1
|
Wang T, Wang X, Wang K, Yu M, Bai R, Zhang Y, Zhang Z, Liu F, Wang R, Shi X, Jia L, Liu K, Li X, Jin G, Zhao S, Dong Z. Chronic stress-induced cholesterol metabolism abnormalities promote ESCC tumorigenesis and predict neoadjuvant therapy response. Proc Natl Acad Sci U S A 2025; 122:e2415042122. [PMID: 39869796 DOI: 10.1073/pnas.2415042122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/10/2024] [Indexed: 01/29/2025] Open
Abstract
Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions. Our findings indicate that the persistent elevation of glucocorticoids induced by chronic stress stimulates cholesterol uptake, contributing to esophageal carcinogenesis. The activated glucocorticoid receptor (GCR) enrichment at the promoter region of High Mobility Group Box 2 (HMGB2) facilitates its transcription. As a transcription coactivator, HMGB2 enhances Sterol Regulatory Element Binding Transcription Factor 1 (SREBF1) transcription and regulates cholesterol metabolism through LDL particle uptake into cells via Low Density Lipoprotein Receptor (LDLR). These results emphasize the significant impact of chronic stress on esophageal carcinogenesis and establish cholesterol metabolism disorder as a crucial link between chronic stress and the development of ESCC. The implications suggest that effectively managing chronic stress may serve as a viable strategy for preventing and treating ESCC.
Collapse
Affiliation(s)
- Ting Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiangyu Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Keke Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Mengyuan Yu
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450000, China
| | - Ruihua Bai
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450000, China
| | - Yiru Zhang
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450000, China
| | - Zihan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Feifei Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Rui Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiaodan Shi
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Ludan Jia
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan 450000, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450000, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan 450000, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450000, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Guoguo Jin
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan 450000, China
- Henan Key Laboratory of Chronic Disease Management, Fuwai Central China Car-Diovascular Hospital, Zhengzhou, Henan 450000, China
| | - Simin Zhao
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan 450000, China
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450000, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan 450000, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450000, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan 450000, China
| |
Collapse
|
2
|
Siodłak D, Doboszewska U, Nowak G, Wlaź P, Mlyniec K. Investigating the role of GPR39 in treatment of stress-induced depression and anxiety. Psychopharmacology (Berl) 2025:10.1007/s00213-024-06736-0. [PMID: 39775023 DOI: 10.1007/s00213-024-06736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
RATIONALE Chronic stress is one of the leading causes of depression. Yet, knowledge of the pathomechanism of this process still eludes us. Chronic unpredictable mild stress (CUMS) model of depression enables researchers to look for a root cause of the disease in mice by mimicking a stressful human environment. OBJECTIVE Since zinc has already been shown to impact the treatment of depression, in our study we aimed to shed light on the role of the zinc receptor GPR39 in stress-induced depression. We also aimed to highlight the role of GPR39 activation in monoamine-based antidepressant treatment. METHODS Using large battery of behavioural tests, we provided a detailed description of CUMS-induced phenotype in both - CD-1 and GPR39 knock-out mice. RESULTS Our experiments showed that combined treatment with TC-G 1008 (GPR39 agonist) and antidepressants produces stronger antidepressant-like effect of classic antidepressants. We also demonstrated the inter-strain differences in stress response and the greater stress susceptibility of GPR39 knock-out mice. The lack of GPR39 expression also either diminished or completely abolished the response to treatment with different antidepressants combined with TC-G 1008. CONCLUSIONS The results show that GPR39 KO mice are more susceptible to chronic stress and that they are non-responsive to SSRI treatment. Utilizing various behavioural tests gave us much broader understanding not only of the role of GPR39 in depression treatment, but also of the importance of detailed behavioural description in a proper interpretation of the results. Further research with known selective agonists and antagonists of GPR39 will be necessary to understand the full potential of this receptor as a pharmacological target.
Collapse
Affiliation(s)
- Dominika Siodłak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Urszula Doboszewska
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| |
Collapse
|
3
|
Ferraguto C, Piquemal-Lagoueillat M, Lemaire V, Moreau MM, Trazzi S, Uguagliati B, Ciani E, Bertrand SS, Louette E, Bontempi B, Pietropaolo S. Therapeutic efficacy of the BKCa channel opener chlorzoxazone in a mouse model of Fragile X syndrome. Neuropsychopharmacology 2024; 49:2032-2041. [PMID: 39223257 PMCID: PMC11480417 DOI: 10.1038/s41386-024-01956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Fragile X syndrome (FXS) is an X-linked neurodevelopmental disorder characterized by several behavioral abnormalities, including hyperactivity, anxiety, sensory hyper-responsiveness, and autistic-like symptoms such as social deficits. Despite considerable efforts, effective pharmacological treatments are still lacking, prompting the need for exploring the therapeutic value of existing drugs beyond their original approved use. One such repurposed drug is chlorzoxazone which is classified as a large-conductance calcium-dependent potassium (BKCa) channel opener. Reduced BKCa channel functionality has been reported in FXS patients, suggesting that molecules activating these channels could serve as promising treatments for this syndrome. Here, we sought to characterize the therapeutic potential of chlorzoxazone using the Fmr1-KO mouse model of FXS which recapitulates the main phenotypes of FXS, including BKCa channel alterations. Chlorzoxazone, administered either acutely or chronically, rescued hyperactivity and acoustic hyper-responsiveness as well as impaired social interactions exhibited by Fmr1-KO mice. Chlorzoxazone was more efficacious in alleviating these phenotypes than gaboxadol and metformin, two repurposed treatments for FXS that do not target BKCa channels. Systemic administration of chlorzoxazone modulated the neuronal activity-dependent gene c-fos in selected brain areas of Fmr1-KO mice, corrected aberrant hippocampal dendritic spines, and was able to rescue impaired BKCa currents recorded from hippocampal and cortical neurons of these mutants. Collectively, these findings provide further preclinical support for BKCa channels as a valuable therapeutic target for treating FXS and encourage the repurposing of chlorzoxazone for clinical applications in FXS and other related neurodevelopmental diseases.
Collapse
Affiliation(s)
| | | | - Valerie Lemaire
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France
| | - Maïté M Moreau
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | | | - Bruno Bontempi
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France
| | | |
Collapse
|
4
|
Jia X, Li M, Wang C, Antwi CO, Darko AP, Zhang B, Ren J. Local brain abnormalities in emotional disorders: Evidence from resting state fMRI studies. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2024; 15:e1694. [PMID: 39284783 DOI: 10.1002/wcs.1694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/28/2024] [Accepted: 08/19/2024] [Indexed: 11/05/2024]
Abstract
Emotional disorders inflict an enormous burden on society. Research on brain abnormalities implicated in emotional disorders has witnessed great progress over the past decades. Using cross-sectional and longitudinal designs, resting state functional magnetic resonance imaging (rs-fMRI) and its analytic approaches have been applied to characterize the local properties of patients with emotional disorders. Additionally, brain activity alterations of emotional disorders have shown frequency-specific. Despite the gains in understanding the roles of brain abnormalities in emotional disorders, the limitation of the small sample size needs to be highlighted. Lastly, we proposed that evidence from the positive psychology research stream presents it as a viable discipline, whose suggestions could be developed in future emotional disorders research. Such interdisciplinary research may produce novel treatments and intervention options. This article is categorized under: Psychology > Brain Function and Dysfunction.
Collapse
Affiliation(s)
- Xize Jia
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Mengting Li
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Chunjie Wang
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | | | | | - Baojing Zhang
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jun Ren
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
5
|
Shimada T, Kohyama K, Yoshida T, Yamagata K. Neuritin Controls Axonal Branching in Serotonin Neurons: A Possible Mediator Involved in the Regulation of Depressive and Anxiety Behaviors via FGF Signaling. J Neurosci 2024; 44:e0129232024. [PMID: 39197941 PMCID: PMC11466069 DOI: 10.1523/jneurosci.0129-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Abnormal neuronal morphological features, such as dendrite branching, axonal branching, and spine density, are thought to contribute to the symptoms of depression and anxiety. However, the role and molecular mechanisms of aberrant neuronal morphology in the regulation of mood disorders remain poorly characterized. Here, we show that neuritin, an activity-dependent protein, regulates the axonal morphology of serotonin neurons. Male neuritin knock-out (KO) mice harbored impaired axonal branches of serotonin neurons in the medial prefrontal cortex and basolateral region of the amygdala (BLA), and male neuritin KO mice exhibited depressive and anxiety-like behaviors. We also observed that the expression of neuritin was decreased by unpredictable chronic stress in the male mouse brain and that decreased expression of neuritin was associated with reduced axonal branching of serotonin neurons in the brain and with depressive and anxiety behaviors in mice. Furthermore, the stress-mediated impairments in axonal branching and depressive behaviors were reversed by the overexpression of neuritin in the BLA. The ability of neuritin to increase axonal branching in serotonin neurons involves fibroblast growth factor (FGF) signaling, and neuritin contributes to FGF-2-mediated axonal branching regulation in vitro. Finally, the oral administration of an FGF inhibitor reduced the axonal branching of serotonin neurons in the brain and caused depressive and anxiety behaviors in male mice. Our results support the involvement of neuritin in models of stress-induced depression and suggest that neuronal morphological plasticity may play a role in controlling animal behavior.
Collapse
Affiliation(s)
- Tadayuki Shimada
- Child Brain Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Kuniko Kohyama
- Child Brain Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Kanato Yamagata
- Child Brain Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
- Department of Psychiatry, Takada Nishishiro Hospital, Joetsu, Niigata 943-0834, Japan
| |
Collapse
|
6
|
Kamens HM, Anziano EK, Horton WJ, Cavigelli SA. Chronic Adolescent Restraint Stress Downregulates miRNA-200a Expression in Male and Female C57BL/6J and BALB/cJ Mice. Genes (Basel) 2024; 15:873. [PMID: 39062652 PMCID: PMC11275362 DOI: 10.3390/genes15070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Adolescence is a critical developmental period when the brain is plastic, and stress exposure can have lasting physiological consequences. One mechanism through which adolescent stress may have lasting effects is by altering microRNAs (miRNAs), leading to wide-scale gene expression changes. Three prior independent studies used unbiased approaches (RNA sequencing or microarray) to identify miRNAs differentially expressed by chronic variable stress in male rodents. In all three studies, miRNA-200a was differentially expressed in areas of the brain associated with emotion regulation. The current study extends this research to determine if chronic non-variable adolescent stress downregulates miRNA-200a expression by looking at two strains (BALB/cJ and C57BL/6J) of male and female mice. We utilized a 14-day (2 h/day) restraint stress protocol and verified stress effects on adolescent body weight gain and circulating corticosterone concentrations relative to non-restraint controls. Mice were then left undisturbed until they were euthanized in adulthood, at which time brains were collected to measure miRNA-200a in the ventral hippocampus. Three weeks after adolescent stress ended, differences in body weight between groups were no longer significant; however, animals exposed to stress had less miRNA-200a expression in the ventral hippocampus than control animals. These data implicate miRNA-200a expression as a potential mechanism by which adolescent stress can have persistent impacts on multiple outcomes in both male and female mice.
Collapse
Affiliation(s)
- Helen M. Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16801, USA (W.J.H.); (S.A.C.)
| | | | | | | |
Collapse
|
7
|
Medina-Saldivar C, Cruz-Visalaya S, Zevallos-Arias A, Pardo GVE, Pacheco-Otálora LF. Differential effect of chronic mild stress on anxiety and depressive-like behaviors in three strains of male and female laboratory mice. Behav Brain Res 2024; 460:114829. [PMID: 38141784 DOI: 10.1016/j.bbr.2023.114829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Major depressive disorder is the most common psychiatric disorder worldwide. To understand mechanisms and search for new approaches to treating depression, animal models are crucial. Chronic mild stress (CMS) is the most used animal model of depression. Although CMS is considered a robust model of depression, conflicting results have been reported for emotion-related behaviors, which the intrinsic characteristics of each rodent strain could explain. To further shed light on the impact of genetic background on the relevant parameters commonly addressed in depression, we examined the effect of 4-weeks CMS on anxiety and depression-related behaviors and body weight gain in three strain mice (BALB/c, C57BL/6, and CD1) of both sexes. CMS reduced body weight gain in C57BL/6NCrl and CD1 male mice. C57BL/6 animals exhibited a more pronounced anxious-like behavior than CD1 and BALB/c mice in the light-dark box (LDB) and the elevated plus maze (EPM) tests, whereas BALB/c animals exhibited the more robust depressive-like phenotype in the splash test (ST), tail suspension test (TST) and forced-swimming test (FST). Under CMS, exposure did not affect anxiety-related behaviors in any strain but induced depression-like behaviors strain-dependently. CMS C57BL/6 and CD1 mice of both sexes showed depression-like behaviors, and CMS BALB/c male mice exhibited reduced depressive behaviors in the FST. These results suggest a differential effect of stress, with the C57BL/6 strain being more vulnerable to stress than the CD1 and BALB/c strain mice. Furthermore, our findings emphasize the need for researchers to consider mouse strains and behavioral tests in their CMS experimental designs.
Collapse
Affiliation(s)
- Carlos Medina-Saldivar
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Peru
| | - Sergio Cruz-Visalaya
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Peru
| | - Anzu Zevallos-Arias
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Peru
| | - Grace V E Pardo
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Peru.
| | - Luis F Pacheco-Otálora
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Peru
| |
Collapse
|
8
|
Rice RC, Gil DV, Baratta AM, Frawley RR, Hill SY, Farris SP, Homanics GE. Inter- and transgenerational heritability of preconception chronic stress or alcohol exposure: Translational outcomes in brain and behavior. Neurobiol Stress 2024; 29:100603. [PMID: 38234394 PMCID: PMC10792982 DOI: 10.1016/j.ynstr.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Chronic stress and alcohol (ethanol) use are highly interrelated and can change an individual's behavior through molecular adaptations that do not change the DNA sequence, but instead change gene expression. A recent wealth of research has found that these nongenomic changes can be transmitted across generations, which could partially account for the "missing heritability" observed in genome-wide association studies of alcohol use disorder and other stress-related neuropsychiatric disorders. In this review, we summarize the molecular and behavioral outcomes of nongenomic inheritance of chronic stress and ethanol exposure and the germline mechanisms that could give rise to this heritability. In doing so, we outline the need for further research to: (1) Investigate individual germline mechanisms of paternal, maternal, and biparental nongenomic chronic stress- and ethanol-related inheritance; (2) Synthesize and dissect cross-generational chronic stress and ethanol exposure; (3) Determine cross-generational molecular outcomes of preconception ethanol exposure that contribute to alcohol-related disease risk, using cancer as an example. A detailed understanding of the cross-generational nongenomic effects of stress and/or ethanol will yield novel insight into the impact of ancestral perturbations on disease risk across generations and uncover actionable targets to improve human health.
Collapse
Affiliation(s)
- Rachel C. Rice
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniela V. Gil
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Annalisa M. Baratta
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Remy R. Frawley
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shirley Y. Hill
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sean P. Farris
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregg E. Homanics
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Song JG, Lee B, Kim DE, Seo BK, Oh NS, Kim SH, Kim HW. Fermented mixed grain ameliorates chronic stress-induced depression-like behavior and memory deficit. Food Sci Biotechnol 2024; 33:969-979. [PMID: 38371678 PMCID: PMC10866851 DOI: 10.1007/s10068-023-01387-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 02/20/2024] Open
Abstract
Fermented mixed grain (FG) has beneficial anti-cancer, antioxidant, and anti-inflammatory effects. In this study, we investigated the effects of FG on gut inflammation, brain dysfunction, and anxiety/depression-like behavior induced by unpredictable chronic mild stress (UCMS) in mice. Mice were administered mixed grain or FG for 3 weeks and were then exposed to UCMS for 4 weeks. FG administration ameliorated stress-induced anxiety/despair-like behavior. FG administration also prevented UCMS-induced memory impairment. Additionally, the mRNA levels of 5-HTR1A and IL-6 were restored to normal levels in the brains of FG-administered mice. FG administration also inhibited intestinal damage in stressed mice compared with that in the UCMS (without FG) group. These results suggest that FG can alleviate stress-induced intestinal damage, brain dysfunction, and cognitive impairment.
Collapse
Affiliation(s)
- Jae Gwang Song
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul, 05006 Republic of Korea
| | - Bomi Lee
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul, 05006 Republic of Korea
| | - Do Eon Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul, 05006 Republic of Korea
| | - Bong Kyeong Seo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Nam Su Oh
- Department of Food and Biotechnology, Korea University, Sejong, 30019 Republic of Korea
| | - Sae Hun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Hyung Wook Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul, 05006 Republic of Korea
| |
Collapse
|
10
|
Joung JY, Song JG, Lee B, Kim HW, Oh NS. Preventive effect of peptides derived from fermented milk on chronic stress-induced brain damage and intestinal dysfunction in mice. J Dairy Sci 2023; 106:8287-8298. [PMID: 37690713 DOI: 10.3168/jds.2023-23320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
This study investigated the preventive effects of peptides derived from milk fermented with the probiotic strain Lactobacillus gasseri 505 (505) against stress-related brain damage and anxiety-like behavior. The peptides MKPWIQPKTKVIPYVRYL (Pep14) and VYQHQKAMKPWIQPKTKVIPYVRYL (Pep21), which exhibit high antioxidant and anti-inflammatory activities, were administered to stressed mice. The results showed that the stress mechanism in the gut-brain axis was regulated by pretreatment with both peptides, leading to inhibition of neurodevelopment and neuroinflammation through the hypothalamic-pituitary-adrenal (HPA) axis, based on the expression of related mRNA and proteins. The expression of colonic inflammation-related mRNA and proteins was also reduced. Moreover, anxiety-like behavior was significantly reduced in mice treated with Pep14 and Pep21. These results indicate that the bioactive peptides Pep14 and Pep21, derived from milk fermented with 505, may prevent stress-induced brain damage and anxiety-like behavior via regulation of the HPA axis.
Collapse
Affiliation(s)
- Jae Yeon Joung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Jae Gwang Song
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul, 05006, Republic of Korea
| | - Bomi Lee
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul, 05006, Republic of Korea
| | - Hyung Wook Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul, 05006, Republic of Korea.
| | - Nam Su Oh
- Department of Food and Biotechnology, Korea University, Sejong, 30019, Korea.
| |
Collapse
|
11
|
Elevated Hippocampal CRMP5 Mediates Chronic Stress-Induced Cognitive Deficits by Disrupting Synaptic Plasticity, Hindering AMPAR Trafficking, and Triggering Cytokine Release. Int J Mol Sci 2023; 24:ijms24054898. [PMID: 36902337 PMCID: PMC10003309 DOI: 10.3390/ijms24054898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Chronic stress is a critical risk factor for developing depression, which can impair cognitive function. However, the underlying mechanisms involved in chronic stress-induced cognitive deficits remain unclear. Emerging evidence suggests that collapsin response mediator proteins (CRMPs) are implicated in the pathogenesis of psychiatric-related disorders. Thus, the study aims to examine whether CRMPs modulate chronic stress-induced cognitive impairment. We used the chronic unpredictable stress (CUS) paradigm to mimic stressful life situations in C57BL/6 mice. In this study, we found that CUS-treated mice exhibited cognitive decline and increased hippocampal CRMP2 and CRMP5 expression. In contrast to CRMP2, CRMP5 levels strongly correlated with the severity of cognitive impairment. Decreasing hippocampal CRMP5 levels through shRNA injection rescued CUS-induced cognitive impairment, whereas increasing CRMP5 levels in control mice exacerbated memory decline after subthreshold stress treatment. Mechanistically, hippocampal CRMP5 suppression by regulating glucocorticoid receptor phosphorylation alleviates chronic stress-induced synaptic atrophy, disruption of AMPA receptor trafficking, and cytokine storms. Our findings show that hippocampal CRMP5 accumulation through GR activation disrupts synaptic plasticity, impedes AMPAR trafficking, and triggers cytokine release, thus playing a critical role in chronic stress-induced cognitive deficits.
Collapse
|
12
|
Tan HE. The microbiota-gut-brain axis in stress and depression. Front Neurosci 2023; 17:1151478. [PMID: 37123352 PMCID: PMC10140437 DOI: 10.3389/fnins.2023.1151478] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Humans and animals are evolved to have instinctive physiological responses to threats. The perception of threat by the brain triggers a multitude of changes across the brain and body. A large body of research have demonstrated that our hardwired survival instinct, the stress response, can become maladaptive and promote major depressive disorders and other neuropsychiatric impairments. However, gaps in our understanding of how chronic stress contributes to depression and mental disorders suggest that we also need to consider factors beyond the biology of the host. The unravelling of the structure and function of microorganisms that humans and animals are host to have driven a paradigm shift in understanding the individual as a collective network composed of the host plus microbes. Well over 90% of bacteria in the body reside in the large intestines, and these microbes in the lower gut function almost like an organ in the body in the way it interacts with the host. Importantly, bidirectional interactions between the gut microbiota and the brain (i.e., the two-way microbiota-gut-brain axis) have been implicated in the pathophysiology of mental disorders including depression. Here, in summarizing the emerging literature, we envisage that further research particularly on the efferent brain-gut-microbiota axis will uncover transformative links in the biology of stress and depression.
Collapse
|
13
|
Chronic Inhibition of Aggressive Behavior Induces Behavioral Change in Mice. Behav Neurol 2022; 2022:7630779. [PMID: 36619803 PMCID: PMC9815925 DOI: 10.1155/2022/7630779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
Suppression of anger is more common than its expression among Asian individuals. Emotional suppression is considered an unhealthy emotional regulation. Most studies on emotional suppression have concluded that suppression adversely affects social outcomes, with approximately 5% of the world's population suffering from emotional disorders. However, anger suppression has not received academic attention, and details of the effects of chronic anger suppression on the central nervous system remain unclear. In this study, we performed the resident-intruder test to investigate the effect of chronic suppression of aggressive behavior in mice using a behavioral test battery and to clarify whether suppression of this aggressive behavior is stressful for mice. Mice chronically inhibited aggressive behavior and lost weight. Mice with inhibited aggressive behavior showed a reduced percentage of immobility time during the tail suspension test as well as no changes in activity, anxiety-like behavior, muscle strength, or temperature sensitivity. This study provides scientific evidence for the effects of chronic aggressive behavior inhibition on the body and central nervous system.
Collapse
|
14
|
Markov DD, Novosadova EV. Chronic Unpredictable Mild Stress Model of Depression: Possible Sources of Poor Reproducibility and Latent Variables. BIOLOGY 2022; 11:1621. [PMID: 36358321 PMCID: PMC9687170 DOI: 10.3390/biology11111621] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023]
Abstract
Major depressive disorder (MDD) is one of the most common mood disorders worldwide. A lack of understanding of the exact neurobiological mechanisms of depression complicates the search for new effective drugs. Animal models are an important tool in the search for new approaches to the treatment of this disorder. All animal models of depression have certain advantages and disadvantages. We often hear that the main drawback of the chronic unpredictable mild stress (CUMS) model of depression is its poor reproducibility, but rarely does anyone try to find the real causes and sources of such poor reproducibility. Analyzing the articles available in the PubMed database, we tried to identify the factors that may be the sources of the poor reproducibility of CUMS. Among such factors, there may be chronic sleep deprivation, painful stressors, social stress, the difference in sex and age of animals, different stress susceptibility of different animal strains, handling quality, habituation to stressful factors, various combinations of physical and psychological stressors in the CUMS protocol, the influence of olfactory and auditory stimuli on animals, as well as the possible influence of various other factors that are rarely taken into account by researchers. We assume that careful inspection of these factors will increase the reproducibility of the CUMS model between laboratories and allow to make the interpretation of the obtained results and their comparison between laboratories to be more adequate.
Collapse
|
15
|
Petković A, Chaudhury D. Encore: Behavioural animal models of stress, depression and mood disorders. Front Behav Neurosci 2022; 16:931964. [PMID: 36004305 PMCID: PMC9395206 DOI: 10.3389/fnbeh.2022.931964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Animal studies over the past two decades have led to extensive advances in our understanding of pathogenesis of depressive and mood disorders. Among these, rodent behavioural models proved to be of highest informative value. Here, we present a comprehensive overview of the most popular behavioural models with respect to physiological, circuit, and molecular biological correlates. Behavioural stress paradigms and behavioural tests are assessed in terms of outcomes, strengths, weaknesses, and translational value, especially in the domain of pharmacological studies.
Collapse
Affiliation(s)
| | - Dipesh Chaudhury
- Laboratory of Neural Systems and Behaviour, Department of Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
16
|
Yu H, Tang MH, Zeng ZY, Huang SJ, Zheng XF, Liu ZY. Suppressive Effects of Gelsemine on Anxiety-like Behaviors Induced by Chronic Unpredictable Mild Stress in Mice. Brain Sci 2022; 12:brainsci12020191. [PMID: 35203954 PMCID: PMC8870043 DOI: 10.3390/brainsci12020191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Gelsemine is an active principle and a major alkaloid found in Gelsemium genus of plants belonging to the Loganiaceae family. The aim of the present study was to explore whether gelsemine exerts anxiolytic effects on a mouse model of chronic-unpredictable-mild-stress (CUMS)-induced anxiety-like behaviors. NOD-like receptor protein 3 (NLRP3) inflammasome, downregulated cAMP-response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) were also evaluated as potential mechanisms. First, gelsemine reversed a CUMS-induced decrease in body-weight gain in mice. Next, gelsemine alleviated CUMS-induced anxiety-like behaviors, as evidenced by the increased distance traveled in the central zone of the open-field test, both the increased percentage of time spent and distance traveled in the light compartment, the increased number of transitions between compartments in the light/dark-transition test, and the increased percentage of entries and time spent in the open arm of the elevated plus-maze. In addition, gelsemine decreased the levels of pro-inflammatory cytokines, including interleukin (IL)-1β and IL-6, in the hypothalamus and hippocampus of CUMS mice. Interestingly, further investigations revealed that gelsemine inhibited the CUMS-induced activation of NLRP3-inflammasome pathways and downregulated CREB and BDNF overexpression in the hypothalamus. In summary, gelsemine alleviated anxiety-like behaviors in the CUMS-induced mouse model. Gelsemine exerted its anxiolytic effects by modulating the NLRP3 and CREB/BDNF pathways.
Collapse
Affiliation(s)
- Hui Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Mo-Huan Tang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Zi-Yue Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Si-Juan Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Xiao-Feng Zheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
- Correspondence:
| |
Collapse
|
17
|
Pekarskaya EA, Holt ES, Gingrich JA, Ansorge MS, Javitch JA, Canetta SE. Tianeptine, but not fluoxetine, decreases avoidant behavior in a mouse model of early developmental exposure to fluoxetine. Sci Rep 2021; 11:22852. [PMID: 34819526 PMCID: PMC8613176 DOI: 10.1038/s41598-021-02074-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/14/2021] [Indexed: 01/12/2023] Open
Abstract
Depression and anxiety, two of the most common mental health disorders, share common symptoms and treatments. Most pharmacological agents available to treat these disorders target monoamine systems. Currently, finding the most effective treatment for an individual is a process of trial and error. To better understand how disease etiology may predict treatment response, we studied mice exposed developmentally to the selective serotonin reuptake inhibitor (SSRI) fluoxetine (FLX). These mice show the murine equivalent of anxiety- and depression-like symptoms in adulthood and here we report that these mice are also behaviorally resistant to the antidepressant-like effects of adult SSRI administration. We investigated whether tianeptine (TIA), which exerts its therapeutic effects through agonism of the mu-opioid receptor instead of targeting monoaminergic systems, would be more effective in this model. We found that C57BL/6J pups exposed to FLX from postnatal day 2 to 11 (PNFLX, the mouse equivalent in terms of brain development to the human third trimester) showed increased avoidant behaviors as adults that failed to improve, or were even exacerbated, by chronic SSRI treatment. By contrast, avoidant behaviors in these same mice were drastically improved following chronic treatment with TIA. Overall, this demonstrates that TIA may be a promising alternative treatment for patients that fail to respond to typical antidepressants, especially in patients whose serotonergic system has been altered by in utero exposure to SSRIs.
Collapse
Affiliation(s)
- Elizabeth A Pekarskaya
- Department of Neuroscience, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Molecular Therapeutics, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA
| | - Emma S Holt
- Division of Molecular Therapeutics, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA
| | - Jay A Gingrich
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA
- Sackler Institute for Developmental Psychobiology, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA
| | - Mark S Ansorge
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA
- Sackler Institute for Developmental Psychobiology, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA
| | - Jonathan A Javitch
- Division of Molecular Therapeutics, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA.
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Sarah E Canetta
- Division of Molecular Therapeutics, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA.
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA.
- Sackler Institute for Developmental Psychobiology, Columbia University Vagelos College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
18
|
Eltokhi A, Kurpiers B, Pitzer C. Baseline Depression-Like Behaviors in Wild-Type Adolescent Mice Are Strain and Age but Not Sex Dependent. Front Behav Neurosci 2021; 15:759574. [PMID: 34690714 PMCID: PMC8529326 DOI: 10.3389/fnbeh.2021.759574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Depression is a major neuropsychiatric disorder, decreasing the ability of hundreds of millions of individuals worldwide to function in social, academic, and employment settings. Beyond the alarming public health problem, depression leads to morbidity across the entire age including adolescence and adulthood. Modeling depression in rodents has been used to understand the pathophysiological mechanisms behind this disorder and create new therapeutics. Although women are two times more likely to be diagnosed with depression compared to men, behavioral experiments on rodent models of depression are mainly performed in males based on the assumption that the estrous cycles in females may affect the behavioral outcome and cause an increase in the intrinsic variability compared to males. Still, the inclusion of female rodents in the behavioral analysis is mandatory to establish the origin of sex bias in depression. Here, we investigated the baseline depression-like behaviors in male and female mice of three adolescent wild-type inbred strains, C57BL/6N, DBA/2, and FVB/N, that are typically used as background strains for mouse models of neuropsychiatric disorders. Our experiments, performed at two different developmental stages during adolescence (P22-P26 and P32-P36), revealed strain but no sex differences in a set of depression-related tests, including tail suspension, sucrose preference and forced swim tests. Additionally, the 10-day interval during this sensitive period uncovered a strong impact on the behavioral outcome of C57BL/6N and FVB/N mice, highlighting a significant effect of maturation on behavioral patterns. Since anxiety-related behavioral tests are often performed together with depression tests in mouse models of neuropsychiatric disorders, we extended our study and included hyponeophagia as an anxiety test. Consistent with a previous study revealing sex differences in other anxiety tests in adolescent mice, male and females mice behaved differently in the hyponeophagia test at P27. Our study gives insight into the behavioral experiments assessing depression and stresses the importance of considering strain, age and sex when evaluating neuropsychiatric-like traits in rodent models.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Barbara Kurpiers
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
19
|
Antispasmodic, antidepressant and anxiolytic effects of extracts from Schinus lentiscifolius Marchand leaves. J Tradit Complement Med 2021; 12:141-151. [PMID: 35528474 PMCID: PMC9072823 DOI: 10.1016/j.jtcme.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
Schinus lentiscifolius (Anacardiaceae) is widely used in folk medicine for treating gastrointestinal and emotional complaints but there are no scientific studies that support these uses. This work aims at evaluating the antispasmodic and central effects of S. lentiscifolius as well as the flavonoids presence in the tincture (SchT) and the composition of the essential oil (SchO). SchT inhibited the concentration-response curves (CRC) of carbachol and calcium in a non-competitive way in isolated rat intestine, bladder and uterus. SchT also non-competitively inhibited the CRC of histamine in guinea-pig intestine and the CRCs of serotonin and oxytocin in rat uterus. Isoquercetin and rutin were identified in SchT. The behavioral effects of SchT, SchO and infusion of S. lentiscifolius leaves (SchW) were tested in mice. These extracts showed an anxiolytic-like effect in the novelty-suppressed feeding test, which was reversed by flumazenil except in SchO-treated mice. Only SchO reduced the spontaneous locomotor function in the open field test. Also, SchT and SchW decreased immobility time in both, the tail suspension (TST) and forced swimming tests, while SchO produced the same effect in the TST. d-limonene and α-santalol were the main components found in SchO. The results demonstrated that extracts obtained from S. lentiscifolius leaves were effective as intestinal, urinary and uterine antispasmodics. SchT and SchW exhibited anxiolytic and antidepressant properties without sedation, whereas SchO showed also sedative properties. Therefore, the present study gives preclinical support to the traditional use of this plant for gastrointestinal and depressive or emotional symptoms. Schinus lentiscifolius is popularly consumed for its medicinal properties but there are no scientific studies in this regard. •We evaluated its effects on visceral smooth muscle and central nervous system. Our findings reinforce its traditional uses. •In addition, we propose possible new therapeutic applications.
Collapse
|
20
|
Hur KH, Kim SE, Ma SX, Lee BR, Ko YH, Seo JY, Kim SK, Kim YJ, Sung SJ, Lee Y, Jung YH, Lee YS, Lee SY, Jang CG. Methoxphenidine (MXP) induced abnormalities: Addictive and schizophrenia-related behaviours based on an imbalance of neurochemicals in the brain. Br J Pharmacol 2021; 178:3869-3887. [PMID: 33987827 DOI: 10.1111/bph.15528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Methoxphenidine is a dissociative-based novel psychoactive designer drug. Although fatal accidents from methoxphenidine abuse have been reported, recreational use of the drug continues. We aim to provide scientific supportfor legal regulation of recreational abuse of methoxphenidine by demonstrating its the pharmacological action. EXPERIMENTAL APPROACH Addictive potential of methoxphenidine was examined using intravenous self-administration test with rats and conditioned place preference test with mice. Further, a series of behavioural tests (open field test, elevated plus maze test, novel object recognition test, social interaction test and tail suspension test) performed to assess whether methoxphenidine caused schizophrenia-related symptoms in mice. Additionally, neurotransmitter enzyme-linked immunosorbent assay and western blot were used to confirm methoxphenidine-induced neurochemical changes in specific brain regions related to abnormal behaviours. KEY RESULTS Methoxphenidine caused addictive behaviours via reinforcing and rewarding effects. Consistently, methoxphenidine induced over-activation of dopamine pathways in the nuclear accumbens, indicating activation of the brain reward circuit. Also, methoxphenidine caused all categories of schizophrenia-related symptoms, including positive symptoms (hyperactivity, impulsivity), negative symptoms (anxiety, social withdrawal, depression) and cognitive impairment. Consistently, methoxphenidine led to the disruption of the hippocampal-prefrontal cortex pathway that is considered to be pathological involved in schizophrenia. CONCLUSIONS AND IMPLICATIONS We demonastrate that methoxphenidine causes addictive and schizophrenia-like behaviours and induces neurochemical changes in brain regions associated with these behaviours. We propose that methoxphenidine could be used in developing useful animal disease models and that it also requires legal restrictions on its recreational use.
Collapse
Affiliation(s)
- Kwang-Hyun Hur
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Seong-Eon Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Shi-Xun Ma
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Bo-Ram Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Jee-Yeon Seo
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Seon-Kyung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Young-Jung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Su-Jeong Sung
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Youyoung Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Young Hoon Jung
- Organic and Medicinal Chemistry Laboratory, College of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Yong-Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
21
|
Du Preez A, Eum J, Eiben I, Eiben P, Zunszain PA, Pariante CM, Thuret S, Fernandes C. Do different types of stress differentially alter behavioural and neurobiological outcomes associated with depression in rodent models? A systematic review. Front Neuroendocrinol 2021; 61:100896. [PMID: 33359461 DOI: 10.1016/j.yfrne.2020.100896] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Cataloguing the effects of different types of stress on behaviour and physiology in rodent models has not been comprehensively attempted. Here, we systematically review whether chronic exposure to physical stress, psychosocial stress, or both types of stress can induce different behavioural and neurobiological outcomes in male and female rodents. We found that physical stress consistently increased depressive-like behaviour, impaired social interaction and decreased body weight, while psychosocial stress consistently increased both anxiety- and depressive-like behaviour, impaired social interaction and learning and memory, increased HPA axis activity, peripheral inflammation and microglial activation, and decreased hippocampal neurogenesis in male rodents. Moreover, we found that the combined effect of both stress types resulted in a more severe pathological state defined by increased anxiety- and depressive-like behaviour, impaired social interaction and learning and memory, increased HPA axis activity and central inflammation, and reduced hippocampal neurogenesis and neural plasticity in male rodents. Phenotypes for females were less consistent, irrespective of the type of stress exposure, on account of the limited number of studies using females. This review highlights that the type of stress may indeed matter and will help animal researchers to more appropriately choose a stress/depression model that fits their research purposes.
Collapse
Affiliation(s)
- Andrea Du Preez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Josephine Eum
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Inez Eiben
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Paola Eiben
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK
| |
Collapse
|
22
|
Pazini FL, Rosa JM, Camargo A, Fraga DB, Moretti M, Siteneski A, Rodrigues ALS. mTORC1-dependent signaling pathway underlies the rapid effect of creatine and ketamine in the novelty-suppressed feeding test. Chem Biol Interact 2020; 332:109281. [DOI: 10.1016/j.cbi.2020.109281] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/30/2020] [Accepted: 09/29/2020] [Indexed: 01/11/2023]
|
23
|
Ko YH, Kim SK, Lee SY, Jang CG. Flavonoids as therapeutic candidates for emotional disorders such as anxiety and depression. Arch Pharm Res 2020; 43:1128-1143. [DOI: 10.1007/s12272-020-01292-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
|
24
|
Ohgomori T, Jinno S. Modulation of neuropathology and cognitive deficits by lipopolysaccharide preconditioning in a mouse pilocarpine model of status epilepticus. Neuropharmacology 2020; 176:108227. [PMID: 32634527 DOI: 10.1016/j.neuropharm.2020.108227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Recent studies indicate that microglia may play a critical role in epileptogenesis during the early post-status epilepticus (SE) period. In this study, we aimed to elucidate the effects of preconditioning of microglia with lipopolysaccharide (LPS) on neuropathology and cognitive deficits in a mouse pilocarpine model of SE. Mice were treated with an intraperitoneal injection of LPS 24 h before SE induction. The open field test at 13 days after SE showed that LPS preconditioning suppressed SE-induced hyperactivity. The Y-maze test at 14 days after SE showed that LPS preconditioning ameliorated SE-induced working memory impairment. The extent of neuronal damage was decreased by LPS preconditioning in the hippocampus of mice euthanized at 15 days after SE. Gene profile analysis of hippocampal microglia at 15 days after SE showed that the expression level of interleukin-1β was increased by SE induction but decreased by LPS preconditioning. By contrast, SE induction increased the expression levels of phagocytosis-related genes, and LPS preconditioning further enhanced their expression. Interestingly, LPS preconditioning increased the numerical density of hippocampal microglia expressing the 5D4 keratan sulfate epitope, a population of cells known to be involved in phagocytosis. The voxel density of glutamatergic synapses was increased by SE induction but decreased by LPS preconditioning, while GABAergic synapses were not affected by these procedures. Our findings indicate that LPS preconditioning may in part alleviate SE-related abnormal synaptogenesis and cognitive deficits, and also suggest that modulation of microglial activation during the early post-SE period may be a novel strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Department of Rehabilitation, Faculty of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, 597-0104, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
25
|
The influence of the duration of chronic unpredictable mild stress on the behavioural responses of C57BL/6J mice. Behav Pharmacol 2020; 31:574-582. [DOI: 10.1097/fbp.0000000000000564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Girard RA, Chauhan PS, Tucker TA, Allen T, Kaur J, Jeffers A, Koenig K, Florova G, Komissarov AA, Gaidenko TA, Chamiso MB, Fowler J, Morris DE, Sarva K, Singh KP, Idell S, Idell RD. Increased expression of plasminogen activator inhibitor-1 (PAI-1) is associated with depression and depressive phenotype in C57Bl/6J mice. Exp Brain Res 2019; 237:3419-3430. [PMID: 31734788 DOI: 10.1007/s00221-019-05682-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023]
Abstract
Plasminogen activator inhibitor 1 (PAI-1), which is elevated in numerous disease states, has been implicated as a stress-related protein involved in the pathogenesis of depression. We measured PAI-1 in the plasma of healthy and depressed individuals and assessed plasminogen activator (PA) expression and regulation by PAI-1 in cultured normal human astrocytes (NHA). Elevated plasma PAI-1 levels were found in depressed patients. Brain tissues from depressed individuals also showed stronger expression of hippocampal PAI-1 by confocal imaging in comparison to healthy individuals. Using a lipopolysaccharide-induced inflammatory model of depression in mice, we measured PAI-1 in murine plasma and brain, by ELISA and immunohistochemistry, respectively. Similar elevations were seen in plasma but not in brain homogenates of mice exposed to LPS. We further correlated the findings with depressive behavior. Ex vivo experiments with NHA treated with proinflammatory cytokines implicated in the pathogenesis of depression showed increased PAI-1 expression. Furthermore, these studies suggest that urokinase-type plasminogen activator may serve as an astrocyte PA reservoir, able to promote cleavage of brain-derived neurotrophic factor (BDNF) during stress or inflammation. In summary, our findings confirm that derangements of PAI-1 variably occur in the brain in association with the depressive phenotype. These derangements may impede the availability of active, mature (m)BDNF and thereby promote a depressive phenotype.
Collapse
Affiliation(s)
- René A Girard
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Prashant S Chauhan
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Tim Allen
- Department of Pathology, The University of Mississippi Medical Center, Jackson, MS, USA
| | - Jaswinder Kaur
- Department of Pathology, The University of Mississippi Medical Center, Jackson, MS, USA
| | - Ann Jeffers
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Kathleen Koenig
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Galina Florova
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Andrey A Komissarov
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Tatiana A Gaidenko
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Mignote B Chamiso
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - James Fowler
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Danna E Morris
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Krishna Sarva
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Karan P Singh
- Department of Epidemiology and Biostatistics, School of Rural and Community Health, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Richard D Idell
- Department of Behavioral Health, Child and Adolescent Psychiatry, The University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX, 75708, USA.
| |
Collapse
|
27
|
Korean Red Ginseng reduces chronic social defeat stress-induced mood disorders via N-methyl-D-aspartate receptor modulation in mice. J Ginseng Res 2019; 45:254-263. [PMID: 33841006 PMCID: PMC8020286 DOI: 10.1016/j.jgr.2019.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/11/2019] [Accepted: 11/01/2019] [Indexed: 01/17/2023] Open
Abstract
Background A chronic social defeat stress (CSDS) model has been proposed as relevant to stress-induced behavioral change in humans. In this study, we examined the effect of Korean Red Ginseng (KRG) on CSDS-induced mood disorders and protein expression in an animal model. Methods To evaluate the effect of KRG on social defeat stress, test mice were exposed in the resident aggressor's home cage compartment for 14 days beginning 1 h after KRG treatment (10, 20, and 40 mg/kg, per oral (p.o.)). After the exposure, behavioral tests to measure anxiety, social interaction, and depression-like behavior were performed. To investigate the underlying mechanism, N-methyl-D-aspartate receptor expression levels in CSDS-induced mice were evaluated using Western blot analysis. Results CSDS induced anxiety-like behaviors by decreasing central activity in the open-field test and open-arm approach in the elevated plus maze test and led to social avoidance behavior in the social interaction test. CSDS mice showed upregulated NR1, NR2A, and NR2B expression in the hippocampus. KRG 20 and 40 mg/kg ameliorated anxiety-like activities and KRG 20 mg/kg alleviated social avoidance by decreasing time in the corner zone. KRG treatment recovered CSDS-induced NR1, NR2A, and NR2B protein levels in the hippocampus. Conclusion These results indicate that KRG has a therapeutic effect on CSDS-induced mood disorder by alleviating N-methyl-D-aspartate receptor overexpression in the hippocampus.
Collapse
|
28
|
Boyko M, Kutz R, Grinshpun J, Zvenigorodsky V, Gruenbaum BF, Gruenbaum SE, Frenkel A, Brotfain E, Israel Melamed, Frank D, Zeldetz V, Zlotnik A. The effect of depressive-like behavior and antidepressant therapy on social behavior and hierarchy in rats. Behav Brain Res 2019; 370:111953. [PMID: 31108115 PMCID: PMC6863054 DOI: 10.1016/j.bbr.2019.111953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Depression is common and results in a significant morbidity and economic burden. Depression is associated with pervasive impairments in social functioning, and antidepressant treatments are highly variable in improving these impairments. The objectives of this study were to test the effects of depression on social organization and behavior in a rodent model of depression, and to study the effectiveness of antidepressant medication in improving both symptoms of depression and the social function of depressed animals. METHODS One hundred-twenty male Sprague-Dawley rats were randomly and equally divided between the control group and depression group. After induction of depression by 5 weeks of chronic unpredictable stress, rats received either antidepressant treatment or placebo. In parallel with the initiation of drug therapy, 20 social groups of six rats were subjected to the complex diving-for-food situation to evaluate their social functioning. Four behavioral tests evaluated symptoms of depression and anxiety at 3 different time points. RESULTS We found that 1) depressed rats were significantly more active and aggressive in all parameters of social organization test compared with the control and antidepressant treatment groups, 2) depressed rats that received antidepressant treatment exhibited social behaviors like the control group, and 3) depression in the experimental groups was not accompanied by symptoms of anxiety. CONCLUSIONS These results suggest that depression can significantly alter the social behavior and hierarchy in the social group in rats. Investigations of complex social group dynamics offer novel opportunities for translational studies of mood and psychiatric disorders.
Collapse
Affiliation(s)
- Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva, Israel.
| | - Ruslan Kutz
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva, Israel
| | - Julia Grinshpun
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva, Israel
| | - Vladislav Zvenigorodsky
- Department of Radiology, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva, Israel
| | - Benjamin F Gruenbaum
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, 06525, USA
| | - Shaun E Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Amit Frenkel
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva, Israel
| | - Evgeni Brotfain
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva, Israel
| | - Israel Melamed
- Department of Neurosurgery, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva, Israel
| | - Dmitry Frank
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva, Israel
| | - Vladimir Zeldetz
- Department of Emergent Medicine, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva, Israel
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva, Israel
| |
Collapse
|
29
|
Antoniuk S, Bijata M, Ponimaskin E, Wlodarczyk J. Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability. Neurosci Biobehav Rev 2019; 99:101-116. [DOI: 10.1016/j.neubiorev.2018.12.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023]
|
30
|
Social isolation and social support at adulthood affect epigenetic mechanisms, brain-derived neurotrophic factor levels and behavior of chronically stressed rats. Behav Brain Res 2019; 366:36-44. [PMID: 30880220 DOI: 10.1016/j.bbr.2019.03.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022]
Abstract
Epigenetic modulation of brain-derived neurotrophic factor (BDNF) provides one possible explanation for the dysfunctions induced by stress, such as psychiatric disorders and cognitive decline. Interestingly, social support can be protective against some of these effects, but the mechanisms of social buffering are poorly understood. Conversely, early isolation exacerbates the responses to stressors, although its effects in adulthood remain unclear. This study investigated the effects of social isolation and social buffering on hippocampal epigenetic mechanisms, BDNF levels and behavioral responses of chronically stressed young adult rats. Male Wistar rats (3 months) were assigned to accompanied (paired) or isolated housing. After one-month half of each group was submitted to a chronic unpredictable stress (CUS) protocol for 18 days. Among accompanied animals, only one was exposed to stress. Behavioral analysis encompassed the Open field, plus maze and inhibitory avoidance tasks. Hippocampal H3K9 and H4K12 acetylation, HDAC5 expression and BDNF levels were evaluated. Isolated housing increased HDAC5 expression, decreased H3K9 and H4K12 acetylation, reduced BDNF levels, and impaired long-term memory. Stress affected weight gain, induced anxiety-like behavior and decreased AcK9H3 levels. Interactions between housing conditions and social stress were seen only for HDAC5 expression, which showed a further increase in the isolated + CUS group but remained constant in accompanied animals. In conclusion, social isolation at adulthood induced epigenetic alterations and exacerbated the effects of chronic stress on HDAC5. Notwithstanding, social support counteracted the adverse effects of stress on HDAC5 expression.
Collapse
|
31
|
McDonald LT, Lopez MF, Helke KL, McCrackin MA, Cray JJ, Becker HC, LaRue AC. Early Blood Profile of C57BL/6 Mice Exposed to Chronic Unpredictable Stress. Front Psychiatry 2019; 10:230. [PMID: 31068843 PMCID: PMC6491828 DOI: 10.3389/fpsyt.2019.00230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/28/2019] [Indexed: 01/19/2023] Open
Abstract
Physiological responses to psychological stressors are protective in acute fight or flight situations; however, there is increasing evidence suggesting the detrimental impact of chronic psychological stress on disease. Chronic stress has been associated with inflammation, poor prognosis, increased morbidity, and poor outcome in many diseases including atherosclerosis, cancer, and pulmonary disease. Given the systemic impact of stress, and the role of the hematopoietic system as a rapid responder to homeostatic insults, we hypothesized that early blood profile changes and biochemical alterations could be detected in a model of chronic stress. To test this hypothesis, a variation of the chronic unpredictable stress (CUS) model was employed. Following 10 days of CUS, C57BL/6 mice exhibited a chronic-stress-associated corticosterone profile. Complete blood count (CBC) revealed mild normochromic, normocytic anemia, and reduced monocyte and lymphocyte count. Serum analysis demonstrated hypoferremia with unchanged total iron binding capacity and serum ferritin levels. These findings are consistent with clinical diagnostic parameters for anemia of chronic disease and indicate that CUS results in significant changes in blood and serum biochemical profile in C57BL/6 mice. These studies identify early changes in blood parameters in response to CUS and identify hematopoietic and biochemical alterations that are often associated with increased morbidity in patients experiencing chronic-stress-associated mental health disease.
Collapse
Affiliation(s)
- Lindsay T McDonald
- Research Services, Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC, United States.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Marcelo F Lopez
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States.,Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Kristi L Helke
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.,Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, United States.,MUSC/VA Veterinary Diagnostic Laboratory, Medical University of South Carolina, Charleston, SC, United States
| | - M A McCrackin
- Research Services, Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC, United States.,Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - James J Cray
- Department of Biomedical Education and Anatomy, Ohio State University, Columbus, OH, United States
| | - Howard C Becker
- Research Services, Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC, United States.,Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States.,Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Amanda C LaRue
- Research Services, Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC, United States.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
32
|
Marchette RCN, Bicca MA, Santos ECDS, de Lima TCM. Distinctive stress sensitivity and anxiety-like behavior in female mice: Strain differences matter. Neurobiol Stress 2018; 9:55-63. [PMID: 30450373 PMCID: PMC6234269 DOI: 10.1016/j.ynstr.2018.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
Epidemiologic studies have shown that the prevalence of stress-related mood disorders is higher in women, which suggests a different response of neuroendocrine circuits involved in the response to stressful events, as well as a genetic background influence. The aim of this study was to investigate the baseline differences in anxiety-like behaviors of females of two commonly used mice strains. Secondly, we have also aimed to study their behavioral and biochemical alterations following stress. Naïve 3-4 months-old Swiss and C57BL/6 female mice were evaluated in the elevated plus maze (EPM) and in the acoustic startle response (ASR) for anxiety-like behaviors. Besides, an independent group of animals from each strain was exposed to cold-restraint stress (30 min/4 °C, daily) for 21 consecutive days and then evaluated in EPM and in the sucrose consumption tests. Twenty-four hours following behavioral experimentation mice were decapitated and their hippocampi (HP) and cortex (CT) dissected for further Western blotting analysis of glucocorticoid receptor (GR) and glial fibrillary acid protein (GFAP). Subsequent to each behavioral protocol, animal blood samples were collected for further plasma corticosterone analysis. C57BL/6 presented a lower anxiety profile than Swiss female mice in both behavioral tests, EPM and ASR. These phenomena could be correlated with the fact that both strains have distinct corticosterone levels and GR expression in the HP at the baseline level. Moreover, C57BL/6 female mice were more vulnerable to the stress protocol, which was able to induce an anhedonic state characterized by lower preference for a sucrose solution. Behavioral anhedonic-like alterations in these animals coincide with reduced plasma corticosterone accompanied with increased GR and GFAP levels, both in the HP. Our data suggest that in C57BL/6 female mice a dysregulation of the hypothalamus-pituitary-adrenal axis (HPA-axis) occurs, in which corticosterone acting on GRs would possibly exert its pro-inflammatory role, ultimately leading to astrocyte activation in response to stress.
Collapse
Affiliation(s)
| | | | | | - Thereza Christina Monteiro de Lima
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88049-970, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
33
|
Wang Q, Wu H, Zhou J, Pei S, Li J, Cai Y, Shang J. Involvement of the central hypothalamic-pituitary-adrenal axis in hair growth and melanogenesis among different mouse strains. PLoS One 2018; 13:e0202955. [PMID: 30356231 PMCID: PMC6200183 DOI: 10.1371/journal.pone.0202955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/13/2018] [Indexed: 11/26/2022] Open
Abstract
Stress has been demonstrated to play an important role in hair follicle function and the pathogenesis of some hair disorders. The central hypothalamic-pituitary-adrenal (HPA) axis is activated by stress stimuli, synthesizes and releases various components and eventually induces the pathogenesis and recurrence of peripheral diseases. Our aim is to compare the different responses under exposure of stress in hair follicle function among different mouse strains, and to detect the involvement of the central HPA axis after stress in hair follicle growth and melanogenesis. In this study, we exposed different mouse strains (C57BL/6, CBA/J, C3H/HeN, BALB/c and ICR) to a 21-day chronic restraint stress protocol and selected C57BL/6, CBA/J and BALB/c mice for further study because of their significant behavioral alterations. Then, we evaluated and compared the different responses and sensitivity to chronic restraint stress in hair follicle function and central HPA axis among the selected strains. The results showed that expression of POMC, CRF and GR mRNA and protein and serum levels of corticosterone were inhibited in response to stress. These findings suggested that chronic restraint stress may inhibit hair follicle growth and melanogenesis via regulating the key elements of the central HPA axis. In addition, the results revealed different mouse strains exhibit different responses in the central HPA axis and hair follicle after stress exposure. C57BL/6 might be the most sensitive strain among the three strains tested as well as an appropriate strain to study possible pathophysiological mechanisms by which the nervous system influences skin function and screen dermatological drugs suitable for psychotherapy. We believe the current study will provide some useful information for researchers who are interested in the bidirectional communication between the nervous and skin systems and the management of stress-induced cutaneous diseases.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Huali Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jia Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Siran Pei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuanyuan Cai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jing Shang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu, China
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- * E-mail:
| |
Collapse
|
34
|
Li J, Yang R, Xia K, Wang T, Nie B, Gao K, Chen J, Zhao H, Li Y, Wang W. Effects of stress on behavior and resting-state fMRI in rats and evaluation of Telmisartan therapy in a stress-induced depression model. BMC Psychiatry 2018; 18:337. [PMID: 30333002 PMCID: PMC6192217 DOI: 10.1186/s12888-018-1880-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The etiology of depression and its effective therapeutic treatment have not been clearly identified. Using behavioral phenotyping and resting-state functional magnetic resonance imaging (r-fMRI), we investigated the behavioral impact and cerebral alterations of chronic unpredictable mild stress (CUMS) in the rat. We also evaluated the efficacy of telmisartan therapy in this rodent model of depression. METHODS Thirty-two rats were divided into 4 groups: a control group(C group), a stress group(S group), a stress + telmisartan(0.5 mg/kg)group (T-0.5 mg/kg group) and a stress + telmisartan(1 mg/kg) group (T-1 mg/kg group). A behavioral battery, including an open field test (OFT), a sucrose preference test (SPT), and an object recognition test (ORT), as well as r-fMRI were conducted after 4 weeks of CUMS and telmisartan therapy. The r-fMRI data were analyzed using the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) approach. The group differences in the behavior and r-fMRI test results as well as the correlations between these 2 approaches were examined. RESULTS CUMS reduced the number of rearings and the total moved distance in OFT, the sucrose preference in SPT, and novel object recognition ability in ORT. The telmisartan treatment (1 mg/kg) significantly improved B-A/B + A in the ORT and improved latency scores in the OFT and SPT. The S group exhibited a decreased ReHo in the motor cortex and pons, but increased ReHo in the thalamus, visual cortex, midbrain, cerebellum, hippocampus, hypothalamus, and olfactory cortex compared to the C group. Telmisartan (1 mg/kg)reversed or attenuated the stress-induced changes in the motor cortex, midbrain, thalamus, hippocampus, hypothalamus, visual cortex, and olfactory cortex. A negative correlation was found between OFT rearing and ReHo values in the thalamus. Two positive correlations were found between ORT B-A and the ReHo values in the olfactory cortexand pons. CONCLUSIONS Telmisartan may be an effective complementary drug for individuals with depression who also exhibit memory impairments. Stress induced widespread regional alterations in the cerebrum in ReHo measures while telmissartan can reverse part of theses alterations. These data lend support for future research on the pathology of depression and provide a new insight into the effects of telmisartan on brain function in depression.
Collapse
Affiliation(s)
- Junling Li
- 0000 0004 0369 153Xgrid.24696.3fSchool of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069 China ,0000 0001 1431 9176grid.24695.3cBeijing University of Chinese Medicine, Beijing, 100029 China
| | - Ran Yang
- 0000 0004 0632 3409grid.410318.fCardiovascular department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Kai Xia
- 0000 0001 1431 9176grid.24695.3cBeijing University of Chinese Medicine, Beijing, 100029 China
| | - Tian Wang
- 0000 0001 1431 9176grid.24695.3cBeijing University of Chinese Medicine, Beijing, 100029 China
| | - Binbin Nie
- 0000000119573309grid.9227.eKey Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| | - Kuo Gao
- 0000 0001 1431 9176grid.24695.3cBeijing University of Chinese Medicine, Beijing, 100029 China
| | - Jianxin Chen
- 0000 0001 1431 9176grid.24695.3cBeijing University of Chinese Medicine, Beijing, 100029 China
| | - Huihui Zhao
- 0000 0001 1431 9176grid.24695.3cBeijing University of Chinese Medicine, Beijing, 100029 China
| | - Yubo Li
- 0000 0004 0632 3409grid.410318.fInstitute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Wei Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
35
|
Zhu LJ, Ni HY, Chen R, Chang L, Shi HJ, Qiu D, Zhang Z, Wu DL, Jiang ZC, Xin HL, Zhou QG, Zhu DY. Hippocampal nuclear factor kappa B accounts for stress-induced anxiety behaviors via enhancing neuronal nitric oxide synthase (nNOS)-carboxy-terminal PDZ ligand of nNOS-Dexras1 coupling. J Neurochem 2018; 146:598-612. [PMID: 29858554 DOI: 10.1111/jnc.14478] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 02/03/2023]
Abstract
Anxiety disorders are associated with a high social burden worldwide. Recently, increasing evidence suggests that nuclear factor kappa B (NF-κB) has significant implications for psychiatric diseases, including anxiety and depressive disorders. However, the molecular mechanisms underlying the role of NF-κB in stress-induced anxiety behaviors are poorly understood. In this study, we show that chronic mild stress (CMS) and glucocorticoids dramatically increased the expression of NF-κB subunits p50 and p65, phosphorylation and acetylation of p65, and the level of nuclear p65 in vivo and in vitro, implicating activation of NF-κB signaling in chronic stress-induced pathological processes. Using the novelty-suppressed feeding (NSF) and elevated-plus maze (EPM) tests, we found that treatment with pyrrolidine dithiocarbamate (PDTC; intra-hippocampal infusion), an inhibitor of NF-κB, rescued the CMS- or glucocorticoid-induced anxiogenic behaviors in mice. Microinjection of PDTC into the hippocampus reversed CMS-induced up-regulation of neuronal nitric oxide synthase (nNOS), carboxy-terminal PDZ ligand of nNOS (CAPON), and dexamethasone-induced ras protein 1 (Dexras1) and dendritic spine loss of dentate gyrus (DG) granule cells. Moreover, over-expression of CAPON by infusing LV-CAPON-L-GFP into the hippocampus induced nNOS-Dexras1 interaction and anxiety-like behaviors, and inhibition of NF-κB by PDTC reduced the LV-CAPON-L-GFP-induced increases in nNOS-Dexras1 complex and anxiogenic-like effects in mice. These findings indicate that hippocampal NF-κB mediates anxiogenic behaviors, probably via regulating the association of nNOS-CAPON-Dexras1, and uncover a novel approach to the treatment of anxiety disorders.
Collapse
Affiliation(s)
- Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Huan-Yu Ni
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rong Chen
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hu-Jiang Shi
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Dan Qiu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Zhan Zhang
- Department of Hygiene Analysis and Detection, school of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dan-Lian Wu
- Department of Pharmacy, The Affiliated Jiangyin Hospital, School of Medicine, Southeast University, Jiangyin, Jiangsu, China
| | - Zhao-Chun Jiang
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Hong-Liang Xin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi-Gang Zhou
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
36
|
On the Developmental Timing of Stress: Delineating Sex-Specific Effects of Stress across Development on Adult Behavior. Brain Sci 2018; 8:brainsci8070121. [PMID: 29966252 PMCID: PMC6071226 DOI: 10.3390/brainsci8070121] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
Stress, and the chronic overactivation of major stress hormones, is associated with several neuropsychiatric disorders. However, clinical literature on the exact role of stress either as a causative, triggering, or modulatory factor to mental illness remains unclear. We suggest that the impact of stress on the brain and behavior is heavily dependent on the developmental timing at which the stress has occurred, and as such, this may contribute to the overall variability reported on the association of stress and mental illness. Here, animal models provide a way to comprehensively assess the temporal impact of stress on behavior in a controlled manner. This review particularly focuses on the long-term impact of stress on behavior in various rodent stress models at three major developmental time points: early life, adolescence, and adulthood. We characterize the various stressor paradigms into physical, social, and pharmacological, and discuss commonalities and differences observed across these various stress-inducing methods. In addition, we discuss here how sex can influence the impact of stress at various developmental time points. We conclude here that early postnatal life and adolescence represent particular periods of vulnerability, but that stress exposure during early life can sometimes lead to resilience, particularly to fear-potentiated memories. In the adult brain, while shorter periods of stress tended to enhance spatial memory, longer periods caused impairments. Overall, males tended to be more vulnerable to the long-term effects of early life and adolescent stress, albeit very few studies incorporate both sexes, and further well-powered sex comparisons are needed.
Collapse
|
37
|
Van Laeken N, Pauwelyn G, Dockx R, Descamps B, Brans B, Peremans K, Baeken C, Goethals I, Vanhove C, De Vos F. Regional alterations of cerebral [18F]FDG metabolism in the chronic unpredictable mild stress- and the repeated corticosterone depression model in rats. J Neural Transm (Vienna) 2018; 125:1381-1393. [DOI: 10.1007/s00702-018-1899-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
|
38
|
Unpredictable chronic mild stress differentially impairs social and contextual discrimination learning in two inbred mouse strains. PLoS One 2017; 12:e0188537. [PMID: 29166674 PMCID: PMC5699833 DOI: 10.1371/journal.pone.0188537] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/08/2017] [Indexed: 12/28/2022] Open
Abstract
Alterations in the social and cognitive domain are considered important indicators for increased disability in many stress-related disorders. Similar impairments have been observed in rodents chronically exposed to stress, mimicking potential endophenotypes of stress-related psychopathologies such as major depression disorder (MDD), anxiety, conduct disorder, and posttraumatic stress disorder (PTSD). Data from numerous studies suggest that deficient plasticity mechanisms in hippocampus (HC) and prefrontal cortex (PFC) might underlie these social and cognitive deficits. Specifically, stress-induced deficiencies in neural plasticity have been associated with a hypodopaminergic state and reduced neural plasticity persistence. Here we assessed the effects of unpredictable chronic mild stress (UCMS) on exploratory, social and cognitive behavior of females of two inbred mouse strains (C57BL/6J and DBA/2J) that differ in their dopaminergic profile. Exposure to chronic stress resulted in impaired circadian rhythmicity, sociability and social cognition in both inbred strains, but differentially affected activity patterns and contextual discrimination performance. These stress-induced behavioral impairments were accompanied by reduced expression levels of brain derived neurotrophic factor (BDNF) in the prefrontal cortex. The strain-specific cognitive impairment was coexistent with enhanced plasma corticosterone levels and reduced expression of genes related to dopamine signaling in hippocampus. These results underline the importance of assessing different strains with multiple test batteries to elucidate the neural and genetic basis of social and cognitive impairments related to chronic stress.
Collapse
|
39
|
Gao Q, Song H, Wang XT, Liang Y, Xi YJ, Gao Y, Guo QJ, LeBaron T, Luo YX, Li SC, Yin X, Shi HS, Ma YX. Molecular hydrogen increases resilience to stress in mice. Sci Rep 2017; 7:9625. [PMID: 28852144 PMCID: PMC5575246 DOI: 10.1038/s41598-017-10362-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 08/08/2017] [Indexed: 01/07/2023] Open
Abstract
The inability to successfully adapt to stress produces pathological changes that can lead to depression. Molecular hydrogen has anti-oxidative and anti-inflammatory activities and neuroprotective effects. However, the potential role of molecular hydrogen in stress-related disorders is still poorly understood. The present study aims to investigate the effects of hydrogen gas on resilience to stress in mice. The results showed that repeated inhalation of hydrogen-oxygen mixed gas [67%:33% (V/V)] significantly decreased both the acute and chronic stress-induced depressive- and anxiety-like behaviors of mice, assessed by tail suspension test (TST), forced swimming test (FST), novelty suppressed feeding (NSF) test, and open field test (OFT). ELISA analyses showed that inhalation of hydrogen-oxygen mixed gas blocked CMS-induced increase in the serum levels of corticosterone, adrenocorticotropic hormone, interleukin-6, and tumor necrosis factor-α in mice exposed to chronic mild stress. Finally, inhalation of hydrogen gas in adolescence significantly increased the resilience to acute stress in early adulthood, which illustrates the long-lasting effects of hydrogen on stress resilience in mice. This was likely mediated by inhibiting the hypothalamic-pituitary-adrenal axis and inflammatory responses to stress. These results warrant further exploration for developing molecular hydrogen as a novel strategy to prevent the occurrence of stress-related disorders.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Nutrition, Hebei Medical University, Shijiazhuang, 050017, China
| | - Han Song
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiao-Ting Wang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ying Liang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yan-Jie Xi
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuan Gao
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qing-Jun Guo
- Department of Surgery, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tyler LeBaron
- Molecular Hydrogen Foundation, Kissimmee, FL, 34744, USA
| | - Yi-Xiao Luo
- Department of Pharmacology, Medical School of Hunan Normal University, Changsha, 410013, China
| | - Shuang-Cheng Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Xi Yin
- Department of Functional region of Diagnosis, Hebei Medical University Fourth Hospital, Hebei Medical University, Shijiazhuang, 050011, China
| | - Hai-Shui Shi
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Yu-Xia Ma
- Department of Nutrition, Hebei Medical University, Shijiazhuang, 050017, China
| |
Collapse
|
40
|
Social experiences during adolescence affect anxiety-like behavior but not aggressiveness in male mice. Behav Brain Res 2017; 326:147-153. [PMID: 28286219 DOI: 10.1016/j.bbr.2017.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/17/2017] [Accepted: 03/07/2017] [Indexed: 01/29/2023]
Abstract
Adolescence has lately been recognized as a key developmental phase during which an individual's behavior can be shaped. In a recent study with male mice varying in the expression of the serotonin transporter, escapable adverse social experiences during adolescence led to decreased anxiety-like behavior and increased exploratory and aggressive behavior compared to throughout beneficial experiences. Since in this study some behavioral tests took place with a delay of one week after the last social experiences have been made, it was not clear whether the observed effects really reflected the consequences of the experienced different social environments. To test this, the present study focused on the direct effects of beneficial and adverse social experiences on aggressiveness and anxiety-like behavior in C57BL/6J mice. In contrast to the previous study, behavioral testing took place immediately after the last social experiences had been made. Interestingly, whereas individuals from an escapable adverse environment showed significantly lower levels of anxiety-like and higher levels of exploratory behavior than animals from a beneficial environment, aggressive behavior was not affected. From this, we conclude that different social experiences during adolescence exert immediate effects on anxiety-like but not aggressive behavior in male mice.
Collapse
|
41
|
Behavioral effects of chronic stress in the Fmr1 mouse model for fragile X syndrome. Behav Brain Res 2017; 320:128-135. [PMID: 27939692 DOI: 10.1016/j.bbr.2016.11.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 11/21/2022]
Abstract
Fragile X Syndrome (FXS) is a pervasive developmental disorder due to a mutation in the FMR1 X-linked gene. Despite its clear genetic cause, the expression of FXS symptoms is known to be modulated by environmental factors, including stress. Furthermore, several studies have shown disturbances in stress regulatory systems in FXS patients and Fmr1 mice. These studies have mostly focused on the hormonal responses to stress, using the acute exposure to a single type of stressor. Hence, little is known about the behavioral effects of stress in FXS, and the importance of the nature of the stressing procedure, especially in the context of a repeated exposure that more closely resembles real life conditions. Here we evaluated the effects of chronic exposure to different types of stress (i.e., either repeated restraint or unpredictable stress) on the behavioral phenotype of adult Fmr1 mice. Our results demonstrated that chronic stress induced deficits in social interaction and working memory only in WT mice and the impact of stress depended on the type of stressors and the specific behavior tested. Our data suggest that the behavioral sensitivity to stress is dramatically reduced in FXS, opening new views on the impact of gene-environment interactions in this pathology.
Collapse
|
42
|
The hippocampal transcriptomic signature of stress resilience in mice with microglial fractalkine receptor (CX3CR1) deficiency. Brain Behav Immun 2017; 61:184-196. [PMID: 27890560 DOI: 10.1016/j.bbi.2016.11.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022] Open
Abstract
Clinical studies suggest that key genetic factors involved in stress resilience are related to the innate immune system. In the brain, this system includes microglia cells, which play a major role in stress responsiveness. Consistently, mice with deletion of the CX3CR1 gene (CX3CR1-/- mice), which in the brain is expressed exclusively by microglia, exhibit resilience to chronic stress. Here, we compared the emotional, cognitive, neurogenic and microglial responses to chronic unpredictable stress (CUS) between CX3CR1-/- and wild type (WT) mice. This was followed by hippocampal whole transcriptome (RNA-seq) analysis. We found that following CUS exposure, WT mice displayed reduced sucrose preference, impaired novel object recognition memory, and reduced neurogenesis, whereas CX3CR1-/- mice were completely resistant to these effects of CUS. CX3CR1-/- mice were also resilient to the memory-suppressive effect of a short period of unpredictable stress. Microglial somas were larger in CX3CR1-/- than in WT, but in both genotypes CUS induced a similar decline in hippocampal microglial density and processes length. RNA sequencing and pathway analysis revealed basal strain differences, particularly reduced expression of interferon (IFN)-regulated and MHC class I gene transcripts in CX3CR1-/- mice. Furthermore, while CUS exposure similarly altered neuronal gene transcripts (e.g. Arc, Npas4) in both strains, transcripts downstream of hippocampal estrogen receptor signaling (particularly Igf2 and Igfbp2) were altered only in CX3CR1-/- mice. These findings indicate that emotional and cognitive stress resilience involves CX3CR1-dependent basal and stress-induced alterations in hippocampal transcription, implicating inhibition of CX3CR1 signaling as a novel approach for promoting stress resilience.
Collapse
|
43
|
Ren L, Tao W, Zhang H, Xue W, Tang J, Wu R, Xia B, Wu H, Chen G. Two standardized fractions of Gardenia jasminoides Ellis with rapid antidepressant effects are differentially associated with BDNF up-regulation in the hippocampus. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:66-73. [PMID: 27108051 DOI: 10.1016/j.jep.2016.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 03/13/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gardenia jasminoides Ellis (GJ) is one of the five constituents of Yueju pill, a Traditional Chinese Medicine for treatment of syndromes associated with mood disorders. Recently, preclinical and clinical studies suggest that Yueju pill confers rapid antidepressant effects. GJ is identified as the constituent primary for Yueju pill's rapid antidepressant effects. GJ's antidepressant action is temporally associated with up-regulated expression of brain-derived neurotrophic factor (BDNF) in the hippocampus. The present study aimed to identify chemical fractions responsible for the rapid antidepressant efficacy of GJ and its association with BDNF signaling. MATERIALS AND METHODS Four fractions of GJ were extracted using standardized procedure. The four fractions were screened for rapid antidepressant potential, using the behavioral paradigm of forced swimming test (FST) and tail suspension test (TST) assessed at 24h post a single administration. A single dose of the putatively effective fractions was further tested in mice exposed to chronic mild stress (CMS), followed with a comprehensive behavioral testing including TST, FST, sucrose preference test (SPT), and novelty suppressed-feeding (NSF). To test the association of BDNF signaling with rapid antidepressant effects of effective factions, the expressions of BDNF and its receptor tropomyosin receptor kinase B (TrkB) in the hippocampus were assessed at different times post a single administration of effective fractions. RESULTS Both petroleum ether (GJ-PE) and n-butyl alcohol fraction (GJ-BO) fractions of GJ displayed rapid antidepressant potential in the FST. In the TST, the antidepressant effects of GJ-PE lasted for a longer time than GJ-BO. Acute administration of either GJ-PE or GJ-BO significantly reversed the behavioral deficits in the tests of TST, FST, SPT and NSF in chronically stressed mice, confirming both fractions conferred rapid antidepressant efficacy. Interestingly, GJ-PE, but not GJ-BO, increased the expression of BDNF and TrkB in the hippocampus post a single administration. CONCLUSION Two standardized fractions GJ-PE and GJ-BO exhibited comparable rapid antidepressant-like effects on the CMS mice. However, only the effects of GJ-PE was associated with BDNF signaling.
Collapse
Affiliation(s)
- Li Ren
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Tao
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hailou Zhang
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenda Xue
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Juanjuan Tang
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruyan Wu
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Baomei Xia
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haoxing Wu
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gang Chen
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
44
|
Meyer N, Richter SH, Schreiber RS, Kloke V, Kaiser S, Lesch KP, Sachser N. The Unexpected Effects of Beneficial and Adverse Social Experiences during Adolescence on Anxiety and Aggression and Their Modulation by Genotype. Front Behav Neurosci 2016; 10:97. [PMID: 27303275 PMCID: PMC4880570 DOI: 10.3389/fnbeh.2016.00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/06/2016] [Indexed: 12/28/2022] Open
Abstract
Anxiety and aggression are part of the behavioral repertoire of humans and animals. However, in their exaggerated form both can become maladaptive and result in psychiatric disorders. On the one hand, genetic predisposition has been shown to play a crucial modulatory role in anxiety and aggression. On the other hand, social experiences have been implicated in the modulation of these traits. However, so far, mainly experiences in early life phases have been considered crucial for shaping anxiety-like and aggressive behavior, while the phase of adolescence has largely been neglected. Therefore, the aim of the present study was to elucidate how levels of anxiety-like and aggressive behavior are shaped by social experiences during adolescence and serotonin transporter (5-HTT) genotype. For this purpose, male mice of a 5-HTT knockout mouse model including all three genotypes (wildtype, heterozygous and homozygous 5-HTT knockout mice) were either exposed to an adverse social situation or a beneficial social environment during adolescence. This was accomplished in a custom-made cage system where mice experiencing the adverse environment were repeatedly introduced to the territory of a dominant opponent but had the possibility to escape to a refuge cage. Mice encountering beneficial social conditions had free access to a female mating partner. Afterwards, anxiety-like and aggressive behavior was assessed in a battery of tests. Surprisingly, unfavorable conditions during adolescence led to a decrease in anxiety-like behavior and an increase in exploratory locomotion. Additionally, aggressive behavior was augmented in animals that experienced social adversity. Concerning genotype, homozygous 5-HTT knockout mice were more anxious and less aggressive than heterozygous 5-HTT knockout and wildtype mice. In summary, adolescence is clearly an important phase in which anxiety-like and aggressive behavior can be shaped. Furthermore, it seems that having to cope with challenge during adolescence instead of experiencing throughout beneficial social conditions leads to reduced levels of anxiety-like behavior.
Collapse
Affiliation(s)
- Neele Meyer
- Department of Behavioural Biology, University of MuensterMuenster, Germany; Muenster Graduate School of Evolution, University of MuensterMuenster, Germany
| | - S Helene Richter
- Department of Behavioural Biology, University of Muenster Muenster, Germany
| | | | - Vanessa Kloke
- Department of Behavioural Biology, University of Muenster Muenster, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of MuensterMuenster, Germany; Muenster Graduate School of Evolution, University of MuensterMuenster, Germany
| | - Klaus-Peter Lesch
- Laboratory of Translational Neuroscience, Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Wuerzburg Wuerzburg, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of MuensterMuenster, Germany; Muenster Graduate School of Evolution, University of MuensterMuenster, Germany
| |
Collapse
|
45
|
Gross M, Pinhasov A. Chronic mild stress in submissive mice: Marked polydipsia and social avoidance without hedonic deficit in the sucrose preference test. Behav Brain Res 2016; 298:25-34. [DOI: 10.1016/j.bbr.2015.10.049] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/20/2015] [Accepted: 10/25/2015] [Indexed: 12/15/2022]
|
46
|
Pringproa K, Sathanawongs A, Khamphilai C, Sukkarinprom S, Oranratnachai A. Intravenous transplantation of mouse embryonic stem cells attenuates demyelination in an ICR outbred mouse model of demyelinating diseases. Neural Regen Res 2016; 11:1603-1609. [PMID: 27904491 PMCID: PMC5116839 DOI: 10.4103/1673-5374.193239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Induction of demyelination in the central nervous system (CNS) of experimental mice using cuprizone is widely used as an animal model for studying the pathogenesis and treatment of demyelination. However, different mouse strains used result in different pathological outcomes. Moreover, because current medicinal treatments are not always effective in multiple sclerosis patients, so the study of exogenous cell transplantation in an animal model is of great importance. The aims of the present study were to establish an alternative ICR outbred mouse model for studying demyelination and to evaluate the effects of intravenous cell transplantation in the present developed mouse model. Two sets of experiments were conducted. Firstly, ICR outbred and BALB/c inbred mice were fed with 0.2% cuprizone for 6 consecutive weeks; then demyelinating scores determined by luxol fast blue stain or immunolabeling with CNPase were evaluated. Secondly, attenuation of demyelination in ICR mice by intravenous injection of mES cells was studied. Scores for demyelination in the brains of ICR mice receiving cell injection (mES cells-injected group) and vehicle (sham-inoculated group) were assessed and compared. The results showed that cuprizone significantly induced demyelination in the cerebral cortex and corpus callosum of both ICR and BALB/c mice. Additionally, intravenous transplantation of mES cells potentially attenuated demyelination in ICR mice compared with sham-inoculated groups. The present study is among the earliest reports to describe the cuprizone-induced demyelination in ICR outbred mice. Although it remains unclear whether mES cells or trophic effects from mES cells are the cause of enhanced remyelination, the results of the present study may shed some light on exogenous cell therapy in central nervous system demyelinating diseases.
Collapse
Affiliation(s)
- Kidsadagon Pringproa
- Department of Veterinary Biosciences and Veterinary Public Heath, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anucha Sathanawongs
- Department of Veterinary Biosciences and Veterinary Public Heath, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chananthida Khamphilai
- Department of Veterinary Biosciences and Veterinary Public Heath, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sarocha Sukkarinprom
- Department of Veterinary Biosciences and Veterinary Public Heath, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Apichart Oranratnachai
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
47
|
Demeestere D, Libert C, Vandenbroucke RE. Therapeutic implications of the choroid plexus-cerebrospinal fluid interface in neuropsychiatric disorders. Brain Behav Immun 2015; 50:1-13. [PMID: 26116435 DOI: 10.1016/j.bbi.2015.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/29/2015] [Accepted: 06/13/2015] [Indexed: 12/31/2022] Open
Abstract
The choroid plexus (CP) comprises an epithelial monolayer that forms an important physical, enzymatic and immunologic barrier, called the blood-cerebrospinal fluid barrier (BCSFB). It is a highly vascularized organ located in the brain ventricles that is key in maintaining brain homeostasis as it produces cerebrospinal fluid (CSF) and has other important secretory functions. Furthermore, the CP-CSF interface plays a putative role in neurogenesis and has been implicated in neuropsychiatric diseases such as the neurodevelopmental disorders schizophrenia and autism. A role for this CNS border was also implicated in sleep disturbances and chronic and/or severe stress, which are risk factors for the development of neuropsychiatric conditions. Understanding the mechanisms by which disturbance of the homeostasis at the CP-CSF interface is involved in these different chronic low-grade inflammatory diseases can give new insights into therapeutic strategies. Hence, this review discusses the different roles that have been suggested so far for the CP in these neuropsychiatric disorders, with special attention to potential therapeutic applications.
Collapse
Affiliation(s)
- Delphine Demeestere
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium.
| |
Collapse
|
48
|
Ménard C, Hodes GE, Russo SJ. Pathogenesis of depression: Insights from human and rodent studies. Neuroscience 2015; 321:138-162. [PMID: 26037806 DOI: 10.1016/j.neuroscience.2015.05.053] [Citation(s) in RCA: 380] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/14/2015] [Accepted: 05/21/2015] [Indexed: 12/30/2022]
Abstract
Major depressive disorder (MDD) will affect one out of every five people in their lifetime and is the leading cause of disability worldwide. Nevertheless, mechanisms associated with the pathogenesis of MDD have yet to be completely understood and current treatments remain ineffective in a large subset of patients. In this review, we summarize the most recent discoveries and insights for which parallel findings have been obtained in human depressed subjects and rodent models of mood disorders in order to examine the potential etiology of depression. These mechanisms range from synaptic plasticity mechanisms to epigenetics and the immune system where there is strong evidence to support a functional role in the development of specific depression symptomology. Ultimately we conclude by discussing how novel therapeutic strategies targeting central and peripheral processes might ultimately aid in the development of effective new treatments for MDD and related stress disorders.
Collapse
Affiliation(s)
- C Ménard
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - G E Hodes
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - S J Russo
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
49
|
Qiu ZK, He JL, Liu X, Lai S, Ma JC, Zeng J, Li Y, Wu HW, Chen Y, Shen YG, Chen JS, Luo M. The role of allopregnanolone in the anxiolytic-like effect of free and easy wanderer plus (FEWP), a polyherbal preparation. Neurosci Lett 2015; 595:94-8. [PMID: 25800108 DOI: 10.1016/j.neulet.2015.03.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/10/2015] [Accepted: 03/19/2015] [Indexed: 12/08/2022]
Abstract
Anxiety disorders are the serious and burdensome psychiatric illnesses, which are closely correlated with allopregnanolone. The down-regulation of allopregnanolone biosynthesis has been implicated as the possible contributor to the aetiology of anxiety disorders. Free and easy wanderer plus (FEWP) is a well-known traditional Chinese medicine that had been shown to be effective in various mood disorders. The purpose of the present study was to evaluate the anxiolytic-like effect of FEWP and its association with the level of allopregnanolone in the brain. The animal behavioral tests were processed by the acute FEWP (2.5, 5 and 10mg/kg, p.o.) treatment. It had been shown that FEWP produced anxiolytic-like effects in behavioral models, including novelty suppressed feeding (5, 10mg/kg, p.o.), Vogel-type conflict test (10mg/kg, p.o.), elevated plus-maze test (5, 10mg/kg, p.o.). The animals were decapitated after the end of the behavioral tests and measured the allopregnanolone level of the prefrontal cortex and hippocampus by enzyme-linked immunosorbent assay (ELISA). The allopregnanolone level of the prefrontal cortex and hippocampus was increased by administration of FEWP (5, 10mg/kg, p.o.). Overall, these results indicated that FEWP exerts anxiolytic-like effects that were associated with the stiumlation of the allopregnanolone biosynthesis.
Collapse
Affiliation(s)
- Zhi-Kun Qiu
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Jia-Li He
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, PR China
| | - Xu Liu
- Pharmacy Department of General Hospital of Chinese People's Armed Police Forces, Beijing 100039, PR China
| | - Sha Lai
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Jian-Chun Ma
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Jia Zeng
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Yan Li
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Hong-Wei Wu
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Yong Chen
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Yong-Gang Shen
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Ji-Sheng Chen
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China.
| | - Min Luo
- Department of Clinical Laboratory, Nanfang Hospital of Southern Medical University, Guangzhou 510515,PR China.
| |
Collapse
|