1
|
Figueroa LPR, Domingos HV, Pardo JB, Santiago PHO, Ellena J, Lacerda Junior V, Costa-Lotufo LV, Borges WDS. Synthesis of Cytotoxic Benzofurans and Ethers Derivatives of Paeonol. Chem Biodivers 2024; 21:e202400943. [PMID: 39012301 DOI: 10.1002/cbdv.202400943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Paeonol is a broadly studied natural product due to its many biological activities. Using a methodology previously employed by our research group, 11 derivatives of paeonol were synthesized (seven of them are unpublished compounds), including four ethers and seven benzofurans. Additionally, we determined the crystal structure of one of these ether derivatives (1 a) and of five benzofuran derivatives (2 a, 2 b, 2 c, 2 f and 2 g) by single crystal X-ray diffraction. To continue studying the cytotoxicity of this natural product and its derivatives, all compounds were tested against two cancer cell lines, HCT116 and MCF-7. Compounds 2 b, 2 e, and 2 g were considered active against the colorectal adenocarcinoma cells HCT116 (Growth inhibition >60 %). Compound 2 e showed an IC50 of 0.2 μM and was selected for further analysis, results reinforce its anticancer potential.
Collapse
Affiliation(s)
- Laura P R Figueroa
- Graduate Program in Chemistry, Department of Chemistry, Federal University of Espírito Santo, UFES, Vitória, 29075-910, Brazil
| | - Helori V Domingos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Jennifer B Pardo
- Graduate Program in Chemistry, Department of Chemistry, Federal University of Espírito Santo, UFES, Vitória, 29075-910, Brazil
| | - Pedro H O Santiago
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, PO Box 369, 13560-970, Brazil
| | - Javier Ellena
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, PO Box 369, 13560-970, Brazil
| | - Valdemar Lacerda Junior
- Graduate Program in Chemistry, Department of Chemistry, Federal University of Espírito Santo, UFES, Vitória, 29075-910, Brazil
| | - Letícia V Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Warley de S Borges
- Graduate Program in Chemistry, Department of Chemistry, Federal University of Espírito Santo, UFES, Vitória, 29075-910, Brazil
| |
Collapse
|
2
|
Zhou X, Alimu A, Zhao J, Xu X, Li X, Lin H, Lin Z. Paeonia genus: a systematic review of active ingredients, pharmacological effects and mechanisms, and clinical applications for the treatment of cancer. Arch Pharm Res 2024; 47:677-695. [PMID: 39306813 DOI: 10.1007/s12272-024-01512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
The main active constituents of plants of the Paeonia genus are known to have antitumor activity. Hundreds of compounds with a wide range of pharmacological activities, including monoterpene glycosides, flavonoids, tannins, stilbenes, triterpenoids, steroids, and phenolic compounds have been isolated. Among them, monoterpenes and their glycosides, flavonoids, phenolic acids, and other constituents have been shown to have good therapeutic effects on various cancers, with the main mechanisms including the induction of apoptosis; the inhibition of tumor cell proliferation, migration, and invasion; and the modulation of immunity. In this study, many citations related to the traditional uses, phytochemical constituents, antitumor effects, and clinical applications of the Paeonia genus were retrieved from popular and widely used databases such as Web of Science, Science Direct, Google Scholar, and PubMed using different search strings. A systematic review of the antitumor constituents of the Paeonia genus and their therapeutic effects on various cancers was conducted and the mechanisms of action and pathways of these phytochemicals were summarised to provide a further basis for antitumor research.
Collapse
Affiliation(s)
- Xinrui Zhou
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Aikebaier Alimu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiarui Zhao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xinyi Xu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiaowen Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - He Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Zhe Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
3
|
Maher S, Kalil H, Liu G, Sossey-Alaoui K, Bayachou M. Alginate-based hydrogel platform embedding silver nanoparticles and cisplatin: characterization of the synergistic effect on a breast cancer cell line. Front Mol Biosci 2023; 10:1242838. [PMID: 37936720 PMCID: PMC10626534 DOI: 10.3389/fmolb.2023.1242838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction: Breast cancer is a significant cause of mortality in women globally, and current treatment approaches face challenges due to side effects and drug resistance. Nanotechnology offers promising solutions by enabling targeted drug delivery and minimizing toxicity to normal tissues. Methods: In this study, we developed a composite platform called (Alg-AgNPs-CisPt), consisting of silver nanoparticles coated with an alginate hydrogel embedding cisplatin. We examined the effectiveness of this nanocomplex in induce synergistic cytotoxic effects on breast cancer cells. Results and Discussion: Characterization using various analytical techniques confirmed the composition of the nanocomplex and the distribution of its components. Cytotoxicity assays and apoptosis analysis demonstrated that the nanocomplex exhibited greater efficacy against breast cancer cells compared to AgNPs or cisplatin as standalone treatments. Moreover, the nanocomplex was found to enhance intracellular reactive oxygen species levels, further validating its efficacy. The synergistic action of the nanocomplex constituents offers potential advantages in reducing side effects associated with higher doses of cisplatin as a standalone treatment. Overall, this study highlights the potential of the (Alg-AgNPs-CisPt) nanocomplex as a promising platform embedding components with synergistic action against breast cancer cells.
Collapse
Affiliation(s)
- Shaimaa Maher
- Chemistry Department, Cleveland State University, Cleveland, OH, United States
| | - Haitham Kalil
- Chemistry Department, Cleveland State University, Cleveland, OH, United States
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Guiming Liu
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Khalid Sossey-Alaoui
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Metro Health Medical Center, Cleveland, OH, United States
| | - Mekki Bayachou
- Chemistry Department, Cleveland State University, Cleveland, OH, United States
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| |
Collapse
|
4
|
Chang X, Feng X, Du M, Li S, Wang J, Wang Y, Liu P. Pharmacological effects and mechanisms of paeonol on antitumor and prevention of side effects of cancer therapy. Front Pharmacol 2023; 14:1194861. [PMID: 37408762 PMCID: PMC10318156 DOI: 10.3389/fphar.2023.1194861] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023] Open
Abstract
Cancer represents one of the leading causes of mortality worldwide. Conventional clinical treatments include radiation therapy, chemotherapy, immunotherapy, and targeted therapy. However, these treatments have inherent limitations, such as multidrug resistance and the induction of short- and long-term multiple organ damage, ultimately leading to a significant decrease in cancer survivors' quality of life and life expectancy. Paeonol, a nature active compound derived from the root bark of the medicinal plant Paeonia suffruticosa, exhibits various pharmacological activities. Extensive research has demonstrated that paeonol exhibits substantial anticancer effects in various cancer, both in vitro and in vivo. Its underlying mechanisms involve the induction of apoptosis, the inhibition of cell proliferation, invasion and migration, angiogenesis, cell cycle arrest, autophagy, regulating tumor immunity and enhanced radiosensitivity, as well as the modulation of multiple signaling pathways, such as the PI3K/AKT and NF-κB signaling pathways. Additionally, paeonol can prevent adverse effects on the heart, liver, and kidneys induced by anticancer therapy. Despite numerous studies exploring paeonol's therapeutic potential in cancer, no specific reviews have been conducted. Therefore, this review provides a systematic summary and analysis of paeonol's anticancer effects, prevention of side effects, and the underlying mechanisms involved. This review aims to establish a theoretical basis for the adjunctive strategy of paeonol in cancer treatment, ultimately improving the survival rate and enhancing the quality of life for cancer patients.
Collapse
Affiliation(s)
- Xindi Chang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoteng Feng
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Du
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sijin Li
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiarou Wang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiru Wang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Liu J, Li X, Bai H, Yang X, Mu J, Yan R, Wang S. Traditional uses, phytochemistry, pharmacology, and pharmacokinetics of the root bark of Paeonia x suffruticosa andrews: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116279. [PMID: 36822345 DOI: 10.1016/j.jep.2023.116279] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moutan Cortex (MC), commonly known as "Mu dan pi", refers to the dried root bark of Paeonia x suffruticosa Andrews and is broadly used as a traditional herbal medication in China, Japan, and Korea. For thousands of years, it has been utilized to treat female genital, extravasated blood, cardiovascular, and stagnant blood disorders. AIM OF THE REVIEW The purpose of this review article was to summarize information on the traditional uses, phytochemistry, pharmacology and pharmacokinetics of MC, as well as to outline the further research directions for the development of new drugs and the associations between traditional uses and pharmacological effects. MATERIALS AND METHODS The information involved in the study was gathered from a variety of electronic resources, including PubMed, Web of Science, ScienceDirect, SciFinder, China Knowledge Resource Integrated Database, and Google Scholar. The date was from 1992 to 2022. RESULTS Approximately 163 chemical compounds have been extracted and identified from MC, including monoterpenes, monoterpene glycosides, triterpenes, phenolics, flavonoids, volatile oils, alkaloids, and others. In these categories, the monoterpene glycosides and phenols being the most common. A wide variety of pharmacological effects have been described for MC crude extracts and active molecules, such as antioxidant, anti-inflammatory, antibacterial and antiviral, antitumor, antidiabetic, organ protection, and neuroprotective activities, as well as treating cardiovascular diseases. Pharmacokinetics has been also used in the study of MC, including its crude extracts or chemical constituents, in order to explore the therapeutic mechanism, direct clinically appropriate application and provide new ideas for the exploitation of innovative medicines. CONCLUSION Modern pharmacological research has demonstrated that MC, as a significant therapeutic resource, has the ability to heal a wide range of diseases, particularly female genital and cardiovascular problems. These researches propose therapeutic ideas for the development of novel MC medicines. Furthermore, preclinical and clinical study have verified several observed pharmacological properties related with the traditional usages of MC.
Collapse
Affiliation(s)
- Jincai Liu
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Xiang Li
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Huixin Bai
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Xu Yang
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Jun Mu
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Ruonan Yan
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Siwang Wang
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
6
|
Ekiert H, Klimek-Szczykutowicz M, Szopa A. Paeonia × suffruticosa (Moutan Peony)-A Review of the Chemical Composition, Traditional and Professional Use in Medicine, Position in Cosmetics Industries, and Biotechnological Studies. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233379. [PMID: 36501418 PMCID: PMC9739549 DOI: 10.3390/plants11233379] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 05/14/2023]
Abstract
The aim of this review is to perform a systematic review of scientific papers and an in-depth analysis of the latest research related to Paeonia × suffruticosa Andrews as a valuable plant species, important in pharmacy and cosmetology. P. × suffruticosa bark root-Moutan cortex is a medicinal raw material formerly known from traditional Chinese medicine (TCM) but less common in official European medicine. It was introduced for the first time in the European Pharmacopoeia Supplement 9.4 in 2018. In this work, the numerous possible applications of this raw material were depicted based on modern professional pharmacological studies documenting its very valuable medicinal values, including antioxidant, cytoprotective, anti-cancer, anti-inflammatory, cardioprotective, anti-atherosclerotic, anti-diabetic and hepatoprotective activities. The scientific studies indicated that the profile of raw material activity is mainly due to paeonol, paeoniflorin and 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose. Moreover, the significance of this plant (its different organs) in the production of cosmetics was underlined. P. × suffruticosa finds increasing application in cosmetology due to research on its chronic dermatitis, anti-aging and brightening effects. Furthermore, some biotechnological research has been described aimed at developing effective in vitro micropropagation protocols for P. × suffruticosa.
Collapse
Affiliation(s)
- Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Marta Klimek-Szczykutowicz
- Department of Dermatology, Cosmetology and Aesthetic Surgery, The Institute of Medical Sciences, Medical College, Jan Kochanowski University, al. IX Wieków Kielc 19a, 25-516 Kielce, Poland
- Correspondence: (M.K.-S.); (A.S.); Tel.: +48-12-620-54-36 (A.S.); Fax: +48-620-54-40 (A.S.)
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
- Correspondence: (M.K.-S.); (A.S.); Tel.: +48-12-620-54-36 (A.S.); Fax: +48-620-54-40 (A.S.)
| |
Collapse
|
7
|
Oh JM, Kang Y, Hwang JH, Park JH, Shin WH, Mun SK, Lee JU, Yee ST, Kim H. Synthesis of 4-substituted benzyl-2-triazole-linked-tryptamine-paeonol derivatives and evaluation of their selective inhibitions against butyrylcholinesterase and monoamine oxidase-B. Int J Biol Macromol 2022; 217:910-921. [PMID: 35908673 DOI: 10.1016/j.ijbiomac.2022.07.178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/15/2022]
Abstract
Cholinesterase (ChE) and monoamine oxidase (MAO) inhibitors are being used and developed to treat Alzheimer's disease (AD), a major type of dementia patients. Fifteen 4-substituted benzyl-2-triazole-linked-tryptamine-paeonol derivatives were synthesized and evaluated for their inhibitory activities against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), monoamine oxidase-A (MAO-A), and B (MAO-B). Compound 896 was the most potent BChE inhibitor (IC50 = 0.13 μM) with the selectivity index (SI) value of >769.23 for BChE over AChE. Compound 897 was the most potent selective MAO-B inhibitor (IC50 = 0.73 μM; SI = 20.45 for MAO-B over MAO-A). The meta-CF3 substituent of 896 increased BChE inhibitory activity and the para-CF3 substituent of 897 increased MAO-B inhibitory activity. Compound 896 was a reversible noncompetitive BChE inhibitor (Ki = 0.171 μM) and 897 was a reversible competitive MAO-B inhibitor (Ki = 0.237 μM). Compound 896 had a lower binding energy (-13.75 kcal/mol) to BChE than 897 (-11.29 kcal/mol), and 897 had a lower binding energy to MAO-B (-11.31 kcal/mol) than that to MAO-A (-6.72 kcal/mol). Little cytotoxicity was observed for 896 and 897 to normal cells (MDCK) and human neuroblastoma cells (SH-SY5Y). This study suggested that 896 and 897 are therapeutic candidates for various neurodegenerative disorders such as AD.
Collapse
Affiliation(s)
- Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Yujung Kang
- Department of Chemical & Biological Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Ji Hyun Hwang
- Department of Chemical & Biological Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Jeong-Ho Park
- Department of Chemical & Biological Engineering, Hanbat National University, Daejeon 34158, Republic of Korea.
| | - Woong-Hee Shin
- Department of Chemical Science Education, Sunchon National University, Suncheon 57922, Republic of Korea; Department of Advanced Components and Materials Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Seul-Ki Mun
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jong Uk Lee
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sung-Tae Yee
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
8
|
Paeonol protects against doxorubicin-induced cardiotoxicity by promoting Mfn2-mediated mitochondrial fusion through activating the PKCε-Stat3 pathway. J Adv Res 2022; 47:151-162. [PMID: 35842187 PMCID: PMC10173194 DOI: 10.1016/j.jare.2022.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/13/2022] [Accepted: 07/10/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION The anti-cancer medication doxorubicin (Dox) is largely restricted in clinical usage due to its significant cardiotoxicity. The only medication approved by the FDA for Dox-induced cardiotoxicity is dexrazoxane, while it may reduce the sensitivity of cancer cells to chemotherapy and is restricted for use. There is an urgent need for the development of safe and effective medicines to alleviate Dox-induced cardiotoxicity. OBJECTIVES The objective of this study was to determine whether Paeonol (Pae) has the ability to protect against Dox-induced cardiotoxicity and if so, what are the underlying mechanisms involved. METHODS Sprague-Dawley rats and primary cardiomyocytes were used to create Dox-induced cardiotoxicity models. Pae's effects on myocardial damage, mitochondrial function, mitochondrial dynamics and signaling pathways were studied using a range of experimental methods. RESULTS Pae enhanced Mfn2-mediated mitochondrial fusion, restored mitochondrial function and cardiac performance both in vivo and in vitro under the Dox conditions. The protective properties of Pae were blunted when Mfn2 was knocked down or knocked out in Dox-induced cardiomyocytes and hearts respectively. Mechanistically, Pae promoted Mfn2-mediated mitochondria fusion by activating the transcription factor Stat3, which bound to the Mfn2 promoter in a direct manner and up-regulated its transcriptional expression. Furthermore, molecular docking, surface plasmon resonance and co-immunoprecipitation studies showed that Pae's direct target was PKCε, which interacted with Stat3 and enabled its phosphorylation and activation. Pae-induced Stat3 phosphorylation and Mfn2-mediated mitochondrial fusion were inhibited when PKCε was knocked down. Furthermore, Pae did not interfere with Dox's antitumor efficacy in several tumor cells. CONCLUSION Pae protects the heart against Dox-induced damage by stimulating mitochondrial fusion via the PKCε-Stat3-Mfn2 pathway, indicating that Pae might be a promising therapeutic therapy for Dox-induced cardiotoxicity while maintaining Dox's anticancer activity.
Collapse
|
9
|
Du J, Song D, Li J, Li Y, Li B, Li L. Paeonol triggers apoptosis in HeLa cervical cancer cells: the role of mitochondria-related caspase pathway. Psychopharmacology (Berl) 2022; 239:2083-2092. [PMID: 33710373 DOI: 10.1007/s00213-021-05811-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Paeonol is a biologically active component purified from the root bark of Cortex Moutan that exerts pharmacological effects on the cervical cancer. In this study, we aim to evaluate the anti-cervical cancer capacity of paeonol and to investigate the mechanism driving its anti-cervical cancer effect. Paeonol administration markedly restrained the proliferation and caused apoptosis in HeLa cells. Furthermore, paeonol treatment resulted in a mitochondrial dysfunction in HeLa cells, including the inducing of mitochondrial membrane potential (MMP), reactive oxygen species (ROS) production, and the release of cytochrome c. Moreover, the Bcl-2/Bax proportion was obviously downregulated and cleaved caspase-3 expression was evaluated through paeonol treatment. Additionally, the expression of p-PI3K and p-Akt was noticeably reduced in response to paeonol treatment in HeLa cells. Our findings indicated that paeonol exerts an anticancer potential in HeLa cells, at least in a manner, via triggering the mitochondrial pathway of cellular apoptosis by inhibiting PI3K/Akt signaling. Thus, paeonol has great potential as a promising therapeutic compound to resist human cervical cancer.
Collapse
Affiliation(s)
- Jikun Du
- Central Research Laboratory, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen, China
| | - Daibo Song
- Dongguan Scientific Research Center, Department of Pharmacology, Guangdong Medical University, Dongguan, China
| | - Jinwen Li
- Dongguan Scientific Research Center, Department of Pharmacology, Guangdong Medical University, Dongguan, China
| | - Yuanhua Li
- Dongguan Scientific Research Center, Department of Pharmacology, Guangdong Medical University, Dongguan, China
| | - Baohong Li
- Dongguan Scientific Research Center, Department of Pharmacology, Guangdong Medical University, Dongguan, China
| | - Li Li
- Dongguan Scientific Research Center, Department of Pharmacology, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
10
|
Lee HS, Lee IH, Kang K, Park SI, Kwon TW, Lee DY. A Network Pharmacology Analysis of the Systems-Perspective Anticancer Mechanisms of the Herbal Drug FDY2004 for Breast Cancer. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211049133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is a malignant tumor with high incidence, prevalence, and mortality rates in women. In recent years, herbal drugs have been assessed as anticancer therapy against breast cancer, owing to their promising therapeutic effects and reduced toxicity. However, their pharmacological mechanisms have not been fully explored at the systemic level. Here, we conducted a network pharmacology analysis of the systems-perspective molecular mechanisms of FDY2004, an anticancer herbal formula that consists of Moutan Radicis Cortex, Persicae Semen , and Rhei Radix et Rhizoma, against breast cancer. We determined that FDY2004 may contain 28 active compounds that exert pharmacological effects by targeting 113 breast cancer-related human genes/proteins. Based on the gene ontology terms, the FDY2004 targets were involved in modulating biological processes such as cell growth, cell proliferation, and apoptosis. Pathway enrichment analysis identified various breast cancer-associated pathways that may mediate the anticancer activity of FDY2004, including the PI3K-Akt, MAPK, TNF, HIF-1, focal adhesion, estrogen, ErbB, NF-kappa B, p53, and VEGF signaling pathways. Thus, our analysis offers novel insights into the anticancer properties of herbal drugs for breast cancer treatment from a systemic perspective.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, 173 Ogeum-ro, Songpa-gu, Seoul 05641, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
11
|
Xu H, Wu Z, Jin Z, Wu X, Hu W, Liang B, Lou G, Chen Z, Yao H, Chen X, Zhou X, Xiao H, Yu C, Zhang D, Gong D, Yang L, Shi Y, Xu Y, Wang Y. Paeonol Suppresses Vasculogenesis Through Regulating Vascular Smooth Muscle Phenotypic Switching. J Endovasc Ther 2021; 29:117-131. [PMID: 34355606 DOI: 10.1177/15266028211032956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Smooth muscle cell (SMC) phenotypic switching is associated with development of a variety of occlusive vascular diseases. Paeonol has been reported to be involved in suppressing SMC proliferation. However, it is still unknown whether paeonol can regulate SMC phenotypic switching, and which eventually result in suppressing vasculogenesis. METHODS Murine left common carotid artery was injured by completely ligation, and paeonol was administrated by intraperitoneal injection. Hematoxylin and eosin (H&E) staining was performed to visualize vascular neointima formation. Rat aortic SMCs were used to determine whether paeonol suppresses cell proliferation and migration. And murine hind limb ischemia model was performed to confirm the function role of paeonol in suppressing vasculogenesis. RESULTS Complete ligation of murine common carotid artery successfully induced neointima formation. Paeonol treatment dramatically reduced the size of injury-induced neointima. Using rat aortic primary SMC, we identified that paeonol strongly suppressed cell proliferation, migration, and decreased extracellular matrix deposition. And paeonol treatment dramatically suppressed vasculogenesis after hind limb ischemia injury. CONCLUSION Paeonol could regulate SMC phenotypic switching through inhibiting proliferation and migration of SMC, which results in inhibiting ischemia-induced vasculogenesis.
Collapse
Affiliation(s)
- Huan Xu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziqiang Wu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhong Jin
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Wu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wangming Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bing Liang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanhua Lou
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zixian Chen
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Yao
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiongbing Chen
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhou
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Xiao
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cenghao Yu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Delai Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daoying Gong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaping Shi
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiming Xu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yong Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Effects of Water Extract of Cynanchum paniculatum (Bge.) Kitag. on Different Breast Cancer Cell Lines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6665949. [PMID: 34122605 PMCID: PMC8172293 DOI: 10.1155/2021/6665949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/13/2021] [Accepted: 03/10/2021] [Indexed: 11/18/2022]
Abstract
Cynanchum paniculatum (Bge.) Kitag. (CP) is an important medicinal herb used in Chinese herbal medicine, with a variety of biological activities including anticancer property. In this study, we explored the water extract of CP, for its anticancer effects against breast cancer cells with different mutation types. Cells were grouped as untreated (Control); CP direct treatment (dir-CP); Conditioned medium from CP treated (sup-CP), and untreated cells (sup-Control). Effects of dir-CP and sup-CP were compared to corresponding untreated cells on cytotoxicity, cell migration, and protein expression (cleaved caspase-3, caspase-9, and MMP-2 and 9). CP treatment showed time-dependent decrease in cell number of MDA-MB-231 and SK-Br-3 (both ER(−) PR(−)), while the decrease in cell number was not as significant in MCF-7 and ZR-75-1 cells (both ER(+) PR(+)). sup-CP treatment inhibited the cell migration of MDA-MB-231 and MCF-7 (Her2(−)) in a 24 h scratch assay. Our data suggested that ER(−) PR(−) cells are more sensitive to the CP in terms of direct cytotoxicity, which is not regulated by caspase-3. CP inhibited the migration of the two Her2(−) cells, and this correlated with MMP-2 regulation. The migration of ER(−) PR(−) cells was more sensitive to conditioned medium with CP treatment than to direct CP, and this is not regulated by MMP-2. Our data suggested that CP has anticancer potential on various breast cancer cells through different mechanisms and is specifically effective in inhibiting the migration of the triple negative MDA-MB-231. Our data provide insight into the mechanism of CP against breast cancer progression and would benefit the medical practitioners in better management with CP usage.
Collapse
|
13
|
Liu LH, Shi RJ, Chen ZC. Paeonol exerts anti‑tumor activity against colorectal cancer cells by inducing G0/G1 phase arrest and cell apoptosis via inhibiting the Wnt/β‑catenin signaling pathway. Int J Mol Med 2020; 46:675-684. [PMID: 32626954 PMCID: PMC7307818 DOI: 10.3892/ijmm.2020.4629] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
Paeonol is a simple phenolic compound isolated from herbal root bark, which has been reported to possess numerous biological and pharmacological characteristics, including a desirable anti‑tumor effect. To date, the effect of paeonol against colorectal cancer (CRC) cells is yet to be fully elucidated. Therefore, the present study aimed to identify the underlying mechanism via which paeonol exerts its anti‑tumor activity on HCT116 cells. After incubation with various concentrations of paeonol (7.8125, 15.625, 31.25, 62.5, 125, 250 and 500 µg/ml), the inhibitory effect of paeonol on cell viability was assessed using a Cell Counting Kit‑8 assay. Cell apoptosis and cell cycle distribution were measured using flow cytometry. Moreover, caspase activity was measured using a colorimetric caspase assay. Luciferase assay was also used to determine the β‑catenin‑mediated transcriptional activity of T‑cell specific transcription factor/lymphoid‑enhancer binding factor (TCF/LEF), and western blotting analysis was performed to measure the related expression of proteins. The results indicated that paeonol exhibited a notable effect against HCT116 cells by inducing G0/G1‑phase arrest, as demonstrated by downregulation of the cell cycle regulators cyclin‑dependent kinase 4 and cyclin D1 and upregulation of p21Cip1 in a dose‑dependent manner. Furthermore, paeonol dose‑dependently induced cell apoptosis, accompanied by an increase in the Bax/Bcl‑2 ratio, release of cytochrome c and further activation of caspases. Paeonol also dose‑dependently blocked the activation of the Wnt/β‑catenin signaling pathway by suppressing the expression of β‑catenin, resulting in a decrease in β‑catenin‑mediated activity of TCF/LEF and downregulation of downstream target genes, including cyclin D1, survivin and c‑Myc. Therefore, the present results suggested that paeonol exerted its anti‑tumor effects on CRC cells, including the inhibition of cell proliferation, induction of cell cycle arrest and initiation of apoptosis, at least partly by suppressing the Wnt/β‑catenin pathway, which may offer a promising therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Li-Hua Liu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029
| | - Ren-Jie Shi
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029
- Department of Anorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023
| | - Zhi-Cheng Chen
- Department of Anorectal Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
14
|
Paeonol inhibits proliferation and induces cell apoptosis of human T24 and 5637 bladder cancer cells in vitro and in vivo. Clin Transl Oncol 2020; 23:601-611. [DOI: 10.1007/s12094-020-02455-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022]
|
15
|
Lv P, Shi F, Chen X, Xu L, Wang C, Tian S, Yang H, Hou L. Tea polyphenols inhibit the growth and angiogenesis of breast cancer xenografts in a mouse model. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Adki KM, Kulkarni YA. Chemistry, pharmacokinetics, pharmacology and recent novel drug delivery systems of paeonol. Life Sci 2020; 250:117544. [PMID: 32179072 DOI: 10.1016/j.lfs.2020.117544] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Paeonol is a bioactive phenol present in Dioscorea japonica, Paeonia suffruticosa and Paeonia lactiflora. It is reported for various pharmacological activities. AIM To review chemistry, pharmacokinetics, pharmacological activities as well as various formulations of paeonol. MATERIALS AND METHODS A literature search was done using different search terms for paeonol by using different scientific databases like PubMed, Scopus and ProQuest. Scientific papers published during the period 1969 to 2019 were comprehensively reviewed. KEY FINDINGS Researchers have synthesized methoxy, ethoxy, piperazine, chromonylthiazolidine, phenol-phenylsulfonyl, alkyl ether, aminothiazole, tryptamine hybrids and paeononlsilatie derivatives to enhance the stability of paeonol. These derivatives were synthesized and evaluated for in vitro series of biological activities like anti-inflammatory, tyrosinase inhibitory, neuroprotective, anticancer and antiviral activity. Regardless of valuable therapeutic potential, the clinical use of paeonol is restricted due to poor water solubility, low oral bioavailability, low stability and high volatility at room temperature. To enhance the bioavailability of paeonol various formulations are prepared and evaluated for its activity. Paeonol formulations can be categorized as conventional-tablets, topical gel and hydrogel; polymeric delivery system-microparticles, microsponges, dendrimers, nanocapsules, polymeric nanoparticles, nanospheres; lipid-based delivery systems-microemulsion, self-micro-emulsifying drug delivery, liposome, transethosomes, ethosomes, niosomes, proniosomes, lipid-based nanoparticles and nanoemulsion of paeonol. SIGNIFICANCE Paeonol has a potential to be developed as a techno-commercial product with respect to its multi-faceted pharmacological properties. Even though in vitro and in vivo studies have been reported the important activities of paeonol, its commercial utilization requires extensive safety and efficacy data.
Collapse
Affiliation(s)
- Kaveri M Adki
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, India.
| |
Collapse
|
17
|
Cheng CS, Chen JX, Tang J, Geng YW, Zheng L, Lv LL, Chen LY, Chen Z. Paeonol Inhibits Pancreatic Cancer Cell Migration and Invasion Through the Inhibition of TGF-β1/Smad Signaling and Epithelial-Mesenchymal-Transition. Cancer Manag Res 2020; 12:641-651. [PMID: 32099461 PMCID: PMC6996112 DOI: 10.2147/cmar.s224416] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Paeonol, a natural product derived from the root of Cynanchum paniculatum (Bunge) K. Schum and the root of Paeonia suffruticosa Andr. (Ranunculaceae) has attracted extensive attention for its anti-cancer proliferation effect in recent years. The present study examined the role of paeonol in suppressing migration and invasion in pancreatic cancer cells by inhibiting TGF-β1/Smad signaling. Methods Cell viability was evaluated by MTT and colonial formation assay. Migration and invasion capabilities were examined by cell scratch-wound healing assay and the Boyden chamber invasion assay. Western Blot and qRT-PCR were used to measure the protein and RNA levels of vimentin, E-cadherin, N-cadherin, and TGF-β1/Smad signaling. Results At non-cytotoxic dose, 100 μΜ and 150 μΜ of paeonol showed significant anti-migration and anti-invasion effects on Panc-1 and Capan-1 cells (p<0.01). Paeonol inhibited epithelial-mesenchymal-transition by upregulating E-cadherin, and down regulating N-cadherin and vimentin expressions. Paeonol inhibited TGF-β1/Smad signaling pathway by downregulating TGF-β1, p-Smad2/Smad2 and p-Smad3/Smad3 expressions. Further, TGF-β1 attenuated the anti-migration and anti-invasion capacities of paeonol in Panc-1 and Capan-1 cells. Conclusion These findings revealed that paeonol could suppress proliferation and inhibit migration and invasion in Panc-1 and Capan-1 cells by inhibiting the TGF-β1/Smad pathway and might be a promising novel anti-pancreatic cancer drug.
Collapse
Affiliation(s)
- Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Jing-Xian Chen
- Department of Traditional Chinese Medicine, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China.,Workstation of Xia Xiang, National Master of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jian Tang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Ya-Wen Geng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China.,Workstation of Xia Xiang, National Master of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Ling-Ling Lv
- Department of Traditional Chinese Medicine, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Lian-Yu Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
18
|
Son M, Lee H, Jeon C, Kang Y, Park C, Lee KW, Park JH. Tryptamine–Triazole Hybrid Compounds for Selective Butyrylcholinesterase Inhibition. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Minky Son
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Systems and Synthetic Agrobiotech Center (SSAC)Research Institute of Natural Science (RINS), Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Haneul Lee
- Department of Chemical & Biological EngineeringHanbat National University Daejeon 34158 South Korea
| | - Cheolmin Jeon
- Department of Chemical & Biological EngineeringHanbat National University Daejeon 34158 South Korea
| | - Yujung Kang
- Department of Chemical & Biological EngineeringHanbat National University Daejeon 34158 South Korea
| | - Chanin Park
- Department of Chemical & Biological EngineeringHanbat National University Daejeon 34158 South Korea
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Systems and Synthetic Agrobiotech Center (SSAC)Research Institute of Natural Science (RINS), Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Jeong Ho Park
- Department of Chemical & Biological EngineeringHanbat National University Daejeon 34158 South Korea
| |
Collapse
|
19
|
Paeonol: pharmacological effects and mechanisms of action. Int Immunopharmacol 2019; 72:413-421. [PMID: 31030097 DOI: 10.1016/j.intimp.2019.04.033] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022]
Abstract
Paeonia suffruticosa possesses various medicinal benefits and has been used extensively in traditional oriental medicine for thousands of years. Paeonol is the main component isolated from the root bark of Paeonia suffruticosa. The pharmacological effects of Paeonia suffruticosa are mostly attributed to paeonol. Paeonol injection has been successfully applied in China for nearly 50 years for inflammation/pain-related indications. Currently, the dosage forms of paeonol approved by China Food and Drug Administration include tablet, injection, and external preparations such as ointment and adhesive plaster. So far, the clinical applications of paeonol are mainly focusing on the anti-inflammatory activity. Studies of other pharmacological activities of paeonol are developing rapidly, and which may play an important role in the future. Besides, substantial mechanisms of pharmacological action of paeonol have been clarified in recent years. In this review, we summarize the pharmacological effects anti-inflammatory, neuroprotective, anti-tumor, anti-cardiovascular diseases and associated mechanisms of action of paeonol up to date.
Collapse
|
20
|
Saahene RO, Wang J, Wang ML, Agbo E, Pang D. The Antitumor Mechanism of Paeonol on CXCL4/CXCR3-B Signals in Breast Cancer Through Induction of Tumor Cell Apoptosis. Cancer Biother Radiopharm 2018; 33:233-240. [PMID: 29847158 DOI: 10.1089/cbr.2018.2450] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Paeonol, a phenolic component from the root bark of Paeonia moutan, has been identified to possess antitumor effects. However, the effect of paeonol and the mechanism of CXCL4/CXCR3-B signals in paeonol-induced breast cancer cell remain unknown. MATERIALS AND METHODS After MDA-MB-231 cells were pretreated with paeonol or DMSO, the proliferation activity was detected by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), Hoechst, Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and Annexin-V/propidium iodide staining flow cytometry. Western blot and immunohistochemistry of human breast cancer and noncancerous tissues were performed to determine the molecular alteration of CXCL4/CXCR3-B signals. RESULTS Compared with the control, paeonol-treated breast cancer cells had low proliferation activity and high apoptotic index, indicating that paeonol induces breast cancer cell apoptosis. Western blot and immunohistochemistry showed that paeonol increased CXCR3-B signal, downregulated CXCL4, heme oxygenase (HO-1) with a corresponding increased BACH1, and decreased nuclear factor E2-related factor 2 (Nrf2). CONCLUSIONS Thus, CXCL4/CXCR3-B may be involved in the mechanism of apoptosis induced by paeonol in breast cancer cells by regulating the expression of BACH1 and Nrf2 to downregulating HO-1 and promote apoptosis. Therefore, the authors suggest paeonol has a significant growth inhibitory effect on breast cancer cells, which may be related to the induction of apoptosis.
Collapse
Affiliation(s)
- Roland O Saahene
- 1 Department of Immunology, College of Basic Medicine, Jiamusi University , People's Republic of China
| | - Jianjie Wang
- 1 Department of Immunology, College of Basic Medicine, Jiamusi University , People's Republic of China
| | - Mo-Lin Wang
- 1 Department of Immunology, College of Basic Medicine, Jiamusi University , People's Republic of China
| | - Elvis Agbo
- 2 Department of Anatomy, Jiamusi University , People's Republic of China
| | - Dezhi Pang
- 1 Department of Immunology, College of Basic Medicine, Jiamusi University , People's Republic of China
| |
Collapse
|
21
|
Li SS, Wu Q, Yin DD, Feng CY, Liu ZA, Wang LS. Phytochemical variation among the traditional Chinese medicine Mu Dan Pi from Paeonia suffruticosa (tree peony). PHYTOCHEMISTRY 2018; 146:16-24. [PMID: 29207319 DOI: 10.1016/j.phytochem.2017.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/06/2017] [Accepted: 11/22/2017] [Indexed: 05/12/2023]
Abstract
Mu Dan Pi is a traditional Chinese medicine used to treat inflammation, cancer, allergies, diabetes, angiocardiopathy, and neurodegenerative diseases. In this study, the metabolome variation within Mu Dan Pi collected from 372 tree peony cultivars was systematically investigated. In total, 42 metabolites were identified, comprising of 14 monoterpene glucosides, 11 tannins, 8 paeonols, 6 flavonoids, and 3 phenols. All cultivars revealed similar metabolite profiles, however, they were further classified into seven groups on the basis of their varying metabolite contents by hierarchical cluster analysis. Traditional cultivars for Mu Dan Pi were found to have very low metabolite contents, falling into clusters I and II. Cultivars with the highest amounts of metabolites were grouped in clusters VI and VII. Five potential cultivars, namely, 'Bai Yuan Qi Guan', 'Cao Zhou Hong', 'Da Zong Zi', 'Sheng Dan Lu', and 'Cheng Xin', with high contents of monoterpene glycosides, tannins, and paeonols, were further screened. Interestingly, the majority of investigated cultivars had relatively higher metabolite contents compared to the traditional medicinal tree peony cultivars.
Collapse
Affiliation(s)
- Shan-Shan Li
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Qian Wu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan-Dan Yin
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng-Yong Feng
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng-An Liu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China.
| | - Liang-Sheng Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Matsumoto H, Konno K, Kazuma K. A Comprehensive LC-MS and Isolation Study of Cicada Slough as a Crude Drug. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701201136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cicada slough is one of the traditional crude drugs in East Asia. A comprehensive LC-MS analysis was conducted to overview constituents in a commercially purchased cicada slough as a crude drug. It revealed that there were oligomers of N-acetyldopamine with the degree of polymerization of up to 8. High-resolution tandem mass spectrometry could enable a detailed analysis on their structures by uncovering the presumed fragmentation pathways. Additional isolation experiments disclosed the presence of four known compounds: 2,3’,4’-trihydroxyacetophenone, 2-oxo- N-acetyldopamine, protocatechuic acid, and paeonol. The quantified paeonol content for purchased cicada slough ranged from 3 to 290 μg/g dw crude drug, although wild cicada slough did not show the presence of paeonol.
Collapse
Affiliation(s)
- Hiroki Matsumoto
- Kampo-pharmaceutics, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0941, Japan
| | - Katsuhiro Konno
- Kampo-pharmaceutics, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0941, Japan
| | - Kohei Kazuma
- Kampo-pharmaceutics, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0941, Japan
| |
Collapse
|
23
|
Chen C, Jia F, Hou Z, Ruan S, Lu Q. Delivery of paeonol by nanoparticles enhances its in vitro and in vivo antitumor effects. Int J Nanomedicine 2017; 12:6605-6616. [PMID: 28924345 PMCID: PMC5595364 DOI: 10.2147/ijn.s143938] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Paeonol (Pae; 2′-hydroxy-4′-methoxyacetophenone) has attracted intense attention as a potential therapeutic agent against various cancers. However, the use of Pae is limited owing to its hydrophobicity. Recently, biodegradable polymeric nanoparticles with amphiphilic copolymers have been used as drug carriers; these have better bioavailability and are promising tumor-targeted drug delivery systems. In the current study, we prepared Pae-loaded nanoparticles (Pae-NPs) with amphiphilic block copolymers using nanoprecipitation. The physiochemical characteristics and antitumor effects of nanoparticles were evaluated in different cancer cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays showed substantial inhibition of cell growth by Pae-NPs. Moreover, lower doses of Pae-NPs inhibited cell growth more efficiently than the equivalent doses of free Pae. Inhibition was characterized by significant elevation of intracellular reactive oxygen species and subsequent inhibition of Akt and regulation of apoptotic proteins, which could be partly reversed by pretreatment with the antioxidant N-acetylcysteine. In vivo results also demonstrated that Pae-NPs could exert much stronger antitumor effects than free Pae. Therefore, Pae-NPs represent a promising delivery system to overcome the low solubility of Pae and enable its use in treating cancer.
Collapse
Affiliation(s)
- Cong Chen
- Department of Gynecology of Traditional Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing
| | - Feng Jia
- Department of Neurosurgery, Yancheng City No 1 People's Hospital, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng
| | - Zhibo Hou
- First Department of Respiratory Medicine, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing
| | - Shu Ruan
- Department of Endocrinology, Yancheng Third Hospital, The Affiliated Hospital of Southeast University Medical College, Yancheng, Jiangsu, China
| | - Qibin Lu
- Department of Gynecology of Traditional Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing
| |
Collapse
|
24
|
Wang Z, He C, Peng Y, Chen F, Xiao P. Origins, Phytochemistry, Pharmacology, Analytical Methods and Safety of Cortex Moutan (Paeonia suffruticosa Andrew): A Systematic Review. Molecules 2017; 22:E946. [PMID: 28590441 PMCID: PMC6152737 DOI: 10.3390/molecules22060946] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 11/17/2022] Open
Abstract
Cortex Moutan (CM), a well-known traditional Chinese medicine, is commonly used for treating various diseases in China and other eastern Asian countries. Recorded in Pharmacopeias of several countries, CM is now drawing increasing attention and under extensive studies in various fields. Phytochemical studies indicate that CM contains many valuable secondary metabolites, such as monoterpene glycosides and phenols. Ample evidence from pharmacological researches suggest that CM has a wide spectrum of activities, such as anti-inflammatory, anti-oxidant, anti-tumor, anti-diabetic, cardiovascular protective, neuroprotective, hepatoprotective effects. Moreover, various analytical methods were established for the quality evaluation and safety control of CM. This review synopsizes updated information concerning the origins, phytochemistry, pharmacology, analytical method and safety of CM, aiming to provide favorable references for modern CM research and application. In conclusion, continuing pharmacological investigations concerning CM should be conducted to unravel its pharmacological mechanisms. Further researches are necessary to obtain comprehensive and applicable analytical approach for quality evaluation and establish harmonized criteria of CM.
Collapse
Affiliation(s)
- Zhiqiang Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| | - Yong Peng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| | - Feihu Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| |
Collapse
|
25
|
Kim TH, Lee DG, Kim YA, Lee BH, Yi KY, Jung YS. A Novel Urotensin II Receptor Antagonist, KR-36996 Inhibits Smooth Muscle Proliferation through ERK/ROS Pathway. Biomol Ther (Seoul) 2017; 25:308-314. [PMID: 28173642 PMCID: PMC5424641 DOI: 10.4062/biomolther.2016.219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/07/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023] Open
Abstract
Urotensin II (UII) is a mitogenic and hypertrophic agent that can induce the proliferation of vascular cells. UII inhibition has been considered as beneficial strategy for atherosclerosis and restenosis. However, currently there is no therapeutics clinically available for atherosclerosis or restenosis. In this study, we evaluated the effects of a newly synthesized UII receptor (UT) antagonist, KR-36996, on the proliferation of SMCs in vitro and neointima formation in vivo in comparison with GSK-1440115, a known potent UT antagonist. In primary human aortic SMCs (HASMCs), UII (50 nM) induced proliferation was significantly inhibited by KR-36996 at 1, 10, and 100 nM which showed greater potency (IC50: 3.5 nM) than GSK-1440115 (IC50: 82.3 nM). UII-induced proliferation of HASMC cells was inhibited by U0126, an ERK1/2 inhibitor, but not by SP600125 (inhibitor of JNK) or SB202190 (inhibitor of p38 MAPK). UII increased the phosphorylation level of ERK1/2. Such increase was significantly inhibited by KR-36996. UII-induced proliferation was also inhibited by trolox, a scavenger for reactive oxygen species (ROS). UII-induced ROS generation was also decreased by KR-36996 treatment. In a carotid artery ligation mouse model, intimal thickening was dramatically suppressed by oral treatment with KR-36996 (30 mg/kg) which showed better efficacy than GSK-1440115. These results suggest that KR-36996 is a better candidate than GSK-1440115 in preventing vascular proliferation in the pathogenesis of atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Tae-Ho Kim
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Dong Gil Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Young-Ae Kim
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Byung Ho Lee
- Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Kyu Yang Yi
- Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea.,Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
26
|
Paeonol Inhibits the Proliferation, Invasion, and Inflammatory Reaction Induced by TNF-α in Vascular Smooth Muscle Cells. Cell Biochem Biophys 2017; 73:495-503. [PMID: 27352344 DOI: 10.1007/s12013-015-0686-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aim of this study was to evaluate the effect of paeonol on the proliferation, migration, and inflammation induced by tumor necrosis factor (TNF-α) of rat vascular smooth muscle cells (VSMCs). Primary rat VSMCs were identified by immunofluorescence assay. The inhibition of VSMCs proliferation induced by TNF-α was observed after paeonol treatment in a dose-dependent manner. Treatment with 100 μM paeonol significantly reduced the expression of proliferating cell nuclear antigen (PCNA). On the other hand, transwell assay showed that treatment with paeonol suppressed the invasion of TNF-α-induced VSMCs and the production of inflammation factors stimulated by TNF-α. For apoptosis induced by paeonol, Western blot analysis showed that cleaved caspase-3 and -9 were detected, and pro-apoptotic protein Bax was up-regulated, whereas anti-apoptotic protein Bcl-2 was down-regulated by paeonol in TNF-α-stimulated VSMCs. ELISA analysis data showed that both levels of IL-1β and IL-6 produced by the stimulation of TNF-α were decreased by paeonol in a dose-dependent manner in VSMCs. These results suggest that paeonol can effectively inhibit the proliferation through apoptotic induction through caspase pathway in VSMCs induced by TNF-α. Also, paeonol significantly reduced the invasion and the inflammation stimulated by TNF-α in VSMCs.
Collapse
|
27
|
Antibacterial and anticancer PDMS surface for mammalian cell growth using the Chinese herb extract paeonol(4-methoxy-2-hydroxyacetophenone). Sci Rep 2016; 6:38973. [PMID: 27941867 PMCID: PMC5150582 DOI: 10.1038/srep38973] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023] Open
Abstract
Polydimethylsiloxane (PDMS) is widely used as a cell culture platform to produce micro- and nano-technology based microdevices. However, the native PDMS surface is not suitable for cell adhesion and is always subject to bacterial pollution and cancer cell invasion. Coating the PDMS surface with antibacterial or anticancer materials often causes considerable harm to the non-cancer mammalian cells on it. We have developed a method to fabricate a biocompatible PDMS surface which not only promotes non-cancer mammalian cell growth but also has antibacterial and anticancer activities, by coating the PDMS surface with a Chinese herb extract, paeonol. Coating changes the wettability and the elemental composition of the PDMS surface. Molecular dynamic simulation indicates that the absorption of paeonol onto the PDMS surface is an energy favourable process. The paeonol-coated PDMS surface exhibits good antibacterial activity against both Gram-positive and Gram-negative bacteria. Moreover considerable antibacterial activity is maintained after the coated surface is rinsed or incubated in water. The coated PDMS surface inhibits bacterial growth on the contact surface and promotes non-cancer mammalian cell growth with low cell toxicity; meanwhile the growth of cancer cells is significantly inhibited. Our study will potentially guide PDMS surface modification approaches to produce biomedical devices.
Collapse
|
28
|
Kim YA, Lee DG, Yi KY, Lee BH, Jung YS. Blockade of Urotensin II Receptor Prevents Vascular Dysfunction. Biomol Ther (Seoul) 2016; 24:523-8. [PMID: 27582556 PMCID: PMC5012878 DOI: 10.4062/biomolther.2015.142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 02/07/2023] Open
Abstract
Urotensin II (UII) is a potent vasoactive peptide and mitogenic agent to induce proliferation of various cells including vascular smooth muscle cells (VSMCs). In this study, we examined the effects of a novel UII receptor (UT) antagonist, KR-36676, on vasoconstriction of aorta and proliferation of aortic SMCs. In rat aorta, UII-induced vasoconstriction was significantly inhibited by KR-36676 in a concentration-dependent manner. In primary human aortic SMCs (hAoSMCs), UII-induced cell proliferation was significantly inhibited by KR-36676 in a concentration-dependent manner. In addition, KR-36676 decreased UII-induced phosphorylation of ERK, and UII-induced cell proliferation was also significantly inhibited by a known ERK inhibitor U0126. In mouse carotid ligation model, intimal thickening of carotid artery was dramatically suppressed by oral treatment with KR-36676 (30 mg/ kg/day) for 4 weeks compared to vehicle-treated group. From these results, it is indicated that KR-36676 suppress UII-induced proliferation of VSMCs at least partially through inhibition of ERK activation, and that it also attenuates UII-induced vasoconstriction and vascular neointima formation. Our study suggest that KR-36676 may be an attractive candidate for the pharmacological management of vascular dysfunction.
Collapse
Affiliation(s)
- Young-Ae Kim
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Dong Gil Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Kyu Yang Yi
- Research Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Byung Ho Lee
- Research Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea.,Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
29
|
Choy KW, Mustafa MR, Lau YS, Liu J, Murugan D, Lau CW, Wang L, Zhao L, Huang Y. Paeonol protects against endoplasmic reticulum stress-induced endothelial dysfunction via AMPK/PPARδ signaling pathway. Biochem Pharmacol 2016; 116:51-62. [PMID: 27449753 DOI: 10.1016/j.bcp.2016.07.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022]
Abstract
Endoplasmic reticulum (ER) stress in endothelial cells often leads to endothelial dysfunction which underlies the pathogenesis of cardiovascular diseases. Paeonol, a major phenolic component extracted from Moutan Cortex, possesses various medicinal benefits which have been used extensively in traditional Chinese medicine. The present study investigated the protective mechanism of paeonol against tunicamycin-induced ER stress in isolated mouse aortas and human umbilical vein endothelial cells (HUVECs). Vascular reactivity in aorta was measured using a wire myograph. The effects of paeonol on protein expression of ER stress markers, reactive oxygen species (ROS) production, nitric oxide (NO) bioavailability and peroxisome proliferator-activated receptor δ (PPARδ) activity in the vascular wall were assessed by Western blot, dihydroethidium fluorescence (DHE) or lucigenin enhanced-chemiluminescence, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA) and dual luciferase reporter assay, respectively. Ex vivo treatment with paeonol (0.1μM) for 16h reversed the impaired endothelium-dependent relaxations in C57BJ/6J and PPARδ wild type (WT) mouse aortas following incubation with tunicamycin (0.5μg/mL). Elevated ER stress markers, oxidative stress and reduction of NO bioavailability induced by tunicamycin in HUVECs, C57BJ/6J and PPARδ WT mouse aortas were reversed by paeonol treatment. These beneficial effects of paeonol were diminished in PPARδ knockout (KO) mouse aortas. Paeonol increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and PPARδ expression and activity while restoring the decreased phosphorylation of eNOS. The present study delineates that paeonol protects against tunicamycin-induced vascular endothelial dysfunction by inhibition of ER stress and oxidative stress, thus elevating NO bioavailability via the AMPK/PPARδ signaling pathway.
Collapse
Affiliation(s)
- Ker-Woon Choy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Yeh Siang Lau
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jian Liu
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Dharmani Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chi Wai Lau
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Lei Zhao
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
30
|
Zhang L, Tao L, Shi T, Zhang F, Sheng X, Cao Y, Zheng S, Wang A, Qian W, Jiang L, Lu Y. Paeonol inhibits B16F10 melanoma metastasisIn vitroandIn Vivovia disrupting proinflammatory cytokines-mediated NF-κB and STAT3 pathways. IUBMB Life 2015; 67:778-88. [DOI: 10.1002/iub.1435] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/08/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Lei Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing 210023 China
- Department of Pharmacy; Provincial Hospital Affiliated to Anhui Medical University; Hefei 230001 China
| | - Li Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing 210023 China
| | - Tianlu Shi
- Department of Pharmacy; Provincial Hospital Affiliated to Anhui Medical University; Hefei 230001 China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing 210023 China
| | - Xiaobo Sheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing 210023 China
| | - Yuzhu Cao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing 210023 China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing 210023 China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing 210023 China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor; Nanjing University of Chinese Medicine; Nanjing 210023 China
| | - Wenhui Qian
- Department of Pharmacy; Nanjing General Hospital of Nanjing Military Command; Nanjing Jiangsu China
| | - Ling Jiang
- Department of Pharmacy; Provincial Hospital Affiliated to Anhui Medical University; Hefei 230001 China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing 210023 China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor; Nanjing University of Chinese Medicine; Nanjing 210023 China
| |
Collapse
|
31
|
Kim ES, Moon A. Ursolic acid inhibits the invasive phenotype of SNU-484 human gastric cancer cells. Oncol Lett 2014; 9:897-902. [PMID: 25621065 PMCID: PMC4301486 DOI: 10.3892/ol.2014.2735] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/12/2014] [Indexed: 12/21/2022] Open
Abstract
Metastasis is a major cause of cancer-related mortality in patients with gastric cancer. Ursolic acid, a pentacyclic triterpenoid compound derived from medicinal herbs, has been demonstrated to exert anticancer effects in various cancer cell systems. However, to the best of our knowledge, the inhibitory effect of ursolic acid on the invasive phenotype of gastric cancer cells has yet to be reported. Therefore, the aim of the present study was to investigate the effect of ursolic acid on the invasiveness of SNU-484 human gastric cancer cells. Ursolic acid efficiently induced apoptosis, possibly via the downregulation of B-cell lymphoma 2 (Bcl-2), the upregulation of Bcl-2-associated X protein and the proteolytic activation of caspase-3. Furthermore, the activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase was increased by the administration of ursolic acid. In addition, ursolic acid significantly suppressed the invasive phenotype of the SNU-484 cells and significantly decreased the expression of matrix metalloproteinase (MMP)-2, indicating that MMP-2 may be responsible for the anti-invasive activity of ursolic acid. Taken together, the results of the present study demonstrate that ursolic acid induces apoptosis and inhibits the invasive phenotype of gastric cancer cells; therefore, ursolic acid may have a potential application as a chemopreventive agent to prevent the metastasis of gastric cancer or to alleviate the process of metastasis.
Collapse
Affiliation(s)
- Eun-Sook Kim
- College of Pharmacy, Innovative Drug Center, Duksung Women's University, Seoul 132-714, Republic of Korea
| | - Aree Moon
- College of Pharmacy, Innovative Drug Center, Duksung Women's University, Seoul 132-714, Republic of Korea
| |
Collapse
|