1
|
Pereira JG, Leon LAA, de Almeida NAA, Raposo-Vedovi JV, Fontes-Dantas FL, Farinhas JGD, Pereira VCSR, Alves-Leon SV, de Paula VS. Higher frequency of Human herpesvirus-6 (HHV-6) viral DNA simultaneously with low frequency of Epstein-Barr virus (EBV) viral DNA in a cohort of multiple sclerosis patients from Rio de Janeiro, Brazil. Mult Scler Relat Disord 2023; 76:104747. [PMID: 37267685 DOI: 10.1016/j.msard.2023.104747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 06/04/2023]
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory and neurodegenerative disease of the central nervous system (CNS). The etiology of MS is not well understood, but it's likely one of the genetic and environmental factors. Approximately 85% of patients have relapsing-remitting MS (RRMS), while 10-15% have primary progressive MS (PPMS). Epstein-Barr virus (EBV) and Human herpesvirus 6 (HHV-6), members of the human Herpesviridae family, are strong candidates for representing the macroenvironmental factors associated with MS) pathogenesis. Antigenic mimicry of EBV involving B-cells has been implicate in MS risk factors and concomitance of EBV and HHV-6 latent infection has been associated to inflammatory MS cascade. To verify the possible role of EBV and HHV-6 as triggering or aggravating factors in RRMS and PPMS, we compare their frequency in blood samples collected from 166 MS patients. The presence of herpes DNA was searched by real-time PCR (qPCR). The frequency of EBV and HHV-6 in MS patients were 1.8% (3/166) and 8.9% (14/166), respectively. Among the positive patients, 100% (3/3) EBV and 85.8% (12/14) HHV-6 are RRMS and 14.4% (2/14) HHV-6 are PPMS. Detection of EBV was 1.2% (2/166) and HHV-6 was 0.6% (1/166) in blood donors. About clinical phenotype of these patients, incomplete multifocal myelitis, and optic neuritis were the main CNS manifestations. These are the first data about concomitant infection of these viruses in MS patients from Brazil. Up to date, our findings confirm a higher prevalence in female with MS and a high frequency of EBV and HHV-6 in RRMS patients.
Collapse
Affiliation(s)
| | - Luciane A Amado Leon
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute/ Fiocruz, Rio de Janeiro, Brazil
| | | | - Jéssica Vasques Raposo-Vedovi
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, Brazil
| | - Fabrícia Lima Fontes-Dantas
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, (UERJ), Rio de Janeiro, Brazil
| | - João Gabriel Dib Farinhas
- Department of Neurology/Reference and Research Center for Multiple Sclerosis and Other Central Nervous System Idiopathic Demyelinating Inflammatory Diseases, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valéria Coelho Santa Rita Pereira
- Department of Neurology/Reference and Research Center for Multiple Sclerosis and Other Central Nervous System Idiopathic Demyelinating Inflammatory Diseases, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Soniza V Alves-Leon
- Department of Neurology/Reference and Research Center for Multiple Sclerosis and Other Central Nervous System Idiopathic Demyelinating Inflammatory Diseases, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, Brazil.
| | - Vanessa S de Paula
- Laboratory of Molecular Virology, Oswaldo Cruz Institute/ Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Frau J, Coghe G, Lorefice L, Fenu G, Cocco E. The Role of Microorganisms in the Etiopathogenesis of Demyelinating Diseases. Life (Basel) 2023; 13:1309. [PMID: 37374092 DOI: 10.3390/life13061309] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Multiple sclerosis (MS), neuromyelitis optica (NMO) and myelin oligodendrocyte glycoprotein antibody disease (MOGAD) are inflammatory diseases of the central nervous system (CNS) with a multifactorial aetiology. Environmental factors are important for their development and microorganisms could play a determining role. They can directly damage the CNS, but their interaction with the immune system is even more important. The possible mechanisms involved include molecular mimicry, epitope spreading, bystander activation and the dual cell receptor theory. The role of Epstein-Barr virus (EBV) in MS has been definitely established, since being seropositive is a necessary condition for the onset of MS. EBV interacts with genetic and environmental factors, such as low levels of vitamin D and human endogenous retrovirus (HERV), another microorganism implicated in the disease. Many cases of onset or exacerbation of neuromyelitis optica spectrum disorder (NMOSD) have been described after infection with Mycobacterium tuberculosis, EBV and human immunodeficiency virus; however, no definite association with a virus has been found. A possible role has been suggested for Helicobacter pylori, in particular in individuals with aquaporin 4 antibodies. The onset of MOGAD could occur after an infection, mainly in the monophasic course of the disease. A role for the HERV in MOGAD has been hypothesized. In this review, we examined the current understanding of the involvement of infectious factors in MS, NMO and MOGAD. Our objective was to elucidate the roles of each microorganism in initiating the diseases and influencing their clinical progression. We aimed to discuss both the infectious factors that have a well-established role and those that have yielded conflicting results across various studies.
Collapse
Affiliation(s)
- Jessica Frau
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | - Giancarlo Coghe
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | - Lorena Lorefice
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | | | - Eleonora Cocco
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
3
|
Papiri G, D’Andreamatteo G, Cacchiò G, Alia S, Silvestrini M, Paci C, Luzzi S, Vignini A. Multiple Sclerosis: Inflammatory and Neuroglial Aspects. Curr Issues Mol Biol 2023; 45:1443-1470. [PMID: 36826039 PMCID: PMC9954863 DOI: 10.3390/cimb45020094] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Multiple sclerosis (MS) represents the most common acquired demyelinating disorder of the central nervous system (CNS). Its pathogenesis, in parallel with the well-established role of mechanisms pertaining to autoimmunity, involves several key functions of immune, glial and nerve cells. The disease's natural history is complex, heterogeneous and may evolve over a relapsing-remitting (RRMS) or progressive (PPMS/SPMS) course. Acute inflammation, driven by infiltration of peripheral cells in the CNS, is thought to be the most relevant process during the earliest phases and in RRMS, while disruption in glial and neural cells of pathways pertaining to energy metabolism, survival cascades, synaptic and ionic homeostasis are thought to be mostly relevant in long-standing disease, such as in progressive forms. In this complex scenario, many mechanisms originally thought to be distinctive of neurodegenerative disorders are being increasingly recognized as crucial from the beginning of the disease. The present review aims at highlighting mechanisms in common between MS, autoimmune diseases and biology of neurodegenerative disorders. In fact, there is an unmet need to explore new targets that might be involved as master regulators of autoimmunity, inflammation and survival of nerve cells.
Collapse
Affiliation(s)
- Giulio Papiri
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Giordano D’Andreamatteo
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Gabriella Cacchiò
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Sonila Alia
- Section of Biochemistry, Biology and Physics, Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Mauro Silvestrini
- Neurology Unit, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Cristina Paci
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Simona Luzzi
- Neurology Unit, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Arianna Vignini
- Section of Biochemistry, Biology and Physics, Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
- Correspondence:
| |
Collapse
|
4
|
Vojdani A, Vojdani E, Saidara E, Maes M. Persistent SARS-CoV-2 Infection, EBV, HHV-6 and Other Factors May Contribute to Inflammation and Autoimmunity in Long COVID. Viruses 2023; 15:v15020400. [PMID: 36851614 PMCID: PMC9967513 DOI: 10.3390/v15020400] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
A novel syndrome called long-haul COVID or long COVID is increasingly recognized in a significant percentage of individuals within a few months after infection with SARS-CoV-2. This disorder is characterized by a wide range of persisting, returning or even new but related symptoms that involve different tissues and organs, including respiratory, cardiac, vascular, gastrointestinal, musculo-skeletal, neurological, endocrine and systemic. Some overlapping symptomatologies exist between long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Very much like with long ME/CFS, infections with herpes family viruses, immune dysregulation, and the persistence of inflammation have been reported as the most common pattern for the development of long COVID. This review describes several factors and determinants of long COVID that have been proposed, elaborating mainly on viral persistence, reactivation of latent viruses such as Epstein-Barr virus and human herpesvirus 6 which are also associated with the pathology of ME/CFS, viral superantigen activation of the immune system, disturbance in the gut microbiome, and multiple tissue damage and autoimmunity. Based on these factors, we propose diagnostic strategies such as the measurement of IgG and IgM antibodies against SARS-CoV-2, EBV, HHV-6, viral superantigens, gut microbiota, and biomarkers of autoimmunity to better understand and manage this multi-factorial disorder that continues to affect millions of people in the world.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab, Inc., Los Angeles, CA 90035, USA
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA
- Correspondence: ; Tel.: +1-310-657-1077
| | | | - Evan Saidara
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Zhu G, Zhou S, Xu Y, Gao R, Zhang M, Zeng Q, Su W, Wang R. Chickenpox and multiple sclerosis: A Mendelian randomization study. J Med Virol 2023; 95:e28315. [PMID: 36380510 DOI: 10.1002/jmv.28315] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/17/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Observational studies have suggested a suspected association between varicella-zoster virus (VZV) infection and multiple sclerosis (MS), but the connection has remained unclear. The aim of the present study is to evaluate the causal relationship between chickenpox which is caused by VZV infection and MS. We performed a two-sample Mendelian randomization analysis to investigate the association of chickenpox with MS using summary statistics from genome-wide association studies (GWAS). The GWAS summary statistics data for chickenpox was from the 23andMe cohort including 107 769 cases and 15 982 controls. A large summary of statistical data from the International Multiple Sclerosis Genetics Consortium (IMSGC) was used as the outcome GWAS data set, including 14 802 MS cases and 26 703 controls. We found evidence of a significant association between genetically predicted chickenpox and risk of MS (odds ratio [OR] = 35.27, 95% confidence interval [CI] = 22.97-54.17, p = 1.46E-59). Our findings provided evidence indicating a causal effect of chickenpox on MS. Further elucidations of this association and underlying mechanisms are needed for identifying feasible interventions to promote MS prevention.
Collapse
Affiliation(s)
- Gaizhi Zhu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Shan Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yaqi Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Ran Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Min Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Qi Zeng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Wenting Su
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Analysis of viral nucleic acids in duodenal biopsies from adult patients with celiac disease. Eur J Gastroenterol Hepatol 2022; 34:1107-1110. [PMID: 35830367 DOI: 10.1097/meg.0000000000002404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the presence of Adenovirus, Epstein-Barr virus (EBV), HHV-6 and cytomegalovirus (CMV) nucleic acids in the gastrointestinal biopsies from active CD patients. METHODS Gastrointestinal biopsies of 40 active CD patients and 40 non-CD patients were collected during the endoscopic investigation of gastrointestinal symptoms. RESULTS HHV-6B was found in 62.5% of CD patients and in 65% of non-CD individuals, whereas the prevalence of EBV-positive samples was 20 and 10%, respectively. Nucleic acids from HHV-6A, CMV and adenovirus were not detected in any group. CONCLUSION These data suggest that these viruses may not play a role in the pathogenesis of acute CD, but they do not exclude the possibility that viruses can act as a trigger for the onset of celiac disease.
Collapse
|
7
|
Lundström W, Gustafsson R. Human Herpesvirus 6A Is a Risk Factor for Multiple Sclerosis. Front Immunol 2022; 13:840753. [PMID: 35222435 PMCID: PMC8866567 DOI: 10.3389/fimmu.2022.840753] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
The role for human herpesvirus (HHV)-6A or HHV-6B in multiple sclerosis (MS) pathogenesis has been controversial. Possibly because the damage of the virus infection may occur before onset of clinical symptoms and because it has been difficult to detect active infection and separate serological responses to HHV-6A or 6B. Recent studies report that in MS patients the serological response against HHV-6A is increased whereas it is decreased against HHV-6B. This effect seems to be even more pronounced in MS patients prior to diagnosis and supports previous studies postulating a predomination for HHV-6A in MS disease and suggests that the infection is important at early stages of the disease. Furthermore, HHV-6A infection interacts with other factors suspected of modulating MS susceptibility and progression such as infection with Epstein-Barr virus (EBV) and Cytomegalovirus (CMV), tobacco smoking, HLA alleles, UV irradiation and vitamin D levels. The multifactorial nature of MS and pathophysiological role for HHV-6A in inflammation and autoimmunity are discussed.
Collapse
Affiliation(s)
- Wangko Lundström
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rasmus Gustafsson
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Voumvourakis KI, Fragkou PC, Kitsos DK, Foska K, Chondrogianni M, Tsiodras S. Human herpesvirus 6 infection as a trigger of multiple sclerosis: an update of recent literature. BMC Neurol 2022; 22:57. [PMID: 35168545 PMCID: PMC8845292 DOI: 10.1186/s12883-022-02568-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/22/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND This is an update on the existing evidence regarding a relationship between infection with human herpesvirus 6 (HHV-6) and multiple sclerosis (MS) in order to contribute on the attempt to define the nature and strength of that relationship. RESULTS Study quality was assessed using the criteria proposed by Moore and Wolfson and by the classification criteria used by the Canadian Task Force on the Periodic Health Examination. Studies were categorized both by experimental technique and by quality (high [A], intermediate [B], and low [C]) as determined by the Moore and Wolfson criteria. Overall, 27 (90%) of 30 studies, 18 (86%) of which were classified as A quality, reached a statistically significant result. According to the Canadian Task Force classification, all studies were categorized as evidence of qualityII-1. Limitations of the available experimental techniques and perspectives for future research are discussed. CONCLUSIONS The current review continues to emphasize the need for further, objective, evidence-based examination of the relationship between HHV-6 infection and multiple sclerosis.
Collapse
Affiliation(s)
- K I Voumvourakis
- 2nd Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - P C Fragkou
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - D K Kitsos
- 2nd Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - K Foska
- 2nd Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - M Chondrogianni
- 2nd Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - S Tsiodras
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Lee HL, Park JW, Seok JM, Jeon MY, Kim H, Lim YM, Shin HY, Kang SY, Kwon OH, Lee SS, Seok HY, Min JH, Lee SH, Kim BJ, Kim BJ. Serum Peptide Immunoglobulin G Autoantibody Response in Patients with Different Central Nervous System Inflammatory Demyelinating Disorders. Diagnostics (Basel) 2021; 11:diagnostics11081339. [PMID: 34441277 PMCID: PMC8392162 DOI: 10.3390/diagnostics11081339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Previous efforts to discover new surrogate markers for the central nervous system (CNS) inflammatory demyelinating disorders have shown inconsistent results; moreover, supporting evidence is scarce. The present study investigated the IgG autoantibody responses to various viral and autoantibodies-related peptides proposed to be related to CNS inflammatory demyelinating disorders using the peptide microarray method. We customized a peptide microarray containing more than 2440 immobilized peptides representing human and viral autoantigens. Using this, we tested the sera of patients with neuromyelitis optica spectrum disorders (NMOSD seropositive, n = 6; NMOSD seronegative, n = 5), multiple sclerosis (MS, n = 5), and myelin-oligodendrocyte glycoprotein antibody-associated disease (MOGAD, n = 6), as well as healthy controls (HC, n = 5) and compared various peptide immunoglobulin G (IgG) responses between the groups. Among the statistically significant peptides based on the pairwise comparisons of IgG responses in each disease group to HC, cytomegalovirus (CMV)-related peptides were most clearly distinguishable among the study groups. In particular, the most significant differences in IgG response were observed for HC vs. MS and HC vs. seronegative NMOSD (p = 0.064). Relatively higher IgG responses to CMV-related peptides were observed in patients with MS and NMOSD based on analysis of the customized peptide microarray.
Collapse
Affiliation(s)
- Hye Lim Lee
- Department of Neurology, Korea University College of Medicine, Seoul 02841, Korea; (H.L.L.); (J.-W.P.)
| | - Jin-Woo Park
- Department of Neurology, Korea University College of Medicine, Seoul 02841, Korea; (H.L.L.); (J.-W.P.)
| | - Jin Myoung Seok
- Department of Neurology, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea;
| | - Mi Young Jeon
- Samsung Research Institute of Future Medicine, Seoul 06351, Korea;
| | - Hojin Kim
- Department of Neurology, National Cancer Center, Goyang 10408, Korea;
| | - Young-Min Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Sa-Yoon Kang
- Department of Neurology, College of Medicine, Cheju National University, Cheju 63241, Korea;
| | - Oh-Hyun Kwon
- Department of Neurology, Eulji University College of Medicine, Seoul 01830, Korea;
| | - Sang-Soo Lee
- Department of Neurology, Chungbuk National University College of Medicine, Cheongju 28644, Korea; (S.-S.L.); (S.-H.L.)
| | - Hung Youl Seok
- Department of Neurology, Keimyung University School of Medicine, Daegu 41931, Korea;
| | - Ju-Hong Min
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Korea
| | - Sung-Hyun Lee
- Department of Neurology, Chungbuk National University College of Medicine, Cheongju 28644, Korea; (S.-S.L.); (S.-H.L.)
| | - Byung-Jo Kim
- Department of Neurology, Korea University College of Medicine, Seoul 02841, Korea; (H.L.L.); (J.-W.P.)
- BK21 FOUR Program in Learning Health Systems, Korea University, Seoul 02841, Korea
- Correspondence: (B.-J.K.); (B.J.K.)
| | - Byoung Joon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Korea
- Correspondence: (B.-J.K.); (B.J.K.)
| |
Collapse
|
10
|
Jakhmola S, Upadhyay A, Jain K, Mishra A, Jha HC. Herpesviruses and the hidden links to Multiple Sclerosis neuropathology. J Neuroimmunol 2021; 358:577636. [PMID: 34174587 DOI: 10.1016/j.jneuroim.2021.577636] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023]
Abstract
Herpesviruses like Epstein-Barr virus, human herpesvirus (HHV)-6, HHV-1, VZV, and human endogenous retroviruses, have an age-old clinical association with multiple sclerosis (MS). MS is an autoimmune disease of the nervous system wherein the myelin sheath deteriorates. The most popular mode of virus mediated immune system manipulation is molecular mimicry. Numerous herpesvirus antigens are similar to myelin proteins. Other mechanisms described here include the activity of cytokines and autoantibodies produced by the autoreactive T and B cells, respectively, viral déjà vu, epitope spreading, CD46 receptor engagement, impaired remyelination etc. Overall, this review addresses the host-parasite association of viruses with MS.
Collapse
Affiliation(s)
- Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, India
| | - Khushboo Jain
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| |
Collapse
|
11
|
The Role of Extracellular Vesicles in Demyelination of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21239111. [PMID: 33266211 PMCID: PMC7729475 DOI: 10.3390/ijms21239111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/21/2022] Open
Abstract
It is being increasingly demonstrated that extracellular vesicles (EVs) are deeply involved in the physiology of the central nervous system (CNS). Processes such as synaptic activity, neuron-glia communication, myelination and immune response are modulated by EVs. Likewise, these vesicles may participate in many pathological processes, both as triggers of disease or, on the contrary, as mechanisms of repair. EVs play relevant roles in neurodegenerative disorders such as Alzheimer’s or Parkinson’s diseases, in viral infections of the CNS and in demyelinating pathologies such as multiple sclerosis (MS). This review describes the involvement of these membrane vesicles in major demyelinating diseases, including MS, neuromyelitis optica, progressive multifocal leukoencephalopathy and demyelination associated to herpesviruses.
Collapse
|
12
|
Santpere G, Telford M, Andrés-Benito P, Navarro A, Ferrer I. The Presence of Human Herpesvirus 6 in the Brain in Health and Disease. Biomolecules 2020; 10:E1520. [PMID: 33172107 PMCID: PMC7694807 DOI: 10.3390/biom10111520] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/03/2023] Open
Abstract
The human herpesvirus 6 (HHV-6) -A and -B are two dsDNA beta-herpesviruses infectingalmost the entire worldwide population. These viruses have been implicated in multipleneurological conditions in individuals of various ages and immunological status, includingencephalitis, epilepsy, and febrile seizures. HHV-6s have also been suggested as playing a role inthe etiology of neurodegenerative diseases such as multiple sclerosis and Alzheimer's disease. Theapparent robustness of these suggested associations is contingent on the accuracy of HHV-6detection in the nervous system. The effort of more than three decades of researching HHV-6 in thebrain has yielded numerous observations, albeit using variable technical approaches in terms oftissue preservation, detection techniques, sample sizes, brain regions, and comorbidities. In thisreview, we aimed to summarize current knowledge about the entry routes and direct presence ofHHV-6 in the brain parenchyma at the level of DNA, RNA, proteins, and specific cell types, inhealthy subjects and in those with neurological conditions. We also discuss recent findings relatedto the presence of HHV-6 in the brains of patients with Alzheimer's disease in light of availableevidence.
Collapse
Affiliation(s)
- Gabriel Santpere
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), DCEXS, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
| | - Marco Telford
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Catalonia, Spain; (M.T.); (A.N.)
| | - Pol Andrés-Benito
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Arcadi Navarro
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Catalonia, Spain; (M.T.); (A.N.)
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
| | - Isidre Ferrer
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge University Hospital, IDIBELL (Bellvitge Biomedical Research Centre), Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
13
|
Asouri M, Sahraian MA, Karimpoor M, Fattahi S, Motamed N, Doosti R, Amirbozorgi G, Sadaghiani S, Mahboudi F, Akhavan-Niaki H. Molecular Detection of Epstein-Barr Virus, Human Herpes Virus 6, Cytomegalovirus, and Hepatitis B Virus in Patients with Multiple Sclerosis. Middle East J Dig Dis 2020; 12:171-177. [PMID: 33062222 PMCID: PMC7548094 DOI: 10.34172/mejdd.2020.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic disease with significant morbidity. A wide spectrum of risk factors has been suggested that triggers the development of MS. Among them, several viral infections have been implicated to play a role in MS pathogenesis. We aimed to evaluate the relationship between viral diseases, including Epstein–Barr virus (EBV), human herpes virus 6 (HHV-6), cytomegalovirus (CMV), and hepatitis B virus (HBV) and MS in the present case-control study. METHODS About 100 patients with confirmed MS and age- and sex-matched individuals were selected as case and control groups, respectively. The patients were randomly selected from individuals diagnosed by neurologists based on the clinical signs and symptoms and imaging procedures. RESULTS More than 100 patients with MS and patients who were referred for other causes were analyzed for the presence of DNA of EBV, HHV6, CMV, and HBV separately. 9.37% of the control group had a positive test for the DNA of EBV in a real-time polymerase chain reaction (PCR), while the frequency of positive test result was zero in the case group (p = 0.0012). HBV DNA was not detected in both the case and control groups. The prevalence of CMV was 0.88 and zero in the control and case groups, respectively (p = 0.3410). For HHV6, 9.73 % of the control group had a positive result, while this test was positive in 5.88% of the patients with MS (p = 0.2959). CONCLUSION We detected a significantly higher number of individuals with DNA of EBV in their blood among the control group compared with the case group. In conclusion, the results suggest a surprisingly adverse association between MS and EBV, and no association was found between the presence of DNA of HBV, CMV, and HHV6 and MS.
Collapse
Affiliation(s)
- Mohsen Asouri
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,North Research Center, Pasteur Institute of Iran, Amol, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center; Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Karimpoor
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sadegh Fattahi
- North Research Center, Pasteur Institute of Iran, Amol, Iran
| | - Nima Motamed
- Department of Social Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Rozita Doosti
- Multiple Sclerosis Research Center; Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shokufeh Sadaghiani
- Multiple Sclerosis Research Center; Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereidoun Mahboudi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Haleh Akhavan-Niaki
- Zoonoses Research Center, North Research Center, Pasteur Institute of Iran, Amol, Iran.,Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
14
|
Human herpesvirus 6A active infection in patients with autoimmune Hashimoto's thyroiditis. Braz J Infect Dis 2019; 23:435-440. [PMID: 31751524 PMCID: PMC9428182 DOI: 10.1016/j.bjid.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/25/2019] [Accepted: 10/17/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Hypothyroidism due to Hashimoto's thyroiditis (HT) is the commonest autoimmune endocrine illness in which antibodies against thyroid organ result in inflammation. The disease has a complex etiology that involves genetic and environmental influences. Viral infections may be involved in triggering of the disease as their molecular mimicry enhance autoimmune responses. Human herpesvirus-6 (HHV-6) is recognized for its contribution to some autoimmune diseases. OBJECTIVE In the current study, the prevalence of HHV-6 active infection in patients with HT and with non-autoimmune thyroid disorders were compared with patients with euthyroidism. In addition, a correlation between presence of HHV-6 infections and HT was investigated. METHODS A total of 151 patients with clinically and laboratory confirmed HT, 59 patients with non-autoimmune thyroid disorders, and 32 patients with normal thyroid function were included in the study. For further confirmation of HT disease, all the precipitants were tested for anti-thyroid peroxidase (TPO), and anti-thyroglobulin (TG) antibodies. For detection of both HHV-6 types A and B, nested PCR and restriction enzyme digestion were used. HHV-6 DNA positive samples were further investigated by DNA sequencing analysis. RESULTS HHV-6A DNA was found in serum sample of 57 out of 151 patients (38%) with HT, which was significantly more often than in patients with non-autoimmune thyroid disorders (p=0.001). However, HHV-6 DNA was not detected in serum samples of euthyroid subjects. CONCLUSIONS The results support a possible role for active HHV-6A infection, demonstrated by the presence of HHV-6 DNA in sera, in the development of HT.
Collapse
|
15
|
Genome-Wide Approach to the CD4 T-Cell Response to Human Herpesvirus 6B. J Virol 2019; 93:JVI.00321-19. [PMID: 31043533 DOI: 10.1128/jvi.00321-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) and cytomegalovirus (CMV) are population-prevalent betaherpesviruses with intermittent lytic replication that can be pathogenic in immunocompromised hosts. Elucidation of the adaptive immune response is valuable for understanding pathogenesis and designing novel treatments. Knowledge of T-cell antigens has reached the genome-wide level for CMV and other human herpesviruses, but study of HHV-6 is at an earlier stage. Using rare-cell enrichment combined with an HLA-agnostic, proteome-wide approach, we queried HHV-6B-specific CD4 T cells from 18 healthy donors with each known HHV-6B protein. We detected a low abundance of HHV-6-specific CD4 T cells in blood; however, the within-person CD4 T-cell response is quite broad: the median number of open reading frame (ORF) products recognized was nine per person. Overall, the data expand the number of documented HHV-6B CD4 T-cell antigens from approximately 11 to 60. Epitopes in the proteins encoded by U14, U90, and U95 were mapped with synthetic peptides, and HLA restriction was defined for some responses. Intriguingly, CD4 T-cell antigens newly described in this report are among the most population prevalent, including U73, U72, U95, and U30. Our results indicate that selection of HHV-6B ORFs for immunotherapy should consider this expanded panel of HHV-6B antigens.IMPORTANCE Human herpesvirus 6 is highly prevalent and maintains chronic infection in immunocompetent individuals, with the potential to replicate widely in settings of immunosuppression, leading to clinical disease. Antiviral compounds may be ineffective and/or pose dose-limiting toxicity, and therefore, immune-based therapies have garnered increased interest in recent years. Attempts at addressing this unmet medical need begin with understanding the cellular response to HHV-6 at the individual and population levels. The present study provides a comprehensive assessment of HHV-6-specific T-cell responses that may inform the development of cell-based therapies directed at this virus.
Collapse
|
16
|
Hussein HM, Rahal EA. The role of viral infections in the development of autoimmune diseases. Crit Rev Microbiol 2019; 45:394-412. [PMID: 31145640 DOI: 10.1080/1040841x.2019.1614904] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The exact aetiology of most autoimmune diseases remains unknown, nonetheless, several factors contributing to the induction or exacerbation of autoimmune reactions have been suggested. These include the genetic profile and lifestyle of the affected individual in addition to environmental triggers such as bacterial, parasitic, fungal and viral infections. Infections caused by viruses usually trigger a potent immune response that is necessary for the containment of the infection; however, in some cases, a failure in the regulation of this immune response may lead to harmful immune reactions directed against the host's antigens. The autoimmune attack can be carried out by different arms and components of the immune system and through different possible mechanisms including molecular mimicry, bystander activation, and epitope spreading among others. In this review, we examine the data available for the involvement of viral infections in triggering or exacerbating autoimmune diseases in addition to discussing the mechanisms by which these viral infections and the immune pathways they trigger possibly contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Hadi M Hussein
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut , Beirut , Lebanon.,Center for Infectious Diseases Research (CIDR), American University of Beirut , Beirut , Lebanon
| | - Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut , Beirut , Lebanon.,Center for Infectious Diseases Research (CIDR), American University of Beirut , Beirut , Lebanon
| |
Collapse
|
17
|
Mentis AFA, Dardiotis E, Grigoriadis N, Petinaki E, Hadjigeorgiou GM. Viruses and endogenous retroviruses in multiple sclerosis: From correlation to causation. Acta Neurol Scand 2017; 136:606-616. [PMID: 28542724 PMCID: PMC7159535 DOI: 10.1111/ane.12775] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2017] [Indexed: 12/28/2022]
Abstract
Multiple sclerosis is an immune-mediated disease with an environmental component. According to a long-standing but unproven hypothesis dating to initial descriptions of multiple sclerosis (MS) at the end of the 19th century, viruses are either directly or indirectly implicated in MS pathogenesis. Whether viruses in MS are principally causal or simply contributory remains to be proven, but many viruses or viral elements-predominantly Epstein-Barr virus, human endogenous retroviruses (HERVs) and human herpesvirus 6 (HHV-6) but also less common viruses such as Saffold and measles viruses-are associated with MS. Here, we present an up-to-date and comprehensive review of the main candidate viruses implicated in MS pathogenesis and summarize how these viruses might cause or lead to the hallmark demyelinating and inflammatory lesions of MS. We review data from epidemiological, animal and in vitro studies and in doing so offer a transdisciplinary approach to the topic. We argue that it is crucially important not to interpret "absence of evidence" as "evidence of absence" and that future studies need to focus on distinguishing correlative from causative associations. Progress in the MS-virus field is expected to arise from an increasing body of knowledge on the interplay between viruses and HERVs in MS. Such interactions suggest common HERV-mediated pathways downstream of viral infection that cause both neuroinflammation and neurodegeneration. We also comment on the limitations of existing studies and provide future research directions for the field.
Collapse
Affiliation(s)
- A.-F. A. Mentis
- Department of Microbiology; University Hospital of Larissa; University of Thessaly; Larissa Greece
- The Johns Hopkins University, AAP; Baltimore MD USA
| | - E. Dardiotis
- Department of Neurology; University Hospital of Larissa; University of Thessaly; Larissa Greece
| | - N. Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology; B’ Department of Neurology; AHEPA University Hospital; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - E. Petinaki
- Department of Microbiology; University Hospital of Larissa; University of Thessaly; Larissa Greece
| | - G. M. Hadjigeorgiou
- Department of Neurology; University Hospital of Larissa; University of Thessaly; Larissa Greece
| |
Collapse
|
18
|
Crystal Structure of the DNA-Binding Domain of Human Herpesvirus 6A Immediate Early Protein 2. J Virol 2017; 91:JVI.01121-17. [PMID: 28794035 DOI: 10.1128/jvi.01121-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022] Open
Abstract
Immediate early proteins of human herpesvirus 6A (HHV-6A) are expressed at the outset of lytic infection and thereby regulate viral gene expression. Immediate early protein 2 (IE2) of HHV-6A is a transactivator that drives a variety of promoters. The C-terminal region of HHV-6A IE2 is shared among IE2 homologs in betaherpesviruses and is involved in dimerization, DNA binding, and transcription factor binding. In this study, the structure of the IE2 C-terminal domain (IE2-CTD) was determined by X-ray crystallography at a resolution of 2.5 Å. IE2-CTD forms a homodimer stabilized by a β-barrel core with two interchanging long loops. Unexpectedly, the core structure resembles those of the gammaherpesvirus factors EBNA1 of Epstein-Barr virus and LANA of Kaposi sarcoma-associated herpesvirus, but the interchanging loops are longer in IE2-CTD and form helix-turn-helix (HTH)-like motifs at their tips. The HTH and surrounding α-helices form a structural feature specific to the IE2 group. The apparent DNA-binding site (based on structural similarity with EBNA1 and LANA) resides on the opposite side of the HTH-like motifs, surrounded by positive electrostatic potential. Mapping analysis of conserved residues on the three-dimensional structure delineated a potential factor-binding site adjacent to the expected DNA-binding site. The predicted bi- or tripartite functional sites indicate a role for IE2-CTD as an adapter connecting the promoter and transcriptional factors that drive gene expression.IMPORTANCE Human herpesvirus 6A (HHV-6A) and HHV-6B belong to betaherpesvirus subfamily. Both viruses establish lifelong latency after primary infection, and their reactivation poses a significant risk to immunocompromised patients. Immediate early protein 2 (IE2) of HHV-6A and HHV-6B is a transactivator that triggers viral replication and contains a DNA-binding domain shared with other betaherpesviruses such as human herpesvirus 7 and human cytomegalovirus. In this study, an atomic structure of the DNA-binding domain of HHV-6A IE2 was determined and analyzed, enabling a structure-based understanding of the functions of IE2, specifically DNA recognition and interaction with transcription factors. Unexpectedly, the dimeric core resembles the DNA-binding domain of transcription regulators from gammaherpesviruses, showing structural conservation as a DNA-binding domain but with its own unique structural features. These findings facilitate further characterization of this key viral transactivator.
Collapse
|
19
|
WANG JUNJIE, NISHIMURA MITSUHIRO, WAKATA AIKA, MORI YASUKO. Purification, Crystallization and X-ray Diffraction Study of the C-terminal Domain of Human Herpesvirus 6A Immediate Early Protein 2. THE KOBE JOURNAL OF MEDICAL SCIENCES 2017; 62:E142-E149. [PMID: 28490711 PMCID: PMC5436528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/26/2016] [Indexed: 06/07/2023]
Abstract
Human herpesvirus 6A (HHV-6A) starts its replication cycle following the action of immediate early proteins that transactivate viral promoters. Immediate early protein 2 (IE2) of HHV-6A is a 1500 amino acid polypeptide with a C-terminal region that is conserved among beta-herpesvirus subfamily members. In this study, a structural domain in the homologous C-terminal region was subjected to secondary structure prediction, and residues 1324-1500 were subsequently designated as the C-terminal domain of IE2 (IE2-CTD). The gene fragment encoding IE2-CTD was inserted into an E. coli expression vector and expressed as a fusion protein with maltose binding protein (MBP) at the N-terminus. IE2-CTD has a theoretical isoelectric point (pI) of 9.29, and strong cation exchange column chromatography was effective for purification. Needle-shaped crystals of IE2-CTD were obtained using the sitting-drop vapour diffusion method, and larger selenomethionine-labelled crystals of space group P2₁ diffracted X-rays to 2.5 Å resolution using synchrotron radiation. Data were collected at the selenium absorption peak wavelength for experimental phasing by the single anomalous dispersion method. The resulting electron density map clearly shows the protein backbone, and full structural determination and refinement are in progress.
Collapse
Affiliation(s)
- JUNJIE WANG
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - MITSUHIRO NISHIMURA
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - AIKA WAKATA
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YASUKO MORI
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
20
|
Skuja S, Zieda A, Ravina K, Chapenko S, Roga S, Teteris O, Groma V, Murovska M. Structural and Ultrastructural Alterations in Human Olfactory Pathways and Possible Associations with Herpesvirus 6 Infection. PLoS One 2017; 12:e0170071. [PMID: 28072884 PMCID: PMC5224992 DOI: 10.1371/journal.pone.0170071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 12/28/2016] [Indexed: 12/11/2022] Open
Abstract
Structural and ultrastructural alterations in human olfactory pathways and putative associations with human herpesvirus 6 (HHV-6) infection were studied. The olfactory bulb/tract samples from 20 subjects with an unspecified encephalopathy determined by pathomorphological examination of the brain autopsy, 17 healthy age-matched and 16 younger controls were used. HHV-6 DNA was detected in 60, 29, and 19% of cases in these groups, respectively. In the whole encephalopathy group, significantly more HHV-6 positive neurons and oligodendrocytes were found in the gray matter, whereas, significantly more HHV-6 positive astrocytes, oligodendrocytes, microglia/macrophages and endothelial cells were found in the white matter. Additionally, significantly more HHV-6 positive astrocytes and, in particular, oligodendrocytes were found in the white matter when compared to the gray matter. Furthermore, when only HHV-6 PCR+ encephalopathy cases were studied, we observed similar but stronger associations between HHV-6 positive oligodendrocytes and CD68 positive cells in the white matter. Cellular alterations were additionally evidenced by anti-S100 immunostaining, demonstrating a significantly higher number of S100 positive cells in the gray matter of the whole encephalopathy group when compared to the young controls, and in the white matter when compared to both control groups. In spite the decreased S100 expression in the PCR+ encephalopathy group when compared to PCR- cases and controls, groups demonstrated significantly higher number of S100 positive cells in the white compared to the gray matter. Ultrastructural changes confirming the damage of myelin included irregularity of membranes and ballooning of paranodal loops. This study shows that among the cellular targets of the nervous system, HHV-6 most severely affects oligodendrocytes and the myelin made by them.
Collapse
Affiliation(s)
- Sandra Skuja
- Institute of Anatomy and Anthropology, Riga Stradins University, Riga, Latvia
- * E-mail:
| | - Anete Zieda
- Institute of Anatomy and Anthropology, Riga Stradins University, Riga, Latvia
| | - Kristine Ravina
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Svetlana Chapenko
- A. Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia
| | - Silvija Roga
- Department of Pathology, Riga 1st Hospital, Riga, Latvia
| | - Ojars Teteris
- Latvian State Centre for Forensic Medical Examination, Riga, Latvia
| | - Valerija Groma
- Institute of Anatomy and Anthropology, Riga Stradins University, Riga, Latvia
| | - Modra Murovska
- A. Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia
| |
Collapse
|
21
|
Tao C, Simpson S, Taylor BV, van der Mei I. Association between human herpesvirus & human endogenous retrovirus and MS onset & progression. J Neurol Sci 2016; 372:239-249. [PMID: 28017222 DOI: 10.1016/j.jns.2016.11.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/02/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
This review discusses the role of Epstein-Barr virus (EBV), human herpesvirus 6 (HHV6) and human endogenous retroviruses (HERVs) in the onset and progression of multiple sclerosis (MS). Although EBV has been established as one of the causal factors in MS onset, its role in MS progression is still uncertain. Moreover, interactions between EBV and other risk factor on MS development still need more investment. With less consistent evidence than EBV, HHV6 has also been implicated in the pathogenesis of MS; moreover, it showed a closer connection with the disease activity. Recent studies found that HERVs were associated with the development and progression of MS. Some antiviral treatments have shown promise for clinical interventions in the future. Future studies are yet needed to fully clarify the role of these agents in MS onset and disease course and the modes by which they realise these effects.
Collapse
Affiliation(s)
- Chunrong Tao
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - Steve Simpson
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - Ingrid van der Mei
- Menzies Institute for Medical Research, University of Tasmania, Australia.
| |
Collapse
|
22
|
Zheleznikova GF, Scripchenko NV, Ivanova GP, Surovtseva AV, Scripchenko EY. Gerpes viruses and multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2016. [DOI: 10.17116/jnevro201611691133-143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Deficient Natural Killer Dendritic Cell Responses Underlay the Induction of Theiler's Virus-Induced Autoimmunity. mBio 2015; 6:e01175. [PMID: 26242630 PMCID: PMC4526717 DOI: 10.1128/mbio.01175-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The initiating events in autoimmune disease remain to be completely understood, but it is thought that genetic predisposition synergizes with “environmental” factors, including viral infection, leading to disease. One elegant animal model used to study the pathogenesis of multiple sclerosis that perfectly blends genetics and environmental components in the context of virus-induced autoimmunity is Theiler’s murine encephalitis virus-induced demyelinating disease (TMEV-IDD). TMEV-infected disease-susceptible SJL/J mice develop a persistent central nervous system (CNS) infection and later develop autoimmune demyelination, while disease-resistant C57BL/6 (B6) mice rapidly clear the infection and develop no autoimmune pathology. Mice of the (B6 × SJL/J)F1 cross between these two mouse strains are classified as intermediately susceptible. We employed this model to investigate if rapid virus clearance in B6 versus SJL/J mice was perhaps related to differences in the innate immune response in the CNS of the two strains in the first few days following intracerebral virus inoculation. Here we show that SJL/J mice lack, in addition to NK cells, a novel innate immune subset known as natural killer dendritic cells (NKDCs), which express phenotypic markers (CD11cint NK1.1+) and functional activity of both NK cells and DCs. These NKDCs are activated in the periphery and migrate into the infected CNS in a very late antigen 4 (VLA-4)-dependent fashion. Most significantly, NKDCs are critical for CNS clearance of TMEV, as transfer of NKDCs purified from B6 mice into TMEV-IDD-susceptible (B6 × SJL/J)F1 mice promotes viral clearance. Together the findings of this work show for the first time a link between NKDCs, viral infection, and CNS autoimmunity. Viral infection is an important cofactor, along with genetic susceptibility, in the initiation of a variety of organ-specific autoimmune diseases. Thus, in-depth understanding of how virus infections trigger autoimmunity may lead to novel ways to prevent or treat these diseases. Theiler’s murine encephalitis virus-induced demyelinating disease (TMEV-IDD) serves as an important model for the human T cell-mediated autoimmune demyelinating disease multiple sclerosis. Induction of TMEV-IDD is genetically controlled as SJL/J mice develop persistent central nervous system (CNS) infection leading to chronic autoimmune demyelination, while C57BL/6 mice rapidly clear virus and are disease resistant. We determined that, as opposed to resistant B6 mice, disease-susceptible SJL/J mice lacked a unique innate immune population, the natural killer dendritic cell (NKDC), which was shown to play a critical role in early CNS virus clearance via its ability to both present virus antigen to T cells and to lyse target cells.
Collapse
|
24
|
Brydak-Godowska J, Borkowski P, Szczepanik S, Moneta-Wielgoś J, Kęcik D. Clinical manifestation of self-limiting acute retinal necrosis. Med Sci Monit 2014; 20:2088-96. [PMID: 25356955 PMCID: PMC4226315 DOI: 10.12659/msm.890469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background The purpose of this paper was to present a case series of self-limiting, peripheral acute retinal necrosis and to demonstrate efficacy of treatment with valacyclovir in patients resistant to acyclovir. The diagnosis was made on ophthalmoscopic examination and positive serum tests for herpes viruses. Material/Methods Ten patients (6F and 4M) aged 19–55 years were diagnosed and treated for self-limiting acute retinal necrosis (ARN). The following endpoints were reported: visual outcomes, clinical features, disease progression, treatment, and complications. Patients received only symptomatic treatment because they did not consent to vitreous puncture. Results Peripheral, mild retinitis was diagnosed in all eyes at baseline. Initially, all patients were treated with systemic acyclovir (800 mg, 5 times a day), prednisone (typically 40–60 mg/day), and aspirin in an outpatient setting. In 6 patients, treatment was discontinued at 6 months due to complete resolution of the inflammatory process. Four patients with immune deficiency showed signs and symptoms of chronic inflammation. Two patients did not respond to acyclovir (2 non-responders); however, those patients were successfully treated with valacyclovir. Complete resolution of inflammatory lesions was observed in 8 patients. In 2 patients, the disease progressed despite treatment – 1 female patient after kidney transplant who stopped the prescribed medications, and 1 male patient with SLE and antiphospholipid syndrome who experienced breakthrough symptoms on-treatment. He died due to cerebral venous sinus thrombosis. Neurological complications (encephalitis and meningitis) were observed in 2 female patients. Prophylactic laser photocoagulation was performed in 1 subject. Conclusions A series of cases of self-limiting acute retinal necrosis (ARN) is presented. This clinical form of ARN can resemble toxoplasmic retinitis in some cases. Oral antiviral medications provide an effective alternative to intravenous formulations in patients with self-limiting ARN. Retinitis is associated with the risk of encephalitis.
Collapse
Affiliation(s)
| | - Piotr Borkowski
- Department of Zoonoses and Tropical Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Szymon Szczepanik
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | | | - Dariusz Kęcik
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Affiliation(s)
- Joshua A Hill
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA.
| | - Nagagopal Venna
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
26
|
Possible role of human herpesvirus 6 as a trigger of autoimmune disease. ScientificWorldJournal 2013; 2013:867389. [PMID: 24282390 PMCID: PMC3825270 DOI: 10.1155/2013/867389] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/09/2013] [Indexed: 01/08/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) infection is common and has a worldwide distribution. Recently, HHV-6A and HHV-6B have been reclassified into two distinct species based on different biological features (genetic, antigenic, and cell tropism) and disease associations. A role for HHV-6A/B has been proposed in several autoimmune disorders (AD), including multiple sclerosis (MS), autoimmune connective tissue diseases, and Hashimoto's thyroiditis. The focus of this review is to discuss the above-mentioned AD associated with HHV-6 and the mechanisms proposed for HHV-6A/B-induced autoimmunity. HHV-6A/B could trigger autoimmunity by exposing high amounts of normally sequestered cell antigens, through lysis of infected cells. Another potential trigger is represented by molecular mimicry, with the synthesis of viral proteins that resemble cellular molecules, as a mechanism of immune escape. The virus could also induce aberrant expression of histocompatibility molecules thereby promoting the presentation of autoantigens. CD46-HHV-6A/B interaction is a new attractive mechanism proposed: HHV-6A/B (especially HHV-6A) could participate in neuroinflammation in the context of MS by promoting inflammatory processes through CD46 binding. Although HHV-6A/B has the ability to trigger all the above-mentioned mechanisms, more studies are required to fully elucidate the possible role of HHV-6A/B as a trigger of AD.
Collapse
|
27
|
Olival GSD, Lima BM, Sumita LM, Serafim V, Fink MC, Nali LH, Romano CM, Thomaz RB, Cavenaghi VB, Tilbery CP, Penalva-de-Oliveira AC. Multiple sclerosis and herpesvirus interaction. ARQUIVOS DE NEURO-PSIQUIATRIA 2013; 71:727-30. [DOI: 10.1590/0004-282x20130160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple sclerosis is the most common autoimmune inflammatory demyelinating disease of the central nervous system, and its etiology is believed to have both genetic and environmental components. Several viruses have already been implicated as triggers and there are several studies that implicate members of the Herpesviridae family in the pathogenesis of MS. The most important characteristic of these viruses is that they have periods of latency and exacerbations within their biological sanctuary, the central nervous system. The Epstein-Barr, cytomegalovirus, human herpesvirus 6 and human herpesvirus 7 viruses are the members that are most studied as being possible triggers of multiple sclerosis. According to evidence in the literature, the herpesvirus family is strongly involved in the pathogenesis of this disease, but it is unlikely that they are the only component responsible for its development. There are probably multiple triggers and more studies are necessary to investigate and define these interactions.
Collapse
|
28
|
Wylie KM, Weinstock GM, Storch GA. Virome genomics: a tool for defining the human virome. Curr Opin Microbiol 2013; 16:479-84. [PMID: 23706900 PMCID: PMC3755052 DOI: 10.1016/j.mib.2013.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/19/2013] [Accepted: 04/23/2013] [Indexed: 11/21/2022]
Abstract
High throughput, deep sequencing assays are powerful tools for gaining insights into virus-host interactions. Sequencing assays can discover novel viruses and describe the genomes of novel and known viruses. Genomic information can predict viral proteins that can be characterized, describe important genes in the host that control infections, and evaluate gene expression of viruses and hosts during infection. Sequencing can also describe variation and evolution of viruses during replication and transmission. This review recounts some of the major advances in the studies of virus-host interactions from the last two years, and discusses the uses of sequencing technologies relating to these studies.
Collapse
Affiliation(s)
- Kristine M Wylie
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St. Louis, MO 63108, United States.
| | | | | |
Collapse
|
29
|
Abstract
Human herpesvirus (HHV-) 6A and HHV-6B are two distinct β-herpesviruses which have been associated with various neurological diseases, including encephalitis, meningitis, epilepsy, and multiple sclerosis. Although the reactivation of both viruses is recognized as the cause of some neurological complications in conditions of immunosuppression, their involvement in neuroinflammatory diseases in immunocompetent people is still unclear, and the mechanisms involved have not been completely elucidated. Here, we review the available data providing evidence for the capacity of HHV-6A and -6B to infect the central nervous system and to induce proinflammatory responses by infected cells. We discuss the potential role of both viruses in neuroinflammatory pathologies and the mechanisms which could explain virus-induced neuropathogenesis.
Collapse
Affiliation(s)
- Joséphine M. Reynaud
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, University of Lyon 1, ENS-Lyon, 21 Avenue T. Garnier, 69365 Lyon, France
| | - Branka Horvat
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, University of Lyon 1, ENS-Lyon, 21 Avenue T. Garnier, 69365 Lyon, France
| |
Collapse
|
30
|
Monitoring of active human herpes virus 6 infection in Iranian patients with different subtypes of multiple sclerosis. J Pathog 2013; 2013:194932. [PMID: 23431459 PMCID: PMC3566604 DOI: 10.1155/2013/194932] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/19/2012] [Accepted: 11/02/2012] [Indexed: 11/18/2022] Open
Abstract
Background. Recently, it has been suggested that human herpes virus 6 (HHV6) may play a role in the pathogenesis of multiple sclerosis (MS). Our purpose is to determine the incidence of reactivated HHV6 in MS patients. Methods. Viral sequence analyzed by qPCR in the peripheral blood mononuclear cells (PBMCs), serum, and saliva samples of different subtypes of MS patients (n = 78) and healthy controls (n = 123). HHV6 IgG and IgM antibody levels measured by ELISA technique in the plasma samples of both groups. Likewise, cerebrospinal fluid (CSF) samples of some MS patients (n = 38) were analyzed for viral sequence. Results. Results demonstrate increased levels of anti-HHV6-IgG (78.2% versus 76.4% in controls; P = NS), and IgM (34.6% versus 6.5% in controls; P < 0.05) in MS patients. Furthermore, RRMS and SPMS patients showed relatively higher anti-HHV6 IgG and IgM compared to PPMS (P < 0.001). Moreover, load of cell-free viral DNA was higher in RRMS and SPMS patients and detected in 60.2% (47/78) of MS patients, compared with 14.6% (18/123) of healthy controls (P < 0.001). Moreover, load of cell-free viral DNA was higher in RRMS and SPMS patients and detected in 60.2% (47/78) of MS patients, compared with 14.6% (18/123) of healthy controls (P < 0.001). Conclusions. The results extend the observation of an increased frequency of systemic reactivated HHV6 infection in MS patients with developed stages of disease.
Collapse
|
31
|
Delbue S, Carluccio S, Ferrante P. The long and evolving relationship between viruses and multiple sclerosis. Future Virol 2012. [DOI: 10.2217/fvl.12.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a demyelinating disorder of unknown etiology, possibly caused by a virus or is virus-triggered. Several viruses, including herpesviruses, were suggested as etiologic agents or risk factors for exacerbation in the course of illness but none have been shown to be irrefutably linked. Recently the interest of researchers and clinicians in the association between viruses and MS was reawakened by the development of progressive multifocal leukoencephalopathy, a demyelinating and fatal disease caused by JC polyomavirus replication, in natalizumab-treated MS patients. In this review, we will illustrate the evidence underlying the viral hypothesis for MS pathogenesis and will review the main features of the potential viral candidates. We will also describe the risks associated with newer MS therapies and with viral/bacterial vaccinations.
Collapse
Affiliation(s)
- Serena Delbue
- Fondazione Ettore Sansavini, Health Science Foundation, Lugo, RA, Italy
| | - Silvia Carluccio
- Department of Public Health–Microbiology–Virology, University of Milan, Milan, Italy
| | - Pasquale Ferrante
- Department of Public Health–Microbiology–Virology, University of Milan, Milan, Italy
- Istituto Clinico Città Studi, Milan, Italy
| |
Collapse
|
32
|
Martinez NE, Sato F, Omura S, Minagar A, Alexander JS, Tsunoda I. Immunopathological patterns from EAE and Theiler's virus infection: Is multiple sclerosis a homogenous 1-stage or heterogenous 2-stage disease? ACTA ACUST UNITED AC 2012; 20:71-84. [PMID: 22633747 DOI: 10.1016/j.pathophys.2012.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multiple sclerosis (MS) is a disease which can presents in different clinical courses. The most common form of MS is the relapsing-remitting (RR) course, which in many cases evolves into secondary progressive (SP) disease. Autoimmune models such as experimental autoimmune encephalomyelitis (EAE) have been developed to represent the various clinical forms of MS. These models along with clinico-pathological evidence obtained from MS patients have allowed us to propose '1-stage' and '2-stage' disease theories to explain the transition in the clinical course of MS from RR to SP. Relapses in MS are associated with pro-inflammatory T helper (Th) 1/Th17 immune responses, while remissions are associated with anti-inflammatory Th2/regulatory T (Treg) immune responses. Based on the '1-stage disease' theory, the transition from RR to SP disease occurs when the inflammatory immune response overwhelms the anti-inflammatory immune response. The '2-stage disease' theory proposes that the transition from RR to SP-MS occurs when the Th2 response or some other responses overwhelm the inflammatory response resulting in the sustained production of anti-myelin antibodies, which cause continuing demyelination, neurodegeneration, and axonal loss. The Theiler's virus model is also a 2-stage disease, where axonal degeneration precedes demyelination during the first stage, followed by inflammatory demyelination during the second stage.
Collapse
Affiliation(s)
- Nicholas E Martinez
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, LSU Health, School of Medicine, Shreveport, LA 71130, USA
| | | | | | | | | | | |
Collapse
|
33
|
Jankosky C, Deussing E, Gibson RL, Haverkos HW. Viruses and vitamin D in the etiology of type 1 diabetes mellitus and multiple sclerosis. Virus Res 2011; 163:424-30. [PMID: 22119899 DOI: 10.1016/j.virusres.2011.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 11/11/2011] [Accepted: 11/13/2011] [Indexed: 12/28/2022]
Abstract
Although specific viruses have been associated with autoimmune diseases, none fulfill Koch's criteria of causation. The etiologies of such diseases appear to be complex and multifactorial. For example, one might propose that the etiology of type 1 diabetes mellitus results from a toxic metabolite of nitrosamines during an enteroviral infection. Multiple sclerosis might result from a cascade of events involving several herpes virus infections activated during periods of vitamin D deficiency. We encourage investigators to consider Rotman's sufficient-component causal model when developing hypotheses for testing for the etiology of chronic diseases. Delineating the web of causation may lead to additional strategies for prevention and treatment of several autoimmune diseases.
Collapse
Affiliation(s)
- Christopher Jankosky
- Division of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | | |
Collapse
|
34
|
Virtanen JO, Pietiläinen-Nicklén J, Uotila L, Färkkilä M, Vaheri A, Koskiniemi M. Intrathecal human herpesvirus 6 antibodies in multiple sclerosis and other demyelinating diseases presenting as oligoclonal bands in cerebrospinal fluid. J Neuroimmunol 2011; 237:93-7. [PMID: 21767883 DOI: 10.1016/j.jneuroim.2011.06.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 01/01/2023]
Abstract
Demyelinating diseases of the central nervous system (CNS) often include elevated IgG production in intrathecal space presenting as oligoclonal bands (OCBs) in cerebrospinal fluid (CSF). In most demyelinating diseases, e.g. in multiple sclerosis (MS), the underlying cause is not known. We used isoelectric focusing and affinity immunoblot to study the specificity of CSF OCBs to human herpesvirus-6 (HHV-6) in patients with demyelinating diseases of the CNS including MS. Eighty patients with positive OCB finding were included in the study. The OCBs reacted with the HHV-6 antigen in 18 cases (23%). Twelve of 46 MS patients (26%), 5 of 24 other demyelinating diseases (21%) and 1 of 10 other neurological disorders (10%) had HHV-6 specific OCBs in CSF. A specific intrathecal HHV-6 A and B antibody production was shown in a proportion of patients with demyelinating diseases and might suggest a role in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Jussi O Virtanen
- Department of Virology, Haartman Institute, University of Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|