1
|
Franzoni G, Fruscione F, Dell'Anno F, Mura L, De Ciucis CG, Zinellu S, Columbano N, Graham SP, Dei Giudici S, Razzuoli E. Expression of key immune genes in polarized porcine monocyte-derived macrophage subsets. Vet Immunol Immunopathol 2024; 278:110841. [PMID: 39427365 DOI: 10.1016/j.vetimm.2024.110841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Swine are considered one of the most relevant large animal biomedical models since they share many immunological similarities with humans. Despite that, macrophage polarization has not comprehensively investigated in pigs. In this study, porcine monocyte-derived macrophages (moMΦ) were untreated or stimulated with IFN-γ + LPS (classical activation), or by different M2 polarizing stimuli: IL-4, IL-10, TGF-β, or dexamethasone. Expression of key cytokine genes (IL1B2, IL33, IL19, IL22, IL26, CCL17, CCL24, IFNA, IFNB) in macrophage subsets were investigated over time. Expression of the genes encoding the two main enzymes of the arginine pathway (ARG1, NOS2), and molecules related to alternative macrophage polarization in human and mice (MMP9, MRC1, FIZZ1, VEGFA) were also assessed. Stimulation with IFN-γ + LPS triggered up-regulation of IL1B2, IFNB, NOS2, whereas IL-4 triggered upregulation of CCL17, CCL24, CXCR2, and ARG1 expression. IL19 and IL22 expression was enhanced by stimulation with IFN-γ + LPS or TGF-β, but not IL-4, IL-10, or dexamethasone. Our data highlighted some peculiarities in swine, such as induced expression of IL33 after stimulation with IFN-γ + LPS, and no up-regulation of FIZZ1, VEGFA or MMP9 after exposure to any of the M2 polarizing stimuli. A better understanding of porcine macrophage polarization could benefit translational studies using this large animal model.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari 07100, Italy.
| | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Genova 16129, Italy.
| | - Filippo Dell'Anno
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Genova 16129, Italy; Department of Public Health Experimental and Forensic Medicine, University of Pavia, Pavia 27100, Italy.
| | - Lorena Mura
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari 07100, Italy.
| | - Chiara G De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Genova 16129, Italy; Department of Public Health Experimental and Forensic Medicine, University of Pavia, Pavia 27100, Italy.
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari 07100, Italy.
| | - Nicolò Columbano
- Department of Veterinary Medicine, University of Sassari, Sassari 07100, Italy.
| | - Simon P Graham
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 ONF, UK.
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari 07100, Italy.
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Genova 16129, Italy.
| |
Collapse
|
2
|
Zuckermann FA, Grinkova YV, Husmann RJ, Pires-Alves M, Storms S, Chen WY, Sligar SG. An effective vaccine against influenza A virus based on the matrix protein 2 (M2). Vet Microbiol 2024; 298:110245. [PMID: 39293153 DOI: 10.1016/j.vetmic.2024.110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/14/2024] [Accepted: 08/30/2024] [Indexed: 09/20/2024]
Abstract
The ever-increasing antigenic diversity of the hemagglutinin (HA) of influenza A virus (IAV) poses a significant challenge for effective vaccine development. Notably, the matrix protein 2 (M2) is a highly conserved 97 amino acid long transmembrane tetrameric protein present in the envelope of IAV. More than 99 % of IAV strains circulating in American swine herds share the identical pandemic (pdm) isoform of M2, making it an ideal target antigen for a vaccine that could elicit broadly protective immunity. Here, using soluble nanoscale membrane assemblies termed nanodiscs (NDs), we designed this membrane mimetic nanostructures displaying full-length M2 in its natural transmembrane configuration (M2ND). Intramuscular (IM) immunization of swine with M2ND mixed with conventional emulsion adjuvant elicited M2-specific IgG antibodies in the serum that recognized influenza virions and M2-specific interferon-γ secreting cells present in the blood. Intranasal (IN) immunization with M2ND adjuvanted with a mycobacterial extract elicited M2-specific IgA in mucosal secretions that also recognized IAV. Immunization with an influenza whole inactivated virus (WIV) vaccine supplemented with a concurrent IM injection of M2ND mixed with an emulsion adjuvant increased the level of protective immunity afforded by the former against a challenge with an antigenically distinct H3N2 IAV, as exhibited by an enhanced elimination of virus from the lung. The lone IM administration of the M2ND vaccine mixed with an emulsion adjuvant provided measurable protection as evidenced by a >10-fold reduction or complete elimination of the challenge virus from the lung, but it did not diminish the viral load in nasal secretions nor the extent of pneumonia that ensued after the virus challenge. In contrast, an improved formulation of the M2ND vaccine that incorporated synthetic CpG oligodeoxynucleotides (CpG-ODN) in the nanostructures administered alone, via the IN and IM routes combined, provided a significant level of protective immunity against IAV as evidenced by a decreased viral load in both the upper and lower respiratory tracts and fully eliminated the occurrence of pneumonia in 89 % of the pigs immunized with this biologic. Notably, to be effective, the M2 protein must be displayed in the ND assemblies, as shown by the observation that simply mixing M2 with empty NDs incorporating CpG-ODN (eND-CpG-ODN) did not provide protective immunity. This novel M2-based vaccine offers great promise to help increase the breadth of protection afforded by conventional WIV vaccines against the diversity of IAV in circulation and, plausibly, as a broadly protective stand-alone biologic.
Collapse
Affiliation(s)
- Federico A Zuckermann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA.
| | - Yelena V Grinkova
- Department of Biochemistry, 505 South Goodwin Avenue, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Robert J Husmann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Melissa Pires-Alves
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Suzanna Storms
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Wei-Yu Chen
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Stephen G Sligar
- Department of Biochemistry, 505 South Goodwin Avenue, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Paudyal B, Moorhouse E, Sharma B, Dodds M, Nguyen V, Milad M, Tchilian E. Comparative pharmacokinetics of porcine and human anti-influenza hemagglutinin monoclonal antibodies in outbred pigs and minipigs. Front Immunol 2024; 15:1471412. [PMID: 39544926 PMCID: PMC11560753 DOI: 10.3389/fimmu.2024.1471412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/30/2024] [Indexed: 11/17/2024] Open
Abstract
Assessing the pharmacokinetics of monoclonal antibodies (mAbs) in relevant animal models is essential for designing improved formulations and developing mAb delivery platforms. We have established the pig, a large natural host animal for influenza with many similarities to humans, as a robust model for testing the therapeutic efficacy of anti-influenza mAbs and evaluating mAb delivery platforms. Here, we compared the pharmacokinetic characteristics of two anti-influenza hemagglutinin mAbs, human 2-12C and porcine pb27, in Göttingen minipigs and Landrace × Large White outbred pigs. Minipigs offer the advantage of a more stable weight, whereas outbred pigs are more readily available but exhibit rapid growth. Outbred pigs and minipigs showed similar pharmacokinetics and a similar porcine pb27 half-life (half-life of 15.7 days for outbred pigs and 16.6 days for minipigs). In contrast, the half-life of human 2-12C was more rapid in two of the minipigs but not in the outbred pigs, correlating with the development of antidrug antibodies in the two minipigs. Our results demonstrate that both outbred pigs and minipigs are appropriate models for pharmacokinetic studies and the evaluation of mAb delivery platforms, potentially bridging the gap between small animals and human trials.
Collapse
Affiliation(s)
- Basudev Paudyal
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | | | - Bhawna Sharma
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Michael Dodds
- Integrated Drug Development, Certara, Radnor, PA, United States
| | - Victor Nguyen
- Milad Pharmaceutical Consulting LLC, Plymouth, MI, United States
| | - Mark Milad
- Milad Pharmaceutical Consulting LLC, Plymouth, MI, United States
| | - Elma Tchilian
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| |
Collapse
|
4
|
Nicolussi P, Pilo G, Cancedda MG, Peng G, Chau NDQ, De la Cadena A, Vanna R, Samad YA, Ahmed T, Marcellino J, Tedde G, Giro L, Ylmazer A, Loi F, Carta G, Secchi L, Dei Giudici S, Macciocu S, Polli D, Nishina Y, Ligios C, Cerullo G, Ferrari A, Bianco A, Fadeel B, Franzoni G, Delogu LG. Biocompatibility of Water-Dispersible Pristine Graphene and Graphene Oxide Using a Close-to-Human Animal Model: A Pilot Study on Swine. Adv Healthc Mater 2024:e2401783. [PMID: 39385652 DOI: 10.1002/adhm.202401783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Indexed: 10/12/2024]
Abstract
Graphene-based materials (GBMs) are of considerable interest for biomedical applications, and the pilot study on the toxicological and immunological impact of pristine graphene (GR) and graphene oxide (GO) using swine as a close-to-human provides valuable insights. First, ex vivo experiments are conducted on swine blood cells, then GBMs are injected intraperitoneally (i.p.) into swine. Hematological and biochemical analyses at various intervals indicate that neither GO nor GR cause systemic inflammation, pro-coagulant responses, or renal or hepatic dysfunction. Importantly, no systemic toxicity is observed. Analysis of a panel of 84 immune-related genes shows minimal impact of GO and GR. The animals are sacrificed 21 days post-injection, and transient absorption imaging and Raman mapping show the presence of GO and GR in the mesentery only. Histological evaluation reveals no signs of alterations in other organs. Thus, clusters of both materials are detected in the mesentery, and GO aggregates are surrounded only by macrophages with the formation of granulomas. In contrast, modest local reactions are observed around the GR clusters. Overall, these results reveal that i.p. injection of GBMs resulted in a modest local tissue reaction without systemic toxicity. This study, performed in swine, provides essential guidance for future biomedical applications of graphene.
Collapse
Affiliation(s)
- Paola Nicolussi
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | | | | | - Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Ngoc Do Quyen Chau
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg ISIS, Strasbourg, 67000, France
| | | | - Renzo Vanna
- Istituto di Fotonica e Nanotecnologie - CNR, Milan, 20133, Italy
| | - Yarjan Abdul Samad
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
- Department of Aerospace Engineering, Khalifa University of Science & Technology, Abu Dhabi, 127788, UAE
| | - Tanweer Ahmed
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Jeremia Marcellino
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Giuseppe Tedde
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Linda Giro
- ImmuneNano Laboratory, Department of Biomedical Sciences, University of Padua, Padua, 35131, Italy
| | - Acelya Ylmazer
- Department of Biomedical Engineering, Ankara University, Ankara, 06830, Turkey
| | - Federica Loi
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Gavina Carta
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Loredana Secchi
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Silvia Dei Giudici
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Simona Macciocu
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Dario Polli
- Dipartimento di Fisica, Politecnico di Milano, Milan, 20133, Italy
- Istituto di Fotonica e Nanotecnologie - CNR, Milan, 20133, Italy
| | - Yuta Nishina
- Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
- Research Core for Interdisciplinary Sciences, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Milan, 20133, Italy
- Istituto di Fotonica e Nanotecnologie - CNR, Milan, 20133, Italy
| | - Andrea Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg ISIS, Strasbourg, 67000, France
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Giulia Franzoni
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Lucia Gemma Delogu
- ImmuneNano Laboratory, Department of Biomedical Sciences, University of Padua, Padua, 35131, Italy
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, 127788, UAE
| |
Collapse
|
5
|
Avanthay R, Garcia-Nicolas O, Ruggli N, Grau-Roma L, Párraga-Ros E, Summerfield A, Zimmer G. Evaluation of a novel intramuscular prime/intranasal boost vaccination strategy against influenza in the pig model. PLoS Pathog 2024; 20:e1012393. [PMID: 39116029 PMCID: PMC11309389 DOI: 10.1371/journal.ppat.1012393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Live-attenuated influenza vaccines (LAIV) offer advantages over the commonly used inactivated split influenza vaccines. However, finding the optimal balance between sufficient attenuation and immunogenicity has remained a challenge. We recently developed an alternative LAIV based on the 2009 pandemic H1N1 virus with a truncated NS1 protein and lacking PA-X protein expression (NS1(1-126)-ΔPAX). This virus showed a blunted replication and elicited a strong innate immune response. In the present study, we evaluated the efficacy of this vaccine candidate in the porcine animal model as a pertinent in vivo system. Immunization of pigs via the nasal route with the novel NS1(1-126)-ΔPAX LAIV did not cause disease and elicited a strong mucosal immune response that completely blocked replication of the homologous challenge virus in the respiratory tract. However, we observed prolonged shedding of our vaccine candidate from the upper respiratory tract. To improve LAIV safety, we developed a novel prime/boost vaccination strategy combining primary intramuscular immunization with a haemagglutinin-encoding propagation-defective vesicular stomatitis virus (VSV) replicon, followed by a secondary immunization with the NS1(1-126)-ΔPAX LAIV via the nasal route. This two-step immunization procedure significantly reduced LAIV shedding, increased the production of specific serum IgG, neutralizing antibodies, and Th1 memory cells, and resulted in sterilizing immunity against homologous virus challenge. In conclusion, our novel intramuscular prime/intranasal boost regimen interferes with virus shedding and transmission, a feature that will help combat influenza epidemics and pandemics.
Collapse
MESH Headings
- Animals
- Swine
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Injections, Intramuscular
- Administration, Intranasal
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Influenza A Virus, H1N1 Subtype/immunology
- Disease Models, Animal
- Antibodies, Viral/immunology
- Immunization, Secondary/methods
- Vaccination/methods
- Influenza, Human/prevention & control
- Influenza, Human/immunology
Collapse
Affiliation(s)
- Robin Avanthay
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Obdulio Garcia-Nicolas
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nicolas Ruggli
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Llorenç Grau-Roma
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Animal Pathology, COMPATH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ester Párraga-Ros
- Department of Anatomy and Comparative Pathology, Veterinary Faculty, University of Murcia, Murcia, Spain
| | - Artur Summerfield
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Sussman C, Liberatore RA, Drozdz MM. Delivery of DNA-Based Therapeutics for Treatment of Chronic Diseases. Pharmaceutics 2024; 16:535. [PMID: 38675196 PMCID: PMC11053842 DOI: 10.3390/pharmaceutics16040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Gene therapy and its role in the medical field have evolved drastically in recent decades. Studies aim to define DNA-based medicine as well as encourage innovation and the further development of novel approaches. Gene therapy has been established as an alternative approach to treat a variety of diseases. Its range of mechanistic applicability is wide; gene therapy has the capacity to address the symptoms of disease, the body's ability to fight disease, and in some cases has the ability to cure disease, making it a more attractive intervention than some traditional approaches to treatment (i.e., medicine and surgery). Such versatility also suggests gene therapy has the potential to address a greater number of indications than conventional treatments. Many DNA-based therapies have shown promise in clinical trials, and several have been approved for use in humans. Whereas current treatment regimens for chronic disease often require frequent dosing, DNA-based therapies can produce robust and durable expression of therapeutic genes with fewer treatments. This benefit encourages the application of DNA-based gene therapy to manage chronic diseases, an area where improving efficiency of current treatments is urgent. Here, we provide an overview of two DNA-based gene therapies as well as their delivery methods: adeno associated virus (AAV)-based gene therapy and plasmid DNA (pDNA)-based gene therapy. We will focus on how these therapies have already been utilized to improve treatment of chronic disease, as well as how current literature supports the expansion of these therapies to treat additional chronic indications in the future.
Collapse
|
7
|
Meng Y, Sun J, Zhang G. Harnessing the power of goat milk-derived extracellular vesicles for medical breakthroughs: A review. Int J Biol Macromol 2024; 262:130044. [PMID: 38340922 DOI: 10.1016/j.ijbiomac.2024.130044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Research into goat milk-derived extracellular vesicles (GMVs) has grown in popularity in recent years owing to their potential uses in several sectors, including medicine. GMVs are tiny, lipid-bound structures that cells secrete and use to transport bioactive substances like proteins, lipids, and nucleic acids. They may be extracted from different body fluids, including blood, urine, and milk, and have been found to play crucial roles in cell-to-cell communication. GMVs are a promising field of study with applications in preventing and treating various disorders. Their immune-modulating properties, for instance, have been investigated, and they have shown promise in treating autoimmune illnesses and cancer. They may be loaded with therapeutic compounds and directed to particular cells or tissues, but they have also been studied for their potential use as drug-delivery vehicles. Goat milk extracellular vesicles are an intriguing study topic with many possible benefits. Although more study is required to thoroughly understand their functioning and prospective applications, they provide a promising path for creating novel medical treatments and technology.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| |
Collapse
|
8
|
McNee A, Vanover D, Rijal P, Paudyal B, Lean FZX, MacLoughlin R, Núñez A, Townsend A, Santangelo PJ, Tchilian E. A direct contact pig influenza challenge model for assessing protective efficacy of monoclonal antibodies. Front Immunol 2023; 14:1229051. [PMID: 37965320 PMCID: PMC10641767 DOI: 10.3389/fimmu.2023.1229051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Monoclonal antibodies (mAbs) can be used to complement immunization for the therapy of influenza virus infection. We have established the pig, a natural large animal host for influenza A, with many physiological, immunological, and anatomical similarities to humans, as an appropriate model for testing mAbs. We have evaluated the protective efficacy of the strongly neutralizing human anti-hemagglutinin mAb, 2-12C in the pig influenza model. Intravenous administration of recombinant 2-12C reduced virus load and lung pathology, however, it did not prevent virus nasal shedding and, consequently, transmission. This may be because the pigs were directly infected intranasally with a high dose of the H1N1pdm09 virus. To address this, we developed a contact challenge model in which the animals were given 2-12C and one day later co-housed with donor pigs previously infected intra-nasally with H1N1pdm09. 2-12C pre-treatment completely prevented infection. We also administered a lower dose of 2-12C by aerosol to the respiratory tract, but this did not prevent shedding in the direct challenge model, although it abolished lung infection. We propose that the direct contact challenge model of pig influenza may be useful for evaluating candidate mAbs and emerging delivery platforms prior to clinical trials.
Collapse
Affiliation(s)
- Adam McNee
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, United States
| | - Pramila Rijal
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Basudev Paudyal
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Fabian Z. X. Lean
- Department of Pathology, Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, United Kingdom
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Ltd, Galway, Ireland
| | - Alejandro Núñez
- Department of Pathology, Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, United Kingdom
| | - Alain Townsend
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, United States
| | - Elma Tchilian
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| |
Collapse
|
9
|
Joshi LR, Gálvez NM, Ghosh S, Weiner DB, Balazs AB. Delivery platforms for broadly neutralizing antibodies. Curr Opin HIV AIDS 2023; 18:191-208. [PMID: 37265268 PMCID: PMC10247185 DOI: 10.1097/coh.0000000000000803] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PURPOSE OF REVIEW Passive administration of broadly neutralizing antibodies (bNAbs) is being evaluated as a therapeutic approach to prevent or treat HIV infections. However, a number of challenges face the widespread implementation of passive transfer for HIV. To reduce the need of recurrent administrations of bNAbs, gene-based delivery approaches have been developed which overcome the limitations of passive transfer. RECENT FINDINGS The use of DNA and mRNA for the delivery of bNAbs has made significant progress. DNA-encoded monoclonal antibodies (DMAbs) have shown great promise in animal models of disease and the underlying DNA-based technology is now being tested in vaccine trials for a variety of indications. The COVID-19 pandemic greatly accelerated the development of mRNA-based technology to induce protective immunity. These advances are now being successfully applied to the delivery of monoclonal antibodies using mRNA in animal models. Delivery of bNAbs using viral vectors, primarily adeno-associated virus (AAV), has shown great promise in preclinical animal models and more recently in human studies. Most recently, advances in genome editing techniques have led to engineering of monoclonal antibody expression from B cells. These efforts aim to turn B cells into a source of evolving antibodies that can improve through repeated exposure to the respective antigen. SUMMARY The use of these different platforms for antibody delivery has been demonstrated across a wide range of animal models and disease indications, including HIV. Although each approach has unique strengths and weaknesses, additional advances in efficiency of gene delivery and reduced immunogenicity will be necessary to drive widespread implementation of these technologies. Considering the mounting clinical evidence of the potential of bNAbs for HIV treatment and prevention, overcoming the remaining technical challenges for gene-based bNAb delivery represents a relatively straightforward path towards practical interventions against HIV infection.
Collapse
Affiliation(s)
- Lok R. Joshi
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Nicolás M.S. Gálvez
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Sukanya Ghosh
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, PA 19104, USA
| | - David B. Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, PA 19104, USA
| | - Alejandro B. Balazs
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Franzoni G, Mecocci S, De Ciucis CG, Mura L, Dell’Anno F, Zinellu S, Fruscione F, De Paolis L, Carta T, Anfossi AG, Dei Guidici S, Chiaradia E, Pascucci L, Oggiano A, Cappelli K, Razzuoli E. Goat milk extracellular vesicles: immuno-modulation effects on porcine monocyte-derived macrophages in vitro. Front Immunol 2023; 14:1209898. [PMID: 37469517 PMCID: PMC10352104 DOI: 10.3389/fimmu.2023.1209898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/26/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Extracellular vesicles (EVs) are nanometric-membrane-bound sub-cellular structures, which can be recovered from milk. Milk EVs have drawn increasing interest due to their potential biomedical applications, therefore it is important to investigate their impact on key immune cells, such as macrophages. Methods In this work, the immunomodulatory effects of goat milk EVs on untreated (moMФ) and classically activated (moM1) porcine monocyte-derived macrophages were investigated using flow cytometry, ELISA, and gene expression assays. Results These particles were efficiently internalized by macrophages and high doses (60 mg protein weight) triggered the upregulation of MHC I and MHC II DR on moMФ, but not on moM1. In moMФ, exposure to low doses (0.6 mg) of mEVs enhanced the gene expression of IL10, EBI3, and IFNB, whereas high doses up-regulated several pro-inflammatory cytokines. These nanosized structures slightly modulated cytokine gene expression on moM1. Accordingly, the cytokine (protein) contents in culture supernatants of moMФ were mildly affected by exposure to low doses of mEVs, whereas high doses promoted the increased release of TNF, IL-8, IL-1a, IL-1b, IL-1Ra, IL-6, IL-10, and IL-12. The cytokines content in moM1 supernatants was not critically affected. Discussion Overall, our data support a clinical application of these molecules: they polarized macrophages toward an M1-like phenotype, but this activation seemed to be controlled, to prevent potentially pathological over-reaction to stressors.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| | - Lorena Mura
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
- Department of Biomedical Sciences, School of Medicine, University of Sassari, Sassari, Italy
| | - Filippo Dell’Anno
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| | - Tania Carta
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Antonio G. Anfossi
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Silvia Dei Guidici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | | | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| |
Collapse
|
11
|
Chrun T, Maze EA, Roper KJ, Vatzia E, Paudyal B, McNee A, Martini V, Manjegowda T, Freimanis G, Silesian A, Polo N, Clark B, Besell E, Booth G, Carr BV, Edmans M, Nunez A, Koonpaew S, Wanasen N, Graham SP, Tchilian E. Simultaneous co-infection with swine influenza A and porcine reproductive and respiratory syndrome viruses potentiates adaptive immune responses. Front Immunol 2023; 14:1192604. [PMID: 37287962 PMCID: PMC10242126 DOI: 10.3389/fimmu.2023.1192604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Porcine respiratory disease is multifactorial and most commonly involves pathogen co-infections. Major contributors include swine influenza A (swIAV) and porcine reproductive and respiratory syndrome (PRRSV) viruses. Experimental co-infection studies with these two viruses have shown that clinical outcomes can be exacerbated, but how innate and adaptive immune responses contribute to pathogenesis and pathogen control has not been thoroughly evaluated. We investigated immune responses following experimental simultaneous co-infection of pigs with swIAV H3N2 and PRRSV-2. Our results indicated that clinical disease was not significantly exacerbated, and swIAV H3N2 viral load was reduced in the lung of the co-infected animals. PRRSV-2/swIAV H3N2 co-infection did not impair the development of virus-specific adaptive immune responses. swIAV H3N2-specific IgG serum titers and PRRSV-2-specific CD8β+ T-cell responses in blood were enhanced. Higher proportions of polyfunctional CD8β+ T-cell subset in both blood and lung washes were found in PRRSV-2/swIAV H3N2 co-infected animals compared to the single-infected groups. Our findings provide evidence that systemic and local host immune responses are not negatively affected by simultaneous swIAV H3N2/PRRSV-2 co-infection, raising questions as to the mechanisms involved in disease modulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam McNee
- The Pirbright Institute, Woking, United Kingdom
| | | | | | | | | | - Noemi Polo
- The Pirbright Institute, Woking, United Kingdom
| | - Becky Clark
- The Pirbright Institute, Woking, United Kingdom
| | | | | | | | | | - Alejandro Nunez
- Pathology and Animal Sciences, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Nanchaya Wanasen
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | | | | |
Collapse
|
12
|
Heterogeneity of Phenotypic and Functional Changes to Porcine Monocyte-Derived Macrophages Triggered by Diverse Polarizing Factors In Vitro. Int J Mol Sci 2023; 24:ijms24054671. [PMID: 36902099 PMCID: PMC10003195 DOI: 10.3390/ijms24054671] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Swine are attracting increasing attention as a biomedical model, due to many immunological similarities with humans. However, porcine macrophage polarization has not been extensively analyzed. Therefore, we investigated porcine monocyte-derived macrophages (moMΦ) triggered by either IFN-γ + LPS (classical activation) or by diverse "M2-related" polarizing factors: IL-4, IL-10, TGF-β, and dexamethasone. IFN-γ and LPS polarized moMΦ toward a proinflammatory phenotype, although a significant IL-1Ra response was observed. Exposure to IL-4, IL-10, TGF-β, and dexamethasone gave rise to four distinct phenotypes, all antithetic to IFN-γ and LPS. Some peculiarities were observed: IL-4 and IL-10 both enhanced expression of IL-18, and none of the "M2-related" stimuli induced IL-10 expression. Exposures to TGF-β and dexamethasone were characterized by enhanced levels of TGF-β2, whereas stimulation with dexamethasone, but not TGF-β2, triggered CD163 upregulation and induction of CCL23. Macrophages stimulated with IL-10, TGF-β, or dexamethasone presented decreased abilities to release proinflammatory cytokines in response to TLR2 or TLR3 ligands: IL-10 showed a powerful inhibitory activity for CXCL8 and TNF release, whereas TGF-β provided a strong inhibitory signal for IL-6 production. While our results emphasized porcine macrophage plasticity broadly comparable to human and murine macrophages, they also highlighted some peculiarities in this species.
Collapse
|
13
|
Hollevoet K, Thomas D, Compernolle G, Vermeire G, De Smidt E, De Vleeschauwer S, Smith TRF, Fisher PD, Dewilde M, Geukens N, Declerck P. Clinically relevant dosing and pharmacokinetics of DNA-encoded antibody therapeutics in a sheep model. Front Oncol 2022; 12:1017612. [PMID: 36263202 PMCID: PMC9574358 DOI: 10.3389/fonc.2022.1017612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
DNA-encoded delivery and in vivo expression of antibody therapeutics presents an innovative alternative to conventional protein production and administration, including for cancer treatment. To support clinical translation, we evaluated this approach in 18 40-45 kg sheep, using a clinical-matched intramuscular electroporation (IM EP) and hyaluronidase-plasmid DNA (pDNA) coformulation setup. Two cohorts of eight sheep received either 1 or 4 mg pDNA encoding an ovine anti-cancer embryonic antigen (CEA) monoclonal antibody (mAb; OVAC). Results showed a dose-response with average maximum serum concentrations of respectively 0.3 and 0.7 µg/ml OVAC, 4-6 weeks after IM EP. OVAC was detected in all 16 sheep throughout the 6-week follow-up, and no anti-OVAC antibodies were observed. Another, more exploratory, cohort of two sheep received a 12 mg pOVAC dose. Both animals displayed a similar dose-dependent mAb increase and expression profile in the first two weeks. However, in one animal, an anti-OVAC antibody response led to loss of mAb detection four weeks after IM EP. In the other animal, no anti-drug antibodies were observed. Serum OVAC concentrations peaked at 4.9 µg/ml 6 weeks after IM EP, after which levels gradually decreased but remained detectable around 0.2 to 0.3 µg/ml throughout a 13-month follow-up. In conclusion, using a delivery protocol that is currently employed in clinical Phase 1 studies of DNA-based antibodies, we achieved robust and prolonged in vivo production of anti-cancer DNA-encoded antibody therapeutics in sheep. The learnings from this large-animal model regarding the impact of pDNA dose and host immune response on the expressed mAb pharmacokinetics can contribute to advancing clinical translation.
Collapse
Affiliation(s)
- Kevin Hollevoet
- PharmAbs, The KU Leuven Antibody Center – University of Leuven, Leuven, Belgium
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven – University of Leuven, Leuven, Belgium
- *Correspondence: Kevin Hollevoet,
| | - Debby Thomas
- PharmAbs, The KU Leuven Antibody Center – University of Leuven, Leuven, Belgium
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven – University of Leuven, Leuven, Belgium
| | - Griet Compernolle
- PharmAbs, The KU Leuven Antibody Center – University of Leuven, Leuven, Belgium
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven – University of Leuven, Leuven, Belgium
| | - Giles Vermeire
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven – University of Leuven, Leuven, Belgium
| | - Elien De Smidt
- PharmAbs, The KU Leuven Antibody Center – University of Leuven, Leuven, Belgium
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven – University of Leuven, Leuven, Belgium
| | | | | | | | - Maarten Dewilde
- PharmAbs, The KU Leuven Antibody Center – University of Leuven, Leuven, Belgium
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven – University of Leuven, Leuven, Belgium
| | - Nick Geukens
- PharmAbs, The KU Leuven Antibody Center – University of Leuven, Leuven, Belgium
| | - Paul Declerck
- PharmAbs, The KU Leuven Antibody Center – University of Leuven, Leuven, Belgium
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven – University of Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Tursi NJ, Reeder SM, Flores-Garcia Y, Bah MA, Mathis-Torres S, Salgado-Jimenez B, Esquivel R, Xu Z, Chu JD, Humeau L, Patel A, Zavala F, Weiner DB. Engineered DNA-encoded monoclonal antibodies targeting Plasmodium falciparum circumsporozoite protein confer single dose protection in a murine malaria challenge model. Sci Rep 2022; 12:14313. [PMID: 35995959 PMCID: PMC9395511 DOI: 10.1038/s41598-022-18375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022] Open
Abstract
Novel approaches for malaria prophylaxis remain important. Synthetic DNA-encoded monoclonal antibodies (DMAbs) are a promising approach to generate rapid, direct in vivo host-generated mAbs with potential benefits in production simplicity and distribution coupled with genetic engineering. Here, we explore this approach in a malaria challenge model. We engineered germline-reverted DMAbs based on human mAb clones CIS43, 317, and L9 which target a junctional epitope, major repeat, and minor repeat of the Plasmodium falciparum circumsporozoite protein (CSP) respectively. DMAb variants were encoded into a plasmid vector backbone and their expression and binding profiles were characterized. We demonstrate long-term serological expression of DMAb constructs resulting in in vivo efficacy of CIS43 GL and 317 GL in a rigorous mosquito bite mouse challenge model. Additionally, we engineered an Fc modified variant of CIS43 and L9-based DMAbs to ablate binding to C1q to test the impact of complement-dependent Fc function on challenge outcomes. Complement knockout variant DMAbs demonstrated similar protection to that of WT Fc DMAbs supporting the notion that direct binding to the parasite is sufficient for the protection observed. Further investigation of DMAbs for malaria prophylaxis appears of importance.
Collapse
Affiliation(s)
- Nicholas J Tursi
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sophia M Reeder
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mamadou A Bah
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Shamika Mathis-Torres
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Berenice Salgado-Jimenez
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Rianne Esquivel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Ziyang Xu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jacqueline D Chu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Laurent Humeau
- Inovio Pharmaceuticals, Plymouth Meeting, PA, 19462, USA
| | - Ami Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
15
|
Martini V, Edmans M, Gubbins S, Jayaraman S, Paudyal B, Morgan S, McNee A, Morin T, Rijal P, Gerner W, Sewell AK, Inoue R, Bailey M, Connelley T, Charleston B, Townsend A, Beverley P, Tchilian E. Spatial, temporal and molecular dynamics of swine influenza virus-specific CD8 tissue resident memory T cells. Mucosal Immunol 2022; 15:428-442. [PMID: 35145208 PMCID: PMC9038527 DOI: 10.1038/s41385-021-00478-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 02/04/2023]
Abstract
For the first time we have defined naïve, central memory, effector memory and differentiated effector porcine CD8 T cells and analyzed their distribution in lymphoid and respiratory tissues after influenza infection or immunization, using peptide-MHC tetramers of three influenza nucleoprotein (NP) epitopes. The hierarchy of response to the three epitopes changes during the response in different tissues. Most NP-specific CD8 T cells in broncho-alveolar lavage (BAL) and lung are tissue resident memory cells (TRM) that express CD69 and downregulate CD45RA and CCR7. NP-specific cells isolated from BAL express genes characteristic of TRM, but gene expression differs at 7, 21 and 63 days post infection. In all tissues the frequency of NP-specific CD8 cells declines over 63 days almost to background levels but is best maintained in BAL. The kinetic of influenza specific memory CD8 T cell in this natural host species differs from that in small animal models.
Collapse
Affiliation(s)
- Veronica Martini
- The Pirbright Institute, Pirbright, UK.
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
| | | | | | | | | | | | | | - Théo Morin
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Pramila Rijal
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Ryo Inoue
- Laboratory of Animal Science, Setsunan University, Osaka, Japan
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Langford, UK
| | | | | | - Alain Townsend
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Peter Beverley
- National Heart and Lung Institute, St Mary's Campus, Imperial College, London, UK
| | | |
Collapse
|
16
|
Paudyal B, McNee A, Rijal P, Carr BV, Nunez A, McCauley J, Daniels RS, Townsend AR, Hammond JA, Tchilian E. Low Dose Pig Anti-Influenza Virus Monoclonal Antibodies Reduce Lung Pathology but Do Not Prevent Virus Shedding. Front Immunol 2022; 12:790918. [PMID: 34975888 PMCID: PMC8716435 DOI: 10.3389/fimmu.2021.790918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/18/2021] [Indexed: 01/24/2023] Open
Abstract
We have established the pig, a large natural host animal for influenza, with many physiological similarities to humans, as a robust model for testing the therapeutic potential of monoclonal antibodies (mAbs). In this study we demonstrated that prophylactic intravenous administration of 15 mg/kg of porcine mAb pb18, against the K160-163 site of the hemagglutinin, significantly reduced lung pathology and nasal virus shedding and eliminated virus from the lung of pigs following H1N1pdm09 challenge. When given at 1 mg/kg, pb18 significantly reduced lung pathology and lung and BAL virus loads, but not nasal shedding. Similarly, when pb18 was given in combination with pb27, which recognized the K130 site, at 1 mg/kg each, lung virus load and pathology were reduced, although without an apparent additive or synergistic effect. No evidence for mAb driven virus evolution was detected. These data indicate that intravenous administration of high doses was required to reduce nasal virus shedding, although this was inconsistent and seldom complete. In contrast, the effect on lung pathology and lung virus load is consistent and is also seen at a one log lower dose, strongly indicating that a lower dose might be sufficient to reduce severity of disease, but for prevention of transmission other measures would be needed.
Collapse
Affiliation(s)
- Basudev Paudyal
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Adam McNee
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Pramila Rijal
- Centre for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom.,Medical Research and Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - B Veronica Carr
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Alejandro Nunez
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency-Weybridge, Addlestone, United Kingdom
| | - John McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Rodney S Daniels
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Alain R Townsend
- Centre for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom.,Medical Research and Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John A Hammond
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Elma Tchilian
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| |
Collapse
|
17
|
Paudyal B, Mwangi W, Rijal P, Schwartz JC, Noble A, Shaw A, Sealy JE, Bonnet-Di Placido M, Graham SP, Townsend A, Hammond JA, Tchilian E. Fc-Mediated Functions of Porcine IgG Subclasses. Front Immunol 2022; 13:903755. [PMID: 35757698 PMCID: PMC9218351 DOI: 10.3389/fimmu.2022.903755] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
The pig is an important agricultural species and powerful biomedical model. We have established the pig, a large natural host animal for influenza with many physiological similarities to humans, as a robust model for testing the therapeutic potential of monoclonal antibodies. Antibodies provide protection through neutralization and recruitment of innate effector functions through the Fc domain. However very little is known about the Fc-mediated functions of porcine IgG subclasses. We have generated 8 subclasses of two porcine monoclonal anti influenza hemagglutinin antibodies. We characterized their ability to activate complement, trigger cytotoxicity and phagocytosis by immune cells and assayed their binding to monocytes, macrophages, and natural killer cells. We show that IgG1, IgG2a, IgG2b, IgG2c and IgG4 bind well to targeted cell types and mediate complement mediated cellular cytotoxicity (CDCC), antibody dependent cellular cytotoxicity (ADCC) and antibody mediated cell phagocytosis (ADCP). IgG5b and IgG5c exhibited weak binding and variable and poor functional activity. Immune complexes of porcine IgG3 did not show any Fc-mediated functions except for binding to monocytes and macrophages and weak binding to NK cells. Interestingly, functionally similar porcine IgG subclasses clustered together in the genome. These novel findings will enhance the utility of the pig model for investigation of therapeutic antibodies.
Collapse
Affiliation(s)
- Basudev Paudyal
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - William Mwangi
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Pramila Rijal
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John C Schwartz
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Alistair Noble
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Andrew Shaw
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Joshua E Sealy
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | | | - Simon P Graham
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Alain Townsend
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John A Hammond
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Elma Tchilian
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| |
Collapse
|
18
|
Keep S, Carr BV, Lean FZX, Fones A, Newman J, Dowgier G, Freimanis G, Vatzia E, Polo N, Everest H, Webb I, Mcnee A, Paudyal B, Thakur N, Nunez A, MacLoughlin R, Maier H, Hammond J, Bailey D, Waters R, Charleston B, Tuthill T, Britton P, Bickerton E, Tchilian E. Porcine Respiratory Coronavirus as a Model for Acute Respiratory Coronavirus Disease. Front Immunol 2022; 13:867707. [PMID: 35418984 PMCID: PMC8995773 DOI: 10.3389/fimmu.2022.867707] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
In the light of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, we have developed a porcine respiratory coronavirus (PRCV) model for in depth mechanistic evaluation of the pathogenesis, virology and immune responses of this important family of viruses. Pigs are a large animal with similar physiology and immunology to humans and are a natural host for PRCV. Four PRCV strains were investigated and shown to induce different degrees of lung pathology. Importantly, although all four strains replicated equally well in porcine cell lines in vitro and in the upper respiratory tract in vivo, PRCV strains causing more severe lung pathology were also able to replicate in ex vivo tracheal organ cultures as well as in vivo in the trachea and lung. The time course of infection of PRCV 135, which caused the most severe pulmonary pathology, was investigated. Virus was shed from the upper respiratory tract until day 10 post infection, with infection of the respiratory mucosa, as well as olfactory and sustentacular cells, providing an excellent model to study upper respiratory tract disease in addition to the commonly known lower respiratory tract disease from PRCV. Infected animals made antibody and T cell responses that cross reacted with the four PRCV strains and Transmissible Gastroenteritis Virus. The antibody response was reproduced in vitro in organ cultures. Comparison of mechanisms of infection and immune control in pigs infected with PRCVs of differing pathogenicity with human data from SARS-CoV-2 infection and from our in vitro organ cultures, will enable key events in coronavirus infection and disease pathogenesis to be identified.
Collapse
Affiliation(s)
- Sarah Keep
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Fabian Z X Lean
- Department of Pathology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Albert Fones
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | | | - Eleni Vatzia
- The Pirbright Institute, Pirbright, United Kingdom
| | - Noemi Polo
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Isobel Webb
- The Pirbright Institute, Pirbright, United Kingdom
| | - Adam Mcnee
- The Pirbright Institute, Pirbright, United Kingdom
| | - Basu Paudyal
- The Pirbright Institute, Pirbright, United Kingdom
| | - Nazia Thakur
- The Pirbright Institute, Pirbright, United Kingdom
| | - Alejandro Nunez
- Department of Pathology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen, Galway, Ireland
| | - Helena Maier
- The Pirbright Institute, Pirbright, United Kingdom
| | - John Hammond
- The Pirbright Institute, Pirbright, United Kingdom
| | - Dalan Bailey
- The Pirbright Institute, Pirbright, United Kingdom
| | - Ryan Waters
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Toby Tuthill
- The Pirbright Institute, Pirbright, United Kingdom
| | - Paul Britton
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | |
Collapse
|
19
|
Chrun T, Maze EA, Vatzia E, Martini V, Paudyal B, Edmans MD, McNee A, Manjegowda T, Salguero FJ, Wanasen N, Koonpaew S, Graham SP, Tchilian E. Simultaneous Infection With Porcine Reproductive and Respiratory Syndrome and Influenza Viruses Abrogates Clinical Protection Induced by Live Attenuated Porcine Reproductive and Respiratory Syndrome Vaccination. Front Immunol 2021; 12:758368. [PMID: 34858411 PMCID: PMC8632230 DOI: 10.3389/fimmu.2021.758368] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
The porcine respiratory disease complex (PRDC) is responsible for significant economic losses in the pig industry worldwide. Porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza virus are major viral contributors to PRDC. Vaccines are cost-effective measures for controlling PRRS, however, their efficacy in the context of co-infections has been poorly investigated. In this study, we aimed to determine the effect of PRRSV-2 and swine influenza H3N2 virus co-infection on the efficacy of PRRSV modified live virus (MLV) vaccination, which is widely used in the field. Following simultaneous challenge with contemporary PRRSV-2 and H3N2 field isolates, we found that the protective effect of PRRS MLV vaccination on clinical disease and pathology was abrogated, although viral load was unaffected and antibody responses were enhanced. In contrast, co-infection in non-immunized animals reduced PRRSV-2 viremia and H3N2 virus load in the upper respiratory tract and potentiated T cell responses against both PRRSV-2 and H3N2 in the lung. Further analysis suggested that an upregulation of inhibitory cytokines gene expression in the lungs of vaccinated pigs may have influenced responses to H3N2 and PRRSV-2. These findings provide important insights into the effect of viral co-infections on PRRS vaccine efficacy that may help identify more effective vaccination strategies against PRDC in the field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adam McNee
- The Pirbright Institute, Woking, United Kingdom
| | | | | | - Nanchaya Wanasen
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | | | | |
Collapse
|
20
|
Nguyen TQ, Rollon R, Choi YK. Animal Models for Influenza Research: Strengths and Weaknesses. Viruses 2021; 13:1011. [PMID: 34071367 PMCID: PMC8228315 DOI: 10.3390/v13061011] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Influenza remains one of the most significant public health threats due to its ability to cause high morbidity and mortality worldwide. Although understanding of influenza viruses has greatly increased in recent years, shortcomings remain. Additionally, the continuous mutation of influenza viruses through genetic reassortment and selection of variants that escape host immune responses can render current influenza vaccines ineffective at controlling seasonal epidemics and potential pandemics. Thus, there is a knowledge gap in the understanding of influenza viruses and a corresponding need to develop novel universal vaccines and therapeutic treatments. Investigation of viral pathogenesis, transmission mechanisms, and efficacy of influenza vaccine candidates requires animal models that can recapitulate the disease. Furthermore, the choice of animal model for each research question is crucial in order for researchers to acquire a better knowledge of influenza viruses. Herein, we reviewed the advantages and limitations of each animal model-including mice, ferrets, guinea pigs, swine, felines, canines, and non-human primates-for elucidating influenza viral pathogenesis and transmission and for evaluating therapeutic agents and vaccine efficacy.
Collapse
Affiliation(s)
- Thi-Quyen Nguyen
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (T.-Q.N.); (R.R.)
| | - Rare Rollon
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (T.-Q.N.); (R.R.)
| | - Young-Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (T.-Q.N.); (R.R.)
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
21
|
Comparative Phenotypic and Functional Analyses of the Effects of IL-10 or TGF-β on Porcine Macrophages. Animals (Basel) 2021; 11:ani11041098. [PMID: 33921388 PMCID: PMC8069609 DOI: 10.3390/ani11041098] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Macrophages play a central role in innate immune response to both infectious and non-infectious stressors. They respond to different agonists modifying their phenotype and functions. In humans and mice, the regulatory cytokines IL-10 or TGF-β are both known to drive macrophage polarization into an anti-inflammatory phenotype, referred to as M2c. However, the immune systems of animal species each have their own peculiarities and the M2c subsets has never been investigated in pigs. A deep knowledge of the porcine immune system is required to design vaccines or control strategies against pathogens, which are a major constraint to pork production. Due to anatomical, physiological, and immunological similarities, swine are attracting increasing attention as a model for human diseases. To better characterize porcine macrophages, we evaluated the effects of IL-10 or TGF-β on the phenotype and function of monocyte-derived macrophages. Both cytokines downregulated the expression of MHC II DR and CD14. IL-10, but not TGF-β, statistically significantly reduced the ability of macrophages to respond to Toll-like receptor 2 (TLR2) or TLR4 agonists. Whilst these data suggest differentiation to an M2c-like immunosuppressive phenotype, the responses, and differences between IL-10 and TGF-β also reveals species-specific differences. Abstract Macrophages are phagocytic cells involved in maintaining tissue homeostasis and defense against pathogens. Macrophages may be polarized into different functionally specialized subsets. M2c macrophages arise following stimulation with IL-10 or TGF-β and mediate anti-inflammatory and tissue repair functions. M2c macrophages remain poorly characterized in the pig, thus we investigated the impact of these regulatory cytokines on porcine monocyte-derived macrophages (moMΦ). The phenotype and functionality of these cells was characterized though confocal microscopy, flow cytometry, ELISA, and RT-qPCR. Both cytokines induced CD14 and MHC II DR down-regulation and reduced IL-6, TNF-α, and CD14 expression, suggestive of an anti-inflammatory phenotype. Interestingly, neither IL-10 or TGF-β were able to trigger IL-10 induction or release by moMΦ. Differences between these cytokines were observed: stimulation with IL-10, but not TGF-β, induced up-regulation of both CD16 and CD163 on moMΦ. In addition, IL-10 down-regulated expression of IL-1β and IL-12p40 4h post-stimulation and induced a stronger impairment of moMΦ ability to respond to either TLR2 or TLR4 agonists. Overall, our results provide an overview of porcine macrophage polarization by two immunosuppressive cytokines, revealing differences between IL-10 and TGF-β, and reporting some peculiarity of swine, which should be considered in translational studies.
Collapse
|
22
|
Protective porcine influenza virus-specific monoclonal antibodies recognize similar haemagglutinin epitopes as humans. PLoS Pathog 2021; 17:e1009330. [PMID: 33662023 PMCID: PMC7932163 DOI: 10.1371/journal.ppat.1009330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/25/2021] [Indexed: 01/18/2023] Open
Abstract
Pigs are natural hosts for the same subtypes of influenza A viruses as humans and integrally involved in virus evolution with frequent interspecies transmissions in both directions. The emergence of the 2009 pandemic H1N1 virus illustrates the importance of pigs in evolution of zoonotic strains. Here we generated pig influenza-specific monoclonal antibodies (mAbs) from H1N1pdm09 infected pigs. The mAbs recognized the same two major immunodominant haemagglutinin (HA) epitopes targeted by humans, one of which is not recognized by post-infection ferret antisera that are commonly used to monitor virus evolution. Neutralizing activity of the pig mAbs was comparable to that of potent human anti-HA mAbs. Further, prophylactic administration of a selected porcine mAb to pigs abolished lung viral load and greatly reduced lung pathology but did not eliminate nasal shedding of virus after H1N1pdm09 challenge. Hence mAbs from pigs, which target HA can significantly reduce disease severity. These results, together with the comparable sizes of pigs and humans, indicate that the pig is a valuable model for understanding how best to apply mAbs as therapy in humans and for monitoring antigenic drift of influenza viruses in humans, thereby providing information highly relevant to making influenza vaccine recommendations. Antibodies (Ab) are increasingly used to treat human infectious diseases. Pigs are large animals, natural hosts for influenza viruses and very similar to humans. We generated monoclonal Abs from influenza infected pigs and show that they recognize the same sites of the virus as humans. One of these sites was not recognized by ferret anti-sera, which are commonly used to predict the evolution of the virus and inform vaccine design. We also show that prophylactic administration of one of these mAb to pigs abolished lung viral load and prevented lung damage following infection with influenza. We conclude that the pig is a useful model to test how best to use Abs for therapy and to inform vaccine recommendations for humans.
Collapse
|
23
|
Edmans M, McNee A, Porter E, Vatzia E, Paudyal B, Martini V, Gubbins S, Francis O, Harley R, Thomas A, Burt R, Morgan S, Fuller A, Sewell A, Charleston B, Bailey M, Tchilian E. Magnitude and Kinetics of T Cell and Antibody Responses During H1N1pdm09 Infection in Inbred Babraham Pigs and Outbred Pigs. Front Immunol 2021; 11:604913. [PMID: 33603740 PMCID: PMC7884753 DOI: 10.3389/fimmu.2020.604913] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
We have used the pig, a large natural host animal for influenza with many physiological similarities to humans, to characterize αβ, γδ T cell and antibody (Ab) immune responses to the 2009 pandemic H1N1 virus infection. We evaluated the kinetic of virus infection and associated response in inbred Babraham pigs with identical MHC (Swine Leucocyte Antigen) and compared them to commercial outbred animals. High level of nasal virus shedding continued up to days 4 to 5 post infection followed by a steep decline and clearance of virus by day 9. Adaptive T cell and Ab responses were detectable from days 5 to 6 post infection reaching a peak at 9 to 14 days. γδ T cells produced cytokines ex vivo at day 2 post infection, while virus reactive IFNγ producing γδ T cells were detected from day 7 post infection. Analysis of NP tetramer specific and virus specific CD8 and CD4 T cells in blood, lung, lung draining lymph nodes, and broncho-alveolar lavage (BAL) showed clear differences in cytokine production between these tissues. BAL contained the most highly activated CD8, CD4, and γδ T cells producing large amounts of cytokines, which likely contribute to elimination of virus. The weak response in blood did not reflect the powerful local lung immune responses. The immune response in the Babraham pig following H1N1pdm09 influenza infection was comparable to that of outbred animals. The ability to utilize these two swine models together will provide unparalleled power to analyze immune responses to influenza.
Collapse
Affiliation(s)
- Matthew Edmans
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Adam McNee
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Emily Porter
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Eleni Vatzia
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Basu Paudyal
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Veronica Martini
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Simon Gubbins
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Ore Francis
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Ross Harley
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Amy Thomas
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Rachel Burt
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Sophie Morgan
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Anna Fuller
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Andrew Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Bryan Charleston
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Elma Tchilian
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| |
Collapse
|
24
|
Martini V, Paudyal B, Chrun T, McNee A, Edmans M, Atangana Maze E, Clark B, Nunez A, Dolton G, Sewell A, Beverley P, MacLoughlin R, Townsend A, Tchilian E. Simultaneous Aerosol and Intramuscular Immunization with Influenza Vaccine Induces Powerful Protective Local T Cell and Systemic Antibody Immune Responses in Pigs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:652-663. [PMID: 33328212 PMCID: PMC7812058 DOI: 10.4049/jimmunol.2001086] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 01/04/2023]
Abstract
A vaccine providing both powerful Ab and cross-reactive T cell immune responses against influenza viruses would be beneficial for both humans and pigs. In this study, we evaluated i.m., aerosol (Aer), and simultaneous systemic and respiratory immunization (SIM) by both routes in Babraham pigs, using the single cycle candidate influenza vaccine S-FLU. After prime and boost immunization, pigs were challenged with H1N1pdm09 virus. i.m.-immunized pigs generated a high titer of neutralizing Abs but poor T cell responses, whereas Aer induced powerful respiratory tract T cell responses but a low titer of Abs. SIM pigs combined high Ab titers and strong local T cell responses. SIM showed the most complete suppression of virus shedding and the greatest improvement in pathology. We conclude that SIM regimes for immunization against respiratory pathogens warrant further study.
Collapse
Affiliation(s)
- Veronica Martini
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom; .,Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Basu Paudyal
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
| | - Tiphany Chrun
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
| | - Adam McNee
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
| | - Matthew Edmans
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
| | | | - Beckie Clark
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
| | - Alejandro Nunez
- UK Animal and Plant Health Agency-Weybridge, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Andrew Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Peter Beverley
- National Heart and Lung Institute, Imperial College London, London W2 1PG, United Kingdom; and
| | | | - Alain Townsend
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Elma Tchilian
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom;
| |
Collapse
|