1
|
Tamimi A, Javid M, Sedighi-Pirsaraei N, Mirdamadi A. Exosome prospects in the diagnosis and treatment of non-alcoholic fatty liver disease. Front Med (Lausanne) 2024; 11:1420281. [PMID: 39144666 PMCID: PMC11322140 DOI: 10.3389/fmed.2024.1420281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
The growing prevalence of NAFLD and its global health burden have provoked considerable research on possible diagnostic and therapeutic options for NAFLD. Although various pathophysiological mechanisms and genetic factors have been identified to be associated with NAFLD, its treatment remains challenging. In recent years, exosomes have attracted widespread attention for their role in metabolic dysfunctions and their efficacy as pathological biomarkers. Exosomes have also shown tremendous potential in treating a variety of disorders. With increasing evidence supporting the significant role of exosomes in NAFLD pathogenesis, their theragnostic potential has become a point of interest in NAFLD. Expectedly, exosome-based treatment strategies have shown promise in the prevention and amelioration of NAFLD in preclinical studies. However, there are still serious challenges in preparing, standardizing, and applying exosome-based therapies as a routine clinical option that should be overcome. Due to the great potential of this novel theragnostic agent in NAFLD, further investigations on their safety, clinical efficacy, and application standardization are highly recommended.
Collapse
|
2
|
Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, He W. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther 2024; 9:1. [PMID: 38161204 PMCID: PMC10758001 DOI: 10.1038/s41392-023-01668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
Combining existing drug therapy is essential in developing new therapeutic agents in disease prevention and treatment. In preclinical investigations, combined effect of certain known drugs has been well established in treating extensive human diseases. Attributed to synergistic effects by targeting various disease pathways and advantages, such as reduced administration dose, decreased toxicity, and alleviated drug resistance, combinatorial treatment is now being pursued by delivering therapeutic agents to combat major clinical illnesses, such as cancer, atherosclerosis, pulmonary hypertension, myocarditis, rheumatoid arthritis, inflammatory bowel disease, metabolic disorders and neurodegenerative diseases. Combinatorial therapy involves combining or co-delivering two or more drugs for treating a specific disease. Nanoparticle (NP)-mediated drug delivery systems, i.e., liposomal NPs, polymeric NPs and nanocrystals, are of great interest in combinatorial therapy for a wide range of disorders due to targeted drug delivery, extended drug release, and higher drug stability to avoid rapid clearance at infected areas. This review summarizes various targets of diseases, preclinical or clinically approved drug combinations and the development of multifunctional NPs for combining therapy and emphasizes combinatorial therapeutic strategies based on drug delivery for treating severe clinical diseases. Ultimately, we discuss the challenging of developing NP-codelivery and translation and provide potential approaches to address the limitations. This review offers a comprehensive overview for recent cutting-edge and challenging in developing NP-mediated combination therapy for human diseases.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Xiuju Peng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Makhloufi Zoulikha
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Kosheli Thapa Magar
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Yanmin Ju
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
3
|
Yin Y, Wu C, Zhou Y, Zhang M, Mai S, Chen M, Wang HY. Ezetimibe Induces Paraptosis through Niemann-Pick C1-like 1 Inhibition of Mammalian-Target-of-Rapamycin Signaling in Hepatocellular Carcinoma Cells. Genes (Basel) 2023; 15:4. [PMID: 38275586 PMCID: PMC10815321 DOI: 10.3390/genes15010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Currently, hepatocellular carcinoma (HCC) is characterized by its unfavorable prognosis and resistance to conventional chemotherapy and radiotherapy. Drug repositioning, an approach aimed at identifying novel therapeutic applications for existing drugs, presents a cost-effective strategy for developing new anticancer agents. We explored the anticancer properties of Ezetimibe, a widely used oral lipid-lowering drug, in the context of HCC. Our findings demonstrate that Ezetimibe effectively suppresses HCC cell proliferation through paraptosis, an apoptotic-independent cell death pathway. The examination of HCC cells lines treated with Ezetimibe using light microscopy and transmission electron microscopy (TEM) showed cytoplasmic vacuolation in the perinuclear region. Notably, the nuclear membrane remained intact in both Ezetimibe-treated and untreated HCC cell lines. Probe staining assays confirmed that the cytoplasmic vacuoles originated from dilated endoplasmic reticulum (ER) compartments rather than mitochondria. Furthermore, a dose-dependent accumulation of reactive oxygen species (ROS) was observed in Ezetimibe-treated HCC cell lines. Co-treatment with the general antioxidant NAC attenuated vacuolation and improved cell viability in Ezetimibe-treated HCC cells. Moreover, Ezetimibe induced paraptosis through proteasome activity inhibition and initiation of the unfolded protein response (UPR) in HCC cell lines. In our in vivo experiment, Ezetimibe significantly impeded the growth of HCC tumors. Furthermore, when combined with Sorafenib, Ezetimibe exhibited a synergistic antitumor effect on HCC cell lines. Mechanistically, Ezetimibe induced paraptosis by targeting NPC1L1 to inhibit the PI3K/AKT/mTOR signaling pathway. In conclusion, our study highlights the potential of Ezetimibe as an anticancer agent by triggering paraptosis in HCC cells.
Collapse
Affiliation(s)
- Yuting Yin
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; (Y.Y.); (C.W.); (Y.Z.); (M.Z.); (S.M.)
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Chun Wu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; (Y.Y.); (C.W.); (Y.Z.); (M.Z.); (S.M.)
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yufeng Zhou
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; (Y.Y.); (C.W.); (Y.Z.); (M.Z.); (S.M.)
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Meiyin Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; (Y.Y.); (C.W.); (Y.Z.); (M.Z.); (S.M.)
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Shijuan Mai
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; (Y.Y.); (C.W.); (Y.Z.); (M.Z.); (S.M.)
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Minshan Chen
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China;
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; (Y.Y.); (C.W.); (Y.Z.); (M.Z.); (S.M.)
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
4
|
Zhang R, Zeng J, Liu W, Meng J, Wang C, Shi L, Yang S, Chang J, Xing D. The role of NPC1L1 in cancer. Front Pharmacol 2022; 13:956619. [PMID: 36034854 PMCID: PMC9399402 DOI: 10.3389/fphar.2022.956619] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Lipid metabolism appears to play significant roles in the development of cancer. Numerous studies have shown that the evolution of malignancies, including breast, prostate, and colorectal cancers, involves cholesterol in a profound manner. A crucial part in the intestinal absorption of cholesterol is played by Niemann–Pick C1-like 1 (NPC1L1), a cholesterol transporter protein that is widely expressed in the small intestine and liver. The importance of NPC1L1 in tumor prognosis has been demonstrated in investigations in the interim. NPC1L1 also has the potential to develop into a new therapeutic target and a cancer marker. There is, however, no comprehensive review that summarizes NPC1L1’s function in cancer. To this end, we outlined NPC1L1’s functions in carcinogenesis and treatment, along with resources that can be used to further comprehend the connection between NPC1L1 and tumors.
Collapse
Affiliation(s)
- Renshuai Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jun Zeng
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenjing Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jingsen Meng
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chao Wang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lingyu Shi
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shanbo Yang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jing Chang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Dongming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Dongming Xing,
| |
Collapse
|
5
|
Gu J, Zhu N, Li HF, Zhang CJ, Gong YZ, Liao DF, Qin L. Ezetimibe and Cancer: Is There a Connection? Front Pharmacol 2022; 13:831657. [PMID: 35924044 PMCID: PMC9340271 DOI: 10.3389/fphar.2022.831657] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
The high level of serum cholesterol caused by the excessive absorption of cholesterol can lead to hypercholesteremia, thus promoting the occurrence and development of cancer. Ezetimibe is a drug that reduces cholesterol absorption and has been widely used for the treatment of patients with high circulating cholesterol levels for many years. Mechanistically, ezetimibe works by binding to NPC1L1, which is a key mediator of cholesterol absorption. Accumulating data from preclinical models have shown that ezetimibe alone could inhibit the development and progression of cancer through a variety of mechanisms, including anti-angiogenesis, stem cell suppression, anti-inflammation, immune enhancement and anti-proliferation. In the past decade, there has been heated discussion on whether ezetimibe combined with statins will increase the risk of cancer. At present, more and more evidence shows that ezetimibe does not increase the risk of cancers, which supports the role of ezetimibe in anti-cancer. In this review, we discussed the latest progress in the anti-cancer properties of ezetimibe and elucidated its underlying molecular mechanisms. Finally, we highlighted the potential of ezetimibe as a therapeutic agent in future cancer treatment and prevention.
Collapse
Affiliation(s)
- Jia Gu
- Laboratory of Stem Cell Regulation With Chinese Medicine and its Application, HunanUniversity of Chinese Medicine, Changsha, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Hong-Fang Li
- Laboratory of Stem Cell Regulation With Chinese Medicine and its Application, HunanUniversity of Chinese Medicine, Changsha, China
| | - Chan-Juan Zhang
- Laboratory of Stem Cell Regulation With Chinese Medicine and its Application, HunanUniversity of Chinese Medicine, Changsha, China
| | - Yong-Zhen Gong
- Laboratory of Stem Cell Regulation With Chinese Medicine and its Application, HunanUniversity of Chinese Medicine, Changsha, China
| | - Duan-Fang Liao
- Laboratory of Stem Cell Regulation With Chinese Medicine and its Application, HunanUniversity of Chinese Medicine, Changsha, China
| | - Li Qin
- Laboratory of Stem Cell Regulation With Chinese Medicine and its Application, HunanUniversity of Chinese Medicine, Changsha, China
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Changsha, China
- Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Li Qin,
| |
Collapse
|
6
|
Hu M, Yang F, Huang Y, You X, Liu D, Sun S, Sui SF. Structural insights into the mechanism of human NPC1L1-mediated cholesterol uptake. SCIENCE ADVANCES 2021; 7:7/29/eabg3188. [PMID: 34272236 PMCID: PMC8284890 DOI: 10.1126/sciadv.abg3188] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/03/2021] [Indexed: 05/28/2023]
Abstract
Niemann-Pick C1-like 1 (NPC1L1) protein plays a central role in the intestinal cholesterol absorption and is the target of a drug, ezetimibe, which inhibits NPC1L1 to reduce cholesterol absorption. Here, we present cryo-electron microscopy structures of human NPC1L1 in apo state, cholesterol-enriched state, and ezetimibe-bound state to reveal molecular details of NPC1L1-mediated cholesterol uptake and ezetimibe inhibition. Comparison of these structures reveals that the sterol-sensing domain (SSD) could respond to the cholesterol level alteration by binding different number of cholesterol molecules. Upon increasing cholesterol level, SSD binds more cholesterol molecules, which, in turn, triggers the formation of a stable structural cluster in SSD, while binding of ezetimibe causes the deformation of the SSD and destroys the structural cluster, leading to the inhibition of NPC1L1 function. These results provide insights into mechanisms of NPC1L1 function and ezetimibe action and are of great significance for the development of new cholesterol absorption inhibitors.
Collapse
Affiliation(s)
- Miaoqing Hu
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Fan Yang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yawen Huang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xin You
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Desheng Liu
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
7
|
Lee EJ, Jeong IS, Woo SH, Jung HJ, Han EJ, Kang CW, Hyun S. [Development of a Diabetic Foot Ulceration Prediction Model and Nomogram]. J Korean Acad Nurs 2021; 51:280-293. [PMID: 34215707 DOI: 10.4040/jkan.20257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/13/2021] [Accepted: 03/15/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE This study aimed to identify the risk factors for diabetic foot ulceration (DFU) to develop and evaluate the performance of a DFU prediction model and nomogram among people with diabetes mellitus (DM). METHODS This unmatched case-control study was conducted with 379 adult patients (118 patients with DM and 261 controls) from four general hospitals in South Korea. Data were collected through a structured questionnaire, foot examination, and review of patients' electronic health records. Multiple logistic regression analysis was performed to build the DFU prediction model and nomogram. Further, their performance was analyzed using the Lemeshow-Hosmer test, concordance statistic (C-statistic), and sensitivity/specificity analyses in training and test samples. RESULTS The prediction model was based on risk factors including previous foot ulcer or amputation, peripheral vascular disease, peripheral neuropathy, current smoking, and chronic kidney disease. The calibration of the DFU nomogram was appropriate (χ² = 5.85, p = .321). The C-statistic of the DFU nomogram was .95 (95% confidence interval .93~.97) for both the training and test samples. For clinical usefulness, the sensitivity and specificity obtained were 88.5% and 85.7%, respectively at 110 points in the training sample. The performance of the nomogram was better in male patients or those having DM for more than 10 years. CONCLUSION The nomogram of the DFU prediction model shows good performance, and is thereby recommended for monitoring the risk of DFU and preventing the occurrence of DFU in people with DM.
Collapse
Affiliation(s)
- Eun Joo Lee
- College of Nursing, Healthcare Sciences & Human Ecology, Dong-Eui University, Busan, Korea
| | - Ihn Sook Jeong
- College of Nursing, Pusan National University, Yangsan, Korea.
| | - Seung Hun Woo
- Department of Orthopedics, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hyuk Jae Jung
- Endovascular and Vascular and Transplantation Division, Department of Surgery, Pusan National University Hospital, Busan, Korea
| | - Eun Jin Han
- Division of Nursing, Severance Hospital, Seoul, Korea
| | - Chang Wan Kang
- IT Convergence College of Components and Materials Engineering, Dong-Eui University, Busan, Korea
| | - Sookyung Hyun
- College of Nursing, Pusan National University, Yangsan, Korea
| |
Collapse
|
8
|
Lee J, Hwang YC, Lee WJ, Won JC, Song KH, Park CY, Ahn KJ, Park JY. Comparison of the Efficacy and Safety of Rosuvastatin/Ezetimibe Combination Therapy and Rosuvastatin Monotherapy on Lipoprotein in Patients With Type 2 Diabetes: Multicenter Randomized Controlled Study. Diabetes Ther 2020; 11:859-871. [PMID: 32065359 PMCID: PMC7136381 DOI: 10.1007/s13300-020-00778-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Ezetimibe/statin combination therapy has been reported to provide additional cardioprotective effects compared to statin monotherapy. The apolipoprotein B/A1 (apoB/A1) ratio is an effective predictor of cardiovascular diseases. The aim of this study was to compare the efficacy and safety of rosuvastatin/ezetimibe combination therapy versus rosuvastatin monotherapy using the apoB/A1 ratio in patients with diabetes and hypercholesterolemia. METHODS In this randomized, multicenter, open-label, parallel-group study, patients were randomly assigned to receive the combination therapy of rosuvastatin 5 mg/ezetimibe 10 mg once daily (n = 68) or monotherapy with rosuvastatin 10 mg once daily (n = 68), for 8 weeks. RESULTS After the 8-week treatment, percentage change (least-square means ± standard error) in the apoB/A1 ratio in the rosuvastatin/ezetimibe group was significantly decreased compared to the rosuvastatin group (- 46.14 ± 1.58% vs. - 41.30 ± 1.58%, respectively; P = 0.03). In addition, the proportion of patients achieving > 50% reduction in low-density lipoprotein-cholesterol (LDL-C) and in the comprehensive lipid target (LDL-C < 70 mg/dL, non-HDL-cholesterol [non-HDL-C] < 100 mg/dL, and apoB < 80 mg/dL) was significantly different between the two groups (76.5 and 73.5% in the rosuvastatin/ezetimibe group and 47.1 and 45.6% in the rosuvastatin group, respectively; P < 0.001). The reduction in total cholesterol, non-HDL-C, LDL-C, and apoB were greater in the rosuvastatin/ezetimibe group than in the rosuvastatin group. Both treatments were well tolerated, and no between-group differences in drug-related adverse events were observed. CONCLUSION The apoB/A1 ratio was significantly reduced in patients receiving combination therapy with ezetimibe and rosuvastatin compared to those receiving rosuvastatin monotherapy. Both treatments were well tolerated in patients with type 2 diabetes and hypercholesterolemia. TRIAL REGISTRATION NCT03446261.
Collapse
Affiliation(s)
- Jiwoo Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Korea
| | - You-Cheol Hwang
- Division of Endocrinology and Metabolism, Department of Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, 892, Dongnam-ro, Gangdong-gu, Seoul, 05278 Korea
| | - Woo Je Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Korea
| | - Jong Chul Won
- Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, 1342, Dongil-ro, Nowon-gu, Seoul, 01757 Korea
| | - Kee-Ho Song
- Division of Endocrinology and Metabolism, Konkuk University Medical Center, Konkuk University School of Medicine, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029 Korea
| | - Cheol-Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29, Saemunan-ro, Jongno-gu, Seoul, 03181 Korea
| | - Kyu Jeung Ahn
- Division of Endocrinology and Metabolism, Department of Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, 892, Dongnam-ro, Gangdong-gu, Seoul, 05278 Korea
| | - Joong-Yeol Park
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Korea
| |
Collapse
|
9
|
Kosmas CE, Silverio D, Sourlas A, Garcia F, Montan PD, Guzman E. Impact of lipid-lowering therapy on glycemic control and the risk for new-onset diabetes mellitus. Drugs Context 2018; 7:212562. [PMID: 30515229 PMCID: PMC6267678 DOI: 10.7573/dic.212562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022] Open
Abstract
Lipid-lowering therapy is used very commonly nowadays not only for the optimization of the lipid profile but also to reduce cardiovascular risk. However, some studies have linked the use of certain lipid-lowering agents with an increased risk for impaired glycemic control and new-onset diabetes mellitus, a condition well established as an important risk factor for cardiovascular disease. On the other hand, some other lipid-lowering agents have been shown to have a beneficial effect on glucose metabolism. Profound knowledge of these differences would enable the clinician to choose the right lipid-lowering medication for each individual patient, so that the benefits would outweigh the risk of side effects. This review aims to present and discuss the clinical and scientific data pertaining to the impact of lipid-lowering therapy on glycemic control and the risk for new-onset diabetes mellitus.
Collapse
Affiliation(s)
- Constantine E Kosmas
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Delia Silverio
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| | | | - Frank Garcia
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| | - Peter D Montan
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| | - Eliscer Guzman
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
10
|
Hong N, Lee YH, Tsujita K, Gonzalez JA, Kramer CM, Kovarnik T, Kouvelos GN, Suzuki H, Han K, Lee CJ, Park SH, Lee BW, Cha BS, Kang ES. Comparison of the Effects of Ezetimibe-Statin Combination Therapy on Major Adverse Cardiovascular Events in Patients with and without Diabetes: A Meta-Analysis. Endocrinol Metab (Seoul) 2018; 33:219-227. [PMID: 29766679 PMCID: PMC6021322 DOI: 10.3803/enm.2018.33.2.219] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/03/2018] [Accepted: 02/22/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Ezetimibe-statin combination therapy has been found to reduce low density lipoprotein cholesterol levels and the risk of major adverse cardiovascular events (MACEs) in large trials. We sought to examine the differential effect of ezetimibe on MACEs when added to statins according to the presence of diabetes. METHODS Randomized clinical trials with a sample size of at least 50 participants and at least 24 weeks of follow-up that compared ezetimibe-statin combination therapy with a statin- or placebo-controlled arm and reported at least one MACE, stratified by diabetes status, were included in the meta-analysis and meta-regression. RESULTS A total of seven trials with 28,191 enrolled patients (mean age, 63.6 years; 75.1% men; 7,298 with diabetes [25.9%]; mean follow-up, 5 years) were analysed. MACEs stratified by diabetes were obtained from the published data (two trials) or through direct contact (five trials). No significant heterogeneity was observed among studies (I²=14.7%, P=0.293). Ezetimibe was associated with a greater reduction of MACE risk in subjects with diabetes than in those without diabetes (pooled relative risk, 0.84 vs. 0.93; P(heterogeneity)=0.012). In the meta-regression analysis, the presence of diabetes was associated with a greater reduction of MACE risk when ezetimibe was added to statins (β=0.87, P=0.038). CONCLUSION Ezetimibe-statin combination therapy was associated with greater cardiovascular benefits in patients with diabetes than in those without diabetes. Our findings suggest that ezetimibe-statin combination therapy might be a useful strategy in patients with diabetes at a residual risk of MACEs.
Collapse
Affiliation(s)
- Namki Hong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Graduate School, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jorge A Gonzalez
- Department of Medicine (Cardiology) and Radiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Christopher M Kramer
- Department of Medicine (Cardiology) and Radiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Tomas Kovarnik
- Second Department of Medicine, Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - George N Kouvelos
- Vascular Surgery Unit, Department of Surgery, University of Ioannina, Ioannina, Greece
| | | | - Kyungdo Han
- Department of Biostatistics, The Catholic University of Korea, Seoul, Korea
| | - Chan Joo Lee
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute and Cardiovascular Genome Center, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Ha Park
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute and Cardiovascular Genome Center, Yonsei University College of Medicine, Seoul, Korea
| | - Byung Wan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Bong Soo Cha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Seok Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
11
|
Abstract
Background and aims: Non-alcoholic fatty liver disease (NAFLD) associates with low levels of serum plant sterols in cross-sectional studies. In addition, it has been suggested that the hepatic sterol transport mechanisms are altered in NAFLD. Therefore, we investigated the association between serum, liver and bile plant sterols and sitostanol with NAFLD. Methods: Out of the 138 individuals (age: 46.3 ± 8.9, body mass index: 43.3 ± 6.9 kg/m², 28% men and 72% women), 44 could be histologically categorized to have normal liver, and 94 to have NAFLD. Within the NAFLD group, 28 had simple steatosis and 27 had non-alcoholic steatohepatitis. Plant sterols and sitostanol were measured from serum (n=138), liver (n=38), and bile (n=41). The mRNA expression of genes regulating liver sterol metabolism and inflammation was measured (n=102). Results: Liver and bile sitostanol ratios to cholesterol were higher in those with NAFLD compared to those with histologically normal liver (all P<0.022). Furthermore, liver sitostanol to cholesterol ratio correlated positively with histological steatosis and lobular inflammation (rs > 0.407, P<0.01 for both). In contrast, liver sitosterol to cholesterol ratio correlated negatively with steatosis (rs = −0.392, P=0.015) and lobular inflammation (rs = −0.395, P=0.014). Transcriptomics analysis revealed suggestive correlations between serum plant sterol levels and mRNA expression. Conclusion: Our study showed that liver and bile sitostanol ratios to cholesterol associated positively and liver sitosterol ratio to cholesterol associated negatively with liver steatosis and inflammation in obese individuals with NAFLD..
Collapse
|
12
|
Chen KJ, Jin RM, Shi CC, Ge RL, Hu L, Zou QF, Cai QY, Jin GZ, Wang K. The prognostic value of Niemann-Pick C1-like protein 1 and Niemann-Pick disease type C2 in hepatocellular carcinoma. J Cancer 2018; 9:556-563. [PMID: 29483961 PMCID: PMC5820923 DOI: 10.7150/jca.19996] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022] Open
Abstract
Niemann-Pick C1-like 1 (NPC1L1) and Niemann-Pick C2 (NPC2) is a critical mediator of cholesterol absorption. The aim of the present study was to investigate the prognostic value of NPC1L1 and NPC2 in human primary hepatocellular carcinoma (HCC). The expression level of NPC1L1 and NPC2 were evaluated by Immunohistochemistry, Westen blot and Real-time Quantitative PCR. Protein expression level in tissue was represented by integral optic density (IOD). For prognosis analyses, outcome-based cut-point was calculated by X-tile software. Kaplan-Meier analysis, Cox regression analysis were used evaluate prognostic value of NPC1L1 and NPC2 and NPC1L1/NPC2 combination. Both of NPC1L1 and NPC2 were significantly decreased in HCC tissues than peritumoral liver tissues (61 pairs of tissue for Immunohistochemistry and 10 pairs of tissues for Western blot and Real-time Quantitative PCR), respectively. (n=61: p=0.0005 for NPC1L1 and p=0.0001 for NPC2; n=10: p=0.0002 for NPC1L1 and p=0.0489 for NPC2). Kaplan-Meier analyses in 265 HCC cases were showed that the low expression level of NPC1L1 and NPC2 and NPC1L1/NPC2 combination were significantly correlated with poor overall survival (OS) and shorter time to recurrence (TTR). In addition, univariate and multivariate Cox analyses showed that the expression level of NPC1L1/NPC2 combination in HCC was an independent prognostic factor for OS and TTR. Conclusion: NPC1L1 and NPC2 were lowly expressed in HCC compared with peritumoral liver tissues, and low expression of NPC1L1 and NPC2 in HCC tissues may indicate poor outcome of HCC patients after surgery. NPC1L1/NPC2 combination is an independent prognostic factor for OS and TTR in postoperative HCC patients.
Collapse
Affiliation(s)
- Ke-Ji Chen
- The Second Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Ri-Ming Jin
- The Second Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Chun-Chao Shi
- The Second Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Rui-Liang Ge
- The Second Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Lei Hu
- The Second Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Qi-Fei Zou
- The Second Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Quan-Yu Cai
- Quan-Yu Cai, Department of Radiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Guang-Zhi Jin
- Guang-Zhi Jin, Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Kui Wang
- The Second Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| |
Collapse
|
13
|
Abstract
The last few decades have witnessed remarkable progress in our understanding of ageing. From an evolutionary standpoint it is generally accepted that ageing is a non-adaptive process which is underscored by a decrease in the force of natural selection with time. From a mechanistic perspective ageing is characterized by a wide variety of cellular mechanisms, including processes such as cellular senescence, telomere attrition, oxidative damage, molecular chaperone activity, and the regulation of biochemical pathways by sirtuins. These biological findings have been accompanied by an unrelenting rise in both life expectancy and the number of older people globally. However, despite age being recognized demographically as a risk factor for healthspan, the processes associated with ageing are routinely overlooked in disease mechanisms. Thus, a central goal of biogerontology is to understand how diseases such as cardiovascular disease (CVD) are shaped by ageing. This challenge cannot be ignored because CVD is the main cause of morbidity in older people. A worthwhile way to examine how ageing intersects with CVD is to consider the effects ageing has on cholesterol metabolism, because dysregualted cholesterol metabolism is the key factor which underpins the pathology of CVD. The aim of this chapter is to outline a hypothesis which accounts for how ageing intersects with intracellular cholesterol metabolism. Moreover, we discuss the implications of this relationship for the onset of disease in the 'oldest old' (individuals ≥85 years of age). We conclude the chapter by discussing the important role mathematical modelling has to play in improving our understanding of cholesterol metabolism and ageing.
Collapse
|
14
|
Kim SH, Kim G, Han DH, Lee M, Kim I, Kim B, Kim KH, Song YM, Yoo JE, Wang HJ, Bae SH, Lee YH, Lee BW, Kang ES, Cha BS, Lee MS. Ezetimibe ameliorates steatohepatitis via AMP activated protein kinase-TFEB-mediated activation of autophagy and NLRP3 inflammasome inhibition. Autophagy 2017; 13:1767-1781. [PMID: 28933629 DOI: 10.1080/15548627.2017.1356977] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Impairment in macroautophagy/autophagy flux and inflammasome activation are common characteristics of nonalcoholic steatohepatitis (NASH). Considering the lack of approved agents for treating NASH, drugs that can enhance autophagy and modulate inflammasome pathways may be beneficial. Here, we investigated the novel mechanism of ezetimibe, a widely prescribed drug for hypercholesterolemia, as a therapeutic option for ameliorating NASH. Human liver samples with steatosis and NASH were analyzed. For in vitro studies of autophagy and inflammasomes, primary mouse hepatocytes, human hepatoma cells, mouse embryonic fibroblasts with Ampk or Tsc2 knockout, and human or primary mouse macrophages were treated with ezetimibe and palmitate. Steatohepatitis and fibrosis were induced by feeding Atg7 wild-type, haploinsufficient, and knockout mice a methionine- and choline-deficient diet with ezetimibe (10 mg/kg) for 4 wk. Human livers with steatosis or NASH presented impaired autophagy with decreased nuclear TFEB and increased SQSTM1, MAP1LC3-II, and NLRP3 expression. Ezetimibe increased autophagy flux and concomitantly ameliorated lipid accumulation and apoptosis in palmitate-exposed hepatocytes. Ezetimibe induced AMPK phosphorylation and subsequent TFEB nuclear translocation, related to MAPK/ERK. In macrophages, ezetimibe blocked the NLRP3 inflammasome-IL1B pathway in an autophagy-dependent manner and modulated hepatocyte-macrophage interaction via extracellular vesicles. Ezetimibe attenuated lipid accumulation, inflammation, and fibrosis in liver-specific Atg7 wild-type and haploinsufficient mice, but not in knockout mice. Ezetimibe ameliorates steatohepatitis by autophagy induction through AMPK activation and TFEB nuclear translocation, related to an independent MTOR ameliorative effect and the MAPK/ERK pathway. Ezetimibe dampens NLRP3 inflammasome activation in macrophages by modulating autophagy and a hepatocyte-driven exosome pathway.
Collapse
Affiliation(s)
- Soo Hyun Kim
- a Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea
| | - Gyuri Kim
- a Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea.,b Department of Medicine, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul , Korea.,c Graduate School , Yonsei University College of Medicine , Seoul , Korea
| | - Dai Hoon Han
- d Department of Surgery , Yonsei University College of Medicine , Seoul , Korea
| | - Milim Lee
- a Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea
| | - Irene Kim
- a Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea
| | - Bohkyung Kim
- a Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea
| | - Kook Hwan Kim
- e Severance Biomedical Science Institute, Yonsei Biomedical Research Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Young-Mi Song
- f Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital , University of Toronto , Toronto , Canada
| | - Jeong Eun Yoo
- g Department of Pathology , Yonsei University College of Medicine , Seoul , Korea
| | - Hye Jin Wang
- h Department of Pharmacology , Yonsei University College of Medicine , Seoul , Korea
| | - Soo Han Bae
- e Severance Biomedical Science Institute, Yonsei Biomedical Research Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Yong-Ho Lee
- a Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea.,c Graduate School , Yonsei University College of Medicine , Seoul , Korea.,i Institute of Endocrine Research , Yonsei University College of Medicine , Seoul , Korea
| | - Byung-Wan Lee
- a Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea.,c Graduate School , Yonsei University College of Medicine , Seoul , Korea.,i Institute of Endocrine Research , Yonsei University College of Medicine , Seoul , Korea
| | - Eun Seok Kang
- a Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea.,c Graduate School , Yonsei University College of Medicine , Seoul , Korea.,i Institute of Endocrine Research , Yonsei University College of Medicine , Seoul , Korea
| | - Bong-Soo Cha
- a Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea.,c Graduate School , Yonsei University College of Medicine , Seoul , Korea.,i Institute of Endocrine Research , Yonsei University College of Medicine , Seoul , Korea
| | - Myung-Shik Lee
- a Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea.,e Severance Biomedical Science Institute, Yonsei Biomedical Research Institute , Yonsei University College of Medicine , Seoul , Korea
| |
Collapse
|
15
|
The Interpretation of Cholesterol Balance Derived Synthesis Data and Surrogate Noncholesterol Plasma Markers for Cholesterol Synthesis under Lipid Lowering Therapies. CHOLESTEROL 2017; 2017:5046294. [PMID: 28321334 PMCID: PMC5340945 DOI: 10.1155/2017/5046294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/21/2016] [Accepted: 01/26/2017] [Indexed: 12/12/2022]
Abstract
The cholesterol balance procedure allows the calculation of cholesterol synthesis based on the assumption that loss of endogenous cholesterol via fecal excretion and bile acid synthesis is compensated by de novo synthesis. Under ezetimibe therapy hepatic cholesterol is diminished which can be compensated by hepatic de novo synthesis and hepatic extraction of plasma cholesterol. The plasma lathosterol concentration corrected for total cholesterol concentration (R_Lath) as a marker of de novo cholesterol synthesis is increased during ezetimibe treatment but unchanged under treatment with ezetimibe and simvastatin. Cholesterol balance derived synthesis data increase during both therapies. We hypothesize the following. (1) The cholesterol balance data must be applied to the hepatobiliary cholesterol pool. (2) The calculated cholesterol synthesis value is the sum of hepatic de novo synthesis and the net plasma-liver cholesterol exchange rate. (3) The reduced rate of biliary cholesterol absorption is the major trigger for the regulation of hepatic cholesterol metabolism under ezetimibe treatment. Supportive experimental and literature data are presented that describe changes of cholesterol fluxes under ezetimibe, statin, and combined treatments in omnivores and vegans, link plasma R_Lath to liver function, and define hepatic de novo synthesis as target for regulation of synthesis. An ezetimibe dependent direct hepatic drug effect cannot be excluded.
Collapse
|
16
|
Antileishmanial Activity of Ezetimibe: Inhibition of Sterol Biosynthesis, In Vitro Synergy with Azoles, and Efficacy in Experimental Cutaneous Leishmaniasis. Antimicrob Agents Chemother 2016; 60:6844-6852. [PMID: 27600041 DOI: 10.1128/aac.01545-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/28/2016] [Indexed: 12/11/2022] Open
Abstract
Leishmaniasis affects mainly low-income populations in tropical regions. Radical innovation in drug discovery is time-consuming and expensive, imposing severe restrictions on the ability to launch new chemical entities for the treatment of neglected diseases. Drug repositioning is an attractive strategy for addressing a specific demand more easily. In this project, we have evaluated the antileishmanial activities of 30 drugs currently in clinical use for various morbidities. Ezetimibe, clinically used to reduce intestinal cholesterol absorption in dyslipidemic patients, killed Leishmania amazonensis promastigotes with a 50% inhibitory concentration (IC50) of 30 μM. Morphological analysis revealed that ezetimibe caused the parasites to become rounded, with multiple nuclei and flagella. Analysis by gas chromatography (GC)-mass spectrometry (MS) showed that promastigotes treated with ezetimibe had smaller amounts of C-14-demethylated sterols, and accumulated more cholesterol and lanosterol, than untreated promastigotes. We then evaluated the combination of ezetimibe with well-known antileishmanial azoles. The fractional inhibitory concentration index (FICI) indicated synergy when ezetimibe was combined with ketoconazole or miconazole. The activity of ezetimibe against intracellular amastigotes was confirmed, with an IC50 of 20 μM, and ezetimibe reduced the IC90s of ketoconazole and miconazole from 11.3 and 11.5 μM to 4.14 and 8.25 μM, respectively. Subsequently, we confirmed the activity of ezetimibe in vivo, showing that it decreased lesion development and parasite loads in murine cutaneous leishmaniasis. We concluded that ezetimibe has promising antileishmanial activity and should be considered in combination with azoles in further preclinical and clinical studies.
Collapse
|
17
|
Park CY, Park JY, Choi J, Kim DJ, Park KS, Yoon KH, Lee MK, Park SW. Increased postprandial apolipoprotein B-48 level after a test meal in diabetic patients: A multicenter, cross-sectional study. Metabolism 2016; 65:843-51. [PMID: 27173463 DOI: 10.1016/j.metabol.2016.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 02/09/2016] [Accepted: 02/15/2016] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To evaluate plasma apolipoprotein B (ApoB)-48 concentrations among Korean diabetic subjects with normal to moderately high levels of low-density-lipoprotein cholesterol (LDL-C). METHODS This multicenter, cross-sectional study included subjects with LDL-C levels between 100 and 160mg/dL who had not been treated with a lipid-lowering agent for over 6weeks prior to baseline. Blood tests to assess lipid-profile parameters were conducted in both fasting and postprandial states. This study compared ApoB-48 and other lipid-profile parameters in diabetic and nondiabetic subjects. RESULTS Of the 93 subjects enrolled, 88 (42 diabetic; 46 nondiabetic) completed the study. Significantly higher mean incremental area under curve (0-6h; iAUC0-6h) of postprandial ApoB-48 levels was noted among diabetic subjects than nondiabetic subjects (p=0.0078). The mean postprandial ApoB-48 peak level was higher in diabetic subjects; however, the difference was not statistically significant. The fasting ApoB-48 level was similar in both groups: 5.9 (3.5) in diabetics and 7.3 (5.8) in nondiabetics (p=0.18). The iAUC0-6h of postprandial total cholesterol (TC), triglyceride (TG), LDL-C, non-high-density-lipoprotein cholesterol (non-HDL-C), ApoB-100, and remnant cholesterol was similar in both groups. The ApoB-48 level was moderately correlated with TG and non-HDL-C for both groups (p<0.05). CONCLUSION Without lipid-lowering treatment, the postprandial increment in ApoB-48 level was significantly higher in Korean diabetic subjects compared with nondiabetic subjects, irrespective of similar LDL-C levels.
Collapse
Affiliation(s)
- Cheol-Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, Seoul, Korea
| | - Joong-Yeol Park
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Jongwon Choi
- Cardiovascular Medical Advisor, Global Medical Affairs, Merck Sharp & Dohme Corp Korea, Seoul City Credit Building. 163, Mapo-daero, Mapo-gu, Seoul, Korea; Current affiliation: Clinical Study Unit, R&D, Sanofi, 235, Banpo-daero, Seacho-gu, Seoul, Korea
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kun-Ho Yoon
- Department of Endocrinology and Metabolism, The Catholic University of Korea, Seoul, Korea
| | - Moon-Kyu Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung-Woo Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, Seoul, Korea.
| |
Collapse
|
18
|
Kung CP, Leu JIJ, Basu S, Khaku S, Anokye-Danso F, Liu Q, George DL, Ahima RS, Murphy ME. The P72R Polymorphism of p53 Predisposes to Obesity and Metabolic Dysfunction. Cell Rep 2016; 14:2413-25. [PMID: 26947067 DOI: 10.1016/j.celrep.2016.02.037] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/21/2015] [Accepted: 02/03/2016] [Indexed: 01/14/2023] Open
Abstract
p53 is well known for its tumor suppressor role, but this protein also has a poorly understood role in the regulation of metabolism. Human studies have implicated a common polymorphism at codon 72 of p53 in diabetic and pre-diabetic phenotypes. To understand this role, we utilized a humanized mouse model of the p53 codon 72 variants and monitored these mice following challenge with a high-fat diet (HFD). Mice with the arginine 72 (R72) variant of p53 developed more-severe obesity and glucose intolerance on a HFD, compared to mice with the proline 72 variant (P72). R72 mice developed insulin resistance, islet hypertrophy, increased infiltration of immune cells, and fatty liver disease. Gene expression analyses and studies with small-molecule inhibitors indicate that the p53 target genes Tnf and Npc1l1 underlie this phenotype. These results shed light on the role of p53 in obesity, metabolism, and inflammation.
Collapse
Affiliation(s)
- Che-Pei Kung
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Julia I-Ju Leu
- Department of Genetics, The Perelman School at the University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Subhasree Basu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Sakina Khaku
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Frederick Anokye-Danso
- Institute for Diabetes, Obesity, and Metabolism, The Perelman School at the University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA; Biostatistics Unit, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Donna L George
- Department of Genetics, The Perelman School at the University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Rexford S Ahima
- Institute for Diabetes, Obesity, and Metabolism, The Perelman School at the University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Maureen E Murphy
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Future therapeutic targets for the treatment and prevention of cholesterol gallstones. Eur J Pharmacol 2015; 765:366-74. [DOI: 10.1016/j.ejphar.2015.08.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 01/11/2023]
|
20
|
Chang E, Kim L, Park SE, Rhee EJ, Lee WY, Oh KW, Park SW, Park CY. Ezetimibe improves hepatic steatosis in relation to autophagy in obese and diabetic rats. World J Gastroenterol 2015; 21:7754-7763. [PMID: 26167075 PMCID: PMC4491962 DOI: 10.3748/wjg.v21.i25.7754] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/18/2014] [Accepted: 01/08/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether ezetimibe ameliorates hepatic steatosis and induces autophagy in a rat model of obesity and type 2 diabetes.
METHODS: Male age-matched lean control LETO and obese and diabetic OLETF rats were administered either PBS or ezetimibe (10 mg/kg per day) via stomach gavage for 20 wk. Changes in weight gain and energy intake were regularly monitored. Blood and liver tissue were harvested after overnight fasting at the end of study. Histological assessment was performed in liver tissue. The concentrations of glucose, insulin, triglycerides (TG), free fatty acids (FFA), and total cholesterol (TC) in blood and TG, FFA, and TG in liver tissue were measured. mRNA and protein abundance involved in autophagy was analyzed in the liver. To investigate the effect of ezetimibe on autophagy and reduction in hepatic fat accumulation, human Huh7 hepatocytes were incubated with ezetimibe (10 μmol/L) together with or without palmitic acid (PA, 0.5 mmol/L, 24 h). Transmission electron microscopy (TEM) was employed to demonstrate effect of ezetimibe on autophagy formation. Autophagic flux was measured with bafilomycin A1, an inhibitor of autophagy and following immunoblotting for autophagy-related protein expression.
RESULTS: In the OLETF rats that received ezetimibe (10 mg/kg per day), liver weight were significantly decreased by 20% compared to OLETF control rats without changes in food intake and body weight (P < 0.05). Lipid parameters including TG, FFA, and TC in liver tissue of ezetimibe-administrated OLETF rats were dramatically decreased at least by 30% compared to OLETF controls (P < 0.01). The serum glucose, insulin, HOMA-IR, and lipid profiles were also improved by ezetimibe (P < 0.05). In addition, autophagy-related mRNA expression including ATG5, ATG6, and ATG7 and the protein level of microtubule-associated protein light chain 3 (LC3) were significantly increased in the liver in rats that received ezetimibe (P < 0.05). Likewise, for hepatocytes cultured in vitro, ezetimibe treatment significantly decreased PA-induced fat accumulation and increased PA-reduced mRNA and protein expression involved in autophagy (P < 0.05). Ezetimibe-increased autophagosomes was observed in TEM analysis. Immunoblotting analysis of autophagy formation with an inhibitor of autophagy demonstrated that ezetimibe-increased autophagy resulted from increased autophagic flux.
CONCLUSION: The present study demonstrates that ezetimibe-mediated improvement in hepatic steatosis might involve the induction of autophagy.
Collapse
|
21
|
Intestinal absorption characteristics of imperialine: in vitro and in situ assessments. Acta Pharmacol Sin 2015; 36:863-73. [PMID: 26051111 DOI: 10.1038/aps.2015.27] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/05/2015] [Indexed: 02/05/2023] Open
Abstract
AIM Imperialine is an effective compound in the traditional Chinese medicine chuanbeimu (Bulbus Fritillariae Cirrhosae) that has been used as antitussive/expectorant in a clinical setting. In this study we investigated the absorption characteristics of imperialine in intestinal segments based on an evaluation of its physicochemical properties. METHODS Caco-2 cells were used to examine uptake and transport of imperialine in vitro, and a rat in situ intestinal perfusion model was used to characterize the absorption of imperialine. The amount of imperialine in the samples was quantified using LC-MS/MS. RESULTS The aqueous solubility and oil/water partition coefficient of imperialine were determined. This compound demonstrated a relatively weak alkalinity with a pKa of 8.467±0.028. In Caco-2 cells, the uptake of imperialine was increased with increasing pH in medium, but not affected by temperature. The apparent absorptive and secretive coefficient was (8.39±0.12)×10(-6) cm/s and (7.78±0.09)×10(-6) cm/s, respectively. Furthermore, neither the P-glycoprotein inhibitor verapamil nor Niemann-Pick C1-Like 1 transporter inhibitor ezetimibe affected the absorption and secretion of imperialine in vitro. The in situ intestinal perfusion study showed that the absorption parameters of imperialine varied in 4 intestinal segments (duodenum, jejunum, ileum and colon) with the highest ones in the colon, where a greater number of non-ionized form of imperialine was present. CONCLUSION The intestinal absorptive characteristics of imperialine are closely related to its physicochemical properties. The passive membrane diffusion dominates the intestinal absorption of imperialine.
Collapse
|
22
|
Chang E, Kim L, Choi JM, Park SE, Rhee EJ, Lee WY, Oh KW, Park SW, Park DI, Park CY. Ezetimibe stimulates intestinal glucagon-like peptide 1 secretion via the MEK/ERK pathway rather than dipeptidyl peptidase 4 inhibition. Metabolism 2015; 64:633-41. [PMID: 25704082 DOI: 10.1016/j.metabol.2015.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/31/2015] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Ezetimibe is known as a Niemann-Pick C1-Like 1 (NPC1L1) inhibitor and has been used as an agent for hypercholesterolemia. In our previous study, ezetimibe administration improved glycemic control and increased glucagon like peptide-1 (GLP-1), an incretin hormone with anti-diabetic properties. However, the mechanisms by which ezetimibe stimulates GLP-1 secretion are not fully understood. Thus, the specific aim of this study was to investigate the mechanism(s) by which ezetimibe stimulates GLP-1 secretion. MATERIALS/METHODS Male KK/H1J mice were divided into following groups: AIN-93G (NC), NC with ezetimibe (10 mg/kg/day), 45% high fat (HF) diet, and HF diet with ezetimibe. To investigate the role of ezetimibe in glucose homeostasis and GLP-1 secretion, an insulin tolerance test was performed and serum and intestinal GLP-1 levels and intestinal mRNA expression involved in GLP-1 synthesis were measured after 6 weeks of ezetimibe treatment. In vivo and in vitro dipeptidyl peptidase-4 (DPP-4) inhibition assays were employed to demonstrate the association between ezetimibe-induced GLP-1 change and DPP-4. The molecular mechanism by which ezetimibe affects GLP-1 secretion was evaluated by using human enteroendocrine NCI-H716 cells. RESULTS Ezetimibe supplementation significantly ameliorated HF-increased glucose and insulin resistance in the type 2 diabetic KK/H1J mouse model. Serum and intestinal active GLP-1 levels were significantly increased by ezetimibe in HF-fed animals. However, mRNA expression of genes involved in intestinal GLP-1 synthesis was not altered. Furthermore, ezetimibe did not inhibit the activity of either in vivo or in vitro dipeptidyl peptidase-4 (DPP-4). The direct effects of ezetimibe on GLP-1 secretion and L cell secretory mechanisms were examined in human NCI-H716 intestinal cells. Ezetimibe significantly stimulated active GLP-1 secretion, which was accompanied by the activation of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase (ERK). Ezetimibe-increased GLP-1 secretion was abrogated by inhibiting the MEK/ERK pathway with PD98059. CONCLUSION These findings suggest a possible novel biological role of ezetimibe in glycemic control to stimulate intestinal GLP-1 secretion via the MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Eugene Chang
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| | - Lisa Kim
- Diabetes Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Mook Choi
- Diabetes Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ki-Won Oh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung-Woo Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Il Park
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheol-Young Park
- Diabetes Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Vanmierlo T, Bogie JF, Mailleux J, Vanmol J, Lütjohann D, Mulder M, Hendriks JJ. Plant sterols: Friend or foe in CNS disorders? Prog Lipid Res 2015; 58:26-39. [DOI: 10.1016/j.plipres.2015.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 12/21/2022]
|
24
|
Alqahtani S, Kaddoumi A. Vitamin E transporters in cancer therapy. AAPS JOURNAL 2014; 17:313-22. [PMID: 25466495 DOI: 10.1208/s12248-014-9705-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/17/2014] [Indexed: 02/06/2023]
Abstract
Besides their potent antioxidant activity, vitamin E isoforms demonstrated multiple therapeutic activities among which is their activity against different cancer types, including breast, prostate, and colon cancers. However, the activity of vitamin E isoforms is limited by their low bioavailability following oral administration. In addition to the low solubility, vitamin E isoforms have been established as substrates for several intestinal and hepatic transport proteins. In this review, we present reported anticancer activity of vitamin E family members and the possible utilization of vitamin E and derivatives as chemosensitizers to reverse multidrug resistance when given as part of a delivery system and/or in combination with anticancer therapeutic drugs. Then, the review discusses disposition of vitamin E members and transport proteins that play a role in determining their systemic bioavailability followed by recent advances in vitamin E formulations and delivery strategies.
Collapse
Affiliation(s)
- Saeed Alqahtani
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Dr., Monroe, Louisiana, 71201, USA
| | | |
Collapse
|
25
|
Lopez S, Bermudez B, Montserrat-de la Paz S, Jaramillo S, Varela LM, Ortega-Gomez A, Abia R, Muriana FJG. Membrane composition and dynamics: a target of bioactive virgin olive oil constituents. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1638-56. [PMID: 24440426 DOI: 10.1016/j.bbamem.2014.01.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 12/26/2022]
Abstract
The endogenous synthesis of lipids, which requires suitable dietary raw materials, is critical for the formation of membrane bilayers. In eukaryotic cells, phospholipids are the predominant membrane lipids and consist of hydrophobic acyl chains attached to a hydrophilic head group. The relative balance between saturated, monounsaturated, and polyunsaturated acyl chains is required for the organization and normal function of membranes. Virgin olive oil is the richest natural dietary source of the monounsaturated lipid oleic acid and is one of the key components of the healthy Mediterranean diet. Virgin olive oil also contains a unique constellation of many other lipophilic and amphipathic constituents whose health benefits are still being discovered. The focus of this review is the latest evidence regarding the impact of oleic acid and the minor constituents of virgin olive oil on the arrangement and behavior of lipid bilayers. We highlight the relevance of these interactions to the potential use of virgin olive oil in preserving the functional properties of membranes to maintain health and in modulating membrane functions that can be altered in several pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Sergio Lopez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Beatriz Bermudez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | | | - Sara Jaramillo
- Laboratory of Phytochemicals and Food Quality, Instituto de la Grasa, CSIC, 41014 Seville, Spain
| | - Lourdes M Varela
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Almudena Ortega-Gomez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Francisco J G Muriana
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain.
| |
Collapse
|