1
|
Chu S, Jia L, Li Y, Xiong J, Sun Y, Zhou Q, Du D, Li Z, Huang X, Jiang H, Wu B, Li Y. Exosome-derived long non-coding RNA AC010789.1 modified by FTO and hnRNPA2B1 accelerates growth of hair follicle stem cells against androgen alopecia by activating S100A8/Wnt/β-catenin signalling. Clin Transl Med 2025; 15:e70152. [PMID: 39748192 PMCID: PMC11695201 DOI: 10.1002/ctm2.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/10/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND The increased incidence of androgenic alopecia (AGA) causes adverse physiological and psychological effects on people of all genders. The hair follicle stem cells (HFSCs) have displayed clinical improvements on AGA. However, the molecular mechanism of HFSCs against AGA remains elusive. METHODS The expression and prognosis of lncRNA AC010789.1 in AGA hair follicle tissues were assessed by qRT-PCR analysis. CCK-8, EdU and Transwell analysis were utilized to assess cell growth. The specific binding between AC010789.1 and FTO mediated m6A modification or the effect of AC010789.1 on hnRNPA2B1, S100A8 and Wnt/β-catenin signaling expression was confirmed by bioinformatic analysis, RIP, RNA pull-down and Western blot assay. The effects of Exosome-loaded AC010789.1 prompted HFSCs proliferation and hair follicle regeneration were confirmed in hairless mice. RESULTS We herein found that the mRNA levels of lncRNA AC010789.1 were decreased in AGA tissue samples but increased in HFSCs of surrounding normal tissue samples. Overexpression (OE) of AC010789.1 promoted HFSC proliferation, DNA synthesis and migration as well as K6HF and Lgr5 upregulation, whereas knockdown of AC010789.1 showed the opposite effects. The total or AC010789.1 m6A levels were reduced and FTO demethylase was upregulated in AGA tissue samples, but these indicated the reverse results in HFSCs of surrounding normal tissue samples. FTO OE decreased AC010789.1 m6A levels and its mRNA levels in HFSCs and abolished AC010789.1-induced HFSCs proliferation. In addition, AC010789.1 was identified to bind to m6A reader hnRNPA2B1, which was downregulated in AGA but upregulated in HFSCs of surrounding normal tissue samples. hnRNPA2B1 OE attenuated AC010789.1 knockdown-induced inhibition of HFSCs proliferation. Moreover, AC010789.1 could bind to and enhance downstream S100A8 protein expression, which mediated Wnt/β-catenin signaling to accelerate HFSCs proliferation. Exosome-loaded AC010789.1 prompted HFSCs proliferation and hair follicle regeneration in mice. CONCLUSIONS Our findings demonstrated that exosome-derived lncRNA AC010789.1 modified by FTO and hnRNPA2B1 facilitated the proliferation of human HFSCs against AGA by activating S100A8/Wnt/β-catenin signaling. KEY POINTS Long non-coding RNA (lncRNA) AC010789.1 was downregulated in hair follicle tissues from androgenic alopecia (AGA) and upregulated in hair follicle stem cells (HFSCs). LncRNA AC010789.1 promoted the proliferation and migration of HFSCs. FTO/hnRNPA2B1-mediated m6A modification of lncRNA AC010789.1 promoted HFSCs growth by activating S100A8/Wnt/β-catenin signalling. Exosome-derived AC010789.1 accelerated HFSCs proliferation.
Collapse
Affiliation(s)
- Shaojun Chu
- Department of Plastic SurgeryShanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Lingling Jia
- Department of Plastic SurgeryShanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Yulong Li
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Jiachao Xiong
- Department of Plastic SurgeryShanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Yulin Sun
- Department of Plastic SurgeryShanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Qin Zhou
- Department of Plastic SurgeryShanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Dexiang Du
- Department of Plastic SurgeryShanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Zihan Li
- St Hugh's CollegeUniversity of OxfordOxfordUK
| | - Xin Huang
- Department of DermatologyHair Medical Center of Shanghai Tongji Hospital, Tongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Hua Jiang
- Department of Plastic SurgeryShanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Baojin Wu
- Department of Plastic SurgeryHuashan HospitalFudan UniversityShanghaiChina
| | - Yufei Li
- Department of Plastic SurgeryShanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
| |
Collapse
|
2
|
Wu L, Jiao XL, Jing M, Zhang SX, Wang Y, Li CL, Shi GX, Li ZY, Liu GL, Yan K, Yan LX, Wang Q, He PF, Yu Q. Discovery of PANoptosis-related signatures correlates with immune cell infiltration in psoriasis. PLoS One 2024; 19:e0310362. [PMID: 39480805 PMCID: PMC11527320 DOI: 10.1371/journal.pone.0310362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/25/2024] [Indexed: 11/02/2024] Open
Abstract
Psoriasis is an inflammatory skin disease that relapses frequently. Keratinocyte apoptosis dysregulation plays a crucial role in the pathological mechanisms of psoriasis. PANoptosis is a process with intermolecular interaction among pyroptosis, apoptosis, and necroptosis. The mechanism of PANoptosis in the occurrence and development of psoriasis is still unclear. Here we present a novel approach by identifying PANoptosis-related signatures (PANoptosis-sig) from skin tissue of psoriasis patients and healthy controls on transcriptional and protein levels. Five PANoptosis-sig (TYMP, S100A8, S100A9, NAMPT, LCN2) were identified. Enrichment analysis showed they were mainly enriched in response to leukocyte aggregation, leukocyte migration, chronic inflammatory response and IL-17 signaling pathway. Single cell transcriptome analysis showed TYMP and NAMPT were expressed in almost all cell populations, while LCN2, S100A8 and S100A9 were significantly highly expressed in keratinocyte. We then constructed predictive and diagnostic models with the PANoptosis-sig and evaluated their performance. Finally, unsupervised consensus clustering analysis was conducted to ascertain psoriasis molecular subtypes by the PANoptosis-sig. The psoriasis cohort was divided into two distinct subtypes. Immune landscape showed that the stromal score of cluster 1 was significantly higher than cluster 2, while the immune and estimate scores of cluster 2 were expressively higher than cluster 1. Cluster 1 exhibited high expression of Plasma cells, Tregs and Mast cells resting, while cluster 2 showed high expression of T cells, Macrophages M1, Dendritic cells activated, and Neutrophils in immune infiltration analysis. And cluster 2 was more sensitive to immune checkpoints. In conclusion, our findings revealed potential biomarkers and therapeutic targets for the prevention, diagnosis, and treatment of psoriasis, enhancing our understanding of the molecular mechanisms underlying PANoptosis.
Collapse
Affiliation(s)
- Li Wu
- Department of Anesthesiology, Shanxi Provincial People’s Hospital, Taiyuan, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xin-long Jiao
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
- Department of Social Medicine, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ming Jing
- Jinan Dermatosis Prevention and Control Hospital, Jinan, China
| | - Sheng-xiao Zhang
- Department of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yang Wang
- School of Management, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Shanxi Medical University, Taiyuan, China
| | - Chen-long Li
- Department of Anesthesiology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Gao-xiang Shi
- Department of Anesthesiology, Shanxi Provincial People’s Hospital, Taiyuan, China
- Department of Anaesthesia, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhuo-yang Li
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Ge-liang Liu
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Kai Yan
- School of Management, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Shanxi Medical University, Taiyuan, China
- Department of Information Technology, Digital Health Guidance Center of Shanxi Province, Taiyuan, China
| | - Li-xuan Yan
- School of Management, Shanxi Medical University, Taiyuan, China
- Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qi Wang
- Department of Anesthesiology, Shanxi Provincial People’s Hospital, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Shanxi Medical University, Taiyuan, China
| | - Pei-feng He
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Shanxi Medical University, Taiyuan, China
| | - Qi Yu
- School of Management, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Iguchi T, Toma-Hirano M, Takanashi M, Masai H, Miyatake S. Loss of a single Zn finger, but not that of two Zn fingers, of GATA3 drives skin inflammation. Genes Cells 2024. [PMID: 39435584 DOI: 10.1111/gtc.13171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024]
Abstract
Transcription factor GATA3 is essential for the developmental processes of T cells. Recently, the silencer of a cytokine IFNγ gene was identified, the inhibitory activity of which requires GATA3. GATA3 has 2 Zn fingers and the commonly used GATA3 deficient mice lack both fingers (D2). We have established a mouse line that lacks only one Zn finger close to the C terminus (D1). The D1 mice line developed dermatitis, which was not observed in D2 mice. The expression of S100a8/S100a9 was elevated in D1 to a level higher than in D2, suggesting their roles in dermatitis development. CD8 T cells of both D1 and D2 lines expressed inhibitory receptors associated with the exhausted state. In the absence of MHC class II, the skin inflammation was exacerbated in both lines. The gene expression pattern of CD8 T cells became similar to that of effector T cells. Blocking Ab against LAG3 upregulated the expression of the effector molecules of T cells. These results suggest that the disfunction of GATA3 can lead to the spontaneous activation of CD8 T cells that causes skin inflammation, and that suppressive activity of MHC class II - LAG3 interaction ameliorates dermatitis development.
Collapse
Affiliation(s)
- Tomohiro Iguchi
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Makiko Toma-Hirano
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, Itabashi, Japan
| | - Masakatsu Takanashi
- Department of Pathology, Graduate School of Environmental Health Sciences, Azabu University, Sagamihara, Japan
| | - Hisao Masai
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Shoichiro Miyatake
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
- Department of Immunology, Graduate School of Environmental Health Sciences, Azabu University, Sagamihara, Japan
| |
Collapse
|
4
|
Zhao Y, Wang L, Zhang X, Zhang L, Wei F, Li S, Li Y. Identification of neutrophil extracellular traps genes as potential biomarkers in psoriasis based on bioinformatics analysis. Sci Rep 2024; 14:23848. [PMID: 39394253 PMCID: PMC11470069 DOI: 10.1038/s41598-024-75069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
The epidermal infiltration of neutrophils is a hallmark of psoriasis (PSO) and its activation leads to the release of neutrophil extracellular traps (NETs). However, the molecular mechanism of NETs-related genes (NETRGs) has not been extensively studied in PSO. To define NETs-related-biomarkers for PSO. The GSE13355 and GSE78097 datasets, and NETRGs gene set were included in this study. The datasets used in this study were all microarray data. The weighted gene co-expression network analysis (WGCNA) and machine learning algorithms were used to mine key genes. Later on, single-gene gene set enrichment analysis (GSEA) and immune infiltration analysis were implemented. Finally, the expression of key genes was verified using quantitative real-time fluorescence PCR (qRT-PCR). A total of 3 key genes (S100A9, CLEC7A, and CXCR4) were derived, and they all had excellent diagnostic performance. The single-gene GSEA enrichment results indicated that the key genes were mainly enriched in the chemokine signaling pathway and humoral immune response in the high-expression group, while focal adhesion was enriched in the low-expression group. The correlation analysis indicated that all key genes were strongly negatively correlated with resting mast cells and TGF-β family member receptor, while they were strongly positively correlated with activated CD4 memory T cells and antigen processing and presentation. Lastly, the experimental results showed that the expression trends of key genes were consistent with public database. In this study, we successfully screened three potential PSO diagnostic genes (S100A9, CLEC7A and CXCR4) that were closely related to NETs, and these findings not only provided new molecular marker candidates for the precise diagnosis of PSO patients, but also revealed possible future therapeutic targets. However, further in-depth research and validation were necessary.
Collapse
Affiliation(s)
- Yike Zhao
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereology in Hebei Province, Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Ling Wang
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereology in Hebei Province, Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Xiaoguang Zhang
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereology in Hebei Province, Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Lihua Zhang
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereology in Hebei Province, Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Feng Wei
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereology in Hebei Province, Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Suyue Li
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereology in Hebei Province, Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Yanling Li
- Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereology in Hebei Province, Construction Unit of the Sub-Center of the National Center for Clinical Medical Research On Skin and Immunological Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
5
|
Le Y, Zhang J, Lin Y, Ren J, Xiang L, Zhang C. S100A9 Exacerbates the Inflammation in Rosacea through Toll-Like Receptor 4/MyD88/NF-κB Signaling Pathway. J Invest Dermatol 2024; 144:1985-1993.e1. [PMID: 38447867 DOI: 10.1016/j.jid.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024]
Abstract
Rosacea is a chronic inflammatory skin disorder characterized by immune response-dependent erythema and pustules. S100A9, a proinflammatory alarmin, has been associated with various inflammation-related diseases. However, the specific role of S100A9 in rosacea remains unexplored. Therefore, our objective was to unravel the role of S100A9 in the pathogenesis of rosacea and its underlying molecular mechanisms. In this study, we show that expression levels of S100A9 were elevated in both the lesions and serum of patients with papulopustular rosacea as well as in lesions of the LL37-induced rosacea-like mouse model. Moreover, the upregulation of S100A9 was correlated with clinical severity and levels of inflammatory cytokines. In addition, we demonstrated that S100A9 promoted the production of proinflammatory factors in HaCaT cells by activating toll-like receptor 4/MyD88/NF-κB signaling pathways. Notably, inhibition of S100A9 suppressed the progression of rosacea-like dermatitis and inflammatory responses in the LL37-induced rosacea-like mouse model through toll-like receptor 4/MyD88/NF-κB signaling pathways. In conclusion, this study illustrated that S100A9 participates in the pathogenesis of rosacea by upregulating toll-like receptor 4/MyD88/NF-κB signaling pathways, thereby promoting rosacea-associated skin inflammation. These results not only expand our understanding of the potential role of S100A9 in the development of rosacea but also offer greater insight toward targeted therapies.
Collapse
Affiliation(s)
- Yan Le
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China
| | - Jiawen Zhang
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China
| | - Yi Lin
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China
| | - Jie Ren
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China.
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Zhong MZ, Xu MN, Zheng SQ, Cheng SQ, Zeng K, Huang XW. Manipulating host secreted protein gene expression: an indirect approach by HPV11/16 E6/E7 to suppress PBMC cytokine secretion. Virol J 2024; 21:172. [PMID: 39095779 PMCID: PMC11295672 DOI: 10.1186/s12985-024-02432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/07/2024] [Indexed: 08/04/2024] Open
Abstract
Human papillomavirus (HPV) 11/16 E6/E7 proteins have been recognized to be pivotal in viral pathogenesis. This study sought to uncover the potential mechanisms of how HPV11/16 E6/E7-transfected keratinocytes inhibit cytokine secretion in peripheral blood mononuclear cells (PBMC). Upon co-culturing HPV11/16 E6/E7-transfected keratinocytes with PBMC in a non-contact manner, we observed a marked decrease in various cytokines secreted by PBMC. To determine if this suppression was mediated by specific common secreted factors, we conducted transcriptomic sequencing on these transfected cells. This analysis identified 53 common differentially secreted genes in all four HPV-transfected cells. Bioinformatics analysis demonstrated these genes were predominantly involved in immune regulation. Results from quantitative PCR (qPCR) and an extensive literature review suggested the downregulation of 12 genes (ACE2, BMP3, BPIFB1, CLU, CST6, CTF1, HMGB2, MMP12, PDGFA, RNASE7, SULF2, TGM2), and upregulation of 7 genes (CCL17, CCL22, FBLN1, PLAU, S100A7, S100A8, S100A9), may be crucial in modulating tumor immunity and combating pathogenic infections, with genes S100A8 and S100A9, and IL-17 signaling pathway being particularly noteworthy. Thus, HPV11/16 E6/E7 proteins may inhibit cytokine secretion of immune cells by altering the expression of host-secreted genes. Further exploration of these genes may yield new insights into the complex dynamics of HPV infection.
Collapse
Affiliation(s)
- Mei-Zhen Zhong
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mei-Nian Xu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Si-Qi Zheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shu-Qiong Cheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Xiao-Wen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Boucher J, Gilbert C, Bose S, Tessier PA. S100A9: The Unusual Suspect Connecting Viral Infection and Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1523-1529. [PMID: 38709994 PMCID: PMC11076006 DOI: 10.4049/jimmunol.2300640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/20/2024] [Indexed: 05/08/2024]
Abstract
The study of S100A9 in viral infections has seen increased interest since the COVID-19 pandemic. S100A8/A9 levels were found to be correlated with the severity of COVID-19 disease, cytokine storm, and changes in myeloid cell subsets. These data led to the hypothesis that S100A8/A9 proteins might play an active role in COVID-19 pathogenesis. This review explores the structures and functions of S100A8/9 and the current knowledge on the involvement of S100A8/A9 and its constituents in viral infections. The potential roles of S100A9 in SARS-CoV-2 infections are also discussed.
Collapse
Affiliation(s)
- Julien Boucher
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, and Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Caroline Gilbert
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, and Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Philippe A. Tessier
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, and Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
8
|
Gao Y, Gong B, Chen Z, Song J, Xu N, Weng Z. Damage-Associated Molecular Patterns, a Class of Potential Psoriasis Drug Targets. Int J Mol Sci 2024; 25:771. [PMID: 38255845 PMCID: PMC10815563 DOI: 10.3390/ijms25020771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Psoriasis is a chronic skin disorder that involves both innate and adaptive immune responses in its pathogenesis. Local tissue damage is a hallmark feature of psoriasis and other autoimmune diseases. In psoriasis, damage-associated molecular patterns (DAMPs) released by damaged local tissue act as danger signals and trigger inflammatory responses by recruiting and activating immune cells. They also stimulate the release of pro-inflammatory cytokines and chemokines, which exacerbate the inflammatory response and contribute to disease progression. Recent studies have highlighted the role of DAMPs as key regulators of immune responses involved in the initiation and maintenance of psoriatic inflammation. This review summarizes the current understanding of the immune mechanism of psoriasis, focusing on several important DAMPs and their mechanisms of action. We also discussed the potential of DAMPs as diagnostic and therapeutic targets for psoriasis, offering new insights into the development of more effective treatments for this challenging skin disease.
Collapse
Affiliation(s)
| | | | | | | | - Na Xu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.G.); (B.G.); (Z.C.); (J.S.)
| | - Zhuangfeng Weng
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.G.); (B.G.); (Z.C.); (J.S.)
| |
Collapse
|
9
|
Zhou Z, Zou M, Chen H, Zhu F, Wang T, Huang X. Forkhead box A1 induces angiogenesis through activation of the S100A8/p38 MAPK axis in cutaneous wound healing. Immunopharmacol Immunotoxicol 2023; 45:742-753. [PMID: 37459395 DOI: 10.1080/08923973.2023.2233693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/30/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND The association between S100 calcium-binding protein A8 (S100A8) and angiogenesis has been reported in previous reports. This study focuses on the roles of S100A8 in the angiogenesis of human dermal microvascular endothelial cells (HDMECs) and in cutaneous wound healing in mice. METHODS Candidate genes related to angiogenesis activity were screened using a GSE83582 dataset. The overexpression DNA plasmid of S100A8 was transfected into HDMECs to analyze its effect on cell proliferation, migration, and angiogenesis. Full-thickness skin wounds were induced on mice, followed by adenovirus treatments to analyze the function of gene alteration in wound healing and pathological changes. The upstream regulator of S100A8 was predicted by bioinformatics analysis and verified by luciferase and immunoprecipitation assays. The role of the forkhead box A1 (FOXA1)-S100A8 interaction in p38 MAPK activation and angiogenesis were validated by rescue experiments. RESULTS S100A8 was identified as a gene significantly correlated with angiogenesis. The S100A8 upregulation promoted the proliferation, migration, and angiogenesis of HDMECs, and it promoted p38 MAPK phosphorylation. Treatment of SB203580, a p38 MAPK inhibitor, blocked the promoting effect of S100A8. FOXA1 was identified as an upstream factor of S100A8 promoting its transcription. FOXA1 overexpression in HDMECs increased p38 MAPK phosphorylation and enhanced the activity of cells, which were blocked by the S100A8 inhibition. Similar results were reproduced in vivo where FOXA1 overexpression accelerated whereas the S100A8 knockdown retarded the cutaneous wound healing in mice. CONCLUSION FOXA1 mediates the phosphorylation of p38 MAPK through transcription activation of S100A8, thereby inducing angiogenesis and promoting cutaneous wound healing.
Collapse
Affiliation(s)
- Zhongzhi Zhou
- Department of Burn Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P. R. China
| | - Meilin Zou
- Department of Burn Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P. R. China
| | - Hongping Chen
- Department of Burn Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P. R. China
| | - Furong Zhu
- Department of Burn Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P. R. China
| | - Tingting Wang
- Department of Burn Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P. R. China
| | - Xinling Huang
- Department of Burn Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P. R. China
| |
Collapse
|
10
|
Liang F, Peng C, Luo X, Wang L, Huang Y, Yin L, Yue L, Yang J, Zhao X. A single-cell atlas of immunocytes in the spleen of a mouse model of Wiskott-Aldrich syndrome. Cell Immunol 2023; 393-394:104783. [PMID: 37944382 DOI: 10.1016/j.cellimm.2023.104783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/28/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Wiskott-Aldrich syndrome (WAS) is a disorder characterized by rare X-linked genetic immune deficiency with mutations in the Was gene, which is specifically expressed in hematopoietic cells. The spleen plays a major role in hematopoiesis and red blood cell clearance. However, to date, comprehensive analyses of the spleen in wild-type (WT) and WASp-deficient (WAS-KO) mice, especially at the transcriptome level, have not been reported. In this study, single-cell RNA sequencing (scRNA-seq) was adopted to identify various types of immune cells and investigate the mechanisms underlying immune deficiency. We identified 30 clusters and 10 major cell subtypes among 11,269 cells; these cell types included B cells, T cells, dendritic cells (DCs), natural killer (NK) cells, monocytes, macrophages, granulocytes, stem cells and erythrocytes. Moreover, we evaluated gene expression differences among cell subtypes, identified differentially expressed genes (DEGs), and performed enrichment analyses to identify the reasons for the dysfunction in these different cell populations in WAS. Furthermore, some key genes were identified based on a comparison of the DEGs in each cell type involved in specific and nonspecific immune responses, and further analysis showed that these key genes were previously undiscovered pathology-related genes in WAS-KO mice. In summary, we present a landscape of immune cells in the spleen of WAS-KO mice based on detailed data obtained at single-cell resolution. These unprecedented data revealed the transcriptional characteristics of specific and nonspecific immune cells, and the key genes were identified, laying a foundation for future studies of WAS, especially studies into novel and underexplored mechanisms that may improve gene therapies for WAS.
Collapse
Affiliation(s)
- Fangfang Liang
- Department of Rheumatism and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Cheng Peng
- Department of Radiology, The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Xianze Luo
- Department of Rheumatism and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Linlin Wang
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yanyan Huang
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Le Yin
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Luming Yue
- Singleron Biotechnologies, Nanjing, Jiangsu, China
| | - Jun Yang
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, China.
| | - Xiaodong Zhao
- Department of Rheumatism and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Singh P, Ali SA, Kumar S, Mohanty AK. CRISPR-Cas9 based knockout of S100A8 in mammary epithelial cells enhances cell proliferation and triggers oncogenic transformation via the PI3K-Akt pathway: Insights from a deep proteomic analysis. J Proteomics 2023; 288:104981. [PMID: 37544501 DOI: 10.1016/j.jprot.2023.104981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
S100A8 is a calcium-binding protein with multiple functions, including being a chemoattractant for phagocytes and playing a key role in the inflammatory response. Its expression has been shown to influence epithelial-mesenchymal transition (EMT) and metastasis in colorectal cancer. However, the role of S100A8 in cell proliferation and differentiation remains unknown. In this study, we used the CRISPR-Cas9 system to knock out S100A8 in healthy mammary epithelial cells and investigated the resulting changes in proteome profiling and signaling pathways. Our results showed that S100A8 knockout led to an increase in cell proliferation and migration, reduced cell-cell adhesion, and increased apoptosis compared to wildtype cells. Proteomics data indicated that S100A8 significantly affects cell cycle progression, cell proliferation, and cell survival through the PI3K-Akt pathway. Furthermore, our findings suggest that S100A8 function is associated with Pten expression, a negative regulator of the PI3K-Akt pathway. These results indicate that S100A8 dysregulation in healthy cells can lead to altered cellular physiology and higher proliferation, similar to cancerous growth. Therefore, maintaining S100A8 expression is critical for preserving healthy cell physiology. This study provides novel insights into the role of S100A8 in cell proliferation and differentiation and its potential relevance to cancer biology. SIGNIFICANCE: The study suggests that maintaining S100A8 expression is critical for preserving healthy cell physiology, and dysregulation of S100A8 in healthy cells can lead to altered cellular physiology and higher proliferation, similar to cancerous growth. Therefore, targeting the PI3K-Akt pathway or regulating Pten expression, a negative regulator of the PI3K-Akt pathway, may be potential strategies for cancer treatment by controlling S100A8 dysregulation. Additionally, S100A8 and S100A9 have been shown to promote metastasis of breast carcinoma by forming a metastatic milieu. However, the differential expression of S100A8 in tumors and its dual effects of antitumor and protumor make the relationship between S100A8 and tumors complicated. Currently, most research focuses on the function of S100A8 as a secretory protein in the microenvironment of tumors, and its function inside healthy cells without forming dimers remains unclear. Furthermore, the study provides insight into the role of S100A8 in cell proliferation and differentiation, which may have implications for other diseases beyond cancer. The functional role of S100A8 in normal mammary epithelial cells remains completely uncertain. Therefore, the objective of this study is to investigate the function of S100A8 on proliferation in mammary epithelial cells after its deletion and to elucidate the underlying proteins involved in downstream signaling. Our findings indicate that the deletion of S100A8 leads to excessive proliferation in normal mammary epithelial cells, reduces apoptosis, and affects cell-cell adhesion molecules required for cellular communication, resulting in a cancer-like phenotype.
Collapse
Affiliation(s)
- Parul Singh
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India; Proteomics of Stem Cells and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany.
| | - Sudarshan Kumar
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Ashok Kumar Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India; Indian Veterinary Research Institute, Mukteshwar, 263138 Nainital, Uttarakhand, India.
| |
Collapse
|
12
|
You J, Reilly MD, Eljalby M, Bareja R, Yusupova M, Vyas NS, Bang J, Ding W, Desman G, Miller LS, Elemento O, Granstein RD, Zippin JH. Soluble adenylyl cyclase contributes to imiquimod-mediated inflammation and is a potential therapeutic target in psoriasis. Exp Dermatol 2023; 32:1051-1062. [PMID: 37039485 PMCID: PMC10523866 DOI: 10.1111/exd.14811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 04/12/2023]
Abstract
Cyclic AMP (cAMP) has a key role in psoriasis pathogenesis, as indicated by the therapeutic efficacy of phosphodiesterase inhibitors that prevent the degradation of cAMP. However, whether soluble adenylate cyclase (sAC) (encoded by the ADCY10 gene), which is an important source for cAMP, is involved in Th17 cell-mediated inflammation or could be an alternative therapeutic target in psoriasis is unknown. We have utilized the imiquimod model of murine psoriasiform dermatitis to address this question. Adcy10-/- mice had reduced erythema, scaling and swelling in the skin and reduced CD4+ IL17+ cell numbers in the draining lymph nodes, compared with wild-type mice after induction of psoriasiform dermatitis with imiquimod. Keratinocyte-specific knock out of Adcy10 had no effect on imiquimod-induced ear swelling suggesting keratinocyte sAC has no role in imiquimod-induced inflammation. During Th17 polarization in vitro, naive T cells from Adcy10-/- mice exhibited reduced IL17 secretion and IL-17+ T-cell proliferation suggesting that differentiation into Th17 cells is suppressed without sAC activity. Interestingly, loss of sAC did not impact the expression of Th17 lineage-defining transcription factors (such as Rorc and cMaf) but rather was required for CREB-dependent gene expression, which is known to support Th17 cell gene expression. Finally, topical application of small molecule sAC inhibitors (sACi) reduced imiquimod-induced psoriasiform dermatitis and Il17 gene expression in the skin. Collectively, these findings demonstrate that sAC is important for psoriasiform dermatitis in mouse skin. sACi may provide an alternative class of topical therapeutics for Th17-mediated skin diseases.
Collapse
Affiliation(s)
- Jaewon You
- Department of Dermatology, Weill Cornell Medicine, NY NY
| | | | | | - Rohan Bareja
- Englander Institute of Precision Medicine, Weill Cornell Medicine, NY NY
| | | | - Nikki S. Vyas
- Departments of Pathology and Dermatology, Icahn School of Medicine at Mount Sinai, NY NY
| | - Jakyung Bang
- Department of Dermatology, Weill Cornell Medicine, NY NY
| | - Wanhong Ding
- Department of Dermatology, Weill Cornell Medicine, NY NY
| | - Garrett Desman
- Departments of Pathology and Dermatology, Icahn School of Medicine at Mount Sinai, NY NY
- ProHEALTH Care Associates, OptumCare, New Hyde Park, NY
| | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD
- Immunology, Janssen Research and Development, Spring House, PA
| | - Olivier Elemento
- Englander Institute of Precision Medicine, Weill Cornell Medicine, NY NY
| | | | - Jonathan H. Zippin
- Department of Dermatology, Weill Cornell Medicine, NY NY
- Englander Institute of Precision Medicine, Weill Cornell Medicine, NY NY
- Department of Pharmacology, Weill Cornell Medicine, NY NY
| |
Collapse
|
13
|
Deshmukh M, Subhash S, Hu Z, Mohammad M, Jarneborn A, Pullerits R, Jin T, Kopparapu PK. Gene expression of S100a8/a9 predicts Staphylococcus aureus-induced septic arthritis in mice. Front Microbiol 2023; 14:1146694. [PMID: 37396347 PMCID: PMC10307981 DOI: 10.3389/fmicb.2023.1146694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Septic arthritis is the most aggressive joint disease associated with high morbidity and mortality. The interplay of the host immune system with the invading pathogens impacts the pathophysiology of septic arthritis. Early antibiotic treatment is crucial for a better prognosis to save the patients from severe bone damage and later joint dysfunction. To date, there are no specific predictive biomarkers for septic arthritis. Transcriptome sequencing analysis identified S100a8/a9 genes to be highly expressed in septic arthritis compared to non-septic arthritis at the early course of infection in an Staphylococcus aureus septic arthritis mouse model. Importantly, downregulation of S100a8/a9 mRNA expression at the early course of infection was noticed in mice infected with the S. aureus Sortase A/B mutant strain totally lacking arthritogenic capacity compared with the mice infected with parental S. aureus arthritogenic strain. The mice infected intra-articularly with the S. aureus arthritogenic strain significantly increased S100a8/a9 protein expression levels in joints over time. Intriguingly, the synthetic bacterial lipopeptide Pam2CSK4 was more potent than Pam3CSK4 in inducing S100a8/a9 release upon intra-articular injection of these lipopeptides into the mouse knee joints. Such an effect was dependent on the presence of monocytes/macrophages. In conclusion, S100a8/a9 gene expression may serve as a potential biomarker to predict septic arthritis, enabling the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Meghshree Deshmukh
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Santhilal Subhash
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Zhicheng Hu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Majd Mohammad
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Jarneborn
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rille Pullerits
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pradeep Kumar Kopparapu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Liang H, Li J, Zhang K. Pathogenic role of S100 proteins in psoriasis. Front Immunol 2023; 14:1191645. [PMID: 37346040 PMCID: PMC10279876 DOI: 10.3389/fimmu.2023.1191645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease. The histopathological features of psoriasis include excessive proliferation of keratinocytes and infiltration of immune cells. The S100 proteins are a group of EF-hand Ca2+-binding proteins, including S100A2, -A7, -A8/A9, -A12, -A15, which expression levels are markedly upregulated in psoriatic skin. These proteins exert numerous functions such as serving as intracellular Ca2+ sensors, transduction of Ca2+ signaling, response to extracellular stimuli, energy metabolism, and regulating cell proliferation and apoptosis. Evidence shows a crucial role of S100 proteins in the development and progress of inflammatory diseases, including psoriasis. S100 proteins can possibly be used as potential therapeutic target and diagnostic biomarkers. This review focuses on the pathogenic role of S100 proteins in psoriasis.
Collapse
Affiliation(s)
- Huifang Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| | - Junqin Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| |
Collapse
|
15
|
Mellor LF, Gago-Lopez N, Bakiri L, Schmidt FN, Busse B, Rauber S, Jimenez M, Megías D, Oterino-Soto S, Sanchez-Prieto R, Grivennikov S, Pu X, Oxford J, Ramming A, Schett G, Wagner EF. Keratinocyte-derived S100A9 modulates neutrophil infiltration and affects psoriasis-like skin and joint disease. Ann Rheum Dis 2022; 81:annrheumdis-2022-222229. [PMID: 35788494 PMCID: PMC9484400 DOI: 10.1136/annrheumdis-2022-222229] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/07/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVES S100A9, an alarmin that can form calprotectin (CP) heterodimers with S100A8, is mainly produced by keratinocytes and innate immune cells. The contribution of keratinocyte-derived S100A9 to psoriasis (Ps) and psoriatic arthritis (PsA) was evaluated using mouse models, and the potential usefulness of S100A9 as a Ps/PsA biomarker was assessed in patient samples. METHODS Conditional S100A9 mice were crossed with DKO* mice, an established psoriasis-like mouse model based on inducible epidermal deletion of c-Jun and JunB to achieve additional epidermal deletion of S100A9 (TKO* mice). Psoriatic skin and joint disease were evaluated in DKO* and TKO* by histology, microCT, RNA and proteomic analyses. Furthermore, S100A9 expression was analysed in skin, serum and synovial fluid samples of patients with Ps and PsA. RESULTS Compared with DKO* littermates, TKO* mice displayed enhanced skin disease severity, PsA incidence and neutrophil infiltration. Altered epidermal expression of selective pro-inflammatory genes and pathways, increased epidermal phosphorylation of STAT3 and higher circulating TNFα were observed in TKO* mice. In humans, synovial S100A9 levels were higher than the respective serum levels. Importantly, patients with PsA had significantly higher serum concentrations of S100A9, CP, VEGF, IL-6 and TNFα compared with patients with only Ps, but only S100A9 and CP could efficiently discriminate healthy individuals, patients with Ps and patients with PsA. CONCLUSIONS Keratinocyte-derived S100A9 plays a regulatory role in psoriatic skin and joint disease. In humans, S100A9/CP is a promising marker that could help in identifying patients with Ps at risk of developing PsA.
Collapse
Affiliation(s)
| | | | - Latifa Bakiri
- CNIO, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Rauber
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maria Jimenez
- CNIO, Spanish National Cancer Research Centre, Madrid, Spain
| | - Diego Megías
- CNIO, Spanish National Cancer Research Centre, Madrid, Spain
| | | | - Ricardo Sanchez-Prieto
- Universidad de Castilla La Mancha, Centro Regional de Investigaciones Biomédicas Albacete, Albacete, Spain
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sergei Grivennikov
- Cancer Prevention & Control, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Xinzhu Pu
- Biological Sciences, Boise State University, Boise, Idaho, USA
| | - Julia Oxford
- Biological Sciences, Boise State University, Boise, Idaho, USA
| | - Andreas Ramming
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-University (FAU) Erlangen-Nurnberg and Universitatsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-University (FAU) Erlangen-Nurnberg and Universitatsklinikum Erlangen, Erlangen, Germany
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Sun Y, Xu L, Li Y, Lin J, Li H, Gao Y, Huang X, Zhu H, Zhang Y, Wei K, Yang Y, Wu B, Zhang L, Li Q, Liu C. Single-Cell Transcriptomics Uncover Key Regulators of Skin Regeneration in Human Long-Term Mechanical Stretch-Mediated Expansion Therapy. Front Cell Dev Biol 2022; 10:865983. [PMID: 35712657 PMCID: PMC9195629 DOI: 10.3389/fcell.2022.865983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Tissue expansion is a commonly performed therapy to grow extra skin invivo for reconstruction. While mechanical stretch-induced epidermal changes have been extensively studied in rodents and cell culture, little is known about the mechanobiology of the human epidermis in vivo. Here, we employed single-cell RNA sequencing to interrogate the changes in the human epidermis during long-term tissue expansion therapy in clinical settings. We also verified the main findings at the protein level by immunofluorescence analysis of independent clinical samples. Our data show that the expanding human skin epidermis maintained a cellular composition and lineage trajectory that are similar to its non-expanding neighbor, suggesting the cellular heterogeneity of long-term expanded samples differs from the early response to the expansion. Also, a decrease in proliferative cells due to the decayed regenerative competency was detected. On the other hand, profound transcriptional changes are detected for epidermal stem cells in the expanding skin versus their non-expanding peers. These include significantly enriched signatures of C-FOS, EMT, and mTOR pathways and upregulation of AREG and SERPINB2 genes. CellChat associated ligand-receptor pairs and signaling pathways were revealed. Together, our data present a single-cell atlas of human epidermal changes in long-term tissue expansion therapy, suggesting that transcriptional change in epidermal stem cells is the major mechanism underlying long-term human skin expansion therapy. We also identified novel therapeutic targets to promote human skin expansion efficiency in the future.
Collapse
Affiliation(s)
- Yidan Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luwen Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jian Lin
- Department of Orthopedics, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haizhou Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yashan Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolu Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hainan Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingfan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kunchen Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yali Yang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Laser Cosmetology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baojin Wu
- Department of Plastic Surgery, Shanghai Huashan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caiyue Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Shobeiri SS, Rezaee M, Pordel S, Haghnnavaz N, Dashti M, Moghadam M, Sankian M. Anti-IL-17A ssDNA aptamer ameliorated psoriasis skin lesions in the imiquimod-induced psoriasis mouse model. Int Immunopharmacol 2022; 110:108963. [PMID: 35724603 DOI: 10.1016/j.intimp.2022.108963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES IL-17 is an important player in the psoriasis pathogenesis, which recruits inflammatory cells to the psoriatic lesions, induced keratinocyte proliferation and plaque formation. Three monoclonal antibodies that block IL-17 have been approved for psoriasis treatment in the last decade. Compared to monoclonal antibodies, aptamers which are single-stranded DNA or RNA, bind with high affinity to proteins or other molecules and are more cost-effective. We previously showed that M2 and M7 anti-IL17A ssDNA aptamers could block IL-17 in vitro. The current study evaluated the therapeutic effects of M2 and M7 anti-IL17A ssDNA aptamers in the imiquimod (IMQ)-induced psoriasis mouse model. METHODS IMQ cream and Vaseline (Vas) were administered on the back skin of C57BL/6 mice as IMQ-induced psoriasis and Vas control groups, respectively. In addition, hydrogel-containing aptamers were topically administered on the back skin of the mice, 10 min before IMQ treatment. Psoriatic lesions were evaluated by histology, clinical factors, and psoriasis area severity index (PASI) score. The mRNA expression levels of inflammatory factors, including IL-17A, IL-1β, and S100a9, were assessed with quantitative reverse transcriptase-polymerase chain reaction in the mice back skin. RESULTS Application of anti-IL-17A aptamers significantly ameliorated IMQ-induced keratinocyte proliferation, psoriatic lesions cumulative PASI score, IL-17A, IL-β, and S100a9 inflammatory factors mRNA expression levels (p < 0.05). CONCLUSION According to our results, it seems that M2 in high concentration and M7 in low concentration can be appropriate candidates to alleviate psoriasis lesions.
Collapse
Affiliation(s)
- Saeideh Sadat Shobeiri
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - MohammadAli Rezaee
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safoora Pordel
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navideh Haghnnavaz
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Dashti
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Moghadam
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Jukic A, Bakiri L, Wagner EF, Tilg H, Adolph TE. Calprotectin: from biomarker to biological function. Gut 2021; 70:1978-1988. [PMID: 34145045 PMCID: PMC8458070 DOI: 10.1136/gutjnl-2021-324855] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
The incidence of inflammatory bowel diseases (IBD) emerged with Westernisation of dietary habits worldwide. Crohn's disease and ulcerative colitis are chronic debilitating conditions that afflict individuals with substantial morbidity and challenge healthcare systems across the globe. Since identification and characterisation of calprotectin (CP) in the 1980s, faecal CP emerged as significantly validated, non-invasive biomarker that allows evaluation of gut inflammation. Faecal CP discriminates between inflammatory and non-inflammatory diseases of the gut and portraits the disease course of human IBD. Recent studies revealed insights into biological functions of the CP subunits S100A8 and S100A9 during orchestration of an inflammatory response at mucosal surfaces across organ systems. In this review, we summarise longitudinal evidence for the evolution of CP from biomarker to rheostat of mucosal inflammation and suggest an algorithm for the interpretation of faecal CP in daily clinical practice. We propose that mechanistic insights into the biological function of CP in the gut and beyond may facilitate interpretation of current assays and guide patient-tailored medical therapy in IBD, a concept warranting controlled clinical trials.
Collapse
Affiliation(s)
- Almina Jukic
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Latifa Bakiri
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Yamanishi K, Imai Y. Alarmins/stressorins and immune dysregulation in intractable skin disorders. Allergol Int 2021; 70:421-429. [PMID: 34127380 DOI: 10.1016/j.alit.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Unlike other barrier epithelia of internal organs, the stratified squamous epithelium of the skin is always exposed to the external environment. However, the robust barrier structure and function of the skin are highly resistant against external insults so as to not easily allow foreign invasions. Upon sensing danger signals, the innate immunity system is promptly activated. This process is mediated by alarmins, which are released passively from damaged cells. Nuclear alarmins or stressorins are actively released from intact cells in response to various cellular stresses. Alarmins/stressorins are deeply involved in the disease processes of chronic skin disorders of an unknown cause, such as rosacea, psoriasis, and atopic dermatitis. Furthermore, alarmins/stressorins are also induced in the congenital skin disorders of ichthyosis and keratoderma due to defective keratinization. Studies on alarmin activation and its downstream pathways may help develop novel therapeutic agents for intractable skin disorders.
Collapse
|
20
|
Xu Z, Cheng C, Kong R, Liu Y, Wang S, Ma Y, Xing X. S100A8 and S100A9, both transcriptionally regulated by PU.1, promote epithelial-mesenchymal transformation (EMT) and invasive growth of dermal keratinocytes during scar formation post burn. Aging (Albany NY) 2021; 13:15523-15537. [PMID: 34099591 PMCID: PMC8221299 DOI: 10.18632/aging.203112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/29/2021] [Indexed: 12/25/2022]
Abstract
S100 calcium-binding protein A8 (S100A8) and S100A9 are small molecular weight calcium-binding regulatory proteins that have been involved in multiple chronic inflammatory diseases. However, the role of S100A8 and S100A9 in keratinocytes in wounded skin and how they are regulated during this process are still unclear. Here, we found that S100A8 and S100A9 were both upregulated in burn-wounded skins in vivo and thermal-stimulated epidermal keratinocytes in vitro, accompanied by increased levels of epithelial-mesenchymal transition (EMT). Then, we demonstrated that upregulation of S100A8 and S100A9 alone or together enhanced characteristics of EMT in normal keratinocytes, manifested by excessive proliferation rate, abnormal ability of cell invasion, and high expression levels of EMT marker proteins. The transcription factor PU box-binding protein (PU.1) bound to the promoter regions and transcriptionally promoted the expression of S100A8 and S100A9 both in the human and mice, and it had strong positive correlations with both S100A8 and S100A9 protein levels in burned skin in vivo. Moreover, PU.1 positively regulated expression of S100A8 and S100A9 in a dose-dependent manner, and enhanced EMT of keratinocytes in vitro. Finally, through the burn mouse model, we found that PU.1-/- mice displayed a lower ability of scar formation, manifested by smaller scar volume, thickness, and collagen content, which could be enhanced by S100A8 and S100A9. In conclusion, PU.1 transcriptionally promotes expression of S100A8 and S100A9, thus positively regulating epithelial-mesenchymal transformation (EMT) and invasive growth of dermal keratinocytes during scar formation post burn.
Collapse
Affiliation(s)
- Zhigang Xu
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710000, China
| | - Chuantao Cheng
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710000, China
| | - Ranran Kong
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710000, China
| | - Yale Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710000, China
| | - Shuang Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710000, China
| | - Yuefeng Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710000, China
| | - Xin Xing
- Department of Cadre Health, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710000, China
| |
Collapse
|