposes the MUC1 protein core on the tumor-associated form of the protein. We have previously shown that a vaccine consisting of MUC1 core peptides stimulates a tumor-specific immune response. However, this immune response is dampened by the immunosuppressive microenvironment within breast tumors. Thus, in the present study, we investigated the effectiveness of MUC1 vaccination in combination with four different drugs that inhibit different components of the COX pathway: indomethacin (COX-1 and COX-2 inhibitor), celecoxib (COX-2 inhibitor), 1-methyl tryptophan (indoleamine 2,3 dioxygenase inhibitor), and AH6809 (prostaglandin E2 receptor antagonist). These treatment regimens were explored for the treatment of orthotopic MUC1-expressing breast tumors in mice transgenic for human MUC1. We found that the combination of vaccine and indomethacin resulted in a significant reduction in tumor burden. Indomethacin did not increase tumor-specific immune responses over vaccine alone, but rather appeared to reduce the proliferation and increase apoptosis of tumor cells, thus rendering them susceptible to immune cell killing.
Collapse
Affiliation(s)
- Jennifer M. Curry
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Dahlia M. Besmer
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Timothy K. Erick
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Nury Steuerwald
- Molecular Biology and Genomics Laboratory, Carolinas Medical Center, Charlotte, NC, United States of America
| | - Lopamudra Das Roy
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Priyanka Grover
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Shanti Rao
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Sritama Nath
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Jacob W. Ferrier
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Robert W. Reid
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
- OncoTAb, Inc., Charlotte, NC, United States of America
- * E-mail:
| |
Collapse
|
11
|
EP3 receptor is a prognostic factor in TA-MUC1-negative ovarian cancer. J Cancer Res Clin Oncol 2019; 145:2519-2527. [PMID: 31485769 DOI: 10.1007/s00432-019-03017-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Prostaglandin-mediated inflammatory reactions play a major role in different cancers. Recently, it has been observed that prostaglandin E2-receptor 3 (EP3) might be an independent prognostic factor for overall survival in cervical and endometrial cancer. The role of EP3 expression in ovarian cancer is currently unknown. METHODS EP3 expression was analyzed by immunohistochemistry in 156 patient samples using the IR-scoring system. Expression levels were correlated with clinical and pathological parameters and with overall survival (OS) to assess for prognostic relevance. Data analysis was performed using Spearman's correlations, Kruskal-Wallis test and Kaplan-Meier estimates. RESULTS EP3 expression was significantly higher in clear-cell carcinoma (p < 0.001) compared to the other histological subtypes. No further correlations with clinical parameters could be found. EP3 expression correlated significantly with FSH-receptor expression (p < 0.001), galectin-1 expression in the tumor (p = 0.012) and with cytoplasmatic TA-MUC1 expression (p = 0.001). None of these parameters showed significant correlation with OS. In the TA-MUC1 negative subgroup, EP3 negative patients showed significantly longer OS (median OS: 102 months vs. 34 months in EP3 positive patients, p = 0.035), while EP3 did not appear to have prognostic relevance in the TA-MUC1-positive subgroup. CONCLUSION The potential prognostic relevance of EP3 expression for OS in TA-MUC1 negative patients might reflect an interplay between the COX and the MUC1 pathway, as it has been shown that MUC1 could induce COX2 expression. Our findings support the importance of the prostanoid signaling in TA-MUC1 negative ovarian cancer; however, future studies are necessary to characterize specific pathways and possible interactions.
Collapse
|
12
|
Lin XM, Luo W, Wang H, Li RZ, Huang YS, Chen LK, Wu XP. The Role of Prostaglandin-Endoperoxide Synthase-2 in Chemoresistance of Non-Small Cell Lung Cancer. Front Pharmacol 2019; 10:836. [PMID: 31440159 PMCID: PMC6694719 DOI: 10.3389/fphar.2019.00836] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022] Open
Abstract
The prostaglandin-endoperoxide synthase-2 (PTGS2) plays essential roles in diverse pathological process. Although recent studies implied that PTGS2 was closely related with chemoresistance, the precise roles and the underlying mechanisms of PTGS2 in the developing process of chemoresistance in non-small cell lung cancer (NSCLC) remained elusive. In the present study, we revealed a novel molecular mechanism of PTGS2 implicated in the chemoresistance of NSCLC and proposed a model for the positive feedback regulation of PTGS2 in the process of developing resistance phenotype in NSCLC cells. Our results demonstrated that cisplatin induced PTGS2 expression through the ROS-ERK1/2-NF-κB signaling axis. The prostaglandin E2 (PGE2) derived from PTGS2 catalyzation further strengthened PTGS2 expression via the PGE2-EPs-ERK1/2 positive feedback loop, which induced multidrug resistance of NSCLC cells through up-regulation of BCL2 expression and the subsequent attenuation of cell apoptosis. Consistently, high levels of both PTGS2 and BCL2 were closely associated with poor survival in NSCLC patients. Inhibition of PTGS2 significantly reversed the chemoresistance in the resistant NSCLC in vitro and in vivo. Our results suggested that PTGS2 might be employed as an adjunctive therapeutic target for improving the response to the therapeutic agents in a subset of resistant NSCLC.
Collapse
Affiliation(s)
- Xiao-Mian Lin
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Wu Luo
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Heng Wang
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Rong-Zhen Li
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Yi-Shan Huang
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Lian-Kuai Chen
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Xiao-Ping Wu
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Szweda M, Rychlik A, Babińska I, Pomianowski A. Significance of Cyclooxygenase-2 in Oncogenesis. J Vet Res 2019; 63:215-224. [PMID: 31276061 PMCID: PMC6598184 DOI: 10.2478/jvetres-2019-0030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/23/2019] [Indexed: 12/25/2022] Open
Abstract
Abstract
The cyclooxygenase-2 (COX-2) enzyme catalyses the first stage of biosynthesis of prostanoids, proteins that are implicated in various physiological and pathological processes in humans and animals. The expression of COX-2 increases significantly during pathological processes accompanied by inflammation, pain and fever. Overexpression of COX-2 was determined in tumour tissues, which suggests that this enzyme participates in oncogenesis. In this paper the topics discussed are mechanisms regulating COX-2 expression, COX isoforms, their role in the body and the oncogenic mechanisms triggered by the overexpression of COX-2, including inhibition of apoptosis, intensification of neoangiogenesis, increased metastatic capacity, and weakening of the immune system. The significance of and the mechanisms by which COX-2 participates in oncogenesis have been studied intensively in recent years. The results are highly promising, and they expand our understanding of the complex processes and changes at the molecular, cellular and tissue level that promote oncogenesis and cancer progression. Notwithstanding the knowledge already gleaned, many processes and mechanisms have not yet been elucidated in human medicine and, in particular, in veterinary medicine. Further research is required to develop effective tumour diagnostic methods and treatment procedures for humans and animals.
Collapse
Affiliation(s)
- Marta Szweda
- Department of Internal Diseases with Clinic, 10-719Olsztyn, Poland
| | | | - Izabella Babińska
- Department of Pathophysiology, Forensic Medicine, and Administration Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719Olsztyn, Poland
| | | |
Collapse
|
14
|
Dréau D, Moore LJ, Wu M, Roy LD, Dillion L, Porter T, Puri R, Momin N, Wittrup KD, Mukherjee P. Combining the Specific Anti-MUC1 Antibody TAB004 and Lip-MSA-IL-2 Limits Pancreatic Cancer Progression in Immune Competent Murine Models of Pancreatic Ductal Adenocarcinoma. Front Oncol 2019; 9:330. [PMID: 31114758 PMCID: PMC6503151 DOI: 10.3389/fonc.2019.00330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy regimens have shown success in subsets of cancer patients; however, their efficacy against pancreatic ductal adenocarcinoma (PDA) remain unclear. Previously, we demonstrated the potential of TAB004, a monoclonal antibody targeting the unique tumor-associated form of MUC1 (tMUC1) in the early detection of PDA. In this study, we evaluated the therapeutic benefit of combining the TAB004 antibody with Liposomal-MSA-IL-2 in immune competent and human MUC1 transgenic (MUC1.Tg) mouse models of PDA and investigated the associated immune responses. Treatment with TAB004 + Lip-MSA-IL-2 resulted in significantly improved survival and slower tumor growth compared to controls in MUC1.Tg mice bearing an orthotopic PDA.MUC1 tumor. Similarly, in the spontaneous model of PDA that expresses human MUC1, the combination treatment stalled the progression of pancreatic intraepithelial pre-neoplastic (PanIN) lesion to adenocarcinoma. Treatment with the combination elicited a robust systemic and tumor-specific immune response with (a) increased percentages of systemic and tumor infiltrated CD45+CD11b+ cells, (b) increased levels of myeloperoxidase (MPO), (c) increased antibody-dependent cellular cytotoxicity/phagocytosis (ADCC/ADCP), (d) decreased percentage of immune regulatory cells (CD8+CD69+ cells), and (e) reduced circulating levels of immunosuppressive tMUC1. We report that treatment with a novel antibody against tMUC1 in combination with a unique formulation of IL-2 can improve survival and lead to stable disease in appropriate models of PDA by reducing tumor-induced immune regulation and promoting recruitment of CD45+CD11b+ cells, thereby enhancing ADCC/ADCP.
Collapse
Affiliation(s)
- Didier Dréau
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, United States
| | | | - Mike Wu
- OncoTab Inc., Charlotte, NC, United States
| | | | | | - Travis Porter
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, United States
| | - Rahul Puri
- OncoTab Inc., Charlotte, NC, United States
| | - Noor Momin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Pinku Mukherjee
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, United States.,OncoTab Inc., Charlotte, NC, United States
| |
Collapse
|
15
|
Schaible UE, Linnemann L, Redinger N, Patin EC, Dallenga T. Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity. Front Immunol 2017; 8:1755. [PMID: 29312298 PMCID: PMC5732265 DOI: 10.3389/fimmu.2017.01755] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023] Open
Abstract
The global tuberculosis epidemic is the most common cause of death after infectious disease worldwide. Increasing numbers of infections with multi- and extensively drug-resistant variants of the Mycobacterium tuberculosis complex, resistant even to newly discovered and last resort antibiotics, highlight the urgent need for an efficient vaccine. The protective efficacy to pulmonary tuberculosis in adults of the only currently available vaccine, M. bovis BCG, is unsatisfactory and geographically diverse. More importantly, recent clinical studies on new vaccine candidates did not prove to be better than BCG, yet. Here, we propose and discuss novel strategies to improve efficacy of existing anti-tuberculosis vaccines. Modulation of innate immune responses upon vaccination already provided promising results in animal models of tuberculosis. For instance, neutrophils have been shown to influence vaccine efficacy, both, positively and negatively, and stimulate specific antibody secretion. Modulating immune regulatory properties after vaccination such as induction of different types of innate immune cell death, myeloid-derived suppressor or regulatory T cells, production of anti-inflammatory cytokines such as IL-10 may have beneficial effects on protection efficacy. Incorporation of lipid antigens presented via CD1 molecules to T cells have been discussed as a way to enhance vaccine efficacy. Finally, concepts of dendritic cell-based immunotherapies or training the innate immune memory may be exploitable for future vaccination strategies against tuberculosis. In this review, we put a spotlight on host immune networks as potential targets to boost protection by old and new tuberculosis vaccines.
Collapse
Affiliation(s)
- Ulrich E Schaible
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany.,Thematic Translation Unit Tuberculosis, German Center for Infection Research, Research Center Borstel, Borstel, Germany
| | - Lara Linnemann
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany
| | - Natalja Redinger
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany
| | - Emmanuel C Patin
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany.,Retroviral Immunology, The Francis Crick Institute, London, United Kingdom
| | - Tobias Dallenga
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany.,Thematic Translation Unit Tuberculosis, German Center for Infection Research, Research Center Borstel, Borstel, Germany
| |
Collapse
|
16
|
Combination of mAb-AR20.5, anti-PD-L1 and PolyICLC inhibits tumor progression and prolongs survival of MUC1.Tg mice challenged with pancreatic tumors. Cancer Immunol Immunother 2017; 67:445-457. [PMID: 29204701 DOI: 10.1007/s00262-017-2095-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 11/20/2017] [Indexed: 12/16/2022]
Abstract
A substantial body of evidence suggests the existence of MUC1-specific antibodies and cytotoxic T cell activities in pancreatic cancer patients. However, tumor-induced immunosuppression renders these responses ineffective. The current study explores a novel therapeutic combination wherein tumor-bearing hosts can be immunologically primed with their own antigen, through opsonization with a tumor antigen-targeted antibody, mAb-AR20.5. We evaluated the efficacy of immunization with this antibody in combination with PolyICLC and anti-PD-L1. The therapeutic combination of mAb-AR20.5 + anti-PD-L1 + PolyICLC induced rejection of human MUC1 expressing tumors and provided a long-lasting, MUC1-specific cellular immune response, which could be adoptively transferred and shown to provide protection against tumor challenge in human MUC1 transgenic (MUC.Tg) mice. Furthermore, antibody depletion studies revealed that CD8 cells were effectors for the MUC1-specific immune response generated by the mAb-AR20.5 + anti-PD-L1 + PolyICLC combination. Multichromatic flow cytometry data analysis demonstrated a significant increase over time in circulating, activated CD8 T cells, CD3+CD4-CD8-(DN) T cells, and mature dendritic cells in mAb-AR20.5 + anti-PD-L1 + PolyICLC combination-treated, tumor-bearing mice, as compared to saline-treated control counterparts. Our study provides a proof of principle that an effective and long-lasting anti-tumor cellular immunity can be achieved in pancreatic tumor-bearing hosts against their own antigen (MUC1), which can be further potentiated using a vaccine adjuvant and an immune checkpoint inhibitor.
Collapse
|
17
|
Wahle BM, Hawley ET, He Y, Smith AE, Yuan J, Masters AR, Jones DR, Gehlhausen JR, Park SJ, Conway SJ, Clapp DW, Yates CW. Chemopreventative celecoxib fails to prevent schwannoma formation or sensorineural hearing loss in genetically engineered murine model of neurofibromatosis type 2. Oncotarget 2017; 9:718-725. [PMID: 29416648 PMCID: PMC5787503 DOI: 10.18632/oncotarget.22002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/02/2017] [Indexed: 11/25/2022] Open
Abstract
Mutations in the tumor suppressor gene NF2 lead to Neurofibromatosis type 2 (NF2), a tumor predisposition syndrome characterized by the development of schwannomas, including bilateral vestibular schwannomas with complete penetrance. Recent work has implicated the importance of COX-2 in schwannoma growth. Using a genetically engineered murine model of NF2, we demonstrate that selective inhibition of COX-2 with celecoxib fails to prevent the spontaneous development of schwannomas or sensorineural hearing loss in vivo, despite elevated expression levels of COX-2 in Nf2-deficient tumor tissue. These results suggest that COX-2 is nonessential to schwannomagenesis and that the proposed tumor suppressive effects of NSAIDs on schwannomas may occur through COX-2 independent mechanisms.
Collapse
Affiliation(s)
- Benjamin M Wahle
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Otolaryngology/Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eric T Hawley
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yongzheng He
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abbi E Smith
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jin Yuan
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andi R Masters
- Clinical Pharmacology Analytical Core, Indiana University Simon Cancer Center, Indianapolis, Indiana, USA
| | - David R Jones
- Clinical Pharmacology Analytical Core, Indiana University Simon Cancer Center, Indianapolis, Indiana, USA
| | - Jeffrey R Gehlhausen
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Su-Jung Park
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Simon J Conway
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - D Wade Clapp
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Charles W Yates
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Otolaryngology/Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
18
|
Rao CV, Janakiram NB, Mohammed A. Molecular Pathways: Mucins and Drug Delivery in Cancer. Clin Cancer Res 2017; 23:1373-1378. [PMID: 28039261 PMCID: PMC6038927 DOI: 10.1158/1078-0432.ccr-16-0862] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022]
Abstract
Over the past few decades, clinical and preclinical studies have clearly demonstrated the role of mucins in tumor development. It is well established that mucins form a barrier impeding drug access to target sites, leading to cancer chemoresistance. Recently gained knowledge regarding core enzyme synthesis has opened avenues to explore the possibility of disrupting mucin synthesis to improve drug efficacy. Cancer cells exploit aberrant mucin synthesis to efficiently mask the epithelial cells and ensure survival under hostile tumor microenvironment conditions. However, O-glycan synthesis enzyme core 2 beta 1,6 N-acetylglucosaminyltransferase (GCNT3/C2GnT-2) is overexpressed in Kras-driven mouse and human cancer, and inhibition of GCNT3 has been shown to disrupt mucin synthesis. This previously unrecognized developmental pathway might be responsible for aberrant mucin biosynthesis and chemoresistance. In this Molecular Pathways article, we briefly discuss the potential role of mucin synthesis in cancers, ways to improve drug delivery and disrupt mucin mesh to overcome chemoresistance by targeting mucin synthesis, and the unique opportunity to target the GCNT3 pathway for the prevention and treatment of cancers. Clin Cancer Res; 23(6); 1373-8. ©2016 AACR.
Collapse
Affiliation(s)
- Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Hematology and Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, Hematology and Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Hematology and Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
19
|
Qiu J, Shi Z, Jiang J. Cyclooxygenase-2 in glioblastoma multiforme. Drug Discov Today 2016; 22:148-156. [PMID: 27693715 DOI: 10.1016/j.drudis.2016.09.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/25/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme (GBM) represents the most prevalent brain primary tumor, yet there is a lack of effective treatment. With current therapies, fewer than 5% of patients with GBM survive more than 5 years after diagnosis. Mounting evidence from epidemiological studies reveals that the regular use of nonsteroidal anti-inflammatory drugs (NSAIDs) is correlated with reduced incidence of GBM, suggesting that cyclooxygenase-2 (COX-2) and its major product within the brain, prostaglandin E2 (PGE2), are involved in the development and progression of GBM. Here, we highlight our current understanding of COX-2 in GBM proliferation, apoptosis, invasion, angiogenesis, and immunosuppression by focusing on recent in vitro and in vivo experimental data. We also discuss the feasibility of COX-2 as a therapeutic target for GBM in light of the latest human studies.
Collapse
Affiliation(s)
- Jiange Qiu
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China; Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA
| | - Zhi Shi
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Jianxiong Jiang
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA.
| |
Collapse
|
20
|
Abstract
Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States with a 5-year survival rate of less than 10%. The Division of Cancer Prevention of the National Cancer Institute sponsored the Pancreatic Cancer Chemoprevention Translational Workshop on September 10 to 11, 2015. The goal of the workshop was to obtain information regarding the current state of the science and future scientific areas that should be prioritized for pancreatic cancer prevention research, including early detection and intervention for high-risk precancerous lesions. The workshop addressed the molecular/genetic landscape of pancreatic cancer and precursor lesions, high-risk populations and criteria to identify a high-risk population for potential chemoprevention trials, identification of chemopreventative/immunopreventative agents, and use of potential biomarkers and imaging for assessing short-term efficacy of a preventative agent. The field of chemoprevention for pancreatic cancer is emerging, and this workshop was organized to begin to address these important issues and promote multi-institutional efforts in this area. The meeting participants recommended the development of an National Cancer Institute working group to coordinate efforts, provide a framework, and identify opportunities for chemoprevention of pancreatic cancer.
Collapse
|
21
|
Lakshminarayanan V, Supekar NT, Wei J, McCurry DB, Dueck AC, Kosiorek HE, Trivedi PP, Bradley JM, Madsen CS, Pathangey LB, Hoelzinger DB, Wolfert MA, Boons GJ, Cohen PA, Gendler SJ. MUC1 Vaccines, Comprised of Glycosylated or Non-Glycosylated Peptides or Tumor-Derived MUC1, Can Circumvent Immunoediting to Control Tumor Growth in MUC1 Transgenic Mice. PLoS One 2016; 11:e0145920. [PMID: 26788922 PMCID: PMC4720451 DOI: 10.1371/journal.pone.0145920] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/05/2015] [Indexed: 01/21/2023] Open
Abstract
It remains challenging to produce decisive vaccines against MUC1, a tumor-associated antigen widely expressed by pancreas, breast and other tumors. Employing clinically relevant mouse models, we ruled out such causes as irreversible T-cell tolerance, inadequate avidity, and failure of T-cells to recognize aberrantly glycosylated tumor MUC1. Instead, every tested MUC1 preparation, even non-glycosylated synthetic 9mer peptides, induced interferon gamma-producing CD4+ and CD8+ T-cells that recognized glycosylated variants including tumor-associated MUC1. Vaccination with synthetic peptides conferred protection as long as vaccination was repeated post tumor challenge. Failure to revaccinate post challenge was associated with down-regulated tumor MUC1 and MHC molecules. Surprisingly, direct admixture of MUC1-expressing tumor with MUC1-hyperimmune T-cells could not prevent tumor outgrowth or MUC1 immunoediting, whereas ex vivo activation of the hyperimmune T-cells prior to tumor admixture rendered them curative. Therefore, surrogate T-cell preactivation outside the tumor bed, either in culture or by repetitive vaccination, can overcome tumor escape.
Collapse
Affiliation(s)
- Vani Lakshminarayanan
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Nitin T. Supekar
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States of America
| | - Jie Wei
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Dustin B. McCurry
- Hematology/Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Amylou C. Dueck
- Biostatistics, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Heidi E. Kosiorek
- Biostatistics, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Priyanka P. Trivedi
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Judy M. Bradley
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Cathy S. Madsen
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Latha B. Pathangey
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | | | - Margreet A. Wolfert
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States of America
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States of America
- * E-mail: (SJG); (PAC); (GJB)
| | - Peter A. Cohen
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
- Hematology/Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
- * E-mail: (SJG); (PAC); (GJB)
| | - Sandra J. Gendler
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
- Department of Biochemistry/Molecular Biology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
- Hematology/Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
- * E-mail: (SJG); (PAC); (GJB)
| |
Collapse
|
22
|
Li XH, Cheng YH, Guo LX. Expression of cyclooxygenase 2 in gastrointestinal stromal tumors. Shijie Huaren Xiaohua Zazhi 2015; 23:5628-5635. [DOI: 10.11569/wcjd.v23.i35.5628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the correlation of cyclooxygenase 2 (COX2) protein and mRNA expression with clinicopathological characteristics and prognosis in gastrointestinal stromal tumors (GISTs).
METHODS: EnVision technique was used to detect COX2 protein expression in GISTs and in situ hybridization method was used to detect COX2 mRNA expression. The patients were followed for prognosis evaluation.
RESULTS: Of 74 cases of GISTs, positive expression of COX2 protein was observed in 62 (83.8%) cases and positive expression of COX2 mRNA was observed in 58 (78.4%). COX2 protein and mRNA expression between different risk groups was statistically significant (P < 0.05), with the highest positive expression in the high risk group. COX2 protein and mRNA expression had no significant correlation with gender, age, lesion location, histological type, or metastasis (P > 0.05). A total of 38 (51.4%) patients were followed; of 24 patients with strongly positive expression of COX2 protein, 5 had metastases and 2 died. No recurrence, metastasis or death was observed in cases with negative, weakly positive or moderately positive expression. Of 17 cases showing strongly positive expression of COX2 mRNA, 3 had metastases and 2 died. No recurrence, metastasis or death was found in all 6 cases with negative expression of COX2 mRNA. Metastasis was observed in a case with weekly positive expression and a case with moderately positive expression, with no recurrence or death.
CONCLUSION: Upregulation of COX2 protein and mRNA expression in GISTs suggests that COX2 is a possible indicator for GISTs risk stratification and might affect prognosis.
Collapse
|
23
|
Apostolopoulos V, Stojanovska L, Gargosky SE. MUC1 (CD227): a multi-tasked molecule. Cell Mol Life Sci 2015; 72:4475-500. [PMID: 26294353 PMCID: PMC11113675 DOI: 10.1007/s00018-015-2014-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/23/2015] [Accepted: 08/06/2015] [Indexed: 12/16/2022]
Abstract
Mucin 1 (MUC1 [CD227]) is a high-molecular weight (>400 kDa), type I membrane-tethered glycoprotein that is expressed on epithelial cells and extends far above the glycocalyx. MUC1 is overexpressed and aberrantly glycosylated in adenocarcinomas and in hematological malignancies. As a result, MUC1 has been a target for tumor immunotherapeutic studies in mice and in humans. MUC1 has been shown to have anti-adhesive and immunosuppressive properties, protects against infections, and is involved in the oncogenic process as well as in cell signaling. In addition, MUC1 plays a key role in the reproductive tract, in the immune system (affecting dendritic cells, monocytes, T cells, and B cells), and in chronic inflammatory diseases. Evidence for all of these roles for MUC1 is discussed herein and demonstrates that MUC1 is truly a multitasked molecule.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | | |
Collapse
|
24
|
Dalgleish AG. Vaccines versus immunotherapy: overview of approaches in deciding between options. Hum Vaccin Immunother 2015; 10:3369-74. [PMID: 25625932 DOI: 10.4161/21645515.2014.980707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This review compares the optimal use of vaccines vs. other forms of immunotherapy, which includes cytokines, such as IL-2, monoclonal antibodies, such as the 'checkpoint inhibitors', against CTLA-4 and PD-1. The review includes both prophylactic and therapeutic vaccines using a variety of technologies. It is already established that vaccines can be enhanced by other immunotherapies, such as cytokines (IL-2) and there is scope for combining both of these with the 'checkpoint' antibodies. Moreover, both can be enhanced with other modalities, such as radiotherapy, ablative therapy and both high and low dose chemotherapies.
Collapse
Key Words
- BCG, Bacillus Colmette Guerin
- CpG, cytosine-phosphate-guanosine
- GM-CSF, Granulocyte-macrophage colony-stimulating factor
- HBV, Human hepatitis virus
- HPV, Human papilloma virus
- IL-2, Interleukin-2
- PFS, progression free survival
- PSA, Prostate-specific antigen
- TGFβ, Tumour growth factor beta
- TLR, Toll-like receptor
- antibodies
- checkpoint inhibitors
- cytokines
- immune modulators
- immunotherapy
- therapeutic vaccines
Collapse
Affiliation(s)
- Angus G Dalgleish
- a Institute of Infection and Immunity ; St George's University of London ; Tooting , London, UK
| |
Collapse
|
25
|
Mohammed A, Janakiram NB, Pant S, Rao CV. Molecular Targeted Intervention for Pancreatic Cancer. Cancers (Basel) 2015; 7:1499-542. [PMID: 26266422 PMCID: PMC4586783 DOI: 10.3390/cancers7030850] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/24/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) remains one of the worst cancers, with almost uniform lethality. PC risk is associated with westernized diet, tobacco, alcohol, obesity, chronic pancreatitis, and family history of pancreatic cancer. New targeted agents and the use of various therapeutic combinations have yet to provide adequate treatments for patients with advanced cancer. To design better preventive and/or treatment strategies against PC, knowledge of PC pathogenesis at the molecular level is vital. With the advent of genetically modified animals, significant advances have been made in understanding the molecular biology and pathogenesis of PC. Currently, several clinical trials and preclinical evaluations are underway to investigate novel agents that target signaling defects in PC. An important consideration in evaluating novel drugs is determining whether an agent can reach the target in concentrations effective to treat the disease. Recently, we have reported evidence for chemoprevention of PC. Here, we provide a comprehensive review of current updates on molecularly targeted interventions, as well as dietary, phytochemical, immunoregulatory, and microenvironment-based approaches for the development of novel therapeutic and preventive regimens. Special attention is given to prevention and treatment in preclinical genetically engineered mouse studies and human clinical studies.
Collapse
Affiliation(s)
- Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Shubham Pant
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
26
|
Abstract
OBJECTIVE Eighty percent of pancreatic ductal adenocarcinomas (PDAs) overexpress mucin 1 (MUC1), a transmembrane mucin glycoprotein. MUC1(high) PDA patients also express high levels of cyclooxygenase 2 (COX-2) and show poor prognosis. The cytoplasmic tail of MUC1 (MUC1-CT) partakes in oncogenic signaling, resulting in accelerated cancer progression. Our aim was to understand the regulation of Cox-2 expression by MUC1. METHODS Levels of COX-2 and MUC1 were determined in MUC1(-/-), MUC1(low), and MUC1(high) PDA cells and tumors using reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemistry. Proliferative and invasive potential was assessed using MTT and Boyden chamber assays. Chromatin immunoprecipitation was performed to evaluate binding of MUC1-CT to the promoter of COX-2 gene. RESULTS Significantly higher levels of COX-2 mRNA and protein were detected in MUC1(high) versus MUC1(low/null) cells, which were recapitulated in vivo. In addition, deletion of MUC1 gene and transient knockdown of MUC1 led to decreased COX-2 level. Also, MUC1-CT associated with the COX-2 promoter at ∼1000 base pairs upstream of the transcription start site, the same gene locus where nuclear factor κB p65 associates with the COX-2 promoter. CONCLUSIONS Data supports a novel regulation of COX-2 gene by MUC1 in PDA, the intervention of which may lead to a better therapeutic targeting in PDA patients.
Collapse
|
27
|
THAKKAR ARVIND, CHENREDDY SUSHMA, WANG JEFFREY, PRABHU SUNIL. Evaluation of ibuprofen loaded solid lipid nanoparticles and its combination regimens for pancreatic cancer chemoprevention. Int J Oncol 2015; 46:1827-34. [DOI: 10.3892/ijo.2015.2879] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/05/2015] [Indexed: 11/06/2022] Open
|
28
|
Holtzhausen A, Zhao F, Evans KS, Hanks BA. Early Carcinogenesis Involves the Establishment of Immune Privilege via Intrinsic and Extrinsic Regulation of Indoleamine 2,3-dioxygenase-1: Translational Implications in Cancer Immunotherapy. Front Immunol 2014; 5:438. [PMID: 25339948 PMCID: PMC4186479 DOI: 10.3389/fimmu.2014.00438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/29/2014] [Indexed: 01/21/2023] Open
Abstract
Although prolonged genetic pressure has been conjectured to be necessary for the eventual development of tumor immune evasion mechanisms, recent work is demonstrating that early genetic mutations are capable of moonlighting as both intrinsic and extrinsic modulators of the tumor immune microenvironment. The indoleamine 2,3-dioxygenase-1 (IDO) immunoregulatory enzyme is emerging as a key player in tumor-mediated immune tolerance. While loss of the tumor suppressor, BIN-1, and the over-expression of cyclooxygenase-2 have been implicated in intrinsic regulation of IDO, recent findings have demonstrated the loss of TβRIII and the upregulation of Wnt5a by developing cancers to play a role in the extrinsic control of IDO activity by local dendritic cell populations residing within tumor and tumor-draining lymph node tissues. Together, these genetic changes are capable of modulating paracrine signaling pathways in the early stages of carcinogenesis to establish a site of immune privilege by promoting the differentiation and activation of local regulatory T cells. Additional investigation of these immune evasion pathways promises to provide opportunities for the development of novel strategies to synergistically enhance the efficacy of the evolving class of T cell-targeted "checkpoint" inhibitors.
Collapse
Affiliation(s)
- Alisha Holtzhausen
- Department of Pharmacology and Cell Biology, Duke University Medical Center , Durham, NC , USA
| | - Fei Zhao
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center , Durham, NC , USA
| | - Kathy S Evans
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center , Durham, NC , USA
| | - Brent A Hanks
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center , Durham, NC , USA
| |
Collapse
|
29
|
Eberstål S, Fritzell S, Sandén E, Visse E, Darabi A, Siesjö P. Immunizations with unmodified tumor cells and simultaneous COX-2 inhibition eradicate malignant rat brain tumors and induce a long-lasting CD8(+) T cell memory. J Neuroimmunol 2014; 274:161-7. [PMID: 25022336 DOI: 10.1016/j.jneuroim.2014.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/28/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
Abstract
Malignant brain tumors induce pronounced immunosuppression, which diminishes immune responses generated by immunotherapy. Here we report that peripheral immunotherapy, using irradiated unmodified whole tumor cells, and systemic cyclooxygenase-2 inhibition induce cure in glioma-bearing rats (60% cure rate), whereas neither monotherapy was sufficient to cure any animal. Moreover, the combined therapy protected against secondary tumor challenges (89% cure rate) and the secondary immune response was correlated with increased plasma interferon-gamma levels and CD8(+) T cells systemically and intratumorally. In conclusion, we demonstrate that cyclooxygenase-2 inhibition is sufficient to render unmodified tumor cells immunogenic in immunotherapy of experimental brain tumors.
Collapse
Affiliation(s)
- Sofia Eberstål
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Barngatan 2B, SE-221 85 Lund, Sweden; Lund Stem Cell Center, BMC B10, Lund University, SE-221 84 Lund, Sweden.
| | - Sara Fritzell
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Barngatan 2B, SE-221 85 Lund, Sweden
| | - Emma Sandén
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Barngatan 2B, SE-221 85 Lund, Sweden
| | - Edward Visse
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Barngatan 2B, SE-221 85 Lund, Sweden
| | - Anna Darabi
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Barngatan 2B, SE-221 85 Lund, Sweden
| | - Peter Siesjö
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Barngatan 2B, SE-221 85 Lund, Sweden
| |
Collapse
|
30
|
Nath S, Mukherjee P. MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med 2014; 20:332-42. [PMID: 24667139 DOI: 10.1016/j.molmed.2014.02.007] [Citation(s) in RCA: 566] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/16/2014] [Accepted: 02/24/2014] [Indexed: 12/15/2022]
Abstract
The transmembrane glycoprotein Mucin 1 (MUC1) is aberrantly glycosylated and overexpressed in a variety of epithelial cancers, and plays a crucial role in progression of the disease. Tumor-associated MUC1 differs from the MUC1 expressed in normal cells with regard to its biochemical features, cellular distribution, and function. In cancer cells, MUC1 participates in intracellular signal transduction pathways and regulates the expression of its target genes at both the transcriptional and post-transcriptional levels. This review highlights the structural and functional differences that exist between normal and tumor-associated MUC1. We also discuss the recent advances made in the use of MUC1 as a biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Sritama Nath
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Pinku Mukherjee
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
31
|
Vicente E, Quijano Y, Ielpo B, Duran H, Diaz E, Fabra I, Oliva C, Olivares S, Caruso R, Ferri V, Ceron R, Moreno A. Is arterial infiltration still a criterion for unresectability in pancreatic adenocarcinoma? Cir Esp 2014; 92:305-15. [PMID: 24636076 DOI: 10.1016/j.ciresp.2013.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 12/20/2022]
Abstract
As surgical resection remains the only hope for cure in pancreatic cancer (PC), more aggressive surgical approaches have been advocated to increase resection rates. Venous resection demonstrated to be a feasible technique in experienced centers, increasing survival. In contrast, arterial resection is still an issue of debate, continuing to be considered a general contraindication to resection. In the last years there have been significant advances in surgical techniques and postoperative management which have dramatically reduced mortality and morbidity of major pancreatic resections. Furthermore, advances in multimodal neo-adjuvant and adjuvant treatments, as well as the better understanding of tumor biology and new diagnostic options have increased overall survival. In this article we highlight some of the important points that a modern pancreatic surgeon should take into account in the management of PC with arterial involvement in light of the recent advances.
Collapse
Affiliation(s)
- Emilio Vicente
- Hospital Universitario Madrid Sanchinarro, Centro Integral Oncológico Clara Campal, Facultad de Medicina, Universidad CEU San Pablo, Madrid, España.
| | - Yolanda Quijano
- Hospital Universitario Madrid Sanchinarro, Centro Integral Oncológico Clara Campal, Facultad de Medicina, Universidad CEU San Pablo, Madrid, España
| | - Benedetto Ielpo
- Hospital Universitario Madrid Sanchinarro, Centro Integral Oncológico Clara Campal, Facultad de Medicina, Universidad CEU San Pablo, Madrid, España
| | - Hipolito Duran
- Hospital Universitario Madrid Sanchinarro, Centro Integral Oncológico Clara Campal, Facultad de Medicina, Universidad CEU San Pablo, Madrid, España
| | - Eduardo Diaz
- Hospital Universitario Madrid Sanchinarro, Centro Integral Oncológico Clara Campal, Facultad de Medicina, Universidad CEU San Pablo, Madrid, España
| | - Isabel Fabra
- Hospital Universitario Madrid Sanchinarro, Centro Integral Oncológico Clara Campal, Facultad de Medicina, Universidad CEU San Pablo, Madrid, España
| | - Catalina Oliva
- Hospital Universitario Madrid Sanchinarro, Centro Integral Oncológico Clara Campal, Facultad de Medicina, Universidad CEU San Pablo, Madrid, España
| | - Sergio Olivares
- Hospital Universitario Madrid Sanchinarro, Centro Integral Oncológico Clara Campal, Facultad de Medicina, Universidad CEU San Pablo, Madrid, España
| | - Riccardo Caruso
- Hospital Universitario Madrid Sanchinarro, Centro Integral Oncológico Clara Campal, Facultad de Medicina, Universidad CEU San Pablo, Madrid, España
| | - Valentina Ferri
- Hospital Universitario Madrid Sanchinarro, Centro Integral Oncológico Clara Campal, Facultad de Medicina, Universidad CEU San Pablo, Madrid, España
| | - Ricardo Ceron
- Hospital Universitario Madrid Sanchinarro, Centro Integral Oncológico Clara Campal, Facultad de Medicina, Universidad CEU San Pablo, Madrid, España
| | - Almudena Moreno
- Hospital Universitario Madrid Sanchinarro, Centro Integral Oncológico Clara Campal, Facultad de Medicina, Universidad CEU San Pablo, Madrid, España
| |
Collapse
|
32
|
Chen X, Chang CH, Goldenberg DM. Novel strategies for improved cancer vaccines. Expert Rev Vaccines 2014; 8:567-76. [DOI: 10.1586/erv.09.11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
33
|
WANG YUQIAN, LIU CHENLU, XIA QIU, WANG PENG, LI BO, LU ZHENZHEN, SUN JIAXI, WU HUI, YU BIN, WU JIAXIN, YU XIANGHUI, KONG WEI, ZHANG HAIHONG, CONG XIANLING. Antitumor effect of adenoviral vector prime protein boost immunity targeting the MUC1 VNTRs. Oncol Rep 2013; 31:1437-44. [DOI: 10.3892/or.2013.2950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/09/2013] [Indexed: 11/06/2022] Open
|
34
|
Abstract
Tumour-induced granulocytic hyperplasia is associated with tumour vasculogenesis and escape from immunity via T cell suppression. Initially, these myeloid cells were identified as granulocytes or monocytes; however, recent studies have revealed that this hyperplasia is associated with populations of multipotent progenitor cells that have been identified as myeloid-derived suppressor cells (MDSCs). The study of MDSCs has provided a wealth of information regarding tumour pathobiology, has extended our understanding of neoplastic progression and has modified our approaches to immune adjuvant therapy. In this Timeline article, we discuss the history of MDSCs, their influence on tumour progression and metastasis, and the crosstalk between tumour cells, MDSCs and the host macroenvironment.
Collapse
Affiliation(s)
- James E Talmadge
- University of Nebraska Medical Center, Department of Pathology and Microbiology, 986495 Nebraska Medical Center, Omaha NE 68198-6495, USA
| | | |
Collapse
|
35
|
The anti-tumor effect of HDAC inhibition in a human pancreas cancer model is significantly improved by the simultaneous inhibition of cyclooxygenase 2. PLoS One 2013; 8:e75102. [PMID: 24040391 PMCID: PMC3770617 DOI: 10.1371/journal.pone.0075102] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/12/2013] [Indexed: 12/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is the fourth leading cause of cancer death worldwide, with no satisfactory treatment to date. In this study, we tested whether the combined inhibition of cyclooxygenase-2 (COX-2) and class I histone deacetylase (HDAC) may results in a better control of pancreatic ductal adenocarcinoma. The impact of the concomitant HDAC and COX-2 inhibition on cell growth, apoptosis and cell cycle was assessed first in vitro on human pancreas BxPC-3, PANC-1 or CFPAC-1 cells treated with chemical inhibitors (SAHA, MS-275 and celecoxib) or HDAC1/2/3/7 siRNA. To test the potential antitumoral activity of this combination in vivo, we have developed and characterized, a refined chick chorioallantoic membrane tumor model that histologically and proteomically mimics human pancreatic ductal adenocarcinoma. The combination of HDAC1/3 and COX-2 inhibition significantly impaired proliferation of BxPC-3 cells in vitro and stalled entirely the BxPC-3 cells tumor growth onto the chorioallantoic membrane in vivo. The combination was more effective than either drug used alone. Consistently, we showed that both HDAC1 and HDAC3 inhibition induced the expression of COX-2 via the NF-kB pathway. Our data demonstrate, for the first time in a Pancreatic Ductal Adenocarcinoma (PDAC) model, a significant action of HDAC and COX-2 inhibitors on cancer cell growth, which sets the basis for the development of potentially effective new combinatory therapies for pancreatic ductal adenocarcinoma patients.
Collapse
|
36
|
Iachininoto MG, Nuzzolo ER, Bonanno G, Mariotti A, Procoli A, Locatelli F, Cristofaro RD, Rutella S. Cyclooxygenase-2 (COX-2) inhibition constrains indoleamine 2,3-dioxygenase 1 (IDO1) activity in acute myeloid leukaemia cells. Molecules 2013; 18:10132-45. [PMID: 23973990 PMCID: PMC6270179 DOI: 10.3390/molecules180910132] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 02/01/2023] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) metabolizes L-tryptophan to kynurenines (KYN), inducing T-cell suppression either directly or by altering antigen-presenting-cell function. Cyclooxygenase (COX)-2, the rate-limiting enzyme in the synthesis of prostaglandins, is over-expressed by several tumours. We aimed at determining whether COX-2 inhibitors down-regulate the IFN-g-induced expression of IDO1 in acute myeloid leukaemia (AML) cells. IFN-γ at 100 ng/mL up-regulated COX-2 and IDO1 in HL-60 AML cells, both at mRNA and protein level. The increased COX-2 and IDO1 expression correlated with heightened production of prostaglandin (PG)E₂ and kynurenines, respectively. Nimesulide, a preferential COX-2 inhibitor, down-regulated IDO1 mRNA/protein and attenuated kynurenine synthesis, suggesting that overall IDO inhibition resulted both from reduced IDO1 gene transcription and from inhibited IDO1 catalytic activity. From a functional standpoint, IFN-g-challenged HL-60 cells promoted the in vitro conversion of allogeneic CD4⁺CD25⁻ T cells into bona fide CD4⁺CD25⁺FoxP3⁺ regulatory T cells, an effect that was significantly reduced by treatment of IFN-γ-activated HL-60 cells with nimesulide. Overall, these data point to COX-2 inhibition as a potential strategy to be pursued with the aim at circumventing leukaemia-induced, IDO-mediated immune dysfunction.
Collapse
Affiliation(s)
- Maria Grazia Iachininoto
- Department of Haematology, Catholic University Medical School, Largo A. Gemelli 8, 00168 Rome, Italy; E-Mails: (M.G.I.); (E.R.N.)
| | - Eugenia Rosa Nuzzolo
- Department of Haematology, Catholic University Medical School, Largo A. Gemelli 8, 00168 Rome, Italy; E-Mails: (M.G.I.); (E.R.N.)
| | - Giuseppina Bonanno
- Department of Gynaecology and Obstetrics, Catholic University Medical School, Largo A. Gemelli 8, 00168 Rome, Italy; E-Mails: (G.B.); (A.M.); (A.P.)
| | - Andrea Mariotti
- Department of Gynaecology and Obstetrics, Catholic University Medical School, Largo A. Gemelli 8, 00168 Rome, Italy; E-Mails: (G.B.); (A.M.); (A.P.)
| | - Annabella Procoli
- Department of Gynaecology and Obstetrics, Catholic University Medical School, Largo A. Gemelli 8, 00168 Rome, Italy; E-Mails: (G.B.); (A.M.); (A.P.)
| | - Franco Locatelli
- Department of Pediatric Haematology/Oncology and Transfusion Medicine, IRCCS Bambino Gesù Children’s Hospital, Piazza Sant’Onofrio 4, 00165 Rome, Italy; E-Mail: (F.L.)
- Department of Pediatrics, University of Pavia, Strada Nuova 65, 27100 Pavia, Italy
| | - Raimondo De Cristofaro
- Department of Medicine and Geriatrics, Catholic University Medical School, Largo A. Gemelli 8, 00168 Rome, Italy; E-Mail:
| | - Sergio Rutella
- Department of Pediatric Haematology/Oncology and Transfusion Medicine, IRCCS Bambino Gesù Children’s Hospital, Piazza Sant’Onofrio 4, 00165 Rome, Italy; E-Mail: (F.L.)
| |
Collapse
|
37
|
Oncolytic vesicular stomatitis virus in an immunocompetent model of MUC1-positive or MUC1-null pancreatic ductal adenocarcinoma. J Virol 2013; 87:10283-94. [PMID: 23864625 DOI: 10.1128/jvi.01412-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vesicular stomatitis virus (VSV) is a promising oncolytic agent against various malignancies. Here, for the first time, we tested VSV in vitro and in vivo in a clinically relevant, immunocompetent mouse model of pancreatic ductal adenocarcinoma (PDA). Our system allows the study of virotherapy against PDA in the context of overexpression (80% of PDA patients) or no expression of human mucin 1 (MUC1), a major marker for poor prognosis in patients. In vitro, we tested three VSV recombinants, wild-type VSV, VSV-green fluorescent protein (VSV-GFP), and a safe oncolytic VSV-ΔM51-GFP, against five mouse PDA cell lines that either expressed human MUC1 or were MUC1 null. All viruses demonstrated significant oncolytic abilities independent of MUC1 expression, although VSV-ΔM51-GFP was somewhat less effective in two PDA cell lines. In vivo administration of VSV-ΔM51-GFP resulted in significant reduction of tumor growth for tested mouse PDA xenografts (+MUC1 or MUC1 null), and antitumor efficacy was further improved when the virus was combined with the chemotherapeutic drug gemcitabine. The antitumor effect was transient in all tested groups. The developed system can be used to study therapies involving various oncolytic viruses and chemotherapeutics, with the goal of inducing tumor-specific immunity while preventing premature virus clearance.
Collapse
|
38
|
Abstract
Pancreatic cancer is critical for developed countries, where its rate of diagnosis has been increasing steadily annually. In the past decade, the advances of pancreatic cancer research have not contributed to the decline in mortality rates from pancreatic cancer-the overall 5-year survival rate remains about 5% low. This number only underscores an obvious urgency for us to better understand the biological features of pancreatic carcinogenesis, to develop early detection methods, and to improve novel therapeutic treatments. To achieve these goals, animal modeling that faithfully recapitulates the whole process of human pancreatic cancer is central to making the advancements. In this review, we summarize the currently available animal models for pancreatic cancer and the advances in pancreatic cancer animal modeling. We compare and contrast the advantages and disadvantages of three major categories of these models: (1) carcinogen-induced; (2) xenograft and allograft; and (3) genetically engineered mouse models. We focus more on the genetically engineered mouse models, a category which has been rapidly expanded recently for their capacities to mimic human pancreatic cancer and metastasis, and highlight the combinations of these models with various newly developed strategies and cell-lineage labeling systems.
Collapse
Affiliation(s)
- Wanglong Qiu
- Department of Otolaryngology and Head and Neck Surgery, Columbia University Medical Center, 1130 St. Nicholas Ave, ICRC 10-04, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Gloria H. Su
- Department of Otolaryngology and Head and Neck Surgery, Columbia University Medical Center, 1130 St. Nicholas Ave, ICRC 10-04, New York, NY 10032, USA
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
39
|
Vonderheide RH, Bayne LJ. Inflammatory networks and immune surveillance of pancreatic carcinoma. Curr Opin Immunol 2013; 25:200-5. [PMID: 23422836 DOI: 10.1016/j.coi.2013.01.006] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/21/2013] [Accepted: 01/25/2013] [Indexed: 02/07/2023]
Abstract
Cancer-associated inflammation plays an important role in restraining anti-tumor immunity, particularly in pancreatic ductal adenocarcinoma (PDA) for which a massive infiltration of immunosuppressive leukocytes into the tumor stroma is an early and consistent event in oncogenesis. Intratumoral effector T cells are rare. This pathophysiology is in contrast to many other solid tumors for which infiltration of effector T cells is often prominent, associated with improved clinical outcomes, and mechanistically contributes to tumor immunoediting that ultimately can mediate immune escape. In PDA, increasing evidence suggests that the ras oncogene drives an inflammatory program that establishes immune privilege in the tumor microenvironment. Indeed, PDA cells might remain intrinsically sensitive to T cell killing because they have never been exposed to T cell selective pressure in vivo. In support of this hypothesis, recent studies demonstrate that derailing immune suppressive pathways in the PDA microenvironment, such as tumor derived GM-CSF, facilitates T-cell mediated tumor rejection. These findings carry major implications for the development of novel, combination immunotherapies for pancreatic cancer.
Collapse
Affiliation(s)
- Robert H Vonderheide
- 8-121 Smilow Center for Translational Research, 3400 Civic Center Blvd, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | | |
Collapse
|
40
|
Toyama Y, Yoshida S, Saito R, Kitamura H, Okui N, Miyake R, Ito R, Son K, Usuba T, Nojiri T, Yanaga K. Successful adjuvant bi-weekly gemcitabine chemotherapy for pancreatic cancer without impairing patients' quality of life. World J Surg Oncol 2013; 11:3. [PMID: 23302293 PMCID: PMC3548728 DOI: 10.1186/1477-7819-11-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/24/2012] [Indexed: 02/06/2023] Open
Abstract
Background Although adjuvant gemcitabine (GEM) chemotherapy for pancreatic cancer is standard, the quality of life (QOL) in those patients is still impaired by the standard regimen of GEM. Therefore, we studied whether mild dose-intensity adjuvant chemotherapy with bi-weekly GEM administration could provide a survival benefit with acceptable QOL to the patients with pancreatic cancer. Methods After a phase I trial, an adjuvant bi-weekly 1,000 mg/m2 of GEM chemotherapy was performed in 58 patients with pancreatic cancer for at least 12 courses (Group A). In contrast, 36 patients who declined the adjuvant bi-weekly GEM chemotherapy underwent traditional adjuvant 5FU-based chemotherapy (Group B). Careful periodical follow-ups for side effects of GEM and disease recurrence, and assessment of patients’ QOL using the EORTC QOL questionnaire (QLQ-C30) and pancreatic cancer-specific supplemental module (QLQ-PAN26) were performed. Retrospectively, the degree of side effects, patients’ QOL, compliance rate, disease-free survival (DFS), and overall survival (OS) in Group A were compared with those in Group B. Results No severe side effects (higher than Grade 2 according to the common toxicity criteria of ECOG) were observed, except for patients in Group B, who were switched to the standard GEM chemotherapy. Patients’ QOL was better in Group A than B (fatigue: 48.9 ± 32.1 versus 68.1 ± 36.3, nausea and vomiting: 26.8 ± 20.4 versus 53.7 ± 32.6, diarrhea: 21.0 ± 22.6 versus 53.9 ± 38.5, difficulty gaining weight: 49.5 ± 34.4 versus 67.7 ± 40.5, P < 0.05). Compliance rates in Groups A and B were 93% and 47%. There was a significant difference in the median DFS between both groups (Group A : B =12.5 : 6.6 months, P < 0.001). The median OS of Group A was prolonged markedly compared with Group B (20.2 versus 11.9 months, P < 0.005). For OS between both groups, univariate analysis revealed no statistical difference in 69-year-old or under females, and T1–2 factors, moreover, multivariate analysis indicated three factors, such as bi-weekly adjuvant GEM chemotherapy, T2 or less, and R0. Conclusions Adjuvant chemotherapy with bi-weekly GEM offered not only the advantage of survival benefits but the excellent compliance with acceptable QOL for postoperative pancreatic cancer patients.
Collapse
Affiliation(s)
- Yoichi Toyama
- Department of Surgery, The Jikei University Kashiwa Hospital, 163-1, Kashiwashita, Kashiwa City, Chiba Prefecture, 277-8567, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Morrison M. Pancreatic cancer and diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 771:229-39. [PMID: 23393682 DOI: 10.1007/978-1-4614-5441-0_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetes studies have increasingly been associated with several types of cancer. Diabetes and pancreatic cancer have a unique relationship. Genetic mutations, such as activation of the KRAS2 oncogene, inactivation of the tumor-suppressor gene CDKN2A, inactivation of the tumor-suppressor gene TP53 and deleted in pancreatic cancer 4 (DPC4) gene defects are seen in those with pancreatic cancer. Approximately 80% of those patients, diagnosed with pancreatic cancer, are identified as having concomitant diabetes with a poor prognostic factor. Damaged pancreatic tissue, secondary to pancreatic cancer, leads to diabetes as islet cells and beta cells are taken over by malignancy. Additionally, those on certain anti-diabetic regimens are shown to be at a higher risk of developing pancreatic cancer due to the effect of stimulation on the pancreatic beta and islet cells. Therefore, diabetes is thought to be both a potential cause and effect of pancreatic cancer. Diabetes has become a pandemic, and pancreatic cancer is one of the most lethal forms of malignancy known. In order to better understand these diseases and how they are associated, more research needs to be done. Particularly, research focusing on different types of diabetes in the setting of pancreatic cancer will be an important issue for further understanding of the link between diabetes and pancreatic cancer.
Collapse
Affiliation(s)
- Maureen Morrison
- Swedish Organ Transplant Division, Swedish Medical Center, Seattle, Washington, USA.
| |
Collapse
|
42
|
Yip-Schneider MT, Wu H, Hruban RH, Lowy AM, Crooks PA, Schmidt CM. Efficacy of dimethylaminoparthenolide and sulindac in combination with gemcitabine in a genetically engineered mouse model of pancreatic cancer. Pancreas 2013; 42:160-7. [PMID: 22699205 DOI: 10.1097/mpa.0b013e318254f455] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Pancreatic cancer remains one of the deadliest diseases, with limited surgical and treatment options. Two targets of interest include the transcription factor nuclear factor-κB and cyclooxygenase-2, which are constitutively activated and overexpressed, respectively, in human pancreatic adenocarcinoma. We have previously shown that dimethylaminoparthenolide (DMAPT), a bioavailable nuclear factor-κB inhibitor, and the cyclooxygenase inhibitors sulindac and celecoxib have potential chemotherapeutic efficacy. The current study evaluates the efficacy of intervention with DMAPT and sulindac in the LSL-Kras(G12D);Pdx-1-Cre genetically engineered mouse model. Gemcitabine, traditionally a chemotherapeutic agent, has relatively low toxicity; thus, combinations with low-dose gemcitabine were also explored. METHODS LSL-Kras(G12D);Pdx-1-Cre mice at 7 months of age were randomized into placebo, DMAPT (40 mg/kg per day), sulindac (20 mg/kg per day), gemcitabine (50 mg/kg twice weekly), and combination treatment groups. After 3 months of treatment, the mice were killed. RESULTS The percentage of normal pancreatic ducts was significantly increased by the combinations of DMAPT/sulindac, DMAPT/gemcitabine, sulindac/gemcitabine, and DMAPT/sulindac/gemcitabine compared to placebo. Additionally, the percentage of mouse pancreatic intraepithelial neoplasia-2 lesions was significantly decreased by DMAPT/gemcitabine. CONCLUSIONS Intervention with DMAPT and sulindac in combination with gemcitabine may delay or prevent progression of premalignant pancreatic lesions in the LSL-Kras(G12D);Pdx-1-Cre mouse model of pancreatic cancer.
Collapse
|
43
|
Kobayashi T, Nakatsuka K, Shimizu M, Tamura H, Shinya E, Atsukawa M, Harimoto H, Takahashi H, Sakamoto C. Ribavirin modulates the conversion of human CD4(+) CD25(-) T cell to CD4(+) CD25(+) FOXP3(+) T cell via suppressing interleukin-10-producing regulatory T cell. Immunology 2012; 137:259-70. [PMID: 22891772 DOI: 10.1111/imm.12005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Because regulatory T (Treg) cells play an important role in modulating the immune system response against both endogenous and exogenous antigens, their control is critical to establish immunotherapy against autoimmune disorders, chronic viral infections and tumours. Ribavirin (RBV), an antiviral reagent used with interferon, is known to polarize the T helper (Th) 1/2 cell balance toward Th1 cells. Although the immunoregulatory mechanisms of RBV are not fully understood, it has been expected that RBV would affect T reg cells to modulate the Th1/2 cell balance. To confirm this hypothesis, we investigated whether RBV modulates the inhibitory activity of human peripheral CD4(+) CD25(+) CD127(-) T cells in vitro. CD4(+) CD25(+) CD127(-) T cells pre-incubated with RBV lose their ability to inhibit the proliferation of CD4(+) CD25(-) T cells. Expression of Forkhead box P3 (FOXP3) in CD4(+) CD25(-) T cells was down-modulated when they were incubated with CD4(+) CD25(+) CD127(-) T cells pre-incubated with RBV without down-modulating CD45RO on their surface. In addition, transwell assays and cytokine-neutralizing assays revealed that this effect depended mainly on the inhibition of interleukin-10 (IL-10) produced from CD4(+) CD25(+) CD127(-) T cells. These results indicated that RBV might inhibit the conversion of CD4(+) CD25(-) FOXP3(-) naive T cells into CD4(+) CD25(+) FOXP3(+) adaptive Treg cells by down-modulating the IL-10-producing Treg 1 cells to prevent these effector T cells from entering anergy and to maintain Th1 cell activity. Taken together, our findings suggest that RBV would be useful for both elimination of long-term viral infections such as hepatitis C virus infection and for up-regulation of tumour-specific cellular immune responses to prevent carcinogenesis, especially hepatocellular carcinoma.
Collapse
Affiliation(s)
- Tamaki Kobayashi
- Division of Gastroenterology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Xue X, Shah YM. Hypoxia-inducible factor-2α is essential in activating the COX2/mPGES-1/PGE2 signaling axis in colon cancer. Carcinogenesis 2012; 34:163-9. [PMID: 23042097 DOI: 10.1093/carcin/bgs313] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cyclooxygenase 2 (COX2) is overexpressed in 80% of colon adenocarcinomas. However, the mechanism leading to aberrant COX2 expression in tumors is unclear. Intestinal epithelium-specific disruption of the von Hippel-Lindau tumor suppressor protein (VHL) in adenomatous polyposis coli (Apc)(min/+) mice (Vhl(ΔIE)/Apc(min/+)) resulted in constitutive activation of hypoxia-inducible factor (HIF), robustly enhanced colon carcinogenesis and potentiated COX2 expression in normal colon epithelium and tumors. In this study, we hypothesize that HIF regulates COX2 expression in colon tumors, and this regulation is critical for HIF-mediated colon carcinogenesis. COX2 was demonstrated to be a direct target gene of HIF-2α, and genetic disruption of HIF-2α abolished the induction of COX2 in tumors. Furthermore, inhibition of COX2 by nimesulide reduced HIF-2α-induced colon tumor formation. Interestingly, the levels of prostaglandin E(2) (PGE(2)), the downstream effector of COX2, remained elevated in normal and tumor tissues of the nimesulide-treated Vhl(ΔIE)/Apc(min/+) mice. Further examination revealed that the terminal PGE(2) synthesis enzyme microsomal prostaglandin E synthase 1 (mPGES-1) was overexpressed in the colon of Vhl(ΔIE)/Apc(min/+) mice. mPGES-1 was demonstrated to be a direct target gene of HIF-2α, and genetic disruption of HIF-2α abolished the induction of mPGES-1 in colon tumors. Together, our findings demonstrate that HIF-2α is a major regulator of COX2/mPGES-1/PGE(2) pathway in colon tumors.
Collapse
Affiliation(s)
- Xiang Xue
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
45
|
Involvement of inflammatory factors in pancreatic carcinogenesis and preventive effects of anti-inflammatory agents. Semin Immunopathol 2012; 35:203-27. [PMID: 22955327 DOI: 10.1007/s00281-012-0340-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 08/23/2012] [Indexed: 12/13/2022]
Abstract
Chronic inflammation is known to be a risk for many cancers, including pancreatic cancer. Heavy alcohol drinking and cigarette smoking are major causes of pancreatitis, and epidemiological studies have shown that smoking and chronic pancreatitis are risk factors for pancreatic cancer. Meanwhile, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) are elevated in pancreatitis and pancreatic cancer tissues in humans and in animal models. Selective inhibitors of iNOS and COX-2 suppress pancreatic cancer development in a chemical carcinogenesis model of hamsters treated with N-nitrosobis(2-oxopropyl)amine (BOP). In addition, hyperlipidemia, obesity, and type II diabetes are also suggested to be associated with chronic inflammation in the pancreas and involved in pancreatic cancer development. We have shown that a high-fat diet increased pancreatic cancer development in BOP-treated hamsters, along with aggravation of hyperlipidemia, severe fatty infiltration, and increased expression of adipokines and inflammatory factors in the pancreas. Of note, fatty pancreas has been observed in obese and/or diabetic cases in humans. Preventive effects of anti-hyperlipidemic/anti-diabetic agents on pancreatic cancer have also been shown in humans and animals. Taking this evidence into consideration, modulation of inflammatory factors by anti-inflammatory agents will provide useful data for prevention of pancreatic cancer.
Collapse
|
46
|
Facciabene A, Motz GT, Coukos G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res 2012; 72:2162-71. [PMID: 22549946 DOI: 10.1158/0008-5472.can-11-3687] [Citation(s) in RCA: 617] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
T-regulatory cells (Tregs) are found infiltrating tumors in a vast array of tumor types, and tumor-infiltrating Tregs are often associated with a poor clinical outcome. Tregs are potent immunosuppressive cells of the immune system that promote progression of cancer through their ability to limit antitumor immunity and promote angiogenesis. Here, we discuss the ways in which Tregs suppress the antitumor immune response and elaborate on our recent discovery that Tregs make significant direct contributions to tumor angiogenesis. Further, we highlight several current therapies aimed at eliminating Tregs in cancer patients. Given the multifaceted role of Tregs in cancer, a greater understanding of their functions will ultimately strengthen future therapies.
Collapse
Affiliation(s)
- Andrea Facciabene
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
47
|
Rosiglitazone and Gemcitabine in combination reduces immune suppression and modulates T cell populations in pancreatic cancer. Cancer Immunol Immunother 2012; 62:225-36. [PMID: 22864396 DOI: 10.1007/s00262-012-1324-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 07/20/2012] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma is a leading cause of cancer mortality with a dismal 2-5 % 5-year survival rate. Monotherapy with Gemcitabine has limited success, highlighting the need for additional therapies that enhance the efficacy of current treatments. We evaluated the combination of Gemcitabine and Rosiglitazone, an FDA-approved drug for the treatment of type II diabetes, in an immunocompetent transplantable mouse model of pancreatic cancer. Tumor progression, survival, and metastases were evaluated in immunocompetent mice with subcutaneous or orthotopic pancreatic tumors treated with Pioglitazone, Rosiglitazone, Gemcitabine, or combinations of these. We characterized the impact of high-dose Rosiglitazone and Gemcitabine therapy on immune suppressive mediators, including MDSC and T regulatory cells, and on modulation of peripheral and intra-tumoral T cell populations. Combinations of Rosiglitazone and Gemcitabine significantly reduced tumor progression and metastases, enhanced apoptosis, and significantly extended overall survival compared to Gemcitabine alone. Rosiglitazone altered tumor-associated immune suppressive mediators by limiting early MDSC accumulation and intra-tumoral T regulatory cells. Combination therapy with Rosiglitazone and Gemcitabine modulated T cell populations by enhancing circulating CD8(+) T cells and intra-tumoral CD4(+) and CD8(+) T cells while limiting T regulatory cells. The results suggest that Rosiglitazone, in combination with Gemcitabine, decreases immune suppressive mechanisms in immunocompetent animals and provides pre-clinical data in support of combining Rosiglitazone and Gemcitabine as a clinical therapy for pancreatic cancer.
Collapse
|
48
|
Eberstål S, Badn W, Fritzell S, Esbjörnsson M, Darabi A, Visse E, Siesjö P. Inhibition of cyclooxygenase-2 enhances immunotherapy against experimental brain tumors. Cancer Immunol Immunother 2012; 61:1191-9. [PMID: 22213142 PMCID: PMC11029214 DOI: 10.1007/s00262-011-1196-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/20/2011] [Indexed: 01/09/2023]
Abstract
Glioblastoma multiforme is the most common and aggressive malignant brain tumor in humans, and the prognosis is very poor despite conventional therapy. Immunotherapy represents a novel treatment approach, but the effect is often weakened by release of immune-suppressive molecules such as prostaglandins. In the current study, we investigated the effect of immunotherapy with irradiated interferon-γ (IFN-γ)-secreting tumor cells and administration of the selective cyclooxygenase-2 (COX-2) inhibitor parecoxib as treatment of established rat brain tumors. COX-2 inhibition and immunotherapy significantly enhanced the long-term cure rate (81% survival) compared with immunotherapy alone (19% survival), and there was a significant increase in plasma IFN-γ levels in animals treated with the combined therapy, suggesting a systemic T helper 1 immune response. COX-2 inhibition alone, however, did neither induce cure nor prolonged survival. The tumor cells were identified as the major source of COX-2 both in vivo and in vitro, and unmodified tumor cells produced prostaglandin E(2) in vitro, while the IFN-γ expressing tumor cells secreted significantly lower levels. In conclusion, we show that immunotherapy of experimental brain tumors is greatly potentiated when combined with COX-2 inhibition. Based on our results, the clinically available drug parecoxib may be added to immunotherapy against human brain tumors. Furthermore, the discovery that IFN-γ plasma levels can be used to determine the ongoing in vivo immune response has translational potential.
Collapse
Affiliation(s)
- Sofia Eberstål
- Glioma Immunotherapy Group, The Rausing Laboratory, BMC D14, Divison of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
49
|
Hussain M, Javeed A, Ashraf M, Al-Zaubai N, Stewart A, Mukhtar MM. Non-steroidal anti-inflammatory drugs, tumour immunity and immunotherapy. Pharmacol Res 2012; 66:7-18. [DOI: 10.1016/j.phrs.2012.02.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 02/14/2012] [Indexed: 12/16/2022]
|
50
|
Hong B, Krusche CA, Schwabe K, Friedrich S, Klein R, Krauss JK, Nakamura M. Cyclooxygenase-2 supports tumor proliferation in vestibular schwannomas. Neurosurgery 2012; 68:1112-7. [PMID: 21221032 DOI: 10.1227/neu.0b013e318208f5c7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Recent studies have shown that cyclooxygenase-2 (COX-2) plays an important role in tumor growth and neovascularization. However, COX-2 expression in vestibular schwannomas (VSs) has not been investigated. OBJECTIVE To analyze the pattern of COX-2 expression in sporadic and neurofibromatosis type 2 (NF2)-associated VSs and its relationship with tumor proliferation and microvessel density. METHODS Fifteen sporadic and 15 NF2-associated VSs were examined for COX-2 expression, microvessel density, and proliferation rate by immunohistochemical methods. Immunohistochemical scores were used to interpret the extent and intensity of COX-2 staining. Microvessel density (MVD) was determined using von Willebrand factor (vWf). Proliferation rate was quantified using Ki-67. The relationship among COX-2 expression, MVD, and proliferation rate was statistically analyzed. RESULTS COX-2 expression was detected in 29 (96.67%) of 30 VSs, with no significant difference between sporadic and NF2-associated VSs (P = .722). In 6 (20%) VSs, COX-2 expression was graded as strong, in 12 (40%) as moderate, and in 11 (36.7%) as weak. VSs with high proliferation showed significantly higher COX-2 expression (P = .015) than VSs with low proliferation. COX-2 expression and MVD did not show specific biological correlations (P = .035). CONCLUSION Our data demonstrate that COX-2 is expressed in VSs. High COX-2 expression in VSs with high proliferation rates suggests that the COX-2 pathway may be involved in the development and growth of VSs.
Collapse
Affiliation(s)
- Bujung Hong
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|