1
|
Balachandran H, Kroll K, Terry K, Manickam C, Jones R, Woolley G, Hayes T, Martinot AJ, Sharma A, Lewis M, Jost S, Reeves RK. NK cells modulate in vivo control of SARS-CoV-2 replication and suppression of lung damage. PLoS Pathog 2024; 20:e1012439. [PMID: 39133756 PMCID: PMC11341101 DOI: 10.1371/journal.ppat.1012439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/22/2024] [Accepted: 07/22/2024] [Indexed: 08/18/2024] Open
Abstract
Natural killer (NK) cells play a critical role in virus control. However, it has remained largely unclear whether NK cell mobilization in SARS-CoV-2 infections is beneficial or pathologic. To address this deficit, we employed a validated experimental NK cell depletion non-human primate (NHP) model with SARS-CoV-2 Delta variant B.1.617.2 challenge. Viral loads (VL), NK cell numbers, activation, proliferation, and functional measures were evaluated in blood and tissues. In non-depleted (control) animals, infection rapidly induced NK cell expansion, activation, and increased tissue trafficking associated with VL. Strikingly, we report that experimental NK cell depletion leads to higher VL, longer duration of viral shedding, significantly increased levels of pro-inflammatory cytokines in the lungs, and overt lung damage. Overall, we find the first significant and conclusive evidence for NK cell-mediated control of SARS-CoV-2 virus replication and disease pathology. These data indicate that adjunct therapies for infection could largely benefit from NK cell-targeted approaches.
Collapse
Affiliation(s)
- Harikrishnan Balachandran
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kyle Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Karen Terry
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Rhianna Jones
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Tammy Hayes
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Amanda J. Martinot
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Ankur Sharma
- BIOQUAL, Inc., Rockville, Maryland, United States of America
| | - Mark Lewis
- BIOQUAL, Inc., Rockville, Maryland, United States of America
| | - Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
2
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
3
|
Simpson J, Starke CE, Ortiz AM, Ransier A, Darko S, Llewellyn-Lacey S, Fennessey CM, Keele BF, Douek DC, Price DA, Brenchley JM. Immunotoxin-mediated depletion of Gag-specific CD8+ T cells undermines natural control of SIV. JCI Insight 2024; 9:e174168. [PMID: 38885329 PMCID: PMC11383179 DOI: 10.1172/jci.insight.174168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
Antibody-mediated depletion studies have demonstrated that CD8+ T cells are required for effective immune control of SIV. However, this approach is potentially confounded by several factors, including reactive CD4+ T cell proliferation, and provides no information on epitope specificity, a likely determinant of CD8+ T cell efficacy. We circumvented these limitations by selectively depleting CD8+ T cells specific for the Gag epitope CTPYDINQM (CM9) via the administration of immunotoxin-conjugated tetrameric complexes of CM9/Mamu-A*01. Immunotoxin administration effectively depleted circulating but not tissue-localized CM9-specific CD8+ T cells, akin to the bulk depletion pattern observed with antibodies directed against CD8. However, we found no evidence to indicate that circulating CM9-specific CD8+ T cells suppressed viral replication in Mamu-A*01+ rhesus macaques during acute or chronic progressive infection with a pathogenic strain of SIV. This observation extended to macaques with established infection during and after continuous antiretroviral therapy. In contrast, natural controller macaques experienced dramatic increases in plasma viremia after immunotoxin administration, highlighting the importance of CD8+ T cell-mediated immunity against CM9. Collectively, these data showed that CM9-specific CD8+ T cells were necessary but not sufficient for robust immune control of SIV in a nonhuman primate model and, more generally, validated an approach that could inform the design of next-generation vaccines against HIV-1.
Collapse
Affiliation(s)
- Jennifer Simpson
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Carly E Starke
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Amy Ransier
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Sam Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Eichholz K, Fukazawa Y, Peterson CW, Haeseleer F, Medina M, Hoffmeister S, Duell DM, Varco-Merth BD, Dross S, Park H, Labriola CS, Axthelm MK, Murnane RD, Smedley JV, Jin L, Gong J, Rust BJ, Fuller DH, Kiem HP, Picker LJ, Okoye AA, Corey L. Anti-PD-1 chimeric antigen receptor T cells efficiently target SIV-infected CD4+ T cells in germinal centers. J Clin Invest 2024; 134:e169309. [PMID: 38557496 PMCID: PMC10977982 DOI: 10.1172/jci169309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/09/2024] [Indexed: 04/04/2024] Open
Abstract
Programmed cell death protein 1 (PD-1) is an immune checkpoint marker commonly expressed on memory T cells and enriched in latently HIV-infected CD4+ T cells. We engineered an anti-PD-1 chimeric antigen receptor (CAR) to assess the impact of PD-1 depletion on viral reservoirs and rebound dynamics in SIVmac239-infected rhesus macaques (RMs). Adoptive transfer of anti-PD-1 CAR T cells was done in 2 SIV-naive and 4 SIV-infected RMs on antiretroviral therapy (ART). In 3 of 6 RMs, anti-PD-1 CAR T cells expanded and persisted for up to 100 days concomitant with the depletion of PD-1+ memory T cells in blood and tissues, including lymph node CD4+ follicular helper T (TFH) cells. Loss of TFH cells was associated with depletion of detectable SIV RNA from the germinal center (GC). However, following CAR T infusion and ART interruption, there was a marked increase in SIV replication in extrafollicular portions of lymph nodes, a 2-log higher plasma viremia relative to controls, and accelerated disease progression associated with the depletion of CD8+ memory T cells. These data indicate anti-PD-1 CAR T cells depleted PD-1+ T cells, including GC TFH cells, and eradicated SIV from this immunological sanctuary.
Collapse
Affiliation(s)
- Karsten Eichholz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Yoshinori Fukazawa
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Christopher W. Peterson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
| | - Francoise Haeseleer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Manuel Medina
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Shelby Hoffmeister
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Derick M. Duell
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Benjamin D. Varco-Merth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Sandra Dross
- Washington National Primate Research Center (WaNPRC), Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Haesun Park
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Caralyn S. Labriola
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Robert D. Murnane
- Washington National Primate Research Center (WaNPRC), Seattle, Washington, USA
| | - Jeremy V. Smedley
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Lei Jin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jiaxin Gong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Blake J. Rust
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Deborah H. Fuller
- Washington National Primate Research Center (WaNPRC), Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Hans-Peter Kiem
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Afam A. Okoye
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Zikos J, Webb GM, Wu HL, Reed JS, Watanabe J, Usachenko JL, Shaqra AM, Schiffer CA, Van Rompay KKA, Sacha JB, Magnani DM. FcRn-enhancing mutations lead to increased and prolonged levels of the HIV CCR5-blocking monoclonal antibody leronlimab in the fetuses and newborns of pregnant rhesus macaques. MAbs 2024; 16:2406788. [PMID: 39324549 PMCID: PMC11441024 DOI: 10.1080/19420862.2024.2406788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
Prenatal administration of monoclonal antibodies (mAbs) is a strategy that could be exploited to prevent viral infections during pregnancy and early life. To reach protective levels in fetuses, mAbs must be transported across the placenta, a selective barrier that actively and specifically promotes the transfer of antibodies (Abs) into the fetus through the neonatal Fc receptor (FcRn). Because FcRn also regulates Ab half-life, Fc mutations like the M428L/N434S, commonly known as LS mutations, and others have been developed to enhance binding affinity to FcRn and improve drug pharmacokinetics. We hypothesized that these FcRn-enhancing mutations could similarly affect the delivery of therapeutic Abs to the fetus. To test this hypothesis, we measured the transplacental transfer of leronlimab, an anti-CCR5 mAb, in clinical development for preventing HIV infections, using pregnant rhesus macaques to model in utero mAb transfer. We also generated a stabilized and FcRn-enhanced form of leronlimab, termed leronlimab-PLS. Leronlimab-PLS maintained higher levels within the maternal compartment while also reaching higher mAb levels in the fetus and newborn circulation. Further, a single dose of leronlimab-PLS led to complete CCR5 receptor occupancy in mothers and newborns for almost a month after birth. These findings support the optimization of FcRn interactions in mAb therapies designed for administration during pregnancy.
Collapse
MESH Headings
- Animals
- Pregnancy
- Receptors, Fc/genetics
- Receptors, Fc/immunology
- Receptors, Fc/metabolism
- Female
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Macaca mulatta
- Fetus/immunology
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Animals, Newborn
- Humans
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/genetics
- HIV Infections/immunology
- HIV Infections/drug therapy
- HIV Infections/genetics
- Maternal-Fetal Exchange/immunology
- Mutation
- HIV Antibodies/immunology
- HIV Antibodies/genetics
- CCR5 Receptor Antagonists/pharmacology
- Antibodies, Monoclonal, Humanized/immunology
Collapse
Affiliation(s)
- Joanna Zikos
- Nonhuman Primate Reagent Resource (NHPRR), Department of Medicine - Innate Immunity, UMass Chan Medical School, Worcester, MA, USA
| | - Gabriela M Webb
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Helen L Wu
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Jason S Reed
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Jennifer Watanabe
- California National Primate Research Center (CNPRC), University of California, Davis, CA, USA
| | - Jodie L Usachenko
- California National Primate Research Center (CNPRC), University of California, Davis, CA, USA
| | - Ala M Shaqra
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, USA
| | - Koen K A Van Rompay
- California National Primate Research Center (CNPRC), University of California, Davis, CA, USA
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, USA
| | - Jonah B Sacha
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Diogo M Magnani
- Nonhuman Primate Reagent Resource (NHPRR), Department of Medicine - Innate Immunity, UMass Chan Medical School, Worcester, MA, USA
| |
Collapse
|
6
|
Hartana CA, Lancien M, Gao C, Rassadkina Y, Lichterfeld M, Yu XG. IL-15-dependent immune crosstalk between natural killer cells and dendritic cells in HIV-1 elite controllers. Cell Rep 2023; 42:113530. [PMID: 38048223 PMCID: PMC10765318 DOI: 10.1016/j.celrep.2023.113530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/04/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
As the principal effector cell population of the innate immune system, natural killer (NK) cells may make critical contributions to natural, immune-mediated control of HIV-1 replication. Using genome-wide assessments of activating and inhibitory chromatin features, we demonstrate here that cytotoxic NK (cNK) cells from elite controllers (ECs) display elevated activating histone modifications at the interleukin 2 (IL-2)/IL-15 receptor β chain and the BCL2 gene loci. These histone changes translate into increased responsiveness of cNK cells to paracrine IL-15 secretion, which coincides with higher levels of IL-15 transcription by myeloid dendritic cells in ECs. The distinct immune crosstalk between these innate immune cell populations results in improved IL-15-dependent cNK cell survival and cytotoxicity, paired with a metabolic profile biased toward IL-15-mediated glycolytic activities. Together, these results suggest that cNK cells from ECs display a programmed IL-15 response signature and support the emerging role of innate immune pathways in natural, drug-free control of HIV-1.
Collapse
Affiliation(s)
| | - Melanie Lancien
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Ce Gao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Zhang W, Ruan L. Recent advances in poor HIV immune reconstitution: what will the future look like? Front Microbiol 2023; 14:1236460. [PMID: 37608956 PMCID: PMC10440441 DOI: 10.3389/fmicb.2023.1236460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Combination antiretroviral therapy has demonstrated proved effectiveness in suppressing viral replication and significantly recovering CD4+ T cell count in HIV type-1 (HIV-1)-infected patients, contributing to a dramatic reduction in AIDS morbidity and mortality. However, the factors affecting immune reconstitution are extremely complex. Demographic factors, co-infection, baseline CD4 cell level, abnormal immune activation, and cytokine dysregulation may all affect immune reconstitution. According to report, 10-40% of HIV-1-infected patients fail to restore the normalization of CD4+ T cell count and function. They are referred to as immunological non-responders (INRs) who fail to achieve complete immune reconstitution and have a higher mortality rate and higher risk of developing other non-AIDS diseases compared with those who achieve complete immune reconstitution. Heretofore, the mechanisms underlying incomplete immune reconstitution in HIV remain elusive, and INRs are not effectively treated or mitigated. This review discusses the recent progress of mechanisms and factors responsible for incomplete immune reconstitution in AIDS and summarizes the corresponding therapeutic strategies according to different mechanisms to improve the individual therapy.
Collapse
Affiliation(s)
| | - Lianguo Ruan
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
8
|
Natural Killer Cells Regulate Acute SIV Replication, Dissemination, and Inflammation, but Do Not Impact Independent Transmission Events. J Virol 2023; 97:e0151922. [PMID: 36511699 PMCID: PMC9888193 DOI: 10.1128/jvi.01519-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are potent effector cells of the innate immune system possessing both cytotoxic and immunoregulatory capabilities, which contribute to their crucial role in controlling human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections. However, despite significant evidence for NK cell modulation of HIV disease, their specific contribution to transmission and control of acute infection remains less clear. To elucidate the contribution of NK cells during acute SIV infection, we performed an acute necropsy study, where rhesus macaques (RM) were subjected to preinfection depletion of systemic NK cells using established methods of IL-15 neutralization, followed by subsequent challenge with barcoded SIVmac239X. Our study showed that depletion was highly effective, resulting in near total ablation of all NK cell subsets in blood, liver, oral, and rectal mucosae, and lymph nodes (LN) that persisted through the duration of the study. Meanwhile, frequencies and phenotypes of T cells remained virtually unchanged, indicating that our method of NK cell depletion had minimal off-target effects. Importantly, NK cell-depleted RM demonstrated an early and sustained 1 to 2 log increase in viremia over controls, but sequence analysis suggested no difference in the number of independent transmission events. Acute bulk, central memory (CM), and CCR5+ CD4+ T cell depletion was similar between experimental and control groups, while CD8+ T cell activation was higher in NK cell-depleted RM as measured by Ki67 and PD-1 expression. Using 27-plex Luminex analyses, we also found modestly increased inflammatory cytokines in NK cell-depleted RM compared to control animals. In the effort to determine the impact of NK cells on HIV/SIV transmission and acute viremia, future studies will be necessary to better harness these cells for future viral therapies. Collectively, these data suggest NK cells are important modulators of lentivirus dissemination and disease but may not have the capacity to independently eliminate individual transmission events. IMPORTANCE Natural killer (NK) cells as major effector cells of the innate immune system can contribute significantly to human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) control. However, a specific role for NK cells in blocking lentivirus transmission remains incompletely clear. In this study, we depleted NK cells prior to challenge with a barcoded SIV. Importantly, our studied showed systemic NK cell depletion was associated with a significant increase in acute viremia, but did not impact the number of independent transmission events. Collectively, these data suggest NK cells are critical modulators of early lentivirus replication but may not regulate individual transmission events at mucosal portals of entry.
Collapse
|
9
|
Mortier E, Maillasson M, Quéméner A. Counteracting Interleukin-15 to Elucidate Its Modes of Action in Physiology and Pathology. J Interferon Cytokine Res 2023; 43:2-22. [PMID: 36651845 DOI: 10.1089/jir.2022.0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Interleukin (IL)-15 belongs to the common gamma-dependent cytokine family, along with IL-2, IL-4, IL-7, IL-9, and IL-21. IL-15 is crucial for the homeostasis of Natural Killer (NK) and memory CD8 T cells, and to fight against cancer progression. However, dysregulations of IL-15 expression could occur and participate in the emergence of autoimmune inflammatory diseases as well as hematological malignancies. It is therefore important to understand the different modes of action of IL-15 to decrease its harmful action in pathology without affecting its beneficial effects in the immune system. In this review, we present the different approaches used by researchers to inhibit the action of IL-15, from most broad to the most selective. Indeed, it appears that it is important to selectively target the mode of action of the cytokine rather than the cytokine itself as they are involved in numerous biological processes.
Collapse
Affiliation(s)
- Erwan Mortier
- Nantes Université, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Mike Maillasson
- Nantes Université, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Agnès Quéméner
- Nantes Université, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| |
Collapse
|
10
|
Li T, Qu H, Ding H, Deng H, Chen Y. Profiling of proteome changes in plasma of HIV-infected patients receiving antiretroviral therapy. Proteomics Clin Appl 2022; 16:e2100099. [PMID: 35920599 DOI: 10.1002/prca.202100099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE Antiretroviral therapy (ART) prevents human immunodeficiency virus (HIV)-1 onward transmission and disease progression, leading to excellent prognosis in people living with HIV-1 (PWH). However, side effects, complications, and impaired immune reconstitution persist in some patients treated with ART. We aimed to profile proteome changes in plasma before and after ART to identify the molecular pathways altered by ART. EXPERIMENTAL DESIGN Quantitative proteomics analysis based on tandem mass tag (TMT) labeling was used to profile proteome changes of paired plasma samples from HIV-1 patients before receiving ART and after ART treatment. RESULTS A total of 1398 protein groups (PGs) were identified, in which 18 proteins were downregulated and 50 were upregulated in plasma from ART treated patients. Based on Ingenuity Pathway analysis (IPA), gap junction signaling and actin cytoskeleton signaling were enriched among upregulated proteins, while downregulated proteins were mainly participated in IL-15 signaling pathway. Patients with the low level of CSF1R and the high levels of MINPP1 and TGM3 showed better CD4+ T-cell recovery. CONCLUSIONS The present study provided plasma proteome changes after ART to elucidate the underlying mechanistic pathways in response to ART, and also identified potential targets to prompt immune reconstitution.
Collapse
Affiliation(s)
- Ting Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Hong Qu
- Department of Obstetric & Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuling Chen
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Harwood O, O’Connor S. Therapeutic Potential of IL-15 and N-803 in HIV/SIV Infection. Viruses 2021; 13:1750. [PMID: 34578331 PMCID: PMC8473246 DOI: 10.3390/v13091750] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
IL-15, a proinflammatory cytokine critical for the generation, maintenance, and homeostasis of T cell responses, is produced naturally in response to HIV/SIV infection, but has also demonstrated therapeutic potential. IL-15 can boost CD4+ and CD8+ T cell and NK cell proliferation, activation, and function. However, IL-15 treatment may cause aberrant immune activation and accelerated disease progression in certain circumstances. Moreover, the relationship between the timing of IL-15 administration and disease progression remains unclear. The IL-15 superagonist N-803 was developed to expand the therapeutic potential of IL-15 by maximizing its tissue distribution and half-life. N-803 has garnered enthusiasm recently as a way to enhance the innate and cellular immune responses to HIV/SIV by improving CD8+ T cell recognition and killing of virus-infected cells and directing immune cells to mucosal sites and lymph nodes, the primary sites of virus replication. N-803 has also been evaluated in "shock and kill" strategies due to its potential to reverse latency (shock) and enhance antiviral immunity (kill). This review examines the current literature about the effects of IL-15 and N-803 on innate and cellular immunity, viral burden, and latency reversal in the context of HIV/SIV, and their therapeutic potential both alone and combined with additional interventions such as antiretroviral therapy (ART) and vaccination.
Collapse
Affiliation(s)
| | - Shelby O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA;
| |
Collapse
|
12
|
Interests of the Non-Human Primate Models for HIV Cure Research. Vaccines (Basel) 2021; 9:vaccines9090958. [PMID: 34579195 PMCID: PMC8472852 DOI: 10.3390/vaccines9090958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Non-human primate (NHP) models are important for vaccine development and also contribute to HIV cure research. Although none of the animal models are perfect, NHPs enable the exploration of important questions about tissue viral reservoirs and the development of intervention strategies. In this review, we describe recent advances in the use of these models for HIV cure research and highlight the progress that has been made as well as limitations using these models. The main NHP models used are (i) the macaque, in which simian immunodeficiency virus (SIVmac) infection displays similar replication profiles as to HIV in humans, and (ii) the macaque infected by a recombinant virus (SHIV) consisting of SIVmac expressing the HIV envelope gene serving for studies analyzing the impact of anti-HIV Env broadly neutralizing antibodies. Lessons for HIV cure that can be learned from studying the natural host of SIV are also presented here. An overview of the most promising and less well explored HIV cure strategies tested in NHP models will be given.
Collapse
|