1
|
Wang Z, Liu L, Shi L, Wang X, Zhang J, Li W, Yang K. Identifying the Determinants of Distribution of Oncomelania hupensis Based on Geographically and Temporally Weighted Regression Model along the Yangtze River in China. Pathogens 2022; 11:pathogens11090970. [PMID: 36145401 PMCID: PMC9504969 DOI: 10.3390/pathogens11090970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 12/29/2022] Open
Abstract
Background: As the unique intermediate host of Schistosoma japonicum, the geographical distribution of Oncomelania hupensis (O. hupensis) is an important index in the schistosomiasis surveillance system. This study comprehensively analyzed the pattern of snail distribution along the Yangtze River in Jiangsu Province and identified the dynamic determinants of the distribution of O. hupensis. Methods: Snail data from 2017 to 2021 in three cities (Nanjing, Zhenjiang, and Yangzhou) along the Yangtze River were obtained from the annual cross-sectional survey produced by the Jiangsu Institute of Parasitic Diseases. Spatial autocorrelation and hot-spot analysis were implemented to detect the spatio–temporal dynamics of O. hupensis distribution. Furthermore, 12 factors were used as independent variables to construct an ordinary least squares (OLS) model, a geographically weighted regression (GWR) model, and a geographically and temporally weighted regression (GTWR) model to identify the determinants of the distribution of O. hupensis. The adjusted coefficients of determination (adjusted R2, AICc, RSS) were used to evaluate the performance of the models. Results: In general, the distribution of O. hupensis had significant spatial aggregation in the past five years, and the density of O. hupensis increased eastwards in the Jiangsu section of the lower reaches of the Yangtze River. Relatively speaking, the distribution of O. hupensis wase spatially clustered from 2017 to 2021, that is, it was found that the border between Yangzhou and Zhenjiang was the high density agglomeration area of O. hupensis snails. According to the GTWR model, the density of O. hupensis was related to the normalized difference vegetation index, wetness, dryness, land surface temperature, elevation, slope, and distance to nearest river, which had a good explanatory power for the snail data in Yangzhou City (adjusted R2 = 0.7039, AICc = 29.10, RSS = 6.81). Conclusions: The distribution of O. hupensis and the environmental factors in the Jiangsu section of the lower reaches of the Yangtze River had significant spatial aggregation. In different areas, the determinants affecting the distribution of O. hupensis were different, which could provide a scientific basis for precise prevention and control of O. hupensis. A GTWR model was prepared and used to identify the dynamic determinants for the distribution of O. hupensis and contribute to the national programs of control of schistosomiasis and other snail-borne diseases.
Collapse
Affiliation(s)
- Zhe Wang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lu Liu
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
- Public Health Research Center, Jiangnan University, Wuxi 214122, China
| | - Liang Shi
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Xinyao Wang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Jianfeng Zhang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Wei Li
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Kun Yang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
- Public Health Research Center, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-136-5619-0585
| |
Collapse
|
2
|
Shi L, Zhang JF, Li W, Yang K. Development of New Technologies for Risk Identification of Schistosomiasis Transmission in China. Pathogens 2022; 11:224. [PMID: 35215167 PMCID: PMC8877870 DOI: 10.3390/pathogens11020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 12/07/2022] Open
Abstract
Schistosomiasis is serious parasitic disease with an estimated global prevalence of active infections of more than 190 million. Accurate methods for the assessment of schistosomiasis risk are crucial for schistosomiasis prevention and control in China. Traditional approaches to the identification of epidemiological risk factors include pathogen biology, immunology, imaging, and molecular biology techniques. Identification of schistosomiasis risk has been revolutionized by the advent of computer network communication technologies, including 3S, mathematical modeling, big data, and artificial intelligence (AI). In this review, we analyze the development of traditional and new technologies for risk identification of schistosomiasis transmission in China. New technologies allow for the integration of environmental and socio-economic factors for accurate prediction of the risk population and regions. The combination of traditional and new techniques provides a foundation for the development of more effective approaches to accelerate the process of schistosomiasis elimination.
Collapse
Affiliation(s)
- Liang Shi
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Wuxi 214064, China; (L.S.); (J.-F.Z.); (W.L.)
- Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Wuxi 214064, China
- Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
- Public Health Research Center, Jiangnan University, Wuxi 214064, China
| | - Jian-Feng Zhang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Wuxi 214064, China; (L.S.); (J.-F.Z.); (W.L.)
- Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Wuxi 214064, China
- Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
- Public Health Research Center, Jiangnan University, Wuxi 214064, China
| | - Wei Li
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Wuxi 214064, China; (L.S.); (J.-F.Z.); (W.L.)
- Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Wuxi 214064, China
- Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
- Public Health Research Center, Jiangnan University, Wuxi 214064, China
| | - Kun Yang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Wuxi 214064, China; (L.S.); (J.-F.Z.); (W.L.)
- Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Wuxi 214064, China
- Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
- Public Health Research Center, Jiangnan University, Wuxi 214064, China
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
3
|
From the One Health Perspective: Schistosomiasis Japonica and Flooding. Pathogens 2021; 10:pathogens10121538. [PMID: 34959493 PMCID: PMC8709050 DOI: 10.3390/pathogens10121538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 01/09/2023] Open
Abstract
Schistosomiasis is a water-borne parasitic disease distributed worldwide, while schistosomiasis japonica localizes in the People’s Republic of China, the Philippines, and a few regions of Indonesia. Although significant achievements have been obtained in these endemic countries, great challenges still exist to reach the elimination of schistosomiasis japonica, as the occurrence of flooding can lead to several adverse consequences on the prevalence of schistosomiasis. This review summarizes the influence of flooding on the transmission of schistosomiasis japonica and interventions responding to the adverse impacts from the One Health perspective in human beings, animals, and the environment. For human and animals, behavioral changes and the damage of water conservancy and sanitary facilities will increase the intensity of water contact. For the environment, the density of Oncomelania snails significantly increases from the third year after flooding, and the snail habitats can be enlarged due to active and passive diffusion. With more water contact of human and other reservoir hosts, and larger snail habitats with higher density of living snails, the transmission risk of schistosomiasis increases under the influence of flooding. With the agenda set for global schistosomiasis elimination, interventions from the One Health perspective are put forward to respond to the impacts of increased flooding. For human beings, conducting health education to increase the consciousness of self-protection, preventive chemotherapy for high-risk populations, supply of safe water, early case finding, timely reporting, and treating cases will protect people from infection and prevent the outbreak of schistosomiasis. For animals, culling susceptible domestic animals, herding livestock in snail-free areas, treating livestock with infection or at high risk of infection, harmless treatment of animal feces to avoid water contamination, and monitoring the infection status of wild animals in flooding areas are important to cut off the transmission chain from the resources. For the environment, early warning of flooding, setting up warning signs and killing cercaria in risk areas during and post flooding, reconstructing damaged water conservancy facilities, developing hygiene and sanitary facilities, conducting snail surveys, using molluscicide, and predicting areas with high risk of schistosomiasis transmission after flooding all contribute to reducing the transmission risk of schistosomiasis. These strategies need the cooperation of the ministry of health, meteorological administration, water resources, agriculture, and forestry to achieve the goal of minimizing the impact of flooding on the transmission of schistosomiasis. In conclusion, flooding is one of the important factors affecting the transmission of schistosomiasis japonica. Multi-sectoral cooperation is needed to effectively prevent and control the adverse impacts of flooding on human beings, animals, and the environment.
Collapse
|
4
|
Zhang J, Yue M, Hu Y, Bergquist R, Su C, Gao F, Cao ZG, Zhang Z. Risk prediction of two types of potential snail habitats in Anhui Province of China: Model-based approaches. PLoS Negl Trop Dis 2020; 14:e0008178. [PMID: 32251421 PMCID: PMC7162538 DOI: 10.1371/journal.pntd.0008178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 04/16/2020] [Accepted: 02/27/2020] [Indexed: 11/19/2022] Open
Abstract
Elimination of the intermediate snail host of Schistosoma is the most effective way to control schistosomiasis and the most important first step is to accurately identify the snail habitats. Due to the substantial resources required for traditional, manual snail-searching in the field, and potential risk of miss-classification of potential snail habitats by remote sensing, more convenient and precise methods are urgently needed. Snail data (N = 15,000) from two types of snail habitats (lake/marshland and hilly areas) in Anhui Province, a typical endemic area for schistosomiasis, were collected together with 36 environmental variables covering the whole province. Twelve different models were built and evaluated with indices, such as area under the curve (AUC), Kappa, percent correctly classified (PCC), sensitivity and specificity. We found the presence-absence models performing better than those based on presence-only. However, those derived from machine-learning, especially the random forest (RF) approach were preferable with all indices above 0.90. Distance to nearest river was found to be the most important variable for the lake/marshlands, while the climatic variables were more important for the hilly endemic areas. The predicted high-risk areas for potential snail habitats of the lake/marshland type exist mainly along the Yangtze River, while those of the hilly type are dispersed in the areas south of the Yangtze River. We provide here the first comprehensive risk profile of potential snail habitats based on precise examinations revealing the true distribution and habitat type, thereby improving efficiency and accuracy of snail control including better allocation of limited health resources.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Ming Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | | | - Chuan Su
- Center for Global Health, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology & Immunology, Nanjing Medical University, Jiangning District, Nanjing, Jiangsu, China
| | - Fenghua Gao
- Anhui Institute of Schistosomiasis Control, Hefei, Anhui Province, China
| | - Zhi-Guo Cao
- Anhui Institute of Schistosomiasis Control, Hefei, Anhui Province, China
| | - Zhijie Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
5
|
Bayesian spatial analysis of cholangiocarcinoma in Northeast Thailand. Sci Rep 2019; 9:14263. [PMID: 31582774 PMCID: PMC6776517 DOI: 10.1038/s41598-019-50476-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 09/02/2019] [Indexed: 12/13/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant neoplasm of the biliary tract. Thailand reports the highest incidence of CCA in the world. The aim of this study was to map the distribution of CCA and identify spatial disease clusters in Northeast Thailand. Individual-level data of patients with histopathologically confirmed CCA, aggregated at the sub-district level, were obtained from the Cholangiocarcinoma Screening and Care Program (CASCAP) between February 2013 and December 2017. For analysis a multivariate Zero-inflated, Poisson (ZIP) regression model was developed. This model incorporated a conditional autoregressive (CAR) prior structure, with posterior parameters estimated using Bayesian Markov chain Monte Carlo (MCMC) simulation with Gibbs sampling. Covariates included in the models were age, sex, normalized vegetation index (NDVI), and distance to water body. There was a total of 1,299 cases out of 358,981 participants. CCA incidence increased 2.94 fold (95% credible interval [CrI] 2.62–3.31) in patients >60 years as compared to ≤60 years. Males were 2.53 fold (95% CrI: 2.24–2.85) more likely to have CCA when compared to females. CCA decreased with a 1 unit increase of NDVI (Relative Risk =0.06; 95% CrI: 0.01–0.63). When posterior means were mapped spatial clustering was evident after accounting for the model covariates. Age, sex and environmental variables were associated with an increase in the incidence of CCA. When these covariates were included in models the maps of the posterior means of the spatially structured random effects demonstrated evidence of spatial clustering.
Collapse
|
6
|
Xia C, Hu Y, Ward MP, Lynn H, Li S, Zhang J, Hu J, Xiao S, Lu C, Li S, Liu Y, Zhang Z. Identification of high-risk habitats of Oncomelania hupensis, the intermediate host of schistosoma japonium in the Poyang Lake region, China: A spatial and ecological analysis. PLoS Negl Trop Dis 2019; 13:e0007386. [PMID: 31206514 PMCID: PMC6597197 DOI: 10.1371/journal.pntd.0007386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 06/27/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Identifying and eliminating snail habitats is the key measure for schistosomiasis control, critical for the nationwide strategy of eliminating schistosomiasis in China. Here, our aim was to construct a new analytical framework to predict high-risk snail habitats based on a large sample field survey for Oncomelania hupensis, providing guidance for schistosomiasis control and prevention. METHODOLOGY/PRINCIPAL FINDINGS Ten ecological models were constructed based on the occurrence data of Oncomelania hupensis and a range of variables in the Poyang Lake region of China, including four presence-only models (Maximum Entropy Models, Genetic Algorithm for rule-set Production, Bioclim and Domain) and six presence-absence models (Generalized Linear Models, Multivariate Adaptive Regression Splines, Flexible Discriminant Analysis, as well as machine algorithmic models-Random Forest, Classification Tree Analysis, Generalized Boosted Model), to predict high-risk snail habitats. Based on overall predictive performance, we found Presence-absence models outperformed the presence-only models and the models based on machine learning algorithms of classification trees showed the highest accuracy. The highest risk was located in the watershed of the River Fu in Yugan County, as well as the watershed of the River Gan and the River Xiu in Xingzi County, covering an area of 52.3 km2. The other high-risk areas for both snail habitats and schistosomiasis were mainly concentrated at the confluence of Poyang Lake and its five main tributaries. CONCLUSIONS/SIGNIFICANCE This study developed a new distribution map of snail habitats in the Poyang Lake region, and demonstrated the critical role of ecological models in risk assessment to directing local field investigation of Oncomelania hupensis. Moreover, this study could also contribute to the development of effective strategies to prevent further spread of schistosomiasis from endemic areas to non-endemic areas.
Collapse
Affiliation(s)
- Congcong Xia
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, P. R. China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, P. R. China
- Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, P. R. China
- Department of Infection Control Administration, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Yi Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, P. R. China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, P. R. China
- Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, P. R. China
| | - Michael P. Ward
- Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Henry Lynn
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, P. R. China
| | - Si Li
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, P. R. China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, P. R. China
| | - Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, P. R. China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, P. R. China
| | - Jian Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, P. R. China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, P. R. China
| | - Shuang Xiao
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, P. R. China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, P. R. China
| | - Chengfang Lu
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, P. R. China
| | - Shizhu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, P. R. China
| | - Ying Liu
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, P. R. China
| | - Zhijie Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, P. R. China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, P. R. China
- Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, P. R. China
| |
Collapse
|
7
|
Malone JB, Bergquist R, Martins M, Luvall JC. Use of Geospatial Surveillance and Response Systems for Vector-Borne Diseases in the Elimination Phase. Trop Med Infect Dis 2019; 4:E15. [PMID: 30669341 PMCID: PMC6473698 DOI: 10.3390/tropicalmed4010015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
The distribution of diseases caused by vector-borne viruses and parasites are restricted by the environmental requirements of their vectors, but also by the ambient temperature inside the host as it influences the speed of maturation of the infectious agent transferred. The launch of the Soil Moisture Active Passive (SMAP) satellite in 2015, and the new ECOSTRESS instrument onboard the International Space Station (ISS) in 2018, established the leadership of the National Aeronautics Space Administration (NASA) in ecology and climate research by allowing the structural and functional classification of ecosystems that govern vector sustainability. These advances, and the availability of sub-meter resolution data from commercial satellites, contribute to seamless mapping and modelling of diseases, not only at continental scales (1 km²) and local community or agricultural field scales (15⁻30 m²), but for the first time, also at the habitat⁻household scale (<1 m²). This communication presents current capabilities that are related to data collection by Earth-observing satellites, and draws attention to the usefulness of geographical information systems (GIS) and modelling for the study of important parasitic diseases.
Collapse
Affiliation(s)
- John B Malone
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | - Moara Martins
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Jeffrey C Luvall
- National Aeronautics Space Administration (NASA), MSFC ST11, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805, USA.
| |
Collapse
|
8
|
Araujo Navas AL, Soares Magalhães RJ, Osei F, Fornillos RJC, Leonardo LR, Stein A. Modelling local areas of exposure to Schistosoma japonicum in a limited survey data environment. Parasit Vectors 2018; 11:465. [PMID: 30103810 PMCID: PMC6090730 DOI: 10.1186/s13071-018-3039-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/27/2018] [Indexed: 01/14/2023] Open
Abstract
Background Spatial modelling studies of schistosomiasis (SCH) are now commonplace. Covariate values are commonly extracted at survey locations, where infection does not always take place, resulting in an unknown positional exposure mismatch. The present research aims to: (i) describe the nature of the positional exposure mismatch in modelling SCH helminth infections; (ii) delineate exposure areas to correct for such positional mismatch; and (iii) validate exposure areas using human positive cases. Methods To delineate exposure areas to Schistosoma japonicum, a spatial Bayesian network (sBN) was constructed. It uses data on exposure risk factors such as: potential sites for snails’ accessibility, geographical distribution of snail infection rate, and cost of the community to access nearby water bodies. Prior and conditional probabilities were obtained from the literature and inserted as weights based on their relative contribution to exposure; these probabilities were then used to calculate joint probabilities of exposure within the sBN. Results High values of probability of S. japonicum exposure correspond to polygons where snails could potentially be present, for instance in wet soils and areas with low slopes, but also where people can easily access water bodies. Low correlation (R2 = 0.3) was found between the percentage of human cases and the delineated probabilities of exposure when validation buffers are generated over the human cases. Conclusions The utility of a probabilistic method for the identification of exposure areas for S. japonicum, with wider application for other water-borne infections, was demonstrated. From a public health perspective, the schistosomiasis exposure sBN developed in this study could be used to guide local schistosomiasis control teams to specific potential areas of exposure, and improve efficiency of mass drug administration campaigns in places where people are likely to be exposed to the infection. Electronic supplementary material The online version of this article (10.1186/s13071-018-3039-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea L Araujo Navas
- Faculty of Geo-information Science and Earth Observation (ITC), University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands.
| | - Ricardo J Soares Magalhães
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, QLD, Gatton, 4343, Australia.,Child Health and Environment Program, Child Health Research Centre, The University of Queensland, QLD, South Brisbane, 4101, Australia
| | - Frank Osei
- Faculty of Geo-information Science and Earth Observation (ITC), University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - Raffy Jay C Fornillos
- Institute of Biology, College of Science, University of the Philippines Diliman, 1101, Quezon, Philippines
| | - Lydia R Leonardo
- Department of Parasitology, College of Public Health, University of the Philippines Manila, 1000, Manila, Philippines
| | - Alfred Stein
- Faculty of Geo-information Science and Earth Observation (ITC), University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
9
|
Dietrich D, Dekova R, Davy S, Fahrni G, Geissbühler A. Applications of Space Technologies to Global Health: Scoping Review. J Med Internet Res 2018; 20:e230. [PMID: 29950289 PMCID: PMC6041558 DOI: 10.2196/jmir.9458] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/21/2018] [Accepted: 04/22/2018] [Indexed: 12/27/2022] Open
Abstract
Background Space technology has an impact on many domains of activity on earth, including in the field of global health. With the recent adoption of the United Nations’ Sustainable Development Goals that highlight the need for strengthening partnerships in different domains, it is useful to better characterize the relationship between space technology and global health. Objective The aim of this study was to identify the applications of space technologies to global health, the key stakeholders in the field, as well as gaps and challenges. Methods We used a scoping review methodology, including a literature review and the involvement of stakeholders, via a brief self-administered, open-response questionnaire. A distinct search on several search engines was conducted for each of the four key technological domains that were previously identified by the UN Office for Outer Space Affairs’ Expert Group on Space and Global Health (Domain A: remote sensing; Domain B: global navigation satellite systems; Domain C: satellite communication; and Domain D: human space flight). Themes in which space technologies are of benefit to global health were extracted. Key stakeholders, as well as gaps, challenges, and perspectives were identified. Results A total of 222 sources were included for Domain A, 82 sources for Domain B, 144 sources for Domain C, and 31 sources for Domain D. A total of 3 questionnaires out of 16 sent were answered. Global navigation satellite systems and geographic information systems are used for the study and forecasting of communicable and noncommunicable diseases; satellite communication and global navigation satellite systems for disaster response; satellite communication for telemedicine and tele-education; and global navigation satellite systems for autonomy improvement, access to health care, as well as for safe and efficient transportation. Various health research and technologies developed for inhabited space flights have been adapted for terrestrial use. Conclusions Although numerous examples of space technology applications to global health exist, improved awareness, training, and collaboration of the research community is needed.
Collapse
Affiliation(s)
- Damien Dietrich
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| | - Ralitza Dekova
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| | - Stephan Davy
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| | - Guillaume Fahrni
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| | - Antoine Geissbühler
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| |
Collapse
|
10
|
Xu J, Steinman P, Maybe D, Zhou XN, Lv S, Li SZ, Peeling R. Evolution of the National Schistosomiasis Control Programmes in The People's Republic of China. ADVANCES IN PARASITOLOGY 2016; 92:1-38. [PMID: 27137441 DOI: 10.1016/bs.apar.2016.02.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Schistosomiasis japonica is caused by the parasitic trematode Schistosoma japonicum. It is endemic in The People's Republic of China and has significant impact on human health and socioeconomic development in certain regions. Over the last six decades, the national control programmes evolved in remarkable ways and brought schistosomiasis japonica largely under control. We describe the history and evolution of schistosomiasis control in The People's Republic of China, with an emphasis on shifts in control strategies that evolved with new insights into the biology of the parasite and its intermediate hosts, and the epidemiology of the disease in the country. We also highlight the achievements in controlling the disease in different socioecological settings, and identify persisting challenges to fully eliminate schistosomiasis japonica from the country. To reach the goal of schistosomiasis elimination, further integration of interventions, multisector collaboration, sensitive and effective surveillance are needed to strengthen.
Collapse
Affiliation(s)
- J Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China
| | - P Steinman
- Swiss Tropical and Public Health Institute, Basel, Switzerland; Basel Universities, Basel, Switzerland
| | - D Maybe
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - X-N Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China
| | - S Lv
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China
| | - S-Z Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China
| | - R Peeling
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
11
|
Feng Y, Liu L, Xia S, Xu JF, Bergquist R, Yang GJ. Reaching the Surveillance-Response Stage of Schistosomiasis Control in The People's Republic of China: A Modelling Approach. ADVANCES IN PARASITOLOGY 2016; 92:165-96. [PMID: 27137447 DOI: 10.1016/bs.apar.2016.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the goal set to eliminate schistosomiasis nationwide by 2020, The People's Republic of China has initiated the surveillance-response stage to identify remaining sources of infection and potential pockets from where the disease could reemerge. Shifting the focus from classical monitoring and evaluation to rapid detection and immediate response, this approach requires modelling to bridge the surveillance and response components. We review here studies relevant to schistosomiasis modelling in a Chinese surveillance-response system with the expectation to achieve a practically useful understanding of the current situation and potential future study directions. We also present useful experience that could tentatively be applied in other endemic regions in the world. Modelling is discussed at length as it plays an essential role, both with regard to the intermediate snail host and in the definitive, mammal hosts. Research gaps with respect to snail infection, animal hosts and sectoral research cooperation are identified and examined against the prevailing background of ecosystem and socioeconomic changes with a focus on coexisting challenges and opportunities in a situation with increasing financial constraints.
Collapse
Affiliation(s)
- Y Feng
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Wuxi, The People's Republic of China; Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, The People's Republic of China; Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, The People's Republic of China; Public Health Research Center, Jiangnan University, Wuxi, Jiangsu Province, The People's Republic of China
| | - L Liu
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Wuxi, The People's Republic of China; Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, The People's Republic of China; Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, The People's Republic of China; Public Health Research Center, Jiangnan University, Wuxi, Jiangsu Province, The People's Republic of China
| | - S Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China
| | - J-F Xu
- Hubei University for Nationalities, The People's Republic of China
| | - R Bergquist
- Geospatial Health, University of Naples Federico II, Naples, Italy
| | - G-J Yang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Wuxi, The People's Republic of China; Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, The People's Republic of China; Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, The People's Republic of China; Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Xu J, Bergquist R, Qian YJ, Wang Q, Yu Q, Peeling R, Croft S, Guo JG, Zhou XN. China-Africa and China-Asia Collaboration on Schistosomiasis Control: A SWOT Analysis. ADVANCES IN PARASITOLOGY 2016; 92:435-66. [PMID: 27137455 DOI: 10.1016/bs.apar.2016.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Schistosomiasis, a disease caused by a trematode, parasitic worm, is a worldwide public health problem. In spite of great progress with regard to morbidity control, even elimination of this infection in recent decades, there are still challenges to overcome in sub-Saharan Africa and endemic areas in Southeast Asia. Regarded as one of the most successful countries with respect to schistosomiasis control, The People's Republic of China has accumulated considerable experience and learnt important lessons in various local settings that could benefit schistosomiasis control in other endemic countries. Based on an analysis of conceived strengths, weaknesses, opportunities and threats (SWOT) of potential collaborative activities with regard to schistosomiasis in Africa and Asia, this article addresses the importance of collaborative efforts and explores the priorities that would be expected to facilitate the transfer of Chinese experience to low- and middle-income countries in Africa and Asia.
Collapse
Affiliation(s)
- J Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite & Vector Biology, Ministry of Public Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China
| | - R Bergquist
- Geospatial Health, University of Naples Federico II, Naples, Italy
| | - Y-J Qian
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite & Vector Biology, Ministry of Public Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China
| | - Q Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite & Vector Biology, Ministry of Public Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China
| | - Q Yu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite & Vector Biology, Ministry of Public Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China
| | - R Peeling
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - S Croft
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - J-G Guo
- World Health Organization, Geneva, Switzerland
| | - X-N Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite & Vector Biology, Ministry of Public Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China
| |
Collapse
|
13
|
Walz Y, Wegmann M, Dech S, Vounatsou P, Poda JN, N'Goran EK, Utzinger J, Raso G. Modeling and Validation of Environmental Suitability for Schistosomiasis Transmission Using Remote Sensing. PLoS Negl Trop Dis 2015; 9:e0004217. [PMID: 26587839 PMCID: PMC4654500 DOI: 10.1371/journal.pntd.0004217] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 10/15/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. METHODOLOGY We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in Côte d'Ivoire and validated against readily available survey data from school-aged children. PRINCIPAL FINDINGS Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of Côte d'Ivoire. CONCLUSIONS/SIGNIFICANCE A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs to be complemented by field data of parasite- and snail-related fitness. Our model provides a useful tool to monitor the development of new hotspots of potential schistosomiasis transmission based on regularly updated remote sensing data.
Collapse
Affiliation(s)
- Yvonne Walz
- Department of Remote Sensing, Institute for Geography and Geology, University of Würzburg, Würzburg, Germany.,United Nations University-Institute for Environment and Human Security, Bonn, Germany
| | - Martin Wegmann
- Department of Remote Sensing, Institute for Geography and Geology, University of Würzburg, Würzburg, Germany
| | - Stefan Dech
- Department of Remote Sensing, Institute for Geography and Geology, University of Würzburg, Würzburg, Germany.,German Remote Sensing Data Centre, German Aerospace Centre, Oberpfaffenhofen, Germany
| | - Penelope Vounatsou
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Jean-Noël Poda
- Institut de Recherche en Sciences de la Santé, Ouagadougou, Burkina Faso
| | - Eliézer K N'Goran
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Jürg Utzinger
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Giovanna Raso
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
14
|
Zhu HR, Liu L, Zhou XN, Yang GJ. Ecological Model to Predict Potential Habitats of Oncomelania hupensis, the Intermediate Host of Schistosoma japonicum in the Mountainous Regions, China. PLoS Negl Trop Dis 2015; 9:e0004028. [PMID: 26305881 PMCID: PMC4549249 DOI: 10.1371/journal.pntd.0004028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 08/03/2015] [Indexed: 01/21/2023] Open
Abstract
Background Schistosomiasis japonica is a parasitic disease that remains endemic in seven provinces in the People’s Republic of China (P.R. China). One of the most important measures in the process of schistosomiasis elimination in P.R. China is control of Oncomelania hupensis, the unique intermediate host snail of Schistosoma japonicum. Compared with plains/swamp and lake regions, the hilly/mountainous regions of schistosomiasis endemic areas are more complicated, which makes the snail survey difficult to conduct precisely and efficiently. There is a pressing call to identify the snail habitats of mountainous regions in an efficient and cost-effective manner. Methods Twelve out of 56 administrative villages distributed with O. hupensis in Eryuan, Yunnan Province, were randomly selected to set up the ecological model. Thirty out of the rest of 78 villages (villages selected for building model were excluded from the villages for validation) in Eryuan and 30 out of 89 villages in Midu, Yunnan Province were selected via a chessboard method for model validation, respectively. Nine-year-average Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) as well as Digital Elevation Model (DEM) covering Eryuan and Midu were extracted from MODIS and ASTER satellite images, respectively. Slope, elevation and the distance from every village to its nearest stream were derived from DEM. Suitable survival environment conditions for snails were defined by comparing historical snail presence data and remote sensing derived images. According to the suitable conditions for snails, environment factors, i.e. NDVI, LST, elevation, slope and the distance from every village to its nearest stream, were integrated into an ecological niche model to predict O. hupensis potential habitats in Eryuan and Midu. The evaluation of the model was assessed by comparing the model prediction and field investigation. Then, the consistency rate of model validation was calculated in Eryuan and Midu Counties, respectively. Results The final ecological niche model for potential O. hupensis habitats prediction comprised the following environmental factors, namely: NDVI (≥ 0.446), LST (≥ 22.70°C), elevation (≤ 2,300 m), slope (≤ 11°) and the distance to nearest stream (≤ 1,000 m). The potential O. hupensis habitats in Eryuan distributed in the Lancang River basin and O. hupensis in Midu shows a trend of clustering in the north and spotty distribution in the south. The consistency rates of the ecological niche model in Eryuan and Midu were 76.67% and 83.33%, respectively. Conclusions The ecological niche model integrated with NDVI, LST, elevation, slope and distance from every village to its nearest stream adequately predicted the snail habitats in the mountainous regions. Schistosomiasis japonica is a parasitic disease caused by the infection of Schistosoma japonicum. Oncomelania hupensis, serving as the unique intermediate host of S. japonicum, has a distribution highly correlated with schistosomiasis epidemic. At present, elimination of O. hupensis is still an important target for disease control in the People’s Republic of China. In mountainous regions, compared with two other endemic regions, snails are hard to detect due to the complicated environmental conditions and poor transportation systems. In this study, we developed an ecological niche model to predict the potential habitats of O. hupensis using remote sensing data including vegetation index, land surface temperature, elevation, slope and the distance from every village to its nearest stream. Validation of the approach was performed in two counties with similar ecological conditions in Yunnan Province, P.R. China. Results revealed a model with a good consistency rate of 76.67% and 83.33% for the two counties, respectively. The model holds promise for snail surveillance in mountainous regions.
Collapse
Affiliation(s)
- Hong-Ru Zhu
- Jiangsu Institute of Parasitic Diseases, Wuxi, People’s Republic of China
- Key Laboratory of Parasitic Disease Control and Prevention, Ministry of Health, Wuxi, People’s Republic of China
- Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, People’s Republic of China
| | - Lu Liu
- Jiangsu Institute of Parasitic Diseases, Wuxi, People’s Republic of China
- Key Laboratory of Parasitic Disease Control and Prevention, Ministry of Health, Wuxi, People’s Republic of China
- Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, People’s Republic of China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People’s Republic of China
| | - Guo-Jing Yang
- Jiangsu Institute of Parasitic Diseases, Wuxi, People’s Republic of China
- Key Laboratory of Parasitic Disease Control and Prevention, Ministry of Health, Wuxi, People’s Republic of China
- Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, People’s Republic of China
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
15
|
Yang GJ, Utzinger J, Zhou XN. Interplay between environment, agriculture and infectious diseases of poverty: case studies in China. Acta Trop 2015; 141:399-406. [PMID: 23906612 PMCID: PMC7117482 DOI: 10.1016/j.actatropica.2013.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/14/2013] [Accepted: 07/17/2013] [Indexed: 11/28/2022]
Abstract
Changes in the natural environment and agricultural systems induced by economic and industrial development, including population dynamics (growth, urbanization, migration), are major causes resulting in the persistence, emergence and re-emergence of infectious diseases in developing countries. In the face of rapid demographic, economic and social transformations, the People's Republic of China (P.R. China) is undergoing unprecedented environmental and agricultural change. We review emerging and re-emerging diseases such as schistosomiasis, dengue, avian influenza, angiostrongyliasis and soil-transmitted helminthiasis that have occurred in P.R. China due to environmental and agricultural change. This commentary highlights the research priorities and the response strategies, namely mitigation and adaptation, undertaken to eliminate the resurgence of those infectious diseases.
Collapse
Affiliation(s)
- Guo-Jing Yang
- Jiangsu Institute of Parasitic Diseases, Wuxi 214064, People's Republic of China; Key Laboratory on Control Technology for Parasitic Diseases, Ministry of Health, Wuxi 214064, People's Republic of China; School of Public Health and Primary Care, The Chinese University of Hong Kong, Satin, Hong Kong
| | - Jürg Utzinger
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland; University of Basel, P.O. Box, CH-4003 Basel, Switzerland
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, People's Republic of China; Key Laboratory on Biology of Parasite and Vector, Ministry of Health, Shanghai 200025, People's Republic of China; WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, People's Republic of China.
| |
Collapse
|
16
|
Utzinger J, Brattig NW, Leonardo L, Zhou XN, Bergquist R. Progress in research, control and elimination of helminth infections in Asia. Acta Trop 2015; 141:135-45. [PMID: 25446170 DOI: 10.1016/j.actatropica.2014.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Global health has substantially improved over the past 20 years. In low- and middle-income countries, in particular, great strives have been made in the control of communicable diseases, including helminth infections. Nevertheless, the most marginalised communities still suffer from infectious diseases that are intimately connected with poverty and lack of access to essential commodities and services, such as clean water, improved sanitation and sufficient food. A two-pronged approach is thus necessary: (i) intensifying control in remaining high-endemicity areas and pockets of high transmission; and (ii) moving from morbidity control to interruption of disease transmission in low-endemicity areas with the goal of local elimination. The latter will require new tools and strategies, going hand-in-hand with strong partnerships and new strategic alliances. In this special issue of Acta Tropica, 35 articles are featured that, together, provide an up-to-date overview of the latest progress made in research, control and elimination of helminth infections in East and Southeast Asia. The first 12 articles expound tools and approaches for improved detection, surveillance and monitoring of helminth infections. Control and elimination approaches for the most important helminth infections are revisited in the next 20 articles. The three remaining articles are cross-cutting pieces examining the interface of agriculture, environment and helminth infections and providing a rationale for integrated, multi-sectorial control approaches that are necessary for sustaining helminthiasis control and progressively moving towards elimination. An interesting aspect revealed through an in-depth analysis of the provenance of the 35 contributions is that the People's Republic of China emerges as a key player in global health, which is documented through its prominent role in research and control of helminth infection and networking throughout Asia. Policy implications are discussed and will hopefully shape the future agenda for the control and elimination of helminth infections the world over.
Collapse
Affiliation(s)
- Jürg Utzinger
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland; University of Basel, P.O. Box, CH-4003 Basel, Switzerland.
| | - Norbert W Brattig
- Tropical Medicine Section, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, D-20359 Hamburg, Germany
| | - Lydia Leonardo
- College of Public Health, University of the Philippines-Manila, Manila, Philippines
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, People's Republic of China; Key Laboratory on Biology of Parasite and Vector, Ministry of Health, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, People's Republic of China
| | | |
Collapse
|
17
|
Potential schistosomiasis foci in China: a prospective study for schistosomiasis surveillance and response. Acta Trop 2015; 141:342-8. [PMID: 24012536 DOI: 10.1016/j.actatropica.2013.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/23/2013] [Accepted: 08/26/2013] [Indexed: 11/21/2022]
Abstract
Schistosomiasis japonica was endemic in 12 provinces (including municipalities and autonomous regions) in the People's Republic of China (PR China). Despite the tremendous decrease of schistosomiasis incidence after almost 60 years of control, the distribution of snail-breeding sites has not been reduced significantly. In order to verify current transmission risks and identify the potential establishment of new foci of schistosomiasis driven by environmental changes, we conducted surveillance in selected risk areas of three provinces: Jiangsu, Anhui and Shandong from 2008 to 2010 in addition to routine snail surveillance. We investigated populations and possible reservoirs in sentinel sites and report that the total number of new acute cases did not diminish further in spite of ongoing control activities. In Anhui Province the local count compared to the national count was 43% (19/44) in 2008, 33% (25/75) in 2009 and 40% (17/42) in 2010. In all, 31.58 km(2) areas of snail breeding sites were newly detected nationwide through the year 2008-2010, of which the proportion of Anhui was 42% (5.03/11.98) in 2008, 95% (8.39/8.79) in 2009 and 79% (8.52/10.81) in 2010. Sentinel surveillance showed eight, nine and five confirmed cases of acute schistosomiasis in mobile populations (fishermen, migrant workers) in 2008, 2009 and 2010, respectively. All these cases were detected in Chaohu County, which must therefore be deemed an area at risk. We conclude that continuous surveillance with an emphasis on snails must be enhanced in potential risk areas in PR China.
Collapse
|
18
|
Bergquist R, Yang GJ, Knopp S, Utzinger J, Tanner M. Surveillance and response: Tools and approaches for the elimination stage of neglected tropical diseases. Acta Trop 2015; 141:229-34. [PMID: 25301340 DOI: 10.1016/j.actatropica.2014.09.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 12/18/2022]
Abstract
The presentation of the World Health Organization (WHO)'s roadmap for neglected tropical diseases (NTDs) in January 2012 raised optimism that many NTDs can indeed be eliminated. To make this happen, the endemic, often low-income countries with still heavy NTD burdens must substantially strengthen their health systems. In particular, they need not only to apply validated, highly sensitive diagnostic tools and sustainable effective control approaches for treatment and transmission control, but also to participate in the development and use of surveillance-response schemes to ensure that progress made also is consolidated and sustained. Surveillance followed-up by public health actions consisting of response packages tailored to interruption of transmission in different settings will help to effectively achieve the disease control/elimination goals by 2020, as anticipated by the WHO roadmap. Risk-mapping geared at detection of transmission hotspots by means of geospatial and other dynamic approaches facilitates decision-making at the technical as well as the political level. Surveillance should thus be conceived and developed as an intervention approach and at the same time function as an early warning system for the potential re-emergence of endemic infections as well as for new, rapidly spread epidemics and pandemics.
Collapse
Affiliation(s)
| | - Guo-Jing Yang
- Jiangsu Institute of Parasitic Diseases, Wuxi 214064, People's Republic of China; Key Laboratory of Parasitic Disease Control and Prevention, Ministry of Health, Wuxi 214064, People's Republic of China; Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi 214064, People's Republic of China
| | - Stefanie Knopp
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom; Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland; University of Basel, P.O. Box, CH-4003 Basel, Switzerland
| | - Jürg Utzinger
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland; University of Basel, P.O. Box, CH-4003 Basel, Switzerland
| | - Marcel Tanner
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland; University of Basel, P.O. Box, CH-4003 Basel, Switzerland
| |
Collapse
|
19
|
Xu JF, Lv S, Wang QY, Qian MB, Liu Q, Bergquist R, Zhou XN. Schistosomiasis japonica: modelling as a tool to explore transmission patterns. Acta Trop 2015; 141:213-22. [PMID: 25004441 DOI: 10.1016/j.actatropica.2014.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/22/2014] [Accepted: 06/27/2014] [Indexed: 11/26/2022]
Abstract
Modelling is an important tool for the exploration of Schistosoma japonicum transmission patterns. It provides a general theoretical framework for decision-makers and lends itself specifically to assessing the progress of the national control programme by following the outcome of surveys. The challenge of keeping up with the many changes of social, ecological and environmental factors involved in control activities is greatly facilitated by modelling that can also indicate which activities are critical and which are less important. This review examines the application of modelling tools in the epidemiological study of schistosomiasis japonica during the last 20 years and explores the application of enhanced models for surveillance and response. Updated and timely information for decision-makers in the national elimination programme is provided but, in spite of the new modelling techniques introduced, many questions remain. Issues on application of modelling are discussed with the view to improve the current situation with respect to schistosomiasis japonica.
Collapse
|
20
|
Monitoring the transmission of Schistosoma japonicum in potential risk regions of China, 2008 - 2012. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:2278-87. [PMID: 24566053 PMCID: PMC3945598 DOI: 10.3390/ijerph110202278] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 01/04/2023]
Abstract
Schistosomiasis japonica, caused by Schistosoma japonicum infection, remains a major public health concern in China, and the geographical distribution of this neglected tropical disease is limited to regions where Oncomelania hupensis, the intermediate host of the causative parasite, is detected. The purpose of this study was to monitor the transmission of S. japonicum in potential risk regions of China during the period from 2008 through 2012. To monitor the transmission, 10 fixed surveillance sites and 30 mobile sentinel sites were selected in 10 counties of four provinces, namely Anhui, Jiangsu, Chongqing and Hubei. There were 8, 9, 6, 2 and 3 cases infected with S. japonicum detected in the 30 mobile sentinel sites during the 5-year study period, while 27 subjects were positive for the antibody-based serum test in the 10 fixed sentinel sites; however, no infection was found. In addition, neither local nor imported livestock were found to be infected. No O. hupensis snails were detected in either the fixed surveillance or the mobile sentinel sites; however, the snail host was found to survive and reproduce at Chaohu Lake, inferring the potential of transmission of the disease. It is suggested that the continuous surveillance of schistosomiasis japonica should be carried out in both the endemic foci and potential risk regions of China, and an active, sensitive system to respond the potential risk of transmission seems justified.
Collapse
|
21
|
Zhang Z, Bergquist R, Chen D, Yao B, Wang Z, Gao J, Jiang Q. Identification of parasite-host habitats in Anxiang county, Hunan Province, China based on multi-temporal China-Brazil earth resources satellite (CBERS) images. PLoS One 2013; 8:e69447. [PMID: 23922712 PMCID: PMC3726693 DOI: 10.1371/journal.pone.0069447] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/08/2013] [Indexed: 11/19/2022] Open
Abstract
Remote sensing is a promising technique for monitoring the distribution and dynamics of various vector-borne diseases. In this study, we used the multi-temporal CBERS images, obtained free of charge, to predict the habitats of the snail Oncomelania hupensis, the sole intermediate host of schistosomiasis japonica, a snail-borne parasitic disease of considerable public health in China. Areas of suitable snail habitats were identified based on the normalized difference vegetation index (NDVI) and the normalized difference water index (NDWI), and the predictive model was tested against sites (snails present or absent) that were surveyed directly for O. hupensis. The model performed well (sensitivity and specificity were 63.64% and 78.09%, respectively), and with further development, we may provide an accurate, inexpensive tool for the broad-scale monitoring and control of schistosomiasis, and other similar vector-borne diseases.
Collapse
Affiliation(s)
- Zhijie Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhang Z, Ward M, Gao J, Wang Z, Yao B, Zhang T, Jiang Q. Remote sensing and disease control in China: past, present and future. Parasit Vectors 2013; 6:11. [PMID: 23311958 PMCID: PMC3558403 DOI: 10.1186/1756-3305-6-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/05/2013] [Indexed: 11/28/2022] Open
Abstract
Satellite measurements have distinct advantages over conventional ground measurements because they can collect the information repeatedly and automatically. Since 1970 globally and 1985 in China, the availability of remote sensing (RS) techniques has steadily grown and they are becoming increasingly important to improve our understanding of human health. This paper gives the first detailed overview on the developments of RS applications for disease control in China. The problems, challenges and future directions are also discussed with an aim of guiding prospective studies.
Collapse
Affiliation(s)
- Zhijie Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, People’s Republic of China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, People’s Republic of China
- Laboratory for Spatial Analysis and Modeling, School of Public Health, Fudan University, Shanghai 200032, People’s Republic of China
| | - Michecal Ward
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Jie Gao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, People’s Republic of China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, People’s Republic of China
- Laboratory for Spatial Analysis and Modeling, School of Public Health, Fudan University, Shanghai 200032, People’s Republic of China
| | - Zengliang Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, People’s Republic of China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, People’s Republic of China
- Laboratory for Spatial Analysis and Modeling, School of Public Health, Fudan University, Shanghai 200032, People’s Republic of China
| | - Baodong Yao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, People’s Republic of China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, People’s Republic of China
| | - Tiejun Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, People’s Republic of China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, People’s Republic of China
| | - Qingwu Jiang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, People’s Republic of China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, People’s Republic of China
- Laboratory for Spatial Analysis and Modeling, School of Public Health, Fudan University, Shanghai 200032, People’s Republic of China
| |
Collapse
|
23
|
Gazzinelli A, Correa-Oliveira R, Yang GJ, Boatin BA, Kloos H. A research agenda for helminth diseases of humans: social ecology, environmental determinants, and health systems. PLoS Negl Trop Dis 2012; 6:e1603. [PMID: 22545168 PMCID: PMC3335881 DOI: 10.1371/journal.pntd.0001603] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this paper, the Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), with the mandate to review helminthiases research and identify research priorities and gaps, focuses on the environmental, social, behavioural, and political determinants of human helminth infections and outlines a research and development agenda for the socioeconomic and health systems research required for the development of sustainable control programmes. Using Stockols' social-ecological approach, we describe the role of various social (poverty, policy, stigma, culture, and migration) and environmental determinants (the home environment, water resources development, and climate change) in the perpetuation of helminthic diseases, as well as their impact as contextual factors on health promotion interventions through both the regular and community-based health systems. We examine these interactions in regard to community participation, intersectoral collaboration, gender, and possibilities for upscaling helminthic disease control and elimination programmes within the context of integrated and interdisciplinary approaches. The research agenda summarises major gaps that need to be addressed.
Collapse
Affiliation(s)
- Andrea Gazzinelli
- Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | | | | | | | | |
Collapse
|
24
|
Liang YS, Wang W, Li HJ, Shen XH, Xu YL, Dai JR. The South-to-North Water Diversion Project: effect of the water diversion pattern on transmission of Oncomelania hupensis, the intermediate host of Schistosoma japonicum in China. Parasit Vectors 2012; 5:52. [PMID: 22433070 PMCID: PMC3325841 DOI: 10.1186/1756-3305-5-52] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 03/20/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The South-to-North Water Diversion Project (SNWDP) is the largest national water conservancy project in China. However, the Eastern Route Project (ERP) of SNWDP will refer to the habitats of Oncomelania hupensis, the intermediate host of Schistosoma japonicum. The present study was aimed at investigating the effects of some factors relating to the water diversion pattern on the spread north of O. hupensis and transmission of S. japonicum. METHODS Marked snails were attached to the floating debris, and then placed on the water surface, the passage of snails through water pumps was observed. Some marked living adult snails were placed under water in the 5 spots, 15, 30, 60, 90 and 120 days later, their survival and transfer under water were investigated. 2, 4, 8, 16, 32, 64 and 128 juvenile snails, with a male: female ratio of about 1, were caged, 1 year later, their reproductions were calculated. RESULTS The snails attached on the floating debris at 100-, 50- and 20-cm-distance from the inlet pipe of the big pump (with a diameter of 80 cm), could be absorbed into the pumps, with passing rates of 2.45%, 3.93% and 43.46%, respectively, compared with 72.07% and 91.00% for the snails at 20 cm and 10 cm-distance from the inlet pipe of the small pump (with a diameter of 20 cm). A total of 36,600 marked living snails were put into 5 ponds and ditches, with the water depths of 1-1.6 m, 15-120 days later, no marked ones were found along the ponds and ditches or in the straw packages. The juvenile snails did not reproduce until their density reached up to 8 snails (ratio of male: female of 1)/0.16 m2. CONCLUSIONS During the construction of ERP of SNWDP, the risk of northward spread of schistosomiasis japonica will be decreased or eliminated as long as long-term reliable interventions for snail control are implemented.
Collapse
Affiliation(s)
- You-Sheng Liang
- Jiangsu Institute of Parasitic Diseases, 117 Yangxiang, Meiyuan, Wuxi 214064, People's Republic of China
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, 117 Yangxiang, Meiyuan, Wuxi 214064, Jiangsu Province, People's Republic of China
| | - Wei Wang
- Jiangsu Institute of Parasitic Diseases, 117 Yangxiang, Meiyuan, Wuxi 214064, People's Republic of China
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, 117 Yangxiang, Meiyuan, Wuxi 214064, Jiangsu Province, People's Republic of China
| | - Hong-Jun Li
- Jiangsu Institute of Parasitic Diseases, 117 Yangxiang, Meiyuan, Wuxi 214064, People's Republic of China
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, 117 Yangxiang, Meiyuan, Wuxi 214064, Jiangsu Province, People's Republic of China
| | - Xue-Hui Shen
- Dantu District Center for Disease Control and Prevention, 171 Guyang Avenue, Danyang, Zhenjiang City 212028, Jiangsu Province, People's Republic of China
| | - Yong-Liang Xu
- Jiangsu Institute of Parasitic Diseases, 117 Yangxiang, Meiyuan, Wuxi 214064, People's Republic of China
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, 117 Yangxiang, Meiyuan, Wuxi 214064, Jiangsu Province, People's Republic of China
| | - Jian-Rong Dai
- Jiangsu Institute of Parasitic Diseases, 117 Yangxiang, Meiyuan, Wuxi 214064, People's Republic of China
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, 117 Yangxiang, Meiyuan, Wuxi 214064, Jiangsu Province, People's Republic of China
| |
Collapse
|
25
|
Bergquist R. New tools for epidemiology: a space odyssey. Mem Inst Oswaldo Cruz 2011; 106:892-900. [DOI: 10.1590/s0074-02762011000700016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 05/20/2011] [Indexed: 11/22/2022] Open
|
26
|
Zhou XN, Bergquist R, Leonardo L, Yang GJ, Yang K, Sudomo M, Olveda R. Schistosomiasis japonica control and research needs. ADVANCES IN PARASITOLOGY 2010; 72:145-78. [PMID: 20624531 DOI: 10.1016/s0065-308x(10)72006-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Schistosomiasis japonica, a chronic and debilitating disease caused by the blood fluke Schistosoma japonicum, is still of considerable economic and public health concern in the People's Republic of China, the Philippines, and Indonesia. Despite major progress made over the past several decades with the control of schistosomiasis japonica in the aforementioned countries, the disease is emerging in some areas. We review the epidemiological status and transmission patterns of schistosomiasis japonica, placing it into a historical context, and discuss experiences and lessons with national control efforts. Our analyses reveal that an integrated control approach, implemented through intersectoral collaboration, is essential to bring down the prevalence and intensity of Schistosoma japonicum infections and disease-related morbidity, and to sustain these parameters at low levels. The need for innovation and a sufficiently flexible control approach to adapt interventions in response to the changing nature and challenges of schistosomiasis control from the initial phase of morbidity control to the final state of elimination is emphasised. The aim of the presentation and the analyses is to inspire researchers and disease control managers elsewhere in Asia, Africa, and the Americas to harness the experiences gained and the lessons presented here to improve the control and eventual elimination of schistosomiasis and parasitic diseases.
Collapse
Affiliation(s)
- Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
27
|
Olveda R, Leonardo L, Zheng F, Sripa B, Bergquist R, Zhou XN. Coordinating research on neglected parasitic diseases in Southeast Asia through networking. ADVANCES IN PARASITOLOGY 2010; 72:55-77. [PMID: 20624528 DOI: 10.1016/s0065-308x(10)72003-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The new dialogue between stakeholders, that is, scientists, research administrators and donors as well as the populations victimized by endemic infections, is initiating a virtuous circle leading to lower disease-burdens, improved public health and the mitigation of poverty. There is now general agreement that control activities need research collaboration to advance, while surveillance plays an increasingly important role in sustaining long-term relief. On the part of the Regional Network on Asian Schistosomiasis and Other Helminth Zoonoses (RNAS(+)), this has led to a new vision not only focused on general strengthening of research capabilities but also on furthering efforts to close the gap between research and control and bridge different branches of science. From its original, exclusive focus on schistosomiasis, RNAS(+) has expanded to include food-borne and soil-transmitted helminth infections as well. Its current repository of data on the distribution, prevalence and severity of these diseases is increasingly utilised by decision makers charged with epidemiological control in the endemic countries. Thanks to a more rapid translation of research results into control applications and the dissemination of data and new technology through networking, the overall situation is improving. Working as a virtual organisation of researchers and control officers in the endemic countries of Southeast Asia, RNAS(+) is playing an important role in this conversion. Its responsibilities are divided along disease lines into five main areas, but no serious, endemic disease is considered to be outside the network's sphere of interest. This chapter recounts some of the more important RNAS(+) accomplishments, pinpoints potential directions for future operations and highlights areas where research is most needed.
Collapse
Affiliation(s)
- Remigio Olveda
- Department of Health, Research Institute of Tropical Medicine (RITM), Muntinlupa, Manila, Philippines
| | | | | | | | | | | |
Collapse
|
28
|
Yang GJ, Utzinger J, Lv S, Qian YJ, Li SZ, Wang Q, Bergquist R, Vounatsou P, Li W, Yang K, Zhou XN. The Regional Network for Asian Schistosomiasis and Other Helminth Zoonoses (RNAS+). ADVANCES IN PARASITOLOGY 2010; 73:101-35. [DOI: 10.1016/s0065-308x(10)73005-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Bergquist R, Tanner M. Controlling Schistosomiasis in Southeast Asia. ADVANCES IN PARASITOLOGY 2010; 72:109-44. [DOI: 10.1016/s0065-308x(10)72005-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Malone JB, Yang GJ, Leonardo L, Zhou XN. Implementing a Geospatial Health Data Infrastructure for Control of Asian Schistosomiasis in the People's Republic of China and the Philippines. ADVANCES IN PARASITOLOGY 2010; 73:71-100. [DOI: 10.1016/s0065-308x(10)73004-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Simoonga C, Utzinger J, Brooker S, Vounatsou P, Appleton CC, Stensgaard AS, Olsen A, Kristensen TK. Remote sensing, geographical information system and spatial analysis for schistosomiasis epidemiology and ecology in Africa. Parasitology 2009; 136:1683-93. [PMID: 19627627 PMCID: PMC2789293 DOI: 10.1017/s0031182009006222] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Beginning in 1970, the potential of remote sensing (RS) techniques, coupled with geographical information systems (GIS), to improve our understanding of the epidemiology and control of schistosomiasis in Africa, has steadily grown. In our current review, working definitions of RS, GIS and spatial analysis are given, and applications made to date with RS and GIS for the epidemiology and ecology of schistosomiasis in Africa are summarised. Progress has been made in mapping the prevalence of infection in humans and the distribution of intermediate host snails. More recently, Bayesian geostatistical modelling approaches have been utilized for predicting the prevalence and intensity of infection at different scales. However, a number of challenges remain; hence new research is needed to overcome these limitations. First, greater spatial and temporal resolution seems important to improve risk mapping and understanding of transmission dynamics at the local scale. Second, more realistic risk profiling can be achieved by taking into account information on people's socio-economic status; furthermore, future efforts should incorporate data on domestic access to clean water and adequate sanitation, as well as behavioural and educational issues. Third, high-quality data on intermediate host snail distribution should facilitate validation of infection risk maps and modelling transmission dynamics. Finally, more emphasis should be placed on risk mapping and prediction of multiple species parasitic infections in an effort to integrate disease risk mapping and to enhance the cost-effectiveness of their control.
Collapse
Affiliation(s)
- C Simoonga
- Ministry of Health, P.O. Box 30205, 10101 Lusaka, Zambia.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
AbstractThe possibilities of disease prediction based on the environmental characteristics of geographical areas and specific requirements of the causative infectious agents are reviewed and, in the case of parasites whose life cycles involve more than one host, the needs of the intermediate hosts are also referred to. The geographical information systems framework includes epidemiological data, visualization (in the form of maps), modelling and exploratory analysis using spatial statistics. Examples include climate-based forecast systems, based on the concept of growing degree days, which now exist for several parasitic helminths such as fasciolosis, schistosomiasis, dirofilariasis and also for malaria. The paper discusses the limits of data collection by remote sensing in terms of resolution capabilities (spatial, temporal and spectral) of sensors on-board satellites. Although the data gained from the observation of oceans, land, elevations, land cover, land use, surface temperatures, rainfall, etc. are primarily for weather forecasting, military and commercial use, some of this information, particularly that from the climate research satellites, is of direct epidemiological utility. Disease surveillance systems and early-warning systems (EWS) are prime examples of academic approaches of practical importance. However, even commercial activities such as the construction of virtual globes, i.e. computer-based models of the Earth, have been used in this respect. Compared to conventional world maps, they do not only show geographical and man-made features, but can also be spatially annotated with data on disease distribution, demography, economy and other measures of particular interest.
Collapse
|
33
|
Zhou XN, Lv S, Yang GJ, Kristensen TK, Bergquist NR, Utzinger J, Malone JB. Spatial epidemiology in zoonotic parasitic diseases: insights gained at the 1st International Symposium on Geospatial Health in Lijiang, China, 2007. Parasit Vectors 2009; 2:10. [PMID: 19193214 PMCID: PMC2663554 DOI: 10.1186/1756-3305-2-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 02/04/2009] [Indexed: 11/10/2022] Open
Abstract
The 1st International Symposium on Geospatial Health was convened in Lijiang, Yunnan province, People's Republic of China from 8 to 9 September, 2007. The objective was to review progress made with the application of spatial techniques on zoonotic parasitic diseases, particularly in Southeast Asia. The symposium featured 71 presentations covering soil-transmitted and water-borne helminth infections, as well as arthropod-borne diseases such as leishmaniasis, malaria and lymphatic filariasis. The work made public at this occasion is briefly summarized here to highlight the advances made and to put forth research priorities in this area. Approaches such as geographical information systems (GIS), global positioning systems (GPS) and remote sensing (RS), including spatial statistics, web-based GIS and map visualization of field investigations, figured prominently in the presentation.
Collapse
Affiliation(s)
- Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, PR China.
| | | | | | | | | | | | | |
Collapse
|