1
|
Elahi S, Rezaeifar M, Osman M, Shahbaz S. Exploring the role of galectin-9 and artemin as biomarkers in long COVID with chronic fatigue syndrome: links to inflammation and cognitive function. Front Immunol 2024; 15:1443363. [PMID: 39386210 PMCID: PMC11461188 DOI: 10.3389/fimmu.2024.1443363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
This study aimed to assess plasma galectin-9 (Gal-9) and artemin (ARTN) concentrations as potential biomarkers to differentiate individuals with Long COVID (LC) patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) from SARS-CoV-2 recovered (R) and healthy controls (HCs). Receiver operating characteristic (ROC) curve analysis determined a cut-off value of plasma Gal-9 and ARTN to differentiate LC patients from the R group and HCs in two independent cohorts. Positive correlations were observed between elevated plasma Gal-9 levels and inflammatory markers (e.g. SAA and IP-10), as well as sCD14 and I-FABP in LC patients. Gal-9 also exhibited a positive correlation with cognitive failure scores, suggesting its potential role in cognitive impairment in LC patients with ME/CFS. This study highlights plasma Gal-9 and/or ARTN as sensitive screening biomarkers for discriminating LC patients from controls. Notably, the elevation of LPS-binding protein in LC patients, as has been observed in HIV infected individuals, suggests microbial translocation. However, despite elevated Gal-9, we found a significant decline in ARTN levels in the plasma of people living with HIV (PLWH). Our study provides a novel and important role for Gal-9/ARTN in LC pathogenesis.
Collapse
Affiliation(s)
- Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, Edmonton, AB, Canada
- Women and Children Health Research Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, Edmonton, AB, Canada
- Glycomics Institute of Alberta, Edmonton, AB, Canada
- Alberta Transplant Institute, Edmonton, AB, Canada
| | - Maryam Rezaeifar
- School of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
| | - Mohammed Osman
- Li Ka Shing Institute of Virology, Edmonton, AB, Canada
- Women and Children Health Research Institute, Edmonton, AB, Canada
- Department of Medicine, Division of Rheumatology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
| |
Collapse
|
2
|
Ji J, Tang M, Zhao Y, Zhang C, Shen Y, Zhou B, Liu C, Maurer M, Jiao Q. In chronic spontaneous urticaria, increased Galectin-9 expression on basophils and eosinophils is linked to high disease activity, endotype-specific markers, and response to omalizumab treatment. Allergy 2024; 79:2435-2447. [PMID: 39021347 DOI: 10.1111/all.16239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Galectin-9 (Gal-9) has been implicated in allergic and autoimmune diseases, but its role and relevance in chronic spontaneous urticaria (CSU) are unclear. OBJECTIVES To characterize the role and relevance of Gal-9 in the pathogenesis of CSU. METHODS We assessed 60 CSU patients for their expression of Gal-9 on circulating eosinophils and basophils as well as T cell expression of the Gal-9 receptor TIM-3, compared them with 26 healthy controls (HCs), and explored possible links with disease features including disease activity (urticaria activity score, UAS), total IgE, basophil activation test (BAT), and response to omalizumab treatment. We also investigated potential drivers of Gal-9 expression by eosinophils and basophils. RESULTS Our CSU patients had markedly increased rates of circulating Gal-9+ eosinophils and basophils and high numbers of lesional Gal-9+ cells. High rates of blood Gal-9+ eosinophils/basophils were linked to high disease activity, IgE levels, and BAT negativity. Serum levels of TNF-α were positively correlated with circulating Gal-9+ eosinophils/basophils, and TNF-α markedly upregulated Gal-9 on eosinophils. CSU patients who responded to omalizumab treatment had more Gal-9+ eosinophils/basophils than non-responders, and omalizumab reduced blood levels of Gal-9+ eosinophils/basophils in responders. Gal-9+ eosinophils/basophils were negatively correlated with TIM-3+TH17 cells. CONCLUSION Our findings demonstrate a previously unrecognized involvement of the Gal-9/TIM-3 pathway in the pathogenesis CSU and call for studies that explore its relevance.
Collapse
Affiliation(s)
- Jiang Ji
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Su Zhou, China
| | - Minhui Tang
- Department of Dermatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yue Zhao
- Suzhou Kowloon hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Chuqiao Zhang
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Su Zhou, China
| | - Yu Shen
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Zhou
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Qingqing Jiao
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Li Q, Wang G, Yuan Z, Kang R, Li Y, Bahabayi A, Xiong Z, Zhang Z, Liu C. Circulating CD8 + LGALS9 + T Cell Population Exhibiting Low Cytotoxic Characteristics are Decreased in Patients with Systemic Lupus Erythematosus. Immunol Res 2024:10.1007/s12026-024-09522-4. [PMID: 39046608 DOI: 10.1007/s12026-024-09522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
LGALS9, also known as Galectin-9 and a member of the β-galactosidase family, plays a crucial role in immune regulation. However, its expression and function in CD8 T cells, as well as its association with cytotoxic T lymphocytes (CTL), remain unclear. This study aims to investigate LGALS9 expression patterns in human circulating CD8 T lymphocytes and elucidate its clinical significance in Systemic Lupus Erythematosus (SLE). Blood samples from 56 healthy controls and 50 new-onset SLE patients were collected. Flow cytometry was utilized to analyze LGALS9 expression in circulating CD8 T lymphocytes via intracellular staining. Compared to LGALS9 + CD8 + T cells, LGALS9-CD8 + T cells showed increased secretion of Granzyme B (GZMB) and Perforin, along with elevated expression levels of GPR56, CX3CR1, KLRD1, KLRF1, PD1, and CD29. A higher proportion of Tn (naive T cells) and TCM (central memory T cells) showed LGALS9 positivity, compared to TEM (effector memory T cells) and TEMRA (terminally differentiated effector memory T cells re-expressing CD45RA). Clinically, the downregulation of LGALS9 expression was significant in SLE patients. LGALS9 + CD8 + T cells exhibited an Area Under the Curve (AUC) of 0.6916, while CX3CR1 + in LGALS9 + CD8 + T cells had an AUC of 0.6478, and KLRF1 + had an AUC of 0.6419, for distinguishing SLE from healthy individuals. In conclusion, CD8 + LGALS9 + T cells display characteristics of low cytotoxicity, and their reduction is evident in SLE patients, potentially implicating them in SLE pathogenesis and providing diagnostic assistance.
Collapse
Affiliation(s)
- Qi Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Guochong Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zihang Yuan
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Rui Kang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yaxin Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ziqi Xiong
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
4
|
Jacob R, Gorek LS. Intracellular galectin interactions in health and disease. Semin Immunopathol 2024; 46:4. [PMID: 38990375 PMCID: PMC11239732 DOI: 10.1007/s00281-024-01010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/07/2024] [Indexed: 07/12/2024]
Abstract
In the galectin family, a group of lectins is united by their evolutionarily conserved carbohydrate recognition domains. These polypeptides play a role in various cellular processes and are implicated in disease mechanisms such as cancer, fibrosis, infection, and inflammation. Following synthesis in the cytosol, manifold interactions of galectins have been described both extracellularly and intracellularly. Extracellular galectins frequently engage with glycoproteins or glycolipids in a carbohydrate-dependent manner. Intracellularly, galectins bind to non-glycosylated proteins situated in distinct cellular compartments, each with multiple cellular functions. This diversity complicates attempts to form a comprehensive understanding of the role of galectin molecules within the cell. This review enumerates intracellular galectin interaction partners and outlines their involvement in cellular processes. The intricate connections between galectin functions and pathomechanisms are illustrated through discussions of intracellular galectin assemblies in immune and cancer cells. This underscores the imperative need to fully comprehend the interplay of galectins with the cellular machinery and to devise therapeutic strategies aimed at counteracting the establishment of galectin-based disease mechanisms.
Collapse
Affiliation(s)
- Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Karl-von-Frisch-Str. 14, D-35043, Marburg, Germany.
| | - Lena-Sophie Gorek
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Karl-von-Frisch-Str. 14, D-35043, Marburg, Germany
| |
Collapse
|
5
|
Saito S, Shahbaz S, Osman M, Redmond D, Bozorgmehr N, Rosychuk RJ, Lam G, Sligl W, Cohen Tervaert JW, Elahi S. Diverse immunological dysregulation, chronic inflammation, and impaired erythropoiesis in long COVID patients with chronic fatigue syndrome. J Autoimmun 2024; 147:103267. [PMID: 38797051 DOI: 10.1016/j.jaut.2024.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
A substantial number of patients recovering from acute SARS-CoV-2 infection present serious lingering symptoms, often referred to as long COVID (LC). However, a subset of these patients exhibits the most debilitating symptoms characterized by ongoing myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS). We specifically identified and studied ME/CFS patients from two independent LC cohorts, at least 12 months post the onset of acute disease, and compared them to the recovered group (R). ME/CFS patients had relatively increased neutrophils and monocytes but reduced lymphocytes. Selective T cell exhaustion with reduced naïve but increased terminal effector T cells was observed in these patients. LC was associated with elevated levels of plasma pro-inflammatory cytokines, chemokines, Galectin-9 (Gal-9), and artemin (ARTN). A defined threshold of Gal-9 and ARTN concentrations had a strong association with LC. The expansion of immunosuppressive CD71+ erythroid cells (CECs) was noted. These cells may modulate the immune response and contribute to increased ARTN concentration, which correlated with pain and cognitive impairment. Serology revealed an elevation in a variety of autoantibodies in LC. Intriguingly, we found that the frequency of 2B4+CD160+ and TIM3+CD160+ CD8+ T cells completely separated LC patients from the R group. Our further analyses using a multiple regression model revealed that the elevated frequency/levels of CD4 terminal effector, ARTN, CEC, Gal-9, CD8 terminal effector, and MCP1 but lower frequency/levels of TGF-β and MAIT cells can distinguish LC from the R group. Our findings provide a new paradigm in the pathogenesis of ME/CFS to identify strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Suguru Saito
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Desiree Redmond
- Department of Medicine, Division of Rheumatology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Najmeh Bozorgmehr
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Rhonda J Rosychuk
- Department of Pediatrics, Division of Infectious Disease, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Grace Lam
- Department of Medicine, Division of Pulmonary Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Wendy Sligl
- Department of Critical Care Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada; Department of Medicine, Division of Infectious Diseases, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Jan Willem Cohen Tervaert
- Department of Medicine, Division of Rheumatology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada; Department of Oncology, University of Alberta, Edmonton, T6G 2E1, AB, Canada; Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada; Li Ka Shing Institute of Virology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada.
| |
Collapse
|
6
|
Jansen SA, Cutilli A, de Koning C, van Hoesel M, Frederiks CL, Saiz Sierra L, Nierkens S, Mokry M, Nieuwenhuis EE, Hanash AM, Mocholi E, Coffer PJ, Lindemans CA. Chemotherapy-induced intestinal epithelial damage directly promotes galectin-9-driven modulation of T cell behavior. iScience 2024; 27:110072. [PMID: 38883813 PMCID: PMC11176658 DOI: 10.1016/j.isci.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/05/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
The intestine is vulnerable to chemotherapy-induced damage due to the high rate of intestinal epithelial cell (IEC) proliferation. We have developed a human intestinal organoid-based 3D model system to study the direct effect of chemotherapy-induced IEC damage on T cell behavior. Exposure of intestinal organoids to busulfan, fludarabine, and clofarabine induced damage-related responses affecting both the capacity to regenerate and transcriptional reprogramming. In ex vivo co-culture assays, prior intestinal organoid damage resulted in increased T cell activation, proliferation, and migration. We identified galectin-9 (Gal-9) as a key molecule released by damaged organoids. The use of anti-Gal-9 blocking antibodies or CRISPR/Cas9-mediated Gal-9 knock-out prevented intestinal organoid damage-induced T cell proliferation, interferon-gamma release, and migration. Increased levels of Gal-9 were found early after HSCT chemotherapeutic conditioning in the plasma of patients who later developed acute GVHD. Taken together, chemotherapy-induced intestinal damage can influence T cell behavior in a Gal-9-dependent manner which may provide novel strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Suze A. Jansen
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| | - Alessandro Cutilli
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Coco de Koning
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584GX Utrecht, the Netherlands
| | - Marliek van Hoesel
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| | - Cynthia L. Frederiks
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Leire Saiz Sierra
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584GX Utrecht, the Netherlands
| | - Michal Mokry
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
| | - Edward E.S. Nieuwenhuis
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- University College Roosevelt, Utrecht University, Middelburg 4331CB, the Netherlands
| | - Alan M. Hanash
- Departments of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY 10065, USA
| | - Enric Mocholi
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Paul J. Coffer
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Caroline A. Lindemans
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| |
Collapse
|
7
|
Liu Z, Wei W, Zhang J, Yang X, Feng Z, Zhang B, Hou X. Single-cell transcriptional profiling reveals aberrant gene expression patterns and cell states in autoimmune diseases. Mol Immunol 2024; 165:68-81. [PMID: 38159454 DOI: 10.1016/j.molimm.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Multiple sclerosis(MS), primary Sjögren syndrome (pSS), and systemic lupus erythematosus (SLE) share numerous clinical symptoms and serological characteristics. We analyzed 153550 cells of scRNA-seq data of 17 treatment-naive patients (5 MS, 5 pSS, and 7 SLE) and 10 healthy controls, and we examined the enrichment of biological processes, differentially expressed genes (DEGs), immune cell types, and their subpopulations, and cell-cell communication in peripheral blood mononuclear cells (PBMCs). The percentage of B cells, megakaryocytes, monocytes, and proliferating T cells presented significant changes in autoimmune diseases. The enrichment of cell types based on gene expression revealed an elevated monocyte. MIF, MK, and GALECTIN signaling networks were obvious differences in autoimmune diseases. Taken together, our analysis provides a comprehensive map of the cell types and states of ADs patients at the single-cell level to understand better the pathogenesis and treatment of these ADs.
Collapse
Affiliation(s)
- Zhenyu Liu
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Wujun Wei
- Center for Clinical Laboratory Diagnosis and Research, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| | - Junning Zhang
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Xueli Yang
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Zhihui Feng
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Biao Zhang
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Xianliang Hou
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
8
|
Su Y, Zhang X, Liang Y, Sun J, Lu C, Huang Z. Integrated analysis of single-cell RNA-seq and bulk RNA-seq to unravel the molecular mechanisms underlying the immune microenvironment in the development of intestinal-type gastric cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166849. [PMID: 37591405 DOI: 10.1016/j.bbadis.2023.166849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Intestinal-type gastric cancer (IGC) is the most frequent type of gastric cancer in high-incidence populations. The early stages of IGC growth successively include nonatrophic gastritis (NAG), chronic atrophic gastritis (CAG) and intestinal metaplasia (IM). However, the mechanisms of IGC development through these stages remain unclear. For this study, single-cell RNA-seq data related to IGC were downloaded from the GEO database, and immune cells of the tumor microenvironment (TME) were annotated using R software. Changes in the proportion of immune cells and altered cell-to-cell interactions were explored at different disease stages using R software, with a focus on plasma cells. Additionally, IGC samples from the TCGA database were used for immune cell infiltration analysis, and a Cox proportional risk regression model was constructed to identify possible prognostic genes. The results indicated that for precancerous lesions, interactions between immune cells were mainly dominated by chemokines to stimulate the infiltration and activation of immune cells. In tumors, intercellular movement of upregulated molecules and amplified signals were associated with the tumor necrosis factor family and immunosuppression to escape immune surveillance and promote tumor growth. Regarding prognostic analysis, IGLC3, IGLV1-44, IGKV1-16, IGHV3-21, IGLV1-51, and IGLV3-19 were found to be novel biomarkers for IGC. Our analysis of the IGC single-cell atlas together with bulk transcriptome data contributes to understanding TME heterogeneity at the molecular level during IGC development and provides insights for elucidating the mechanism of IGC and discovering novel targets for precise therapy.
Collapse
Affiliation(s)
- Yongjian Su
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xiaoqing Zhang
- School of Basic Medicine, Guangdong Medical University, Dongguan, China
| | - Youcheng Liang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jianbo Sun
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Chengyu Lu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
9
|
Chagan-Yasutan H, He N, Arlud S, Fang J, Hattori T. The elevation of plasma galectin-9 levels in patients with psoriasis and its associations with inflammatory and immune checkpoint molecules in skin tissues. Hum Immunol 2024; 85:110741. [PMID: 38092632 DOI: 10.1016/j.humimm.2023.110741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024]
Abstract
Psoriasis is a chronic, immune-mediated disorder that mainly affects the skin, with an estimated global prevalence of 2-3%. Galectin-9 (Gal-9) is a β-galactoside-binding lectin capable of promoting or suppressing the progression of infectious and immune-mediated diseases. Here, we determined if the expression of Gal-9 is observed in psoriasis. Gal-9 levels were measured in plasma of psoriasis (n = 62) and healthy control (HC) (n = 31) using an enzyme-linked immunosorbent assay. In addition, skin samples from seven patients were screened for RNA transcriptomes and the expression of Gal-9 was compared with inflammatory, immune checkpoint molecules (ICMs) and Foxp3. The plasma Gal-9 levels in patients with psoriasis were significantly higher (841 pg/mL) than in HCs (617 pg/mL) (P < 0.0001) and were associated with white blood cell numbers, eosinophils (%) and alanine transaminase. The levels of inflammatory molecules IL-36B, IL-17RA, IL-6R, IL-10, IRF8, TGFb1, and IL-37, and those of ICMs of Tim-3, CTLA-4, CD86, CD80, PD-1LG2, CLEC4G, and Foxp3 were significantly correlated with Gal-9 (LGALS9) in skin. However, HMGB1, CD44, CEACAM1 and PDL1-known to be associated with a variety of Gal-9 biological functions were not correlated with LGALS9. Thus, it is likely that Gal-9 expression affects the disease state of PS.
Collapse
Affiliation(s)
- Haorile Chagan-Yasutan
- Mongolian Psychosomatic Medicine Department, Inner Mongolia International Mongolian Medicine Hospital, Hohhot 010065, China; Research Institute of Health and Welfare, Kibi International University, 8-Iga-machi, Takahashi, Okayama 716-8508, Japan.
| | - Nagongbilige He
- Mongolian Psychosomatic Medicine Department, Inner Mongolia International Mongolian Medicine Hospital, Hohhot 010065, China; The Inner Mongolia Institute of Chinese and Mongolian Medicine, Hohhot 010010, China.
| | - Sarnai Arlud
- Mongolian Psychosomatic Medicine Department, Inner Mongolia International Mongolian Medicine Hospital, Hohhot 010065, China
| | - Jun Fang
- Mongolian Psychosomatic Medicine Department, Inner Mongolia International Mongolian Medicine Hospital, Hohhot 010065, China; The Inner Mongolia Institute of Chinese and Mongolian Medicine, Hohhot 010010, China
| | - Toshio Hattori
- Research Institute of Health and Welfare, Kibi International University, 8-Iga-machi, Takahashi, Okayama 716-8508, Japan; Shizuoka Graduate University of Public Health, 4-27-2 Kita Ando Aoi-ku, Shizuoka City 420-0881, Japan.
| |
Collapse
|
10
|
Lv Y, Ma X, Ma Y, Du Y, Feng J. A new emerging target in cancer immunotherapy: Galectin-9 (LGALS9). Genes Dis 2023; 10:2366-2382. [PMID: 37554219 PMCID: PMC10404877 DOI: 10.1016/j.gendis.2022.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/09/2022] [Accepted: 05/14/2022] [Indexed: 11/20/2022] Open
Abstract
Over the past few decades, advances in immunological knowledge have led to the identification of novel immune checkpoints, reinvigorating cancer immunotherapy. Immunotherapy, represented by immune checkpoint inhibitors, has become the leader in the precision treatment of cancer, bringing a new dawn to the treatment of most cancer patients. Galectin-9 (LGALS9), a member of the galectin family, is a widely expressed protein involved in immune regulation and tumor pathogenesis, and affects the prognosis of various types of cancer. Galectin-9 regulates immune homeostasis and tumor cell survival through its interaction with its receptor Tim-3. In the review, based on a brief description of the signaling mechanisms and immunomodulatory activities of galectin-9 and Tim-3, we summarize the targeted expression patterns of galectin-9 in a variety of malignancies and the promising mechanisms of anti-galectin-9 therapy in stimulating anti-tumor immune responses.
Collapse
Affiliation(s)
- Yan Lv
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Xiao Ma
- Department of General Surgery, The Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuxin Ma
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Yuxin Du
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| |
Collapse
|
11
|
Shahbaz S, Bozorgmehr N, Lu J, Osman M, Sligl W, Tyrrell DL, Elahi S. Analysis of SARS-CoV-2 isolates, namely the Wuhan strain, Delta variant, and Omicron variant, identifies differential immune profiles. Microbiol Spectr 2023; 11:e0125623. [PMID: 37676005 PMCID: PMC10581158 DOI: 10.1128/spectrum.01256-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/13/2023] [Indexed: 09/08/2023] Open
Abstract
There is an urgent need to better understand the impact of different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants on immune response and disease dynamics to facilitate better intervention strategies. Here, we show that SARS-CoV-2 variants differentially affect host immune responses. The magnitude and quantity of cytokines and chemokines were comparable in those infected with the Wuhan strain and the Delta variant. However, individuals infected with the Omicron variant had significantly lower levels of these mediators. We also found an elevation of plasma galectins (Gal-3, Gal-8, and Gal-9) in infected individuals, in particular, in those with the original strain. Soluble galectins exert a proinflammatory role in COVID-19 pathogenesis. This was illustrated by their correlation with the plasma levels of sCD14, sCD163, enhanced TNF-α/IL-6 secretion, and increased SARS-CoV-2 infectivity in vitro. Moreover, we observed enhanced CD4+ and CD8+ T cell activation in Wuhan strain-infected individuals. Surprisingly, there was a more pronounced T cell activation in those infected with the Omicron in comparison to the Delta variant. In line with T cell activation status, we observed a more pronounced expansion of T cells expressing different co-inhibitory receptors in patients infected with the Wuhan strain, followed by the Omicron and Delta variants. Individuals infected with the Wuhan strain or the Omicron variant had a similar pattern of plasma soluble immune checkpoints. Our results imply that a milder innate immune response might be beneficial and protective in those infected with the Omicron variant. Our results provide a novel insight into the differential impact of SARS-CoV-2 variants on host immunity. IMPORTANCE There is a need to better understand how different SARS-CoV-2 variants influence the immune system and disease dynamics to facilitate the development of better vaccines and therapies. We compared immune responses in 140 SARS-CoV-2-infected individuals with the Wuhan strain, the Delta variant, or the Omicron variant. All these patients were admitted to the intensive care unit and were SARS-CoV-2 vaccination naïve. We found that SARS-CoV-2 variants differentially affect the host immune response. This was done by measuring soluble biomarkers in their plasma and examining different immune cells. Overall, we found that the magnitude of cytokine storm in individuals infected with the Wuhan strain or the Delta variant was greater than in those infected with the Omicron variant. In light of enhanced cytokine release syndrome in individuals infected with the Wuhan strain or the Delta variant, we believe that a milder innate immune response might be beneficial and protective in those infected with the Omicron variant.
Collapse
Affiliation(s)
- Shima Shahbaz
- Division of Foundational Sciences, School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Najmeh Bozorgmehr
- Division of Foundational Sciences, School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Julia Lu
- Division of Foundational Sciences, School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed Osman
- Division of Rheumatology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Wendy Sligl
- Department of Critical Care Medicine, University of Alberta, Edmonton, Alberta, Canada
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - D. Lorne Tyrrell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Shokrollah Elahi
- Division of Foundational Sciences, School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children Health Research Institute (WCHRI), University of Alberta, Edmonton, Alberta, Canada
- Glycomics Institute of Alberta, University of Alberta, Edmonton, Alberta, Canada
- Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Jansen SA, Cutilli A, de Koning C, van Hoesel M, Sierra LS, Nierkens S, Mokry M, Nieuwenhuis EES, Hanash AM, Mocholi E, Coffer PJ, Lindemans CA. Chemotherapy-induced intestinal injury promotes Galectin-9-driven modulation of T cell function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.30.538862. [PMID: 37163028 PMCID: PMC10168344 DOI: 10.1101/2023.04.30.538862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The intestine is vulnerable to chemotherapy-induced toxicity due to its high epithelial proliferative rate, making gut toxicity an off-target effect in several cancer treatments, including conditioning regimens for allogeneic hematopoietic cell transplantation (allo-HCT). In allo-HCT, intestinal damage is an important factor in the development of Graft-versus-Host Disease (GVHD), an immune complication in which donor immune cells attack the recipient's tissues. Here, we developed a novel human intestinal organoid-based 3D model system to study the direct effect of chemotherapy-induced intestinal epithelial damage on T cell behavior. Chemotherapy treatment using busulfan, fludarabine, and clofarabine led to damage responses in organoids resulting in increased T cell migration, activation, and proliferation in ex- vivo co-culture assays. We identified galectin-9 (Gal-9), a beta-galactoside-binding lectin released by damaged organoids, as a key molecule mediating T cell responses to damage. Increased levels of Gal-9 were also found in the plasma of allo-HCT patients who later developed acute GVHD, supporting the predictive value of the model system in the clinical setting. This study highlights the potential contribution of chemotherapy-induced epithelial damage to the pathogenesis of intestinal GVHD through direct effects on T cell activation and trafficking promoted by galectin-9.
Collapse
|
13
|
Abstract
The galectin family consists of carbohydrate (glycan) binding proteins that are expressed by a wide variety of cells and bind to galactose-containing glycans. Galectins can be located in the nucleus or the cytoplasm, or can be secreted into the extracellular space. They can modulate innate and adaptive immune cells by binding to glycans on the surface of immune cells or intracellularly via carbohydrate-dependent or carbohydrate-independent interactions. Galectins expressed by immune cells can also participate in host responses to infection by directly binding to microorganisms or by modulating antimicrobial functions such as autophagy. Here we explore the diverse ways in which galectins have been shown to impact immunity and discuss the opportunities and challenges in the field.
Collapse
|
14
|
Long C, Liu H, Zhan W, Chen L, Wu A, Yang L, Chen S. Null Function of Npr1 Disturbs Immune Response in Colonic Inflammation During Early Postnatal Stage. Inflammation 2022; 45:2419-2432. [PMID: 35794311 PMCID: PMC9646613 DOI: 10.1007/s10753-022-01702-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022]
Abstract
Natriuretic peptide receptor 1 (NPR1) is conventionally known as a regulator of vascular homeostasis. Here, we generated an Npr1 knockout mouse model with CRISPR/Cas9 technology and found that homozygous mice (Npr1-/-) exhibited weight loss and poor survival rate during early postnatal stage. Careful examination revealed unexpectedly that Npr1-/- mice developed colitis characterized by shortened colon, evident colonic mucosal damage, increased histopathological score, and higher colonic expression of proinflammatory cytokines interleukin-1B (IL1B) and -6 (IL6). RNA-sequencing analysis revealed that differentially expressed genes were prominently enriched in the biological pathways related to immune response in both spleen and colon of Npr1-/- mice. Cytofluorimetric analysis demonstrated that leukocytes in the spleen were significantly increased, particularly, the populations of neutrophil and CD3+ T cell were elevated but CD4+ T cells were decreased in Npr1-/- mice. Administration of 8-Br-cGMP, a downstream activator of NPR1, restored these immune-cell populations disturbed in Npr1-/- mice and lessened the colitis-related phenotypes. To validate the involvement of Npr1 in colitis, we examined another mouse model induced by dextran sodium sulfate (DSS) and found a decreased Npr1 expression and shifted immune-cell populations as well. Importantly, 8-Br-cGMP treatment exhibited a similar effect in the restoration of immune-cell populations and attenuation of colonic inflammation in DSS mice. Our data indicate that loss of Npr1 possibly interrupts immune response, which is critical to the pathogenesis of colitis in the early life.
Collapse
Affiliation(s)
- Changkun Long
- Vascular Function Laboratory, Human Aging Research Institute and School of Life Science, and Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang, 330031, China
| | - Hongfei Liu
- Vascular Function Laboratory, Human Aging Research Institute and School of Life Science, and Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang, 330031, China
| | - Wenxing Zhan
- Vascular Function Laboratory, Human Aging Research Institute and School of Life Science, and Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang, 330031, China
| | - Liping Chen
- Vascular Function Laboratory, Human Aging Research Institute and School of Life Science, and Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang, 330031, China
| | - Andong Wu
- Aging and Vascular DiseasesSchool of Life Scienceand Jiangxi Key Laboratory of Human Aging, Human Aging Research Institute, Nanchang University, Nanchang, 330031, China
| | - Lin Yang
- Department of Nephrology, Jiangxi Provincial People's Hospital, Affiliated to Nanchang University, Nanchang, 330006, China
| | - Shenghan Chen
- Vascular Function Laboratory, Human Aging Research Institute and School of Life Science, and Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
15
|
Discovery of four plasmatic biomarkers potentially predicting cardiovascular outcome in peripheral artery disease. Sci Rep 2022; 12:18388. [PMID: 36319844 PMCID: PMC9626632 DOI: 10.1038/s41598-022-23260-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/27/2022] [Indexed: 01/01/2023] Open
Abstract
Peripheral artery disease (PAD) patients have an increased cardiovascular risk despite pharmacological treatment strategies. Biomarker research improving risk stratification only focused on known atherothrombotic pathways, but unexplored pathways might play more important roles. To explore the association between a broad cardiovascular biomarker set and cardiovascular risk in PAD. 120 PAD outpatients were enrolled in this observational cohort study. Patients were followed for one year in which the composite endpoint (myocardial infarction, coronary revascularization, stroke, acute limb ischemia and mortality) was assessed. Patient data and blood samples were collected upon inclusion, and citrated platelet-poor plasma was used to analyze 184 biomarkers in Olink Cardiovascular panel II and III using a proximity extension assay. Fifteen patients reached the composite endpoint. These patients had more prior strokes and higher serum creatinine levels. Multivariate analysis revealed increased plasma levels of protease-activated receptor 1 (PAR1), galectin-9 (Gal-9), tumor necrosis factor receptor superfamily member 11A (TNFRSF11A) and interleukin 6 (IL-6) to be most predictive for cardiovascular events and mortality. Positive regulation of acute inflammatory responses and leukocyte chemotaxis were identified as involved biological processes. This study identified IL-6, PAR1, Gal-9, TNFRSF11A as potent predictors for cardiovascular events and mortality in PAD, and potential drug development targets.
Collapse
|
16
|
Ascoli C, Schott CA, Huang Y, Turturice BA, Wang W, Ecanow N, Sweiss NJ, Perkins DL, Finn PW. Altered transcription factor targeting is associated with differential peripheral blood mononuclear cell proportions in sarcoidosis. Front Immunol 2022; 13:848759. [PMID: 36311769 PMCID: PMC9608777 DOI: 10.3389/fimmu.2022.848759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionIn sarcoidosis, peripheral lymphopenia and anergy have been associated with increased inflammation and maladaptive immune activity, likely promoting development of chronic and progressive disease. However, the molecular mechanisms that lead to reduced lymphocyte proportions, particularly CD4+ T-cells, have not been fully elucidated. We posit that paradoxical peripheral lymphopenia is characterized by a dysregulated transcriptomic network associated with cell function and fate that results from altered transcription factor targeting activity.MethodsMessenger RNA-sequencing (mRNA-seq) was performed on peripheral blood mononuclear cells (PBMCs) from ACCESS study subjects with sarcoidosis and matched controls and findings validated on a sarcoidosis case-control cohort and a sarcoidosis case series. Preserved PBMC transcriptomic networks between case-control cohorts were assessed to establish cellular associations with gene modules and define regulatory targeting involved in sarcoidosis immune dysregulation utilizing weighted gene co-expression network analysis and differential transcription factor involvement analysis. Network centrality measures identified master transcriptional regulators of subnetworks related to cell proliferation and death. Predictive models of differential PBMC proportions constructed from ACCESS target gene expression corroborated the relationship between aberrant transcription factor regulatory activity and imputed and clinical PBMC populations in the validation cohorts.ResultsWe identified two unique and preserved gene modules significantly associated with sarcoidosis immune dysregulation. Strikingly, increased expression of a monocyte-driven, and not a lymphocyte-driven, gene module related to innate immunity and cell death was the best predictor of peripheral CD4+ T-cell proportions. Within the gene network of this monocyte-driven module, TLE3 and CBX8 were determined to be master regulators of the cell death subnetwork. A core gene signature of differentially over-expressed target genes of TLE3 and CBX8 involved in cellular communication and immune response regulation accurately predicted imputed and clinical monocyte expansion and CD4+ T-cell depletion.ConclusionsAltered transcriptional regulation associated with aberrant gene expression of a monocyte-driven transcriptional network likely influences lymphocyte function and survival. Although further investigation is warranted, this indicates that crosstalk between hyperactive monocytes and lymphocytes may instigate peripheral lymphopenia and underlie sarcoidosis immune dysregulation and pathogenesis. Future therapies selectively targeting master regulators, or their targets, may mitigate dysregulated immune processes in sarcoidosis and disease progression.
Collapse
Affiliation(s)
- Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Cody A. Schott
- University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Yue Huang
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Wangfei Wang
- Department of Bioengineering, University of Illinois at Chicago College of Engineering and Medicine, Chicago, IL, United States
| | - Naomi Ecanow
- University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Nadera J. Sweiss
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - David L. Perkins
- Division of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Patricia W. Finn
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Patricia W. Finn,
| |
Collapse
|
17
|
He J, Hou Y, Lu F. Blockage of Galectin-Receptor Interactions Attenuates Mouse Hepatic Pathology Induced by Toxoplasma gondii Infection. Front Immunol 2022; 13:896744. [PMID: 35911679 PMCID: PMC9327616 DOI: 10.3389/fimmu.2022.896744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Toxoplasma gondii (T. gondii), one of the most important Apicomplexan protozoa, causes toxoplasmosis in human throughout the world. Galectin (Gal)-9 triggers a series of immune events via binding to its receptors, including T cell immunoglobulin and mucin-containing molecule 3, CD137, CD44, and protein disulfide isomerase. To examine the regulatory role of galectin-receptor interactions in anti-toxoplasmic activities, C57BL/6 mice were infected with T. gondii RH strain and intraperitoneally injected with alpha (α)-lactose to block the interactions of galectins and their receptors. Heatmaps showed upregulated values for Gal-9 and CD137 in the livers of T. gondii-infected mice and T. gondii-infected mice treated with α-lactose. Compared with T. gondii-infected mice, T. gondii-infected mice treated with α-lactose showed significantly increased survival rate, decreased tissue parasite burden, attenuated liver histopathology, increased mRNA expression levels of CD137, IFNγ, IL-4, and IL-10 in the liver, and increased Gal-9 mRNA expression level in the spleen. Correlation analysis showed that significant positive correlations existed between the mRNA expression levels of Gal-9 and CD137, Gal-9 and IFNγ, as well as between CD137 and IFNγ in the liver and spleen of T. gondii-infected mice; between CD137 and IFNγ in the liver of T. gondii-infected mice treated with α-lactose. In addition, blockage of galectin-receptor interactions showed enhanced M2 macrophage polarization in the liver of T. gondii-infected mice. Our data indicate that Gal-9-CD137 interaction may play an important role in T. gondii proliferation and liver inflammation in mice during acute T. gondii infection, through regulating T cell and macrophage immune responses.
Collapse
Affiliation(s)
- Jian He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yongheng Hou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Clinical Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Fangli Lu,
| |
Collapse
|
18
|
Martin-Saldaña S, Chevalier MT, Pandit A. Therapeutic potential of targeting galectins – A biomaterials-focused perspective. Biomaterials 2022; 286:121585. [DOI: 10.1016/j.biomaterials.2022.121585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 12/16/2022]
|
19
|
Inhibition of Galectin-3 Impairs Antifungal Immune Response in Fungal Keratitis. DISEASE MARKERS 2022; 2022:8316004. [PMID: 35437453 PMCID: PMC9013289 DOI: 10.1155/2022/8316004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 11/17/2022]
Abstract
Galectin-3 is one of the galectin family members which are master regulators of immune homeostasis, especially in infectious diseases. However, its mechanism of immune regulation in fungal keratitis has not been thoroughly studied. Our study is aimed at clarifying the role of galectin-3 in the fungal keratitis mouse model in vivo, thereby providing a new biomarker of antifungal therapy. In our study, aspergillus, the most common pathogenic fungi of fungal keratitis, was identified and isolated by corneal tissue fungus culture. Then, the RNA expression levels of galectin family members in corneas of the mouse model with aspergillus fumigatus keratitis were screened by transcriptome sequencing (RNA-seq). The expression of the galectin-3 was detected by quantitative real-time Polymerase Chain Reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), and immunofluorescence in the corneal tissue of the fungal keratitis mouse model. Recruitment of neutrophils and the co-immunofluorescence of galectin-3 and related markers in corneal tissue were determined by flow cytometry analysis and immunofluorescence staining. The regulatory role of galectin-3 for proinflammatory cytokines and neutrophils was validated by the knockout mouse model. Galectin-3 knockout deteriorated the condition for the inhibition of galectin-3 was benefecial for fungi to survive and thrive in corneal lesions. These results demonstrated that in the ocular fungal infection, galectin-3 is capable of regulating the pathogenesis of fungal keratitis by modulating neutrophil recruitment. The deterioration of fungal keratitis and increased fungal load in corneal lesions of galectin-3 knockout mice proved the regulatory role of galectin-3 in fungal keratitis. In conclusion, galectin-3 is going to be an essential target to modulate neutrophil recruitment and its related antifungal immune response in fungal keratitis.
Collapse
|
20
|
Development and characterization of anti-galectin-9 antibodies that protect T cells from galectin-9-induced cell death. J Biol Chem 2022; 298:101821. [PMID: 35283189 PMCID: PMC9006662 DOI: 10.1016/j.jbc.2022.101821] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Antibodies that target immune checkpoint proteins such as programmed cell death protein 1, programmed death ligand 1, and cytotoxic T-lymphocyte–associated antigen 4 in human cancers have achieved impressive clinical success; however, a significant proportion of patients fail to respond to these treatments. Galectin-9 (Gal-9), a β-galactoside-binding protein, has been shown to induce T-cell death and facilitate immunosuppression in the tumor microenvironment by binding to immunomodulatory receptors such as T-cell immunoglobulin and mucin domain–containing molecule 3 and the innate immune receptor dectin-1, suggesting that it may have potential as a target for cancer immunotherapy. Here, we report the development of two novel Gal-9-neutralizing antibodies that specifically react with the N-carbohydrate-recognition domain of human Gal-9 with high affinity. We also show using cell-based functional assays that these antibodies efficiently protected human T cells from Gal-9-induced cell death. Notably, in a T-cell/tumor cell coculture assay of cytotoxicity, these antibodies significantly promoted T cell-mediated killing of tumor cells. Taken together, our findings demonstrate potent inhibition of human Gal-9 by neutralizing antibodies, which may open new avenues for cancer immunotherapy.
Collapse
|
21
|
Mansour AA, Raucci F, Saviano A, Tull S, Maione F, Iqbal AJ. Galectin-9 Regulates Monosodium Urate Crystal-Induced Gouty Inflammation Through the Modulation of Treg/Th17 Ratio. Front Immunol 2021; 12:762016. [PMID: 34777378 PMCID: PMC8581207 DOI: 10.3389/fimmu.2021.762016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Gout is caused by depositing monosodium urate (MSU) crystals within the articular area. The infiltration of neutrophils and monocytes drives the initial inflammatory response followed by lymphocytes. Interestingly, emerging evidence supports the view that in situ imbalance of T helper 17 cells (Th17)/regulatory T cells (Treg) impacts the subsequent damage to target tissues. Galectin-9 (Gal-9) is a modulator of innate and adaptive immunity with both pro- and anti-inflammatory functions, dependent upon its expression and cellular location. However, the specific cellular and molecular mechanisms by which Gal-9 modulates the inflammatory response in the onset and progression of gouty arthritis has yet to be elucidated. In this study, we sought to comprehensively characterise the functional role of exogenous Gal-9 in an in vivo model of MSU crystal-induced gouty inflammation by monitoring in situ neutrophils, monocytes and Th17/Treg recruited phenotypes and related cyto-chemokines profile. Treatment with Gal-9 revealed a dose-dependent reduction in joint inflammation scores, knee joint oedema and expression of different pro-inflammatory cyto-chemokines. Furthermore, flow cytometry analysis highlighted a significant modulation of infiltrating inflammatory monocytes (CD11b+/CD115+/LY6-Chi) and Th17 (CD4+/IL-17+)/Treg (CD4+/CD25+/FOXP-3+) cells following Gal-9 treatment. Collectively the results presented in this study indicate that the administration of Gal-9 could provide a new therapeutic strategy for preventing tissue damage in gouty arthritic inflammation and, possibly, in other inflammatory-based diseases.
Collapse
Affiliation(s)
- Adel Abo Mansour
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Federica Raucci
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Anella Saviano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Samantha Tull
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Francesco Maione
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Asif Jilani Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
22
|
Schlichtner S, Meyer NH, Yasinska IM, Aliu N, Berger SM, Gibbs BF, Fasler-Kan E, Sumbayev VV. Functional role of galectin-9 in directing human innate immune reactions to Gram-negative bacteria and T cell apoptosis. Int Immunopharmacol 2021; 100:108155. [PMID: 34543981 DOI: 10.1016/j.intimp.2021.108155] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Galectin-9 is a member of the galectin family of proteins, which were first identified to specifically bind to carbohydrates containing β-galactosides. Galectin-9 is conserved through evolution and recent evidence demonstrated its involvement in innate immune reactions to bacterial infections as well as the suppression of cytotoxic immune responses of T and natural killer cells. However, the molecular mechanisms underlying such differential immunological functions of galectin-9 remain largely unknown. In this work we confirmed that soluble galectin-9 derived from macrophages binds to Gram-negative bacteria by interacting with lipopolysaccharide (LPS), which forms their cell wall. This opsonisation effect most likely interferes with the mobility of bacteria leading to their phagocytosis by innate immune cells. Galectin-9-dependent opsonisation also promotes the innate immune reactions of macrophages to these bacteria and significantly enhances the production of pro-inflammatory cytokines - interleukin (IL) 6, IL-1β and tumour necrosis factor alpha (TNF-α). In contrast, galectin-9 did not bind peptidoglycan (PGN), which forms the cell wall of Gram-positive bacteria. Moreover, galectin-9 associated with cellular surfaces (studied in primary human embryonic cells) was not involved in the interaction with bacteria or bacterial colonisation. However, galectin-9 expressed on the surface of primary human embryonic cells, as well as soluble forms of galectin-9, were able to target T lymphocytes and caused apoptosis in T cells expressing granzyme B. Furthermore, "opsonisation" of T cells by galectin-9 led to the translocation of phosphatidylserine onto the cell surface and subsequent phagocytosis by macrophages through Tim-3, the receptor, which recognises both galectin-9 and phosphatidylserine as ligands.
Collapse
Affiliation(s)
- Stephanie Schlichtner
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - N Helge Meyer
- Division of Experimental Allergology and Immunodermatology, Department of Human Medicine, University of Oldenburg, Oldenburg, Germany; Division of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Inna M Yasinska
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Nijas Aliu
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Steffen M Berger
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Bernhard F Gibbs
- Division of Experimental Allergology and Immunodermatology, Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland; Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.
| | - Vadim V Sumbayev
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom.
| |
Collapse
|
23
|
Unraveling How Tumor-Derived Galectins Contribute to Anti-Cancer Immunity Failure. Cancers (Basel) 2021; 13:cancers13184529. [PMID: 34572756 PMCID: PMC8469970 DOI: 10.3390/cancers13184529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary This review compiles our current knowledge of one of the main pathways activated by tumors to escape immune attack. Indeed, it integrates the current understanding of how tumor-derived circulating galectins affect the elicitation of effective anti-tumor immunity. It focuses on several relevant topics: which are the main galectins produced by tumors, how soluble galectins circulate throughout biological liquids (taking a body-settled gradient concentration into account), the conditions required for the galectins’ functions to be accomplished at the tumor and tumor-distant sites, and how the physicochemical properties of the microenvironment in each tissue determine their functions. These are no mere semantic definitions as they define which functions can be performed in said tissues instead. Finally, we discuss the promising future of galectins as targets in cancer immunotherapy and some outstanding questions in the field. Abstract Current data indicates that anti-tumor T cell-mediated immunity correlates with a better prognosis in cancer patients. However, it has widely been demonstrated that tumor cells negatively manage immune attack by activating several immune-suppressive mechanisms. It is, therefore, essential to fully understand how lymphocytes are activated in a tumor microenvironment and, above all, how to prevent these cells from becoming dysfunctional. Tumors produce galectins-1, -3, -7, -8, and -9 as one of the major molecular mechanisms to evade immune control of tumor development. These galectins impact different steps in the establishment of the anti-tumor immune responses. Here, we carry out a critical dissection on the mechanisms through which tumor-derived galectins can influence the production and the functionality of anti-tumor T lymphocytes. This knowledge may help us design more effective immunotherapies to treat human cancers.
Collapse
|
24
|
Shahbaz S, Xu L, Sligl W, Osman M, Bozorgmehr N, Mashhouri S, Redmond D, Perez Rosero E, Walker J, Elahi S. The Quality of SARS-CoV-2-Specific T Cell Functions Differs in Patients with Mild/Moderate versus Severe Disease, and T Cells Expressing Coinhibitory Receptors Are Highly Activated. THE JOURNAL OF IMMUNOLOGY 2021; 207:1099-1111. [PMID: 34312258 DOI: 10.4049/jimmunol.2100446] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023]
Abstract
Understanding the function of SARS-CoV-2 Ag-specific T cells is crucial for the monitoring of antiviral immunity and vaccine design. Currently, both impaired and robust T cell immunity is described in COVID-19 patients. In this study, we explored and compared the effector functions of SARS-CoV-2-reactive T cells expressing coinhibitory receptors and examine the immunogenicity of SARS-CoV-2 S, M, and N peptide pools in regard to specific effector T cell responses, Th1/Th2/Th17, in COVID-19 patients. Analyzing a cohort of 108 COVID-19 patients with mild, moderate, and severe disease, we observed that coinhibitory receptors (e.g., PD-1, CTLA-4, TIM-3, VISTA, CD39, CD160, 2B4, TIGIT, Gal-9, and NKG2A) were upregulated on both CD4+ and CD8+ T cells. Importantly, the expression of coinhibitory receptors on T cells recognizing SARS-CoV-2 peptide pools (M/N/S) was associated with increased frequencies of cytokine-producing T cells. Thus, our data refute the concept of pathological T cell exhaustion in COVID-19 patients. Despite interindividual variations in the T cell response to viral peptide pools, a Th2 phenotype was associated with asymptomatic and milder disease, whereas a robust Th17 was associated with severe disease, which may potentiate the hyperinflammatory response in patients admitted to the Intensive Care Unit. Our data demonstrate that T cells may either play a protective or detrimental role in COVID-19 patients. This finding could have important implications for immune correlates of protection, diagnostic, and prophylaxis with respect to COVID-19 management.
Collapse
Affiliation(s)
- Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Lai Xu
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Wendy Sligl
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Department of Critical Care Medicine, University of Alberta, Edmonton, Alberta, Canada.,Division of Infectious Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed Osman
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Najmeh Bozorgmehr
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Siavash Mashhouri
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Desiree Redmond
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Eliana Perez Rosero
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - John Walker
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Alberta, Canada; .,Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada; and.,Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
Xu WD, Huang Q, Huang AF. Emerging role of galectin family in inflammatory autoimmune diseases. Autoimmun Rev 2021; 20:102847. [PMID: 33971347 DOI: 10.1016/j.autrev.2021.102847] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 12/13/2022]
Abstract
Galectin family is a group of glycan-binding proteins. Members in this family are expressed in different tissues, immune or non-immune cells. These molecules are important regulators in innate and adaptive immune response, performing significantly in a broad range of cellular and pathophysiological functions, such as cell proliferation, adhesion, migration, and invasion. Findings have shown that expression of galectins is abnormal in many inflammatory autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, osteoarthritis, sjögren's syndrome, systemic sclerosis. Galectins also function as intracellular and extracellular disease regulators mainly through the binding of their carbohydrate recognition domain to glycoconjugates. Here, we review the state-of-the-art of the role that different galectin family members play in immune cells, contributing to the complex inflammatory diseases. Hopefully collection of the information will provide a preliminary theoretical basis for the exploration of new targets for treatment of the disorders.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qi Huang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
26
|
Galectin-9, a Player in Cytokine Release Syndrome and a Surrogate Diagnostic Biomarker in SARS-CoV-2 Infection. mBio 2021; 12:mBio.00384-21. [PMID: 33947753 PMCID: PMC8262904 DOI: 10.1128/mbio.00384-21] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The outbreak of SARS-CoV-2 infection has enormously impacted our lives. Clinical evidence has implicated the emergence of cytokine release syndrome as the prominent cause of mortality in COVID-19 patients. In this study, we observed massive elevation of plasma Galectin-9 (Gal-9) in COVID-19 patients compared to healthy controls (HCs). By using the receiver operating characteristic (ROC) curve, we found that a baseline of 2,042 pg/ml plasma Gal-9 can differentiate SARS-CoV-2-infected from noninfected individuals with high specificity/sensitivity (95%). Analysis of 30 cytokines and chemokines detected a positive correlation of the plasma Gal-9 with C-reactive protein (CRP) and proinflammatory cytokines/chemokines such as interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), IP-10, MIP-1α, and MCP-1 but an inverse correlation with transforming growth factor β (TGF-β) in COVID-19 patients. In agreement, we found enhanced production of IL-6 and TNF-α by monocytes and NK cells of COVID-19 patients once treated with the recombinant human Gal-9 in vitro. Also, we observed that although the cell-membrane expression of Gal-9 on monocytes does not change in COVID-19 patients, those with higher Gal-9 expression exhibit an activated phenotype. Furthermore, we noted significant downregulation of surface Gal-9 in neutrophils from COVID-19 patients compared to HCs. Our further investigations indicated that immune activation following SARS-CoV-2 infection results in Gal-9 shedding from neutrophils. The strong correlation of Gal-9 with proinflammatory mediators suggests that inhibition of Gal-9 may severe as a therapeutic approach in COVID-19 infection. Besides, the plasma Gal-9 measurement may be used as a surrogate diagnostic biomarker in COVID-19 patients.
Collapse
|
27
|
Porębska N, Poźniak M, Matynia A, Żukowska D, Zakrzewska M, Otlewski J, Opaliński Ł. Galectins as modulators of receptor tyrosine kinases signaling in health and disease. Cytokine Growth Factor Rev 2021; 60:89-106. [PMID: 33863623 DOI: 10.1016/j.cytogfr.2021.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Receptor tyrosine kinases (RTKs) constitute a large group of cell surface proteins that mediate communication of cells with extracellular environment. RTKs recognize external signals and transfer information to the cell interior, modulating key cellular activities, like metabolism, proliferation, motility, or death. To ensure balanced stream of signals the activity of RTKs is tightly regulated by numerous mechanisms, including receptor expression and degradation, ligand specificity and availability, engagement of co-receptors, cellular trafficking of the receptors or their post-translational modifications. One of the most widespread post-translational modifications of RTKs is glycosylation of their extracellular domains. The sugar chains attached to RTKs form a new layer of information, so called glyco-code that is read by galectins, carbohydrate binding proteins. Galectins are family of fifteen lectins implicated in immune response, inflammation, cell division, motility and death. The versatility of cellular activities attributed to galectins is a result of their high abundance and diversity of their cellular targets. A various sugar specificity of galectins and the differential ability of galectin family members to form oligomers affect the spatial distribution and the function of their cellular targets. Importantly, galectins and RTKs are tightly linked to the development, progression and metastasis of various cancers. A growing number of studies points on the close cooperation between RTKs and galectins in eliciting specific cellular responses. This review focuses on the identified complexes between galectins and RTK members and discusses their relevance for the cell physiology both in healthy tissues and in cancer.
Collapse
Affiliation(s)
- Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Marta Poźniak
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Matynia
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Dominika Żukowska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
28
|
Targeting galectins in T cell-based immunotherapy within tumor microenvironment. Life Sci 2021; 277:119426. [PMID: 33785342 DOI: 10.1016/j.lfs.2021.119426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Accepted: 03/17/2021] [Indexed: 01/01/2023]
Abstract
Over the past few years, tumor immunotherapy has emerged as an innovative tumor treatment and owned incomparable advantages over other tumor therapy. With unique complexity and uncertainty, immunotherapy still need helper to apply in the clinic. Galectins, modulated in tumor microenvironment, can regulate the disorders of innate and adaptive immune system resisting tumor growth. Considering the role of galectins in tumor immunosuppression, combination therapy of targeted anti-galectins and immunotherapy may be a promising tumor treatment. This brief review summarizes the expression and immune functions of different galectins in tumor microenvironment and discusses the potential value of anti-galectins in combination with checkpoint inhibitors in tumor immunotherapy.
Collapse
|
29
|
The Role of Glycosylation in Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:265-283. [PMID: 34495540 DOI: 10.1007/978-3-030-70115-4_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diversity of glycan presentation in a cell, tissue and organism is enormous, which reflects the huge amount of important biological information encoded by the glycome which has not been fully understood. A compelling body of evidence has been highlighting the fundamental role of glycans in immunity, such as in development, and in major inflammatory processes such as inflammatory bowel disease, systemic lupus erythematosus and other autoimmune disorders. Glycans play an instrumental role in the immune response, integrating the canonical circuits that regulate innate and adaptive immune responses. The relevance of glycosylation in immunity is demonstrated by the role of glycans as important danger-associated molecular patterns and pathogen-associated molecular patterns associated with the discrimination between self and non-self; also as important regulators of the threshold of T cell activation, modulating receptors signalling and the activity of both T and other immune cells. In addition, glycans are important determinants that regulate the dynamic crosstalk between the microbiome and immune response. In this chapter, the essential role of glycans in the immunopathogenesis of inflammatory disorders will be presented and its potential clinical applications (diagnosis, prognosis and therapeutics) will be highlighted.
Collapse
|
30
|
Okoye I, Xu L, Motamedi M, Parashar P, Walker JW, Elahi S. Galectin-9 expression defines exhausted T cells and impaired cytotoxic NK cells in patients with virus-associated solid tumors. J Immunother Cancer 2020; 8:e001849. [PMID: 33310773 PMCID: PMC7735134 DOI: 10.1136/jitc-2020-001849] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND We have previously reported that the upregulation of galectin-9 (Gal-9) on CD4+ and CD8+ T cells in HIV patients was associated with impaired T cell effector functions. Gal-9 is a ligand for T cell immunoglobulin and mucin domain-3, and its expression on T cells in cancer has not been investigated. Therefore, we aimed to investigate the expression level and effects of Gal-9 on T cell functions in patients with virus-associated solid tumors (VASTs). METHODS 40 patients with VASTs through a non-randomized and biomarker-driven phase II LATENT trial were investigated. Peripheral blood mononuclear cells and tumor biopsies were obtained and subjected to immunophenotyping. In this trial, the effects of oral valproate and avelumab (anti-PD-L1) was investigated in regards to the expression of Gal-9 on T cells. RESULTS We report the upregulation of Gal-9 expression by peripheral and tumor-infiltrating CD4+ and CD8+ T lymphocytes in patients with VASTs. Our results indicate that Gal-9 expression is associated with dysfunctional T cell effector functions in the periphery and tumor microenvironment (TME). Coexpression of Gal-9 with PD-1 or T cell immunoglobulin and ITIM domain (TIGIT) exhibited a synergistic inhibitory effect and enhanced an exhausted T cell phenotype. Besides, responding patients to treatment had lower Gal-9 mRNA expression in the TME. Translocation of Gal-9 from the cytosol to the cell membrane of T cells following stimulation suggests persistent T cell receptor (TCR) stimulation as a potential contributing factor in Gal-9 upregulation in patients with VASTs. Moreover, partial colocalization of Gal-9 with CD3 on T cells likely impacts the initiation of signal transduction via TCR as shown by the upregulation of ZAP70 in Gal-9+ T cells. Also, we found an expansion of Gal-9+ but not TIGIT+ NK cells in patients with VASTs; however, dichotomous to TIGIT+ NK cells, Gal-9+ NK cells exhibited impaired cytotoxic molecules but higher Interferon gamma (IFN-γ) expression. CONCLUSION Our data indicate that higher Gal-9-expressing CD8+ T cells were associated with poor prognosis following immunotherapy with anti-Programmed death-ligand 1 (PD-L1) (avelumab) in our patients' cohort. Therefore, for the very first time to our knowledge, we report Gal-9 as a novel marker of T cell exhaustion and the potential target of immunotherapy in patients with VASTs.
Collapse
Affiliation(s)
- Isobel Okoye
- School of Dentistry, Faculty of Medicine and Dentistrty, University of Alberta, Edmonton, AB, Canada
| | - Lai Xu
- School of Dentistry, Faculty of Medicine and Dentistrty, University of Alberta, Edmonton, AB, Canada
| | - Melika Motamedi
- Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Pallavi Parashar
- School of Dentistry, Faculty of Medicine and Dentistrty, University of Alberta, Edmonton, AB, Canada
| | - John W Walker
- Medical Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, Faculty of Medicine and Dentistrty, University of Alberta, Edmonton, AB, Canada
- Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Medical Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
31
|
Yu J, Zhu R, Yu K, Wang Y, Ding Y, Zhong Y, Zeng Q. Galectin-9: A Suppressor of Atherosclerosis? Front Immunol 2020; 11:604265. [PMID: 33250901 PMCID: PMC7672040 DOI: 10.3389/fimmu.2020.604265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/14/2020] [Indexed: 01/29/2023] Open
Abstract
It is no longer controversial that atherosclerosis is a vascular wall chronic inflammatory disease mediated by cells of innate and adaptive immunity. Galectin-9 (Gal-9) seems to be a crucial regulator of T-cell immunity by inducing apoptosis in specific T-cell subpopulations associated with autoimmunity and inflammatory disease. Accumulating evidence showed that galectin-9 signaling via T-cell immunoglobulin mucin 3 (TIM-3) is concerned with different regulatory functions in autoimmunity, including direct depletion of pro-inflammatory T-cells, expanding the number of regulatory T cells, altering macrophages to an anti-inflammatory state and the induction of repressive myeloid-derived suppressor cells. In addition, anti-Tim-3-Ab administration increased atherosclerotic plaque formation by blocking Tim-3–galectin-9 interaction. Hence, we hypothesize that galectin-9 may be a novel therapy for atherosclerotic disease. Further researches are needed to investigate the precise effect of galectin-9 in the process of atherosclerosis.
Collapse
Affiliation(s)
- Jian Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruirui Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kuwu Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Ding
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yucheng Zhong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiutang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Sun L, Zou S, Ding S, Du X, Shen Y, Liu C, Shi B, Zhang X. Circulating T Cells Exhibit Different TIM3/Galectin-9 Expression in Patients with Obesity and Obesity-Related Diabetes. J Diabetes Res 2020; 2020:2583257. [PMID: 33123595 PMCID: PMC7585658 DOI: 10.1155/2020/2583257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 11/30/2022] Open
Abstract
AIMS Obesity is highly associated with type 2 diabetes mellitus (T2DM). The TIM3/galectin-9 pathway plays an important role in immune tolerance. Herein, we aimed to investigate the expression of TIM3 and galectin-9 in peripheral blood and to evaluate their clinical significance in patients with obesity and obesity-related T2DM. METHODS We performed flow cytometry on peripheral blood samples from healthy donors (HC), patients with simple obesity (OB), and patients with obesity comorbid T2DM (OD). The expression of TIM3 on CD3+, CD4+, and CD8+ T cells was determined. The level of galectin-9 in plasma was detected by ELISA. RESULTS We demonstrated the enhancement of TIM3 on CD3+, CD4+, and CD8+ T cells in the OB group when compared with healthy controls, while it was decreased significantly in the OD group. The TIM3+CD8+ T cells of the OB group were positively correlated with risk factors including BMI, body fat rate, and hipline. The concentration of galectin-9 of the OD group in plasma was significantly higher than that of healthy donors and the OB group. Moreover, the level of galectin-9 of the OD group was positively correlated with fasting insulin and C-peptide, which were two clinical features that represented pancreatic islet function in T2DM. CONCLUSIONS Our results suggested that TIM3 and galectin-9 may be potential biomarkers related to the pathogenesis of obesity-related T2DM.
Collapse
Affiliation(s)
- Lili Sun
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006 Jiangsu, China
- Departments of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu, China
| | - Shengyi Zou
- Departments of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu, China
| | - Sisi Ding
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006 Jiangsu, China
| | - Xuan Du
- Departments of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu, China
| | - Yu Shen
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006 Jiangsu, China
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006 Jiangsu, China
| | - Bimin Shi
- Departments of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006 Jiangsu, China
| |
Collapse
|