1
|
Mohamed ATAE, Ragheb MA, Shehata MR, Mohamed AS. In vivo cardioprotective effect of zinc oxide nanoparticles against doxorubicin-induced myocardial infarction by enhancing the antioxidant system and nitric oxide production. J Trace Elem Med Biol 2024; 86:127516. [PMID: 39226872 DOI: 10.1016/j.jtemb.2024.127516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/26/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Myocardial infarction (MI) is the result of reduced or stopped blood supply to a section of the myocardium. Regardless of its potential effectiveness in the treatment of several types of cancers, doxorubicin (DOX) capabilities are restricted because of its widespread cardiotoxic impact. AIM In this study, the protective effect of zinc oxide nanoparticles against doxorubicin-induced myocardial infarction in rats is examined. METHODS Zinc oxide nanoparticles (ZnO NPs) were synthesized and characterized using X-ray diffraction, transmission electron microscope, and UV-Vis spectral analysis. A total cumulative dose of DOX (18 mg/kg body weight, i.p.) was injected once daily on days 2, 4, 6, 8, 10, and 12 (i.p.) to induce MI in rats. 24 rats were divided into 4 groups; control, MI, and MI treated with two doses of ZnO NPs (45 and 22.5 mg/kg). RESULTS The treatment with ZnO NPs restored ST-segment near normal, ameliorated the changes in cardiac troponin T, creatine kinase, lactate dehydrogenase, aspartate aminotransferase, alanine amino transferase, alkaline phosphatase, total proteins, malondialdehyde, nitric oxide, reduced glutathione, and catalase.The histological investigation revealed that ZnO NPs treated group showed marked improvement in the examined cardiac muscle and liver in numerous sections.The lower dose of ZnO NPs (22.5 mg/kg) was significantly more effective than the higher dose (45 mg/kg). CONCLUSION The effect of ZnO NPs against doxorubicin-induced myocardial infarction in rats was assessed and the results revealed a successful cardioprotective potency through enhancing the antioxidant system and stimulating nitric oxide production in myocardial infarcted rats. This work implies that ZnO NPs could serve as promising agents for treating doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
| | - Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Egypt.
| | | | | |
Collapse
|
2
|
Avagimyan A, Pogosova N, Kakturskiy L, Sheibani M, Challa A, Kogan E, Fogacci F, Mikhaleva L, Vandysheva R, Yakubovskaya M, Faggiano A, Carugo S, Urazova O, Jahanbin B, Lesovaya E, Polana S, Kirsanov K, Sattar Y, Trofimenko A, Demura T, Saghazadeh A, Koliakos G, Shafie D, Alizadehasl A, Cicero A, Costabel JP, Biondi-Zoccai G, Ottaviani G, Sarrafzadegan N. Doxorubicin-related cardiotoxicity: review of fundamental pathways of cardiovascular system injury. Cardiovasc Pathol 2024; 73:107683. [PMID: 39111556 DOI: 10.1016/j.carpath.2024.107683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Over the years, advancements in the field of oncology have made remarkable strides in enhancing the efficacy of medical care for patients with cancer. These modernizations have resulted in prolonged survival and improved the quality of life for these patients. However, this progress has also been accompanied by escalation in mortality rates associated with anthracycline chemotherapy. Anthracyclines, which are known for their potent antitumor properties, are notorious for their substantial cardiotoxic potential. Remarkably, even after 6 decades of research, a conclusive solution to protect the cardiovascular system against doxorubicin-induced damage has not yet been established. A comprehensive understanding of the pathophysiological processes driving cardiotoxicity combined with targeted research is crucial for developing innovative cardioprotective strategies. This review seeks to explain the mechanisms responsible for structural and functional alterations in doxorubicin-induced cardiomyopathy.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Department of Internal Desiases Propedeutics, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia.
| | - Nana Pogosova
- Deputy Director of Research and Preventive Cardiology, National Medical Research Centre of Cardiology named after E. Chazov, Moscow, Russia; Head of Evidence Based Medicine Department, Patrice Lumumba Peoples' Friendship University of Russia (RUDN), Moscow, Russia
| | - Lev Kakturskiy
- A. P. Avtsyn Research Institute of Human Morphology, Petrovskiy RNCS, Moscow, Russia
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Teharan, Iran; Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abhiram Challa
- Department of Cardiology, West Virginia University, Morgantown, WV, USA
| | - Eugenia Kogan
- Institute of Clinical Morphology and Digital Pathology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Federica Fogacci
- Atherosclerosis and Metabolic Disorders Research Unit, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Liudmila Mikhaleva
- A. P. Avtsyn Research Institute of Human Morphology, Petrovskiy RNCS, Moscow, Russia
| | - Rositsa Vandysheva
- A. P. Avtsyn Research Institute of Human Morphology, Petrovskiy RNCS, Moscow, Russia
| | - Marianna Yakubovskaya
- Chemical Cancerogenesis Department, Institute of Cancerogenesis, National Medical Research Center of Oncology after N. N. Blokhina, Moscow, Russia; Laboratory of Single Cell Biology, Patrice Lumumba Peoples' Friendship University of Russia (RUDN), Moscow, Russia
| | - Andrea Faggiano
- Department of Cardio-Thoracic-Vascular Area, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Stefano Carugo
- Department of Cardio-Thoracic-Vascular Area, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Olga Urazova
- Head of Pathophysiology Department, Siberian State Medical University, Tomsk, Russia
| | - Behnaz Jahanbin
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Ekaterina Lesovaya
- Chemical Cancerogenesis Department, Institute of Cancerogenesis, National Medical Research Center of Oncology after N. N. Blokhina, Moscow, Russia; Laboratory of Single Cell Biology, Patrice Lumumba Peoples' Friendship University of Russia (RUDN), Moscow, Russia; Department of Oncology, Ryazan State Medical University after I. P. Pavlov, Ryazan, Russia
| | | | - Kirill Kirsanov
- Chemical Cancerogenesis Department, Institute of Cancerogenesis, National Medical Research Center of Oncology after N. N. Blokhina, Moscow, Russia; Laboratory of Single Cell Biology, Patrice Lumumba Peoples' Friendship University of Russia (RUDN), Moscow, Russia
| | - Yasar Sattar
- Department of Cardiology, West Virginia University, Morgantown, WV, USA
| | - Artem Trofimenko
- Department of Pathophysiology, Kuban State Medical University, Krasnodar, Russia
| | - Tatiana Demura
- Institute of Clinical Morphology and Digital Pathology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Amene Saghazadeh
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - George Koliakos
- Head of Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Davood Shafie
- Director of Heart Failure Centre, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azin Alizadehasl
- Head of Cardio-Oncology Department and Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arrigo Cicero
- Hypertension and Cardiovascular Risk Research Unit, Alma Mater Studiorum University of Bologna, Bologna, Italy; IRCCS Policlinico S. Orsola-Malpighi di Bologna, Bologna, Italy
| | - Juan Pablo Costabel
- Chief of Coronary Care Unit, Buenos Aires Institute of Cardiology, Buenos Aires, Argentina
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | - Giulia Ottaviani
- Anatomic Pathology, Lino Rossi Research Center, Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nizal Sarrafzadegan
- Director of Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Samavati I, Ranjbar A, Haddadi R. Cardioprotective effect of vitamin D3 on cisplatin-induced cardiotoxicity in male mice: role of oxidative stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4761-4769. [PMID: 38150016 DOI: 10.1007/s00210-023-02848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/09/2023] [Indexed: 12/28/2023]
Abstract
Cisplatin (CP) is a chemotherapy drug used in a broad spectrum of cancer. The current study investigated the protective effect of vitamin D3 (vit-D3) on CP-induced cardiotoxicity. Forty-two male Balb-c mice (20-25 g) were divided into seven groups (GP), 6 per/group were included: GP1 was considered the control group, GP2 received a single dose of I.V. injection of cisplatin (10 mg/kg). Seven days before cisplatin injection on GP3 and GP4 as pre-treatment, vit-D3 was injected I.P. with the doses of 500 IU/kg and 1000 IU/kg, respectively. GP5 and GP6 were considered the treatment groups, were injected cisplatin (10 mg/kg, I.V), and 15 days later, received vit-D3 (500 IU/kg and 1000 IU/kg, I.P) for 7 days. GP7 was the positive control group, which received vit-D3 at a dose of 500 IU/kg (I.P.) for 7 days. Tissues samples and blood serum were collected for biochemical and histopathological investigations. CP injection significantly increased (p < 0.001) LDH, Troponin I, CK-MB, malondialdehyde (MDA), and nitric oxide (NO) levels, but total antioxidant capacity (TAC) levels were significantly reduced. Histological findings showed cardiac muscle rupture, myocardial fiber necrosis, edema, and pyknotic nuclei, indicating cardiac damage. In both pre-treatment and treatment protocol, vit-D3 could improve the histological and biochemical parameters and prevented from the CP toxicity. Vit-D3 significantly could prevent the CP cardiotoxicity in pre-treatment groups, and partially improve the damage of chemotherapy in treatment group. However, further research is necessary to establish the potential of vit-D3 in preventing or ameliorating cisplatin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Iman Samavati
- Department of Pharmacology and Toxicology, School of Pharmacy, Herbal Medicine and Natural Product Research Center, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Akram Ranjbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Herbal Medicine and Natural Product Research Center, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Rasool Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Herbal Medicine and Natural Product Research Center, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran.
| |
Collapse
|
4
|
Das UN. Pyridoxine, essential fatty acids, and protection against doxorubicin-induced cardiotoxicity. J Biochem Mol Toxicol 2024; 38:e23639. [PMID: 38229307 DOI: 10.1002/jbt.23639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Affiliation(s)
- Undurti N Das
- UND Life Sciences, Battle Ground, Washington, USA
- Department of Biotechnology, Indian Institute of Technology, Kandi, Sangareddy, Telangana, India
- Department of Medicine, Omega Hospitals, Gachibowli, 500032, Hyderabad, India
| |
Collapse
|
5
|
Ghasemzadeh Rahbardar M, Eisvand F, Rameshrad M, Razavi BM, Tabatabaee Yazdi A, Hosseinzadeh H. Carnosic acid mitigates doxorubicin-induced cardiac toxicity: Evidence from animal and cell model investigations. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:425-438. [PMID: 38419896 PMCID: PMC10897553 DOI: 10.22038/ijbms.2023.71508.15544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/01/2023] [Indexed: 03/02/2024]
Abstract
Objectives Utilization of doxorubicin (DOX) as a chemotherapy medication is limited due to its cardiotoxic effects. Carnosic acid exerts antioxidant, anti-inflammatory, besides cytoprotective effects. The objective of this study was to investigate the ability of carnosic acid to protect rat hearts and the MCF7 cell line against cardiotoxicity induced by DOX. Materials and Methods The study involved the classification of male Wistar rats into seven groups: 1) Control 2) DOX (2 mg/kg, every 48h, IP, 12d), 3-5) Carnosic acid (10, 20, 40 mg/kg/day, IP, 16d)+ DOX, 6) Vitamin E (200 mg/kg, every 48h, IP, 16d)+ DOX 7) Carnosic acid (40 mg/kg/day, IP, 16d). Finally, cardiac histopathological alterations, ECG factors, carotid blood pressure, left ventricular function, heart-to-body weight ratio, oxidative (MDA, GSH), inflammatory (IL-1β, TNF-α), plus apoptosis (caspase 3, 8, 9, Bcl-2, Bax) markers were evaluated. DOX toxicity and carnosic acid ameliorative effect were evaluated on MCF7 cells using the MTT assay. Results DOX augmented the QRS duration, QA, RRI, STI, and heart-to-body weight ratio, and reduced HR, LVDP, Min dP/dt, Max dP/dt, blood pressure, boosted MDA, TNF-α, IL1-β, caspase 3,8,9, Bax/Bcl-2 ratio, decreased GSH content, caused fibrosis, necrosis, and cytoplasmic vacuolization in cardiac tissue but carnosic acid administration reduced the toxic effects of DOX. The cytotoxic effects of DOX were not affected by carnosic acid at concentrations of 5 and 10 μM. Conclusion Carnosic acid as an anti-inflammatory and antioxidant substance is effective in reducing DOX-induced damage by enhancing antioxidant defense and modifying inflammatory signal pathway activity and can be used as an adjunct in treating DOX cardiotoxicity.
Collapse
Affiliation(s)
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Tabatabaee Yazdi
- Ghaem Hospital, Department of Pathology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Munir S, Hafeez R, Younis W, Malik MNH, Munir MU, Manzoor W, Razzaq MA, Pessoa LB, Lopes KS, Lívero FADR, Gasparotto Junior A. The Protective Effect of Citronellol against Doxorubicin-Induced Cardiotoxicity in Rats. Biomedicines 2023; 11:2820. [PMID: 37893193 PMCID: PMC10604204 DOI: 10.3390/biomedicines11102820] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Citronellol has been reported to have anti-inflammatory, anti-cancer, and antihypertensive activities, but its effect on myocardial ischemia is still unclear. The aim of this study was to investigate the therapeutic effects and pharmacological mechanisms of citronellol on ischemia. Therefore, a rat model of myocardial ischemia was established using the doxorubicin (DOX) model. To induce cardiotoxicity, the rats were given DOX (2.5 mg/kg) intraperitoneally over a 14-day period. Group I served as the control and received tween 80 (0.2%), group II received the vehicle and DOX, group III received the standard drug dexrazoxane and DOX, whereas groups IV, V, and VI were treated orally with citronellol (25, 50, and 100 mg/kg) and DOX, respectively. After treatment, the rats were euthanized, and blood samples were collected to assess the levels of serum cardiac markers, lipid profiles, and tissue antioxidant enzymes. The gene expressions of eNOS, PPAR-g, IL-10, VEGF, and NFkB-1 were also determined using real-time polymerase chain reactions. Simultaneous treatment with DOX and citronellol reduced cardiac antioxidant enzymes and lipid biomarkers in a dose-dependent manner. Citronellol also increased the expression of anti-inflammatory cytokines while reducing the expression of pro-inflammatory cytokines. Therefore, it can be concluded that citronellol may have potential cardioprotective effects in preventing DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Sania Munir
- The Faculty of Pharmacy, Superior University, Lahore 54000, Pakistan;
| | - Rizwan Hafeez
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan;
| | - Waqas Younis
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore 54590, Pakistan; (M.N.H.M.); (W.M.); (M.A.R.)
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, 550 Ist Ave, New York, NY 10016, USA
| | - Muhammad Nasir Hayat Malik
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore 54590, Pakistan; (M.N.H.M.); (W.M.); (M.A.R.)
| | - Muhammad Usman Munir
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Wajiha Manzoor
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore 54590, Pakistan; (M.N.H.M.); (W.M.); (M.A.R.)
| | - Muryam Abdul Razzaq
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore 54590, Pakistan; (M.N.H.M.); (W.M.); (M.A.R.)
| | - Luciane Barbosa Pessoa
- Laboratory of Cardiovascular Pharmacology (LaFac), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil; (L.B.P.); (K.S.L.)
| | - Katiana Simões Lopes
- Laboratory of Cardiovascular Pharmacology (LaFac), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil; (L.B.P.); (K.S.L.)
| | | | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFac), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil; (L.B.P.); (K.S.L.)
| |
Collapse
|
7
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
8
|
Nisa FY, Rahman MA, Rafi MKJ, Khan MAN, Sultana F, Majid M, Hossain MA, Deen JI, Mannan M, Saha S, Tangpong J, Choudhury TR. Biosynthesized magnesium oxide nanoparticles from Tamarindus indica seed attenuate doxorubicin-induced cardiotoxicity by regulating biochemical indexes and linked genes. BIOMATERIALS ADVANCES 2023; 146:213291. [PMID: 36709628 DOI: 10.1016/j.bioadv.2023.213291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/09/2023]
Abstract
The phytochemicals of Tamarindus indica seed hydroalcoholic extract were exploited as a biocatalyst for the sustainable synthesis of magnesium oxide nanoparticles (MgO-NPs). This research investigated the cardioprotective effects of biosynthesized magnesium oxide nanoparticle (MgO-NPs). The biosynthesized seed MgO-NPs were characterized by ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy-dispersive X-ray diffraction (EDX), and Fourier-transform infrared spectroscopy (FT-IR). These methodological approaches demonstrated their capacity to synthesize crystalline and aggregated MgO-NPs with a size average of 13.38 ± 0.16 nm. The biogenic MgO-NPs were found to have a significant quantity of total phenolic contents (TPC) and total flavonoid contents (TFC), indicating the existence of phenol and flavonoid-like components. The biogenic MgO-NPs demonstrated a significant free radical scavenging effects compared to different standards as measured by the inhibition of free radicals produced in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS•+), and Nitric oxide (NO) scavenging methods; they also exhibited higher ferric ion reducing capacity in FRAP assay. Moreover, they were found to be non-toxic in cytotoxic assessment. Pretreatment of Wistar Albino rats with seed MgO-NPs resulted in a significant reduction of cardiac biomarkers, i.e., cardiac Troponin-I (cTnI), creatine kinase (CK-MB), and aspartate aminotransferase (AST). The seed MgO-NPs were more successful in reducing lipid levels. The results of the mRNA expression analysis showed that seed MgO-NPs efficiently reduced the expression of the apoptotic genes p53 and Caspase-3 while restoring the expected levels of SOD gene expression. The histopathological observations were primarily focused on the disruption of cardiac fibers and myofibrillar disintegration, which are consistent with the biochemical findings. Therefore, our research suggests that MgO-NPs derived from the seeds of Tamarindus indica as a powerful antioxidant; the administration may be effective in protecting the heart from DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Fatema Yasmin Nisa
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh; School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| | - Md Khalid Juhani Rafi
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Asif Nadim Khan
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Farjana Sultana
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Mumtahina Majid
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Altaf Hossain
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Jobaier Ibne Deen
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Mannan
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Srabonti Saha
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh.
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| | - Tasrina Rabia Choudhury
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Centre Dhaka, Bangladesh Atomic Energy Commission, Bangladesh
| |
Collapse
|
9
|
Manolis AA, Manolis T, Melita H, Manolis AS. Role of Vitamins in Cardiovascular Health: Know Your Facts - Part 1. Curr Vasc Pharmacol 2023; 21:378-398. [PMID: 37702241 DOI: 10.2174/1570161121666230912155548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
Cardiovascular (CV) disease (CVD) is a major cause of morbidity and mortality world-wide, thus it is important to adopt preventive interventions. Observational data demonstrating CV benefits of vitamin supplements, advanced by self-proclaimed experts have resulted in ~50% of Americans reporting the use of multivitamins for health promotion; this practice has led to a multi-billion-dollar business of the multivitamin-industry. However, the data on the extensive use of multivitamins show no consistent benefit for CVD prevention or all-cause mortality, while the use of certain vitamins might prove harmful. Thus, the focus of this two-part review is on the attributes or concerns about specific vitamins on CVD. In Part 1, the CV effects of specific vitamins are discussed, indicating the need for further supportive evidence of potential benefits. Vitamin A preserves CV homeostasis as it participates in many biologic functions, including atherosclerosis. However, supplementation could potentially be harmful. Betacarotene, a pro-vitamin A, conveys pro-oxidant actions that may mitigate any other benefits. Folic acid alone and certain B-vitamins (e.g., B1/B2/B6/B12) may reduce CVD, heart failure, and/or stroke, while niacin might increase mortality. Vitamin C has antioxidant and cardioprotective effects. Vitamin D may confer CV protection, but all the data are not in agreement. Combined vitamin E and C have antiatherogenic effects but clinical evidence is inconsistent. Vitamin K seems neutral. Thus, there are individual vitamin actions with favorable CV impact (certain B-vitamins and vitamins C and D), but other vitamins (β-carotene, niacin) may potentially have deleterious effects, which also holds true for high doses of fat-soluble vitamins (A/D/E/K).
Collapse
|
10
|
Ezeani C, Beshel JA, Okon IA, Inyang EG, Owu DU. Vitamin C modulates adrenaline-augmented gastric injury via cardiac troponin/creatine kinase pathway in Wistar rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:843-850. [PMID: 37396942 PMCID: PMC10311972 DOI: 10.22038/ijbms.2023.68651.15019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/05/2023] [Indexed: 07/04/2023]
Abstract
Objectives Vitamin C has anti-oxidant benefits in the gastrointestinal tract and heart. This study investigated the effect of vitamin C on some gastric parameters in myocardial injury in rats. Materials and Methods Thirty Wistar rats were divided into five groups (n = 6). Group 1 was the control and Group 2 (ADR) received 1 mg/kg of adrenaline subcutaneously on days 13 and 14. Group 3 received vitamin C (200 mg/kg) orally for 14 days. Group 4 received adrenaline (1 mg/kg) on days 1 and 2 and vitamin C from days 1 to 14. Group 5 received vitamin C till day 14 and adrenaline on days 13 and 14. All animals were sacrificed after 2 hr of pyloric ligation. Gastric secretion parameters were assessed while a blood sample was obtained for biochemical analysis. Results Gastric juice volume, total gastric acidity, pepsin activity, cardiac troponin 1, creatine kinase-MB, and lactate dehydrogenase levels increased (P<0.05) in ADR only group relative to the control. Pre- and post-vitamin C treatment reduced (P<0.05) these markers to near normal. However, treatment with vitamin C reduced (P<0.05) ulcer score, and increased (P<0.05) pepsin activity, mucus weight, and serum vitamin C levels when compared with the ADR-only group. Pre-treatment with vitamin C resulted in a marked decrease (P<0.05) in gastric juice volume, pepsin activity, and total gastric acidity compared with post-treatment in the adrenaline-induced injury group. Conclusion Vitamin C pretreatment reduces excessive gastric secretions, ulcer scores, and attenuates cardio-inflammatory responses in adrenaline-augmented myocardial injury in rats.
Collapse
Affiliation(s)
- Chidiebere Ezeani
- Department of Physiology, College of Medical Sciences, University of Calabar, Calabar Cross River State, Nigeria
| | - Justin Atiang Beshel
- Department of Physiology, College of Medical Sciences, University of Calabar, Calabar Cross River State, Nigeria
| | - Idara Asuquo Okon
- Department of Physiology, PAMO University of Medical Sciences, Port Harcourt, Rivers State,Nigeria
| | - Ememfon Gabriel Inyang
- Department of Physiology, College of Medical Sciences, University of Calabar, Calabar Cross River State, Nigeria
| | - Daniel Udofia Owu
- Department of Physiology, College of Medical Sciences, University of Calabar, Calabar Cross River State, Nigeria
| |
Collapse
|
11
|
Arozal W, Monayo ER, Barinda AJ, Perkasa DP, Soetikno V, Nafrialdi N, Louisa M. Protective effects of silver nanoparticles in isoproterenol-induced myocardial infarction in rats. Front Med (Lausanne) 2022; 9:867497. [PMID: 36091690 PMCID: PMC9454814 DOI: 10.3389/fmed.2022.867497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/04/2022] [Indexed: 12/07/2022] Open
Abstract
Background Silver nanoparticles (AgNPs) are widely used in the medical field, including cardiovascular. However, limited research has investigated the effect of AgNPs on the protection of myocardial infarction (MI). Objectives Isoproterenol (Iso)-induced MI and the cardiac protection offered by AgNPs were investigated in the present study. Additionally, we characterized the profile of Ag in the form of nanoparticles. Methods Twenty-four male Wistar rats were randomly divided into four groups as follows: normal, Iso, Iso + AgNO3, and Iso + AgNP groups. AgNPs and silver ion (AgNO3) were administered intraperitoneally at 2.5 mg/kg BW for 14 days. Iso induction was performed using two doses of 85 mg/kg BW given subcutaneously on days 13 and 14. Blood and cardiac tissue samples were taken 24 h after the last dose of Iso and checked for Creatine Kinase-MB (CK-MB), lactate dehydrogenase in plasma along with oxidative stress parameters, mitochondria biogenesis markers, and inflammation representative genes in cardiac tissue. Additionally, we analyzed the histopathological features in cardiac tissue. Results The silver was confirmed in the form of nanoparticles by its size at intervals of 8.72-37.84 nm. Both AgNO3 and AgNPs showed similar cardioprotective effects, as shown by the decrease in biochemical markers of cardiac toxicity, namely, CK-MB. Additionally, AgNPs group have better efficacy compared with AgNO3 group in ameliorating Iso-mediated oxidative stress production, as evidenced by the significant decrease in malondialdehyde level and increased superoxide dismutase activity (P < 0.0001 and P < 0.01, respectively) in cardiac tissue compared with the Iso group. Mechanistically, AgNPs, but not AgNO3, enhanced the expression levels of mitochondrial transcription factor A and peroxisome proliferator-activated receptor-gamma coactivator 1-alpha in post-MI heart and reduced the protein expression of nuclear factor-kappa B (NF-κB) assessed by western blot analysis. Furthermore, these results were confirmed with the histopathological evaluation of cardiac tissue. Nevertheless, pretreatment with either AgNO3 or AgNPs improved the aspartate aminotransferase level. Conclusion These results suggested that AgNPs have more superior cardioprotective effect compared with AgNO3 against Iso-induced MI, at least in part through amelioration of NF-κB expression level induced by oxidative stress overproduction.
Collapse
Affiliation(s)
- Wawaimuli Arozal
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Edwina Rogayah Monayo
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Faculty of Medicine Universitas Negeri Gorontalo, Gorontalo, Indonesia
| | - Agian Jeffilano Barinda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Metabolic, Cardiovascular and Aging Cluster, The Indonesian Medical Education and Research Institute, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Dian Pribadi Perkasa
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Research Center for Radiation Process Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Jakarta, Indonesia
| | - Vivian Soetikno
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Nafrialdi Nafrialdi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
12
|
Ascorbic Acid Ameliorates Cardiac and Hepatic Toxicity Induced by Azithromycin-Etoricoxib Drug Interaction. Curr Issues Mol Biol 2022; 44:2529-2541. [PMID: 35735613 PMCID: PMC9222074 DOI: 10.3390/cimb44060172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
The complexity of prescribing safe and effective drug therapy is still challenging. Due to the increased number of medications taken by patients, the potential for drug-drug interactions has clinically important consequences. This study focuses on the potential drug-drug interaction between azithromycin and etoricoxib and the possibility of counteracting this adverse reaction by giving ascorbic acid intraperitoneally to male albino rats. Sixty adult male albino rats weighing 150–180 g were used. The rats were allocated into six equal groups. One group was a control, and the others were given azithromycin, etoricoxib, either alone or combination, with one group treated with ascorbic acid and the last group treated with the drug combination and ascorbic acid. Blood samples were collected for measuring AST, ALT, LDH, CK-MB, and troponin alongside antioxidant enzymes and histopathological examination for both liver and heart tissue. The results showed both hepatic and cardiac damage in azithromycin and etoricoxib groups represented by increasing levels of heaptoc enzymes (ALT, AST, LDH, CK-MB, and troponin) with declining antioxidant enzymes and elevation of malondialdehyde and the appearance of hepatic and cardiac toxicities. Upon administration, ascorbic acid ameliorated all the mentioned biochemical parameters. In conclusion, ascorbic acid has great antioxidant capacities and hepatic and cardiac ameliorative effects and can alleviate drug interaction toxicity.
Collapse
|
13
|
Inhibitory effects of Syzygium jambos extract on biomarkers of endothelial cell activation. BMC Complement Med Ther 2022; 22:101. [PMID: 35392889 PMCID: PMC8988540 DOI: 10.1186/s12906-022-03572-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/07/2022] [Indexed: 11/12/2022] Open
Abstract
Background Disordered endothelial cell activation plays an important role in the pathophysiology of atherosclerosis, cancer, sepsis, viral infections, and inflammatory responses. There is interest in developing novel therapeutics to regulate endothelial cell function in atherothrombotic, metabolic, vascular, and hematological diseases. Extracts from leaves of the Syzygium jambos (L.) Alston (S. jambos) trees have been proposed to treat cardiovascular diseases and diabetes through unclear mechanisms. We investigated the effects of the S. jambos extract on biomarkers of endothelial dysfunction and immune responses in the human endothelial cell line, EA.hy926. Methods Leaves of S. jambos were collected, concocted and lyophilized. To study the effects of S. jambos on endothelial cell activation, we used the human endothelial cell line. IL-6 levels were measured using qPCR and ELISA. PDI activity was measured using Insulin Turbidity and Di-E-GSSG assays. CM-H2DCFDA was used to study ROS levels. Migration assay was used to study S. jambos effect on ex vivo human polymorphonuclear and human mononuclear cells. Results Our results show that incubation of EA.hy926 cells with ET-1 led to a 6.5 ± 1.6 fold increase in IL-6 expression by qPCR, an event that was blocked by S. jambos. Also, we observed that ET-1 increased extracellular protein disulfide isomerase (PDI) activity that was likewise dose-dependently blocked by S. jambos (IC50 = 14 μg/mL). Consistent with these observations, ET-1 stimulated ex vivo human polymorphonuclear and mononuclear cell migration that also was dose-dependently blocked by S. jambos. In addition, ET-1 stimulation led to significant increases in ROS production that were sensitive to S. jambos. Conclusion Our results suggest that the S. jambos extract represents a novel cardiovascular protective pharmacological approach to regulate endothelial cell activation, IL-6 expression, and immune-cell responses. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03572-7.
Collapse
|
14
|
Genoprotection and metabolic benefits of marine macroalgae - Insights into the concept of functional foods through direct and indirect consumption. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
EKMEKCİ C, EKMEKCİ S, YÜCEL C, ÇAKIR E. Cardioprotective effect of all-trans retinoic acid on cisplatin induced cardiotoxicity in rats. CUKUROVA MEDICAL JOURNAL 2021. [DOI: 10.17826/cumj.897675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
16
|
Sacks B, Onal H, Martorana R, Sehgal A, Harvey A, Wastella C, Ahmad H, Ross E, Pjetergjoka A, Prasad S, Barsotti R, Young LH, Chen Q. Mitochondrial targeted antioxidants, mitoquinone and SKQ1, not vitamin C, mitigate doxorubicin-induced damage in H9c2 myoblast: pretreatment vs. co-treatment. BMC Pharmacol Toxicol 2021; 22:49. [PMID: 34530934 PMCID: PMC8447656 DOI: 10.1186/s40360-021-00518-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Preconditioning of the heart ameliorates doxorubicin (Dox)-induced cardiotoxicity. We tested whether pretreating cardiomyocytes by mitochondrial-targeted antioxidants, mitoquinone (MitoQ) or SKQ1, would provide better protection against Dox than co-treatment. METHODS We investigated the dose-response relationship of MitoQ, SKQ1, and vitamin C on Dox-induced damage on H9c2 cardiomyoblasts when drugs were given concurrently with Dox (e.g., co-treatment) or 24 h prior to Dox (e.g., pretreatment). Moreover, their effects on intracellular and mitochondrial oxidative stress were evaluated by 2,7-dichlorofluorescin diacetate and MitoSOX, respectively. RESULTS Dox (0.5-50 μM, n = 6) dose-dependently reduced cell viability. By contrast, co-treatment of MitoQ (0.05-10 μM, n = 6) and SKQ1 (0.05-10 μM, n = 6), but not vitamin C (1-2000 μM, n = 3), significantly improved cell viability only at intermediate doses (0.5-1 μM). MitoQ (1 μM) and SKQ1 (1 μM) significantly increased cell viability to 1.79 ± 0.12 and 1.59 ± 0.08 relative to Dox alone, respectively (both p < 0.05). Interestingly, when given as pretreatment, only higher doses of MitoQ (2.5 μM, n = 9) and SKQ1 (5 μM, n = 7) showed maximal protection and improved cell viability to 2.19 ± 0.13 and 1.65 ± 0.07 relative to Dox alone, respectively (both p < 0.01), which was better than that of co-treatment. Moreover, the protective effects were attributed to the significant reduction in Dox-induced intracellular and mitochondrial oxidative stress. CONCLUSION The data suggest that MitoQ and SKQ1, but not vitamin C, mitigated DOX-induced damage. Moreover, MitoQ pretreatment showed significantly higher cardioprotection than its co-treatment and SKQ1, which may be due to its better antioxidant effects.
Collapse
Affiliation(s)
- Brian Sacks
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Halil Onal
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Rose Martorana
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Amogh Sehgal
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Amanda Harvey
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Catherine Wastella
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Hafsa Ahmad
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Erin Ross
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Adona Pjetergjoka
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Sachin Prasad
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Robert Barsotti
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Lindon H Young
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Qian Chen
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA.
| |
Collapse
|
17
|
Alhazzani K, Alotaibi MR, Alotaibi FN, Aljerian K, As Sobeai HM, Alhoshani AR, Alanazi AZ, Alanazi WA, Alswayyed M. Protective effect of valsartan against doxorubicin-induced cardiotoxicity: Histopathology and metabolomics in vivo study. J Biochem Mol Toxicol 2021; 35:e22842. [PMID: 34273911 DOI: 10.1002/jbt.22842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/08/2021] [Accepted: 07/01/2021] [Indexed: 12/28/2022]
Abstract
Doxorubicin (DOX) treatment has been associated with cardiotoxicity. Therefore, it is crucial to search for a therapeutic that can effectively mitigate DOX-induced cardiotoxicity. This study was conducted to investigate the protective effects of valsartan (VAL) against DOX-induced cardiotoxicity. Sprague-Dawley rats were divided into four treatment groups: Group I: Control, Group II: VAL (30 mg/kg, ip), Group III: DOX (15 mg/kg, ip), and Group IV: VAL + DOX (30 + 15 mg/kg, ip). All groups were treated every other day for 14 days. Blood was isolated for biochemical and metabolomics studies, and sections of the heart were also analyzed for histopathological and immunohistochemical alterations to detect changes in P53, BAX, BCL-2, and P62 expression. The combination of VAL + DOX resulted in a marked decrease in cardiac biomarker enzymes (aminotransferase and creatine phosphokinase) compared to DOX monotherapy. In addition, the histopathological examination of the VAL + DOX combination revealed a low percentage of fibrosis and inflammation. Immunohistochemical expression of p53 and BAX was significantly reduced, whereas BCL-2 expression was significantly increased in the VAL + DOX treatment group compared to DOX monotherapy. Also, the combination of VAL + DOX reverses the negative effect of DOX on nuclear p62 expression. Analysis of serum metabolites showed that DOX monotherapy reduced the number of several amino acids, whereas the combination of VAL + DOX restored these metabolic pathways. This study revealed the potential cardioprotective effect of VAL, which may provide novel and promising approaches for managing cardiotoxicity induced by DOX.
Collapse
Affiliation(s)
- Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faisal N Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khaldoon Aljerian
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Homood M As Sobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali R Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alswayyed
- Department of Pathology and Laboratory Medicine, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Rahbardar MG, Eisvand F, Rameshrad M, Razavi BM, Hosseinzadeh H. In Vivo and In Vitro Protective Effects of Rosmarinic Acid against Doxorubicin-Induced Cardiotoxicity. Nutr Cancer 2021; 74:747-760. [PMID: 34085575 DOI: 10.1080/01635581.2021.1931362] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/22/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Doxorubicin (DOX) is an anticancer medicine that may trigger cardiomyopathy. Rosmarinic acid (RA) has shown antioxidant, anti-inflammatory, and anticancer effects. This investigation assessed the cardioprotective effect of RA on DOX-induced-toxicity in both in vivo and in vitro experiments. Male rats were randomized on 7 groups: (1) control, (2) DOX (2 mg/kg, per 48 h, 12d, i.p), (3) RA (40 mg/kg, 12d, i.p.), (4-6) RA (10, 20, 40 mg/kg, 16d, i.p.)+ DOX, (7) Vitamin E (200 mg/kg, per 48 h, 16d, i.p.) + DOX and then indices of cardiac function were estimated. Also, DOX and rosmarinic acid effects were examined on MCF7 cells (breast cancer cells line) to clarify that both cardiotoxicity and anticancer effects were analyzed. DOX increased heart to body weight ratio, RRI, QA, STI, QRS duration and voltage, attenuated HR, blood pressure, Max dP/dt, Min dP/dt, LVDP, enhanced MDA, declined GSH amount, and caused fibrosis and necrosis in cardiac tissue. Administration of RA ameliorated the toxic effects of DOX. In vitro studies showed that RA did not affect the cytotoxic effect of DOX. RA as an antioxidant, anti-inflammatory, and cardioprotective compound could be a promising compound to help minimize DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Cavalcanti IDL, Soares JCS, Medeiros SMDFRDS, Cavalcanti IMF, Lira Nogueira MCDB. Can antioxidant vitamins avoid the cardiotoxicity of doxorubicin in treating breast cancer? PHARMANUTRITION 2021. [DOI: 10.1016/j.phanu.2021.100259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Ni Z, Sun W, Li R, Yang M, Zhang F, Chang X, Li W, Zhou Z. Fluorochloridone induces autophagy in TM4 Sertoli cells: involvement of ROS-mediated AKT-mTOR signaling pathway. Reprod Biol Endocrinol 2021; 19:64. [PMID: 33902598 PMCID: PMC8073911 DOI: 10.1186/s12958-021-00739-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Fluorochloridone (FLC), a selective pyrrolidone herbicide, has been recognized as a potential endocrine disruptor and reported to induce male reproductive toxicity, but the underlying mechanism is unclear. The aim of this study was to investigate the mechanism of FLC-induced reproductive toxicity on male mice with particular emphasis on the role of autophagy in mice' TM4 Sertoli cells. METHODS Adult C57BL/6 mice were divided into one control group (0.5% sodium carboxymethyl cellulose), and four FLC-treated groups (3,15,75,375 mg/kg). The animals (ten mice per group) received gavage for 28 days. After treatment, histological analysis, sperm parameters, the microstructure of autophagy and the expression of autophagy-associated proteins in testis were evaluated. Furthermore, to explore the autophagy mechanism, TM4 Sertoli cells were treated with FLC (0,40,80,160 μM) in vitro for 24 h. Cell activity and cytoskeletal changes were measured by MTT assay and F-actin immunofluorescence staining. The formation of autophagosome, accumulation of reactive oxygen species (ROS), expression of autophagy marker proteins (LC3, Beclin-1 and P62) and AKT-related pathway proteins (AKT, mTOR) were observed. The ROS scavenger N-acetylcysteine (NAC) and AKT agonist (SC79) were used to treat TM4 cells to observe the changes of AKT-mTOR pathway and autophagy. RESULTS In vivo, it showed that FLC exposure caused testicular injuries, abnormality in epididymal sperm. Moreover, FLC increased the formation of autophagosomes, the accumulation of LC3II/LC3I, Beclin-1 and P62 protein, which is related to the degradation of autophagy. In vitro, FLC triggered TM4 cell autophagy by increasing the formation of autophagosomes and upregulating of LC3II/LC3I, Beclin-1 and P62 levels. In addition, FLC induced ROS production and inhibited the activities of AKT and mTOR kinases. The Inhibition of AKT/mTOR signaling pathways and the activation of autophagy induced by FLC could be efficiently reversed by pretreatment of NAC. Additionally, decreased autophagy and increased cell viability were observed in TM4 cells treated with SC79 and FLC, compared with FLC alone, indicating that FLC-induced autophagy may be pro-death. CONCLUSION Taken together, our study provided the evidence that FLC promoted autophagy in TM4 Sertoli cells and that this process may involve ROS-mediated AKT/mTOR signaling pathways.
Collapse
Affiliation(s)
- Zhijing Ni
- School of Public Health/MOE Key Laboratory for Public Health Safety/NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Weiqi Sun
- School of Public Health/MOE Key Laboratory for Public Health Safety/NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Rui Li
- Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Mingjun Yang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai, 200032, China
| | - Fen Zhang
- School of Public Health/MOE Key Laboratory for Public Health Safety/NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xiuli Chang
- School of Public Health/MOE Key Laboratory for Public Health Safety/NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Weihua Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai, 200032, China
| | - Zhijun Zhou
- School of Public Health/MOE Key Laboratory for Public Health Safety/NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
21
|
Aziz TA. Cardioprotective Effect of Quercetin and Sitagliptin in Doxorubicin-Induced Cardiac Toxicity in Rats. Cancer Manag Res 2021; 13:2349-2357. [PMID: 33737832 PMCID: PMC7965691 DOI: 10.2147/cmar.s300495] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Objective A previous study revealed a pronounced protective effect of combining quercetin (QC) with sitagliptin (STN) in testicular tissue. Accordingly, this study was designed to evaluate the cardioprotective effects of QC and STN each alone or in combination in doxorubicin (DOX)-induced cardiotoxicity in the rats. Methodology Thirty male adult Wistar rats were divided into five groups: the first group (control) treated with sodium chloride, the second group treated with DOX (3 mg/kg I.P. injection), the third group treated with DOX with a combination of QC (80 mg/kg), and STN (10 mg/kg), the fourth group treated with DOX and QC and the fifth group treated with DOX and STN. Blood was collected on day 22 and used for assessment of serum troponin, lactate dehydrogenase (LDH), creatine phosphokinase (CPK), total lipid profile, C-reactive protein (CRP), and total antioxidant capacity (TAOC). Atherogenic indices were also calculated. Cardiac tissue was sent for histopathological analysis. Results DOX produced a significant increase in the level of troponin, LDH, CKP, CRP, total cholesterol (TC), low-density lipoprotein (LDL), triglycerides (TG), and atherogenic index of plasma; and significantly decreased TAOC. The combination of quercetin and sitagliptin was more effective than each treatment alone in restoring the level of troponin, LDH, CKP, CRP, Cholesterol, LDL, TG, atherogenic index of plasma and significantly increased TAOC compared to DOX treated group. The histopathological finding also supports the biochemical results. Conclusion The study revealed the cardioprotective effects of the combination of QC and STN which could be attributed to the additive effects of this combination through antioxidant, anti-inflammatory, lipid lowering and anti-atherogenic activities; suggesting it as a good therapeutic candidate to be tested in the clinical setting.
Collapse
Affiliation(s)
- Tavga Ahmed Aziz
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimani City, Iraq
| |
Collapse
|
22
|
Al-Omar MS, Naz M, Mohammed SAA, Mansha M, Ansari MN, Rehman NU, Kamal M, Mohammed HA, Yusuf M, Hamad AM, Akhtar N, Khan RA. Pyrethroid-Induced Organ Toxicity and Anti-Oxidant-Supplemented Amelioration of Toxicity and Organ Damage: The Protective Roles of Ascorbic Acid and α-Tocopherol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6177. [PMID: 32854455 PMCID: PMC7503327 DOI: 10.3390/ijerph17176177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
The pyrethroid toxicants, fatal at high doses, are found as remnants of crop pesticides and ingredients of commercially available insecticides. The toxic effects of high-content insecticidal pyrethroid formulations are available in 0.05 g, 1.17 g, and 0.04 g pyrethroid-instilled products, namely burning coils, pyrethroid-soaked mats, and liquid formulations of pyrethroids that release pyrethroid vapor/smoke upon heating. They provided 5.46 g/kg, 21.15 g/kg, and 4.24 g/kg of toxicants to the experimental animals over a total of 3 weeks/5 h per os (p.o.) administration, producing necrosis, hyperemia, and fatty changes in the liver; fiber separation in cardiac muscles; atrophy, lymphatic infiltration, blood vessel congestion, and hyperemia in the heart tissues of the experimental animals. The glomerular tuft necrosis, cytoplasmic degeneration of renal tubular cells, necrotic tubules, congestion, and dilatation of blood vessels were observed in the kidney tissue of intoxicated animals. Air-space enlargement, interstitial inflammation, lymphocyte infiltration aggregates, connective tissue infiltration by inflammatory cells, and hyperemia were found in the lung tissues. The pyrethroid toxicants also produced nervous tissue degeneration and decreased neurons in the brain, which were observed through histopathological examinations of the brain, lungs, heart, kidneys, and liver. The protective effects of ascorbic acid (AA/vitamin C) and α-tocopherol (E307/vitamin E) at 100 mg/kg oral doses administered daily for the entire period of the toxicant exposure of three weeks to the experimental mice, aged between 3-4 months and weighing ≈30 g, ameliorated the tissue damage, as observed through the histopathological examinations. The ascorbic acid caused recovery of the liver, kidney, brain, and heart tissue damage, while α-tocopherol was effective at ameliorating the damage in the kidneys and lung tissue compared with the control groups. The high levels of tissue damage recovery suggested a prophylactic effect of the concurrent use of ascorbic acid and α-tocopherol for the subjects under the exposure of pyrethroids.
Collapse
Affiliation(s)
- Mohsen S Al-Omar
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mamuna Naz
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Salman A A Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Momina Mansha
- Department of Microbiology, Faculty of Biological Sciences, Quaid-e-Azam University, Islamabad 15320, Pakistan
| | - Mohd N Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Najeeb U Rehman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al Azhar University, Cairo 11371, Egypt
| | - Mohammad Yusuf
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Abubaker M Hamad
- Department of Basic Sciences, Preparatory Year Program, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Naseem Akhtar
- College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Qassim 51488, Saudi Arabia
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
23
|
Özerkan D, Özsoy N, Cebesoy S, Özer Ç. Distribution of spleen connective tissue fibers in diabetic and vitamin C treated diabetic rats. Biotech Histochem 2020; 96:347-353. [PMID: 32696689 DOI: 10.1080/10520295.2020.1795718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We investigated the distribution of connective tissue fibers in diabetic and vitamin C treated diabetic rat spleen. Rats were divided into three groups: group A, control; group B, diabetic; group C, vitamin C treated diabetic. Diabetes was induced by streptozotocin. Vitamin C was administered intragastrically for 21 days. Spleen tissues were examined by light microscopy after staining with Masson's trichrome, Gomori silver impregnation and van Gieson. In group B, we found accumulation of collagen fibers in the trabeculae, in the capsule and around the central artery and splenic sinusoids. Splenic cord thickening due to fibrosis was observed. Reticular fibers accumulated principally in the white and red pulps of the spleen and focal reticular fiber thickening was observed in the dense fiber areas. Partial elastic fiber rupture was observed among the fibers of the elastic lamina of the arteries in the hilum. By contrast, the distribution of collagen fibers in group C was similar to group A. Collagen fiber accumulation was decreased in group C compared to group B. We found little reticular fiber thickening in group C and elastic fibers maintained their integrity and were better organized than in group B. Our findings suggest that appropriate doses of vitamin C may exert beneficial effects on the structure of the connective tissue fibers in the diabetic spleen.
Collapse
Affiliation(s)
- Dilşad Özerkan
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, İstinye University, İstanbul, Turkey
| | - Nesrin Özsoy
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Suna Cebesoy
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Çiğdem Özer
- Department of Physiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
24
|
Involvement of the Endothelin Receptor Type A in the Cardiovascular Inflammatory Response Following Scorpion Envenomation. Toxins (Basel) 2020; 12:toxins12060389. [PMID: 32545475 PMCID: PMC7374423 DOI: 10.3390/toxins12060389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Elevated levels of endothelin-1 (ET-1) were recorded in sera of scorpion sting patients. However, no studies focused on the mechanism of ET-1 involvement in the pathogenesis of scorpion envenomation, particularly in the cardiovascular system which is seriously affected in severe cases of scorpion stings. Inflammation induced by Androctonus australis hector (Aah) scorpion venom in the heart together with the aorta was studied in mice pretreated with a specific endothelin A receptor (ETA-R) inhibitor. ETA-R inhibition resulted in the attenuation of the high amounts of cytokine (tumor necrosis factor alpha (TNF-α) and interleukin-17 (IL-17)) recorded in the sera of envenomed mice. The recovery of the oxidative stress marker balance and matrix metalloproteinase (MMP) expression were also observed, concomitantly with the reduction of tissular neutrophil infiltration. Additionally, the cardiac and the aortic tissue alterations, and the metabolic enzymes (creatine kinase (CK) and muscle–brain isoform creatine kinase (CK-MB)) overspread into sera were significantly attenuated. Obtained results suggest the implication of endothelin throughout its ETA receptors in the inflammatory response observed in the cardiovascular components during scorpion envenomation. Further knowledge is needed to better understand the implication of the endothelin axis and to improve the therapeutic management of severe scorpion sting cases.
Collapse
|
25
|
Exosome Treatment Enhances Anti-Inflammatory M2 Macrophages and Reduces Inflammation-Induced Pyroptosis in Doxorubicin-Induced Cardiomyopathy. Cells 2019; 8:cells8101224. [PMID: 31600901 PMCID: PMC6830113 DOI: 10.3390/cells8101224] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022] Open
Abstract
Doxorubicin (Dox) is an effective antineoplastic agent used to treat cancers, but its use is limited as Dox induces adverse cardiotoxic effects. Dox-induced cardiotoxicity (DIC) can lead to heart failure and death. There is no study that investigates whether embryonic stem cell-derived exosomes (ES-Exos) in DIC can attenuate inflammation-induced pyroptosis, pro-inflammatory M1 macrophages, inflammatory cell signaling, and adverse cardiac remodeling. For this purpose, we transplanted ES-Exos and compared with ES-cells (ESCs) to examine pyroptosis, inflammation, cell signaling, adverse cardiac remodeling, and their influence on DIC induced cardiac dysfunction. Therefore, we used C57BL/6J mice ages 10 ± 2 weeks and divided them into four groups (n = 6–8/group): Control, Dox, Dox + ESCs, and Dox + ES-Exos. Our data shows that the Dox treatment significantly increased expression of inflammasome markers (TLR4 and NLRP3), pyroptotic markers (caspase-1, IL1-β, and IL-18), cell signaling proteins (MyD88, p-P38, and p-JNK), pro-inflammatory M1 macrophages, and TNF-α cytokine. This increased pyroptosis, inflammation, and cell signaling proteins were inhibited with ES-Exos or ESCs. Moreover, ES-Exos or ESCs increased M2 macrophages and anti-inflammatory cytokine, IL-10. Additionally, ES-Exos or ESCs treatment inhibited significantly cytoplasmic vacuolization, myofibril loss, hypertrophy, and improved heart function. In conclusion, for the first time we demonstrated that Dox-induced pyroptosis and cardiac remodeling are ameliorated by ES-Exos or ESCs.
Collapse
|
26
|
Varela-López A, Battino M, Navarro-Hortal MD, Giampieri F, Forbes-Hernández TY, Romero-Márquez JM, Collado R, Quiles JL. An update on the mechanisms related to cell death and toxicity of doxorubicin and the protective role of nutrients. Food Chem Toxicol 2019; 134:110834. [PMID: 31577924 DOI: 10.1016/j.fct.2019.110834] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/10/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022]
Abstract
Doxorubicin (DOX), is a very effective chemotherapeutic agent against cancer whose clinical use is limited by toxicity. Different strategies have been proposed to attenuate toxicity, including combined therapy with bioactive compounds. This review update mechanisms of action and toxicity of doxorubicin and the role of nutrients like vitamins (A, C, E), minerals (selenium) and n-3 polyunsaturated fatty acids. Protective activities against DOX toxicity in liver, kidney, skin, bone marrow, testicles or brain have been reported, but these have not been evaluated for all of the reviewed nutrients. In most cases oxidation-related effects were present either, by reducing ROS levels and/or increasing antioxidant defenses. Antiapoptotic and anti-inflammatory mechanisms are also commonly reported. In some cases, interferences with autophagy and calcium homeostasis also have shown to be affected. Notwithstanding, there is a wide variety in duration and doses of treatment tested for both, compounds and DOX, which make difficult to compare the results of the studies. In spite of the reduction of DOX cardiotoxicity in health models, DOX anti-cancer activity in cancer cell lines or xenograft models usually did not result compromised when this has been evaluated. Importantly, clinical studies are needed to confirm all the observed effects.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, 18071, Granada, Spain
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche Ed Odontostomatologiche (DISCO)-Sez, Biochimica, Facoltà di Medicina, Università Politecnica Delle Marche, 60131, Ancona, Italy; Nutrition and Food Science Group. Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - María D Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, 18071, Granada, Spain
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche Ed Odontostomatologiche (DISCO)-Sez, Biochimica, Facoltà di Medicina, Università Politecnica Delle Marche, 60131, Ancona, Italy
| | - Tamara Y Forbes-Hernández
- Nutrition and Food Science Group. Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain
| | - José M Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, 18071, Granada, Spain
| | - Ricardo Collado
- Complejo Hospitalario Universitario de Cáceres, Cáceres, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
27
|
Boussada M, Dias TR, Crisóstomo L, Akacha AB, Ali RB, El May MV, Alves MG, Oliveira PF. A new thiocyanoacetamide (2-cyano-2-p-nitrophenyl-N-benzylthioamide) reduces doxorubicin-induced in vitro toxicity in Sertoli cells by decreasing apoptosis and autophagy. Theriogenology 2019; 140:188-200. [PMID: 31479835 DOI: 10.1016/j.theriogenology.2019.08.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 07/19/2019] [Accepted: 08/25/2019] [Indexed: 12/18/2022]
Abstract
Despite conflicting data on doxorubicin (DOX) reproductive toxicity, its chemotherapeutic potential sustains its use to treat different types of cancer. This work was designed to study the protective effect of a newly synthesized thiocyanoacetamide (TA), in comparison with selenium (Se), against doxorubicin-induced in vitro toxicity in rat Sertoli cells (SCs). DOX was administered alone or in combination with Se or TA. The possible protective role of increased concentrations of TA (0.25, 0.5 and 1 mM) or Se (12, 25 and 50 μM) on SCs was tested against 1 μM of DOX. From this screening, only the least toxic doses of TA and Se were used for further analysis. DOX cytotoxicity, as well as its impact on SCs viability, mitochondrial membrane potential (ΔΨm), oxidative stress biomarkers, apoptosis and autophagy were assessed. Our results showed that DOX exerted its cytotoxic effect through a significant increase in cell death. DOX-mediated cell death was not related to autophagy nor to an overproduction of reactive oxygen species. It was rather due to apoptosis, as shown by the increased number of apoptotic cells and increased activity of caspase-3, or due to necrosis, as shown by the increase in lactate dehydrogenase (LDH) extracellular activity. Still, Bax and Bcl-2 protein expression levels, as well as ΔΨm were not altered by the different treatments. Some individual doses of Se or TA induced a significant toxicity in SCs, however, when combined with DOX, there was a decrease in cell death, LDH extracellular activity, number of apoptotic cells and caspase-3 activity. Overall, our results indicate that DOX-mediated apoptosis in cultured SCs can possibly be averted through its association with specific doses of Se or TA. Nevertheless, TA showed a higher efficiency than Se in reducing DOX-induced toxicity in SCs by decreasing not only apoptosis, but also necrosis and autophagy.
Collapse
Affiliation(s)
- Marwa Boussada
- Laboratory of Histology and Embryology, Research Unit N°17/ES/13, Faculty of Medicine of Tunis, University of Tunis El Manar (UTM), Jabbari Jebel Lakhdar Street 15, 1007, Tunis, Tunisia.
| | - Tânia R Dias
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, R. de Jorge Viterbo Ferreira 228, 4050-013, Porto, Portugal; Universidade da Beira Interior, R. Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal; LAQV/REQUIMTE - Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Luís Crisóstomo
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, R. de Jorge Viterbo Ferreira 228, 4050-013, Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 4200-135, Porto, Portugal.
| | - Azaiez B Akacha
- Laboratory of Organic Synthesis and Heterocyclic Chemistry Department, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.
| | - Ridha B Ali
- Laboratory of Histology and Embryology, Research Unit N°17/ES/13, Faculty of Medicine of Tunis, University of Tunis El Manar (UTM), Jabbari Jebel Lakhdar Street 15, 1007, Tunis, Tunisia.
| | - Michèle V El May
- Laboratory of Histology and Embryology, Research Unit N°17/ES/13, Faculty of Medicine of Tunis, University of Tunis El Manar (UTM), Jabbari Jebel Lakhdar Street 15, 1007, Tunis, Tunisia.
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, R. de Jorge Viterbo Ferreira 228, 4050-013, Porto, Portugal.
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, R. de Jorge Viterbo Ferreira 228, 4050-013, Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 4200-135, Porto, Portugal; Department of Genetics, Faculty of Medicine, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
28
|
Effects of N-acetyl cysteine, vitamin E and vitamin C on liver glutathione levels following amiodarone treatment in rats. POLISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2019; 16:88-92. [PMID: 31410096 PMCID: PMC6690152 DOI: 10.5114/kitp.2019.86361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/28/2019] [Indexed: 11/18/2022]
Abstract
Introduction Amiodarone, a pharmaceutical extensively used to suppress atrial and ventricular tachyarrhythmias, is also known to cause many side effects on many tissues. N-acetyl-cysteine (NAC), vitamin E and vitamin C are known as antioxidants for their ability to minimize oxidative stress. In the peer-reviewed literature, there is no study reporting on the protective effects of these antioxidant agents against its hepatotoxicity. Aim We investigated the oxidative effects of NAC, vitamins E and C on liver tissue after amiodarone treatment. Material and methods Rats were randomly assigned to: control; amiodarone group; amiodarone + NAC treated group; amiodarone + Vit. E group and amiodarone + Vit. C group. Liver tissues were isolated from animals and total glutathione levels were measured. Results In all time intervals, the level of glutathione increased. When all time intervals were compared, the amiodarone group revealed the lowest levels. The antioxidant co-administered group was studied; the glutathione levels were statistically significantly higher than the sole amiodarone group. When vitamins E, C or N-acetyl cysteine were examined, there was no statistically significant difference among them. Conclusions In this study we found that hepatotoxicity capacity of amiodarone may be reduced by taking up antioxidants. In addition, the effect documented here may be reproducible and may be applied to clinical settings.
Collapse
|
29
|
Wenningmann N, Knapp M, Ande A, Vaidya TR, Ait-Oudhia S. Insights into Doxorubicin-induced Cardiotoxicity: Molecular Mechanisms, Preventive Strategies, and Early Monitoring. Mol Pharmacol 2019; 96:219-232. [PMID: 31164387 DOI: 10.1124/mol.119.115725] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/03/2019] [Indexed: 11/22/2022] Open
Abstract
Doxorubicin (DOX) is one of the most effective anticancer drugs to treat various forms of cancers; however, its therapeutic utility is severely limited by its associated cardiotoxicity. Despite the enormous amount of research conducted in this area, the exact molecular mechanisms underlying DOX toxic effects on the heart are still an area that warrants further investigations. In this study, we reviewed literature to gather the best-known molecular pathways related to DOX-induced cardiotoxicity (DIC). They include mechanisms dependent on mitochondrial dysfunction such as DOX influence on the mitochondrial electron transport chain, redox cycling, oxidative stress, calcium dysregulation, and apoptosis pathways. Furthermore, we discuss the existing strategies to prevent and/or alleviate DIC along with various techniques available for therapeutic drug monitoring (TDM) in cancer patients treated with DOX. Finally, we propose a stepwise flowchart for TDM of DOX and present our perspective at curtailing this deleterious side effect of DOX.
Collapse
Affiliation(s)
- Nadine Wenningmann
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Merle Knapp
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Anusha Ande
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Tanaya R Vaidya
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Sihem Ait-Oudhia
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| |
Collapse
|
30
|
Ibrahim MA, Bakhaat GA, Tammam HG, Mohamed RM, El-Naggar SA. Cardioprotective effect of green tea extract and vitamin E on Cisplatin-induced cardiotoxicity in mice: Toxicological, histological and immunohistochemical studies. Biomed Pharmacother 2019; 113:108731. [DOI: 10.1016/j.biopha.2019.108731] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/16/2019] [Accepted: 02/22/2019] [Indexed: 02/01/2023] Open
|
31
|
Guesmi F, Khantouche L, Mehrez A, Bellamine H, Landoulsi A. Histopathological and Biochemical Effects of Thyme Essential Oil on H 2O 2 Stress in Heart Tissues. Heart Lung Circ 2019; 29:308-314. [PMID: 30718156 DOI: 10.1016/j.hlc.2018.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Thymus algeriensis (T. algeriensis) is traditionally used in Tunisia to treat many human diseases. The aim of the present study was to investigate whether terpenes extracted from the aerial parts of T. algeriensis are potent cardioprotective agents for hydrogen peroxide (H2O2)-induced cardiotoxicity in rats. METHOD Thirty (30) rats were divided into six groups as per the experimental design: control (n = 6); 0.1 mmol/L H2O2 (LD H2O2) (n = 6); 1 mmol/L H2O2 (HD H2O2) (n = 6); oily fraction of T. algeriensis (OFTS) (180 mg/kg b.wt) (n = 6); OFTS + 0.1 mmol/L H2O2 (n = 6); and OFTS + 1 mmol/L H2O2 (n = 6). RESULTS The H2O2 demonstrated concentration-dependent cardiotoxic effects in vitro. While, exposure of rats to OFTS significantly depleted H2O2-induced protein oxidation and lipid peroxidation, it raised antioxidant defence enzymes, and protected against H2O2-induced histopathological alterations. The antioxidant potential of the thyme essence was assessed by both enzymatic and non-enzymatic antioxidants. CONCLUSION In conclusion, OFTS may be a potential compound for the therapy of oxidative stress-induced heart disease.
Collapse
Affiliation(s)
- Fatma Guesmi
- Faculty of Sciences of Bizerte, Bizerte, Tunisia.
| | - Linda Khantouche
- Preparatory Institute for Scientific and Technical Studies, La Marsa, 2075, Tunisia
| | - Amel Mehrez
- Faculty of Sciences of Bizerte, Bizerte, Tunisia
| | - Houda Bellamine
- Service of Anatomo-Pathology of Menzel Bourguiba, Bizerte, Tunisia
| | | |
Collapse
|
32
|
Chahdoura H, Khlifi A, Lamine JB, Ziani BEC, Adouni K, El Bok S, Haouas Z, Neffati F, Zakhama A, Flamini G, Achour L. Protective potential of Opuntia microdasys flower decoction on fructose-alloxan-induced diabetic rats on kidney and pancreas: chemical and immunohistochemical analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33645-33655. [PMID: 30276684 DOI: 10.1007/s11356-018-3290-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Diabetes is a serious condition that is linked to the development of oxidative stress causing among many other effects, kidney failure and pancreatic disorders. However, traditional plant-based remedies can be considered an alternative to diabetes healing. In this context, this study was oriented towards evaluating the protective effect of the flowers of Opuntia microdasys Lehm. collected in Tunisia at a biochemical and histological level on kidneys and pancreas of a type 2 diabetic rats. Renal and pancreatic toxicities were induced in diabetic male Wistar rats by fructose alloxan. Diabetic rats were treated with an extract obtained from flowers collected at post-flowering stage (OFP) (100 and 200 mg kg-1 bw) and metformin (100 mg kg-1 bw) for 28 days. Oral administration of OFP at 200 mg kg-1 bw showed significant reduction of the uric acid, urea, creatinine, amylase, lipase, and glycated hemoglobin (HbAlc). The levels of SOD, CAT, and GPx were increased, while protein carbonyls and lipid peroxidation TBARS levels were reduced in the kidney and pancreas. The altered kidney and pancreas histology were restored in rats treated with OFP. Thus, the present study demonstrated that OFP has antihyperglycemic activity in fructose-alloxan-induced diabetic rats.
Collapse
Affiliation(s)
- Hassiba Chahdoura
- Laboratoire de Recherche "Bioressourses, Biologie Intégrative and Valorisation," Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Avenue Tahar Hadded, BP 74, 5000, Monastir, Tunisia.
| | - Aida Khlifi
- Laboratoire de Recherche "Bioressourses, Biologie Intégrative and Valorisation," Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Avenue Tahar Hadded, BP 74, 5000, Monastir, Tunisia
| | - Jihéne Ben Lamine
- Laboratoire de Recherche "Bioressourses, Biologie Intégrative and Valorisation," Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Avenue Tahar Hadded, BP 74, 5000, Monastir, Tunisia
| | - Borhane Eddine Cherif Ziani
- Centre de recherche scientifique et Technique en Analyses physico-chimiques CRAPC, Bouismail, Tipaza, Algeria
| | - Khawla Adouni
- Laboratoire de Recherche "Bioressourses, Biologie Intégrative and Valorisation," Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Avenue Tahar Hadded, BP 74, 5000, Monastir, Tunisia
| | - Safia El Bok
- Laboratoire de Biodiversité, Biotechnologies et Changements Climatiques, Faculté des Sciences de Tunis, Université Tunis-El Manar, Tunis, Tunisia
| | - Zohra Haouas
- Laboratory of Histology and Cytogenetic, Faculty of Medicine, Monastir, Tunisia
| | - Fadoua Neffati
- Laboratoire de Biochimie, Hôpital Universitaire de Monastir, Monastir, Tunisia
| | | | - Guido Flamini
- Dipartimento di Farmacia, Via Bonanno 6, 56126, Pisa, Italy
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa, Pisa, Italy
| | - Lotfi Achour
- Laboratoire de Recherche "Bioressourses, Biologie Intégrative and Valorisation," Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Avenue Tahar Hadded, BP 74, 5000, Monastir, Tunisia
| |
Collapse
|
33
|
Gül SS, Aygün H. Cardioprotective effect of vitamin D and melatonin on doxorubicin-induced cardiotoxicity in rat model: an electrocardiographic, scintigraphic and biochemical study. ACTA ACUST UNITED AC 2018. [DOI: 10.18621/eurj.410029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Ameliorating oxidative stress and inflammation by Hesperidin and vitamin E in doxorubicin induced cardiomyopathy. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/tjb-2018-0156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract
Background
Doxorubicin (DOX) is a common chemotherapeutic drug. However, it causes cardiomyopathy which reduces its clinical use in human cancer therapy.
Objective
The purpose of our study was to assess the cardioprotective effect of hesperidin (HSP) and vitamin E (VIT.E) against DOX-induced cardiomyopathy.
Material and methods
Seventy rats were allocated into seven groups: control, HSP (50 mg/kg, orally), VIT.E (100 mg/kg orally), DOX [4 mg/kg, intraperitoneally (i.p.)], DOX+HSP, DOX+VIT.E and DOX+HSP+VIT.E.
Results
Our findings showed that serum lactate dehydrogenase (LDH), creatine kinase (CK), myeloperoxidase (MPO), cardiac catalase and caspase activities as well as cardiac malondialdehyde (MDA) and serum nitric oxide (NO) concentrations were reduced DOX+HSP or DOX+VIT.E or DOX+VIT.E+HSP groups compared to DOX group. Whereas, cardiac reduced glutathione (GSH) level, serum arylesterase, and paraoxonase activities were higher in rats injected with DOX and administrated with HSP and VIT.E than that of rats injected with DOX only. Cardiac histopathology of DOX group showed some changes that were improved during administration with HSP and VIT.E.
Conclusion
HSP and VIT.E possess a protective effect against DOX-induced cardiomyopathy via inhibiting oxidative stress, inflammation, and apoptosis.
Collapse
|
35
|
Benefits of Ascorbic Acid in Association with Low-Dose Benznidazole in Treatment of Chagas Disease. Antimicrob Agents Chemother 2018; 62:AAC.00514-18. [PMID: 29987143 DOI: 10.1128/aac.00514-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022] Open
Abstract
The acute phase of Chagas disease (CD) is characterized by high parasitic proliferation and intense inflammation, exacerbating the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). These reactive molecules are also increased by the metabolism of the nitroheterocyclic compounds benznidazole (BZ) and nifurtimox, the only drugs available for the treatment of CD. This oxidative environment, associated with the intracellular multiplication of Trypanosoma cruzi, leads to tissue destruction, triggering the pathogenic process. Both drugs have limited efficacy and serious side effects, which demonstrates the need to seek alternative therapies. Due to the difficulty in developing new drugs, reviewing therapeutic regimens appears advantageous, and the use of BZ in low doses associated with antioxidants, such as ascorbic acid (AA), would be a valid alternative to attenuate oxidative stress. In our in vivo studies, mice receiving the combination of 7.14 mg/kg of body weight/day AA and 10 mg/kg/day BZ10 (AA+BZ10) showed a reduction in parasitemia that was more effective than that with those receiving BZ or AA alone. The combined treatment was effective in decreasing intracellular ROS and lipid peroxidation in cardiac tissue. Histological and PCR analyzes showed that AA also reduced the cardiac parasitism. However, the greatest benefit was seen in AA+BZ10 group, since cardiac inflammation was significantly reduced. In addition, the combined therapy prevented the hepatic damage induced by the infection. Our findings suggest that AA combined with a low dose of BZ may improve the trypanocidal activity and attenuate the toxic effects of BZ. The decrease in oxidative damage and inflammation observed in mice treated with AA+BZ10 could result in increased cardioprotection.
Collapse
|
36
|
In vitro study of doxorubicin-induced oxidative stress in spermatogonia and immature Sertoli cells. Toxicol Appl Pharmacol 2018; 348:32-42. [PMID: 29660436 DOI: 10.1016/j.taap.2018.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 02/02/2023]
Abstract
Pediatric chemotherapy treatments can impair long-term male fertility. Unfortunately, no fertility preservation solution is available for pre-pubertal boys. Studies suggest that doxorubicin, used against pediatric cancers, induces oxidative stress in the testis. However, the targeted testicular cell types remain unknown. The goal of this study was to determine whether doxorubicin can induce oxidative stress in rat spermatogonia (GC-6Spg) and immature Sertoli (Ser-W3) cell lines, and to assess their protection by antioxidants. Using the MTT assay, we have shown that doxorubicin induces a time- and dose-dependent cytotoxicity in these two cell lines, Ser-W3 being more sensitive than GC-6Spg. After 3 h of treatment, reactive oxygen species and nuclear 8-oxo-deoxyguanosine increase in Ser-W3, but not in GC-6Spg. Moreover, after 6 h of treatment, intracellular reduced glutathione levels decrease significantly in Ser-W3 cells. These results show that doxorubicin induces oxidative stress in the Ser-W3 cell line. However, a depletion in glutathione does not affect their survival, and supplementation only offers a weak protection after exposure to doxorubicin, suggesting that the glutathione system is not essential for Ser-W3 cell line's defense against doxorubicin. On the other hand, among four antioxidants selected from the literature, none reduces the cytotoxicity of doxorubicin in Ser-W3 cells. Together, our data suggest that oxidative stress may not be a major pathway for doxorubicin's cytotoxicity in GC-6Spg and Ser-W3 lines. This study provides new insights in the mechanisms by which chemotherapies affect the pre-pubertal testis, with the long-term goal to help improve the quality of life of pediatric cancer survivors.
Collapse
|
37
|
Marques-Aleixo I, Santos-Alves E, Oliveira PJ, Moreira PI, Magalhães J, Ascensão A. The beneficial role of exercise in mitigating doxorubicin-induced Mitochondrionopathy. Biochim Biophys Acta Rev Cancer 2018; 1869:189-199. [PMID: 29408395 DOI: 10.1016/j.bbcan.2018.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/07/2023]
Abstract
Doxorubicin (DOX) is a widely used antineoplastic agent for a wide range of cancers, including hematological malignancies, soft tissue sarcomas and solid tumors. However, DOX exhibits a dose-related toxicity that results in life-threatening cardiomyopathy. In addition to the heart, there is evidence that DOX toxicity extends to other organs. This general toxicity seems to be related to mitochondrial network structural, molecular and functional impairments. Several countermeasures for these negative effects have been proposed, being physical exercise, not only one of the most effective non-pharmacologic strategy but also widely recommended as booster against cancer-related fatigue. It is widely accepted that mitochondria are critical sensors of tissue functionality, both modulated by DOX and exercise. Therefore, this review focuses on the current understanding of the mitochondrial-mediated mechanisms underlying the protective effect of exercise against DOX-induced toxicity, not only limited to the cardiac tissue, but also in other tissues such as skeletal muscle, liver and brain. We here analyze recent developments regarding the beneficial effects of exercise targeting mitochondrial responsive phenotypes against redox changes, mitochondrial bioenergetics, apoptotic, dynamics and quality control signalling affected by DOX treatment.
Collapse
Affiliation(s)
- I Marques-Aleixo
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Psychology, Education and Sport, University Lusófona of Porto, Portugal.
| | - E Santos-Alves
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | - P J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, Cantanhede, Portugal
| | - P I Moreira
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, Portugal
| | - J Magalhães
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Sport, University of Porto, Portugal
| | - A Ascensão
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Sport, University of Porto, Portugal
| |
Collapse
|
38
|
Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity - Exploring the armoury of obscurity. Saudi Pharm J 2017; 26:177-190. [PMID: 30166914 PMCID: PMC6111235 DOI: 10.1016/j.jsps.2017.12.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide, accounting for almost 13% of deaths in the world. Among the conventional cancer treatments, chemotherapy is most frequently carried out to treat malignant cancer rather than localised lesions which is amenable to surgery and radiotherapy. However, anticancer drugs are associated with a plethora of side effects. Each drug, within every class, has its own set of adverse reactions which may cause patient incompliance and deterioration of the quality of life. One of the major causes of adverse reactions, especially for drugs targeting DNA, is the excessive production of reactive oxygen species (ROS) and subsequent build up of oxidative stress. To curb these undesired side effects, several dietary supplements have been tested, amongst which antioxidants have gained increasing popularity as adjuvant in chemotherapy. However, many oncologists discourage the use of antioxidant rich food supplements because these may interfere with the modalities which kill cancer by generating free radicals. In the present review, all studies reporting concomitant use of several antioxidants with chemotherapy are indiscriminately included and discussed impartially. The effect of supplementation of thirteen different antioxidants and their analogues as a single agent or in combination with chemotherapy has been compiled in this article. The present review encompasses a total of 174 peer-reviewed original articles from 1967 till date comprising 93 clinical trials with a cumulative number of 18,208 patients, 56 animal studies and 35 in vitro studies. Our comprehensive data suggests that antioxidant has superior potential of ameliorating chemotherapeutic induced toxicity. Antioxidant supplementation during chemotherapy also promises higher therapeutic efficiency and increased survival times in patients.
Collapse
|
39
|
Chen CT, Wang ZH, Hsu CC, Lin HH, Chen JH. Taiwanese and Japanese yam ( Dioscorea spp.) extracts attenuate doxorubicin-induced cardiotoxicity in mice. J Food Drug Anal 2017; 25:872-880. [PMID: 28987364 PMCID: PMC9328877 DOI: 10.1016/j.jfda.2016.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 12/27/2022] Open
Abstract
The present study was designed to explore whether yam could protect the heart from doxorubicin (DOX)-induced oxidative stress leading to cardiotoxicity in vivo. In this study, the protective effects of water and ethanol extracts of three varieties of yam, including water extracts of Dioscorea japonica Thunb., ethanol extracts of D. japonica Thunb., water extracts of Dioscorea alata, ethanol extracts of D. alata, water extracts of Dioscorea purpurea, and ethanol extracts of D. purpurea, against DOX-induced cardiotoxicity in experimental mice were evaluated. DOX treatment led to significant decreases in the ratio of heart weight to body weight and heart rate, and increases in blood pressure and the serum level of lactate dehydrogenase, a marker of cardiotoxicity, were recovered by yam extracts, especially in water extracts of D. alata. Yam extracts also decreased the cardiac levels of thiobarbituric acid relative substances, reactive oxygen species, and inflammatory factors, as well as the expression of nuclear factor kappa B, while ethanol extracts of D. japonica Thunb. and D. purpurea were shown to be more potent. Moreover, yam extracts had a role in increasing the activities of glutathione peroxidase and superoxide dismutase, thus improving the DOX-induced alterations in oxidative status in the heart tissue of DOX-treated mice. All ethanol extracts of yam exhibited their antiapoptotic abilities on caspase-3 activation and mitochondrial dysfunction, and ethanol extracts of D. alata still exerted a superior effect. Based on these findings, it can be concluded that yam has significant cardioprotective properties against DOX-induced damage via its multiple effects on antioxidant, anti-inflammatory, or antiapoptotic activities.
Collapse
Affiliation(s)
- Chih-Tai Chen
- Department of Nutrition, Chung Shan Medical University, Taichung City,
Taiwan
| | - Zhi-Hong Wang
- Environment-Omics-Diseases Research Center, China Medical University Hospital, Taichung City,
Taiwan
| | - Cheng-Chin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung City,
Taiwan
| | - Hui-Hsuan Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City,
Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City,
Taiwan
| | - Jing-Hsien Chen
- Department of Nutrition, Chung Shan Medical University, Taichung City,
Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City,
Taiwan
- Corresponding author. Department of Nutrition, Chung Shan Medical University, Number 110, Section 1, Jianguo North Road, Taichung City 40201, Taiwan. E-mail address: (J.-H. Chen)
| |
Collapse
|
40
|
Cheruku SP, Ramalingayya GV, Chamallamudi MR, Biswas S, Nandakumar K, Nampoothiri M, Gourishetti K, Kumar N. Catechin ameliorates doxorubicin-induced neuronal cytotoxicity in in vitro and episodic memory deficit in in vivo in Wistar rats. Cytotechnology 2017; 70:245-259. [PMID: 28900743 DOI: 10.1007/s10616-017-0138-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/02/2017] [Indexed: 12/13/2022] Open
Abstract
Cognitive dysfunction by chemotherapy compromises the quality of life in cancer patients. Tea polyphenols are known chemopreventive agents. The present study was designed to evaluate the neuroprotective potential of (+) catechin hydrate (catechin), a tea polyphenol, in IMR-32 neuroblastoma cells in vitro and alleviation of episodic memory deficit in Wistar rats in vivo against a widely used chemotherapeutic agent, Doxorubicin (DOX). In vitro, neuroprotective studies were assessed in undifferentiated IMR-32 cells using percentage viability and in differentiated cells by neurite length. These studies showed catechin increased percentage viability of undifferentiated IMR-32 cells. Catechin pretreatment also showed an increase in neurite length of differentiated cells. In vivo neuroprotection of catechin was evaluated using novel object recognition task in time-induced memory deficit model at 50, 100 and 200 mg/kg dose and DOX-induced memory deficit models at 100 mg/kg dose. The latter model was developed by injection of DOX (2.5 mg/kg, i.p.) in 10 cycles over 50 days in Wistar rats. Catechin showed a significant reversal of time-induced memory deficit in a dose-dependent manner and prevention of DOX-induced memory deficit at 100 mg/kg. In addition, catechin treatment showed a significant decrease in oxidative stress, acetylcholine esterase and neuroinflammation in the hippocampus and cerebral cortex in DOX-induced toxicity model. Hence, catechin may be a potential adjuvant therapy for the amelioration of DOX-induced cognitive impairment which may improve the quality of life of cancer survivors. This improvement might be due to the elevation of antioxidant defense, prevention of neuroinflammation and inhibition of acetylcholine esterase enzyme.
Collapse
Affiliation(s)
- Sri Pragnya Cheruku
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Grandhi Venkata Ramalingayya
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Subhankar Biswas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Karthik Gourishetti
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India.
| |
Collapse
|
41
|
Akolkar G, da Silva Dias D, Ayyappan P, Bagchi AK, Jassal DS, Salemi VMC, Irigoyen MC, De Angelis K, Singal PK. Vitamin C mitigates oxidative/nitrosative stress and inflammation in doxorubicin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol 2017; 313:H795-H809. [PMID: 28710069 DOI: 10.1152/ajpheart.00253.2017] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/22/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
Abstract
Increase in oxidative/nitrosative stress is one of the mechanisms associated with the development of cardiotoxicity due to doxorubicin (Dox), a potent chemotherapy drug. Previously, we reported mitigation of Dox-induced oxidative/nitrosative stress and apoptosis by vitamin C (Vit C) in isolated cardiomyocytes. In the present in vivo study in rats, we investigated the effect of prophylactic treatment with Vit C on Dox-induced apoptosis, inflammation, oxidative/nitrosative stress, cardiac dysfunction, and Vit C transporter proteins. Dox (cumulative dose: 15 mg/kg) in rats reduced systolic and diastolic cardiac function and caused structural damage. These changes were associated with a myocardial increase in reactive oxygen species, reduction in antioxidant enzyme activities, increased expression of apoptotic proteins, and inflammation. Dox also caused an increase in the expression of proapoptotic proteins Bax, Bnip-3, Bak, and caspase-3. An increase in oxidative/nitrosative stress attributable to Dox was indicated by an increase in superoxide, protein carbonyl formation, lipid peroxidation, nitric oxide (NO), NO synthase (NOS) activity, protein nitrosylation, and inducible NOS protein expression. Dox increased the levels of cardiac proinflammatory cytokines TNF-α, IL-1β, and IL-6, whereas the expression of Vit C transporter proteins (sodium-ascorbate cotransporter 2 and glucose transporter 4) was reduced. Prophylactic and concurrent treatment with Vit C prevented all these changes and improved survival in the Vit C + Dox group. Vit C also improved Dox-mediated systolic and diastolic dysfunctions and structural damage. These results suggest a cardioprotective role of Vit C in Dox-induced cardiomyopathy by reducing oxidative/nitrosative stress, inflammation, and apoptosis, as well as improving Vit C transporter proteins.NEW & NOTEWORTHY This in vivo study provides novel data that vitamin C improves cardiac structure and function in doxorubicin-induced cardiomyopathy by reducing oxidative/nitrosative stress, apoptosis, and inflammation along with upregulation of cardiac vitamin C transporter proteins. The latter may have a crucial role in improving antioxidant status in this cardiomyopathy.
Collapse
Affiliation(s)
- Gauri Akolkar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Danielle da Silva Dias
- Laboratory of Translational Physiology, Universidade Nove de Julho, São Paulo, Brazil; and
| | - Prathapan Ayyappan
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ashim K Bagchi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Davinder S Jassal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | - Katia De Angelis
- Laboratory of Translational Physiology, Universidade Nove de Julho, São Paulo, Brazil; and
| | - Pawan K Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada;
| |
Collapse
|
42
|
Bhatt L, Joshi V. Mangifera indica L. leaf extract alleviates doxorubicin induced cardiac stress. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2017; 6:284-289. [PMID: 28894627 PMCID: PMC5580954 DOI: 10.5455/jice.20170701075019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/09/2017] [Indexed: 01/05/2023]
Abstract
AIM The study was undertaken to evaluate the cardioprotective effect of the alcoholic leaf extract of Mangifera indica L. against cardiac stress caused by doxorubicin (DOX). MATERIALS AND METHODS Rats were treated with 100 mg/kg of M. indica leaf extract (MILE) in alone and interactive groups for 21 days. Apart from the normal and MILE control groups, all the groups were subjected to DOX (15 mg/kg, i.p.) toxicity for 21 days and effects of different treatments were analyzed by changes in serum biomarkers, tissue antioxidant levels, electrocardiographic parameters, lipid profile, and histopathological evaluation. RESULTS The MILE treated group showed decrease in serum biomarker enzyme levels and increase in tissue antioxidants levels. Compared to DOX control group, MILE treated animals showed improvement in lipid profile, electrocardiographic parameters, histological score, and mortality. CONCLUSION These findings clearly suggest the protective role of alcoholic leaf extract of M. indica against oxidative stress induced by DOX.
Collapse
Affiliation(s)
- Laxit Bhatt
- Department of Pharmacology, Shree Devi College of Pharmacy, Mangalore, Karnataka, India
- Department of Pharmacology & Toxicology, Zydus Research Centre, Ahmedabad, Gujarat, India
| | - Viraj Joshi
- Department of Quality Assurance, Shree Devi College of Pharmacy, Mangalore, Karnataka, India
| |
Collapse
|
43
|
Mustafa HN, Hegazy GA, Awdan SAE, AbdelBaset M. Protective role of CoQ10 or L-carnitine on the integrity of the myocardium in doxorubicin induced toxicity. Tissue Cell 2017; 49:410-426. [DOI: 10.1016/j.tice.2017.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/15/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023]
|
44
|
Ghoneim MAM, Hassan AI, Mahmoud MG, Asker MS. Protective Effect of Adansonia digitata against Isoproterenol-Induced Myocardial Injury in Rats. Anim Biotechnol 2016; 27:84-95. [PMID: 26913549 DOI: 10.1080/10495398.2015.1102147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The baobab fruit (Adansonia digitata) was analyzed for proximate composition, amino acids, and minerals. The fruit pulp was found to be a good source of carbohydrates, proteins, phenols, and substantial quantities of K, Ca, and Mg. Amino acid analyses revealed high glutamic and aspartic acid, but the sulfur amino acids were the most limited. The present study was designed to investigate the role of Adansonia digitata (Baobab fruit pulp) against isoproterenol induced myocardial oxidative stress in experimental rats by demonstrating the changes in tissue cardiac markers, some antioxidant enzymes, interleukin-1 β (IL-1 β), monocyte chemoattractant protein-1(MCP-1), myeloperoxidase (MPO), Collagen-1, galectin-3, and serum corticosterone. The activities of enzymatic antioxidant glutathione peroxidase (GPX) and non-enzymatic antioxidant reduced glutathione (GSH) in the heart tissue; additionally, histopathological examination of the heart was estimated. Male albino rats were randomly divided into four groups of ten animals each. Group I served as normal control animal. Group II animals received isoproterenol (ISP) (85 mg/kg body weight intraperitonealy (i.p.) to develop myocardial injury. Group III were myocardial oxidative animals treated with Baobab fruit pulp (200 µg/rats/day) for 4 weeks. Group IV received Baobab fruit pulp only. The data suggested an isoproterenol increase in levels of cardiac marker enzymes [creatine kinase MB (CK- MB), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST)], IL-1ß, MCP-1, MPO, Collagen, and galectin-3, with concomitant decrease in the activities GPX and GSH in heart tissue as well as corticosterone in serum. Baobab fruit pulp brings all the parameters to near normal level in ISP-induced myocardial infarction in rats. Histopathological examination of heart tissue of ISP-administered model rat showed infiltration of inflammatory cells and congestion in the blood vessels. However, treatment with Baobab fruit pulp (200 µg/rats/day) showed predominantly normal myocardial structure and no inflammatory cell infiltration. It has been concluded that Baobab fruit pulp has cardio protective effect against ISP-induced oxidative stress in rats.
Collapse
Affiliation(s)
- Mona A M Ghoneim
- a Department of Radioisotopes, Nuclear Research Centre , Atomic Energy Authority , Giza , Egypt
| | - Amal I Hassan
- a Department of Radioisotopes, Nuclear Research Centre , Atomic Energy Authority , Giza , Egypt
| | - Manal G Mahmoud
- b Microbial Biotechnology Department , National Research Centre , Dokki , Cairo , Egypt
| | - Mohsen S Asker
- b Microbial Biotechnology Department , National Research Centre , Dokki , Cairo , Egypt
| |
Collapse
|
45
|
KLENIEWSKA P, GORĄCA A. Influence of Endothelin 1 Receptor Blockers and a Nitric Oxide Synthase Inhibitor on Reactive Oxygen Species Formation in Rat Lungs. Physiol Res 2016; 65:789-798. [DOI: 10.33549/physiolres.933263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This study was designated to estimate protective role of ETA and ETB receptor antagonist against endothelin 1 (ET-1)-induced oxidative stress in lungs and determine whether these effects are mediated by nitric oxide (NO) synthase. Experiments were performed on Wistar rats divided into the following groups: I – saline (0.9 % NaCl); II – ET-1 (3 μg/kg b.w.), III – BQ123 (1 mg/kg b.w.) + ET-1 (3 μg/kg b.w.), IV – BQ788 (3 mg/kg b.w.) + ET-1 (3 μg/kg b.w.), V – N-nitro-L-arginine methyl ester (L-NAME) (5 mg/kg b.w.) + ET-1 (3 μg/kg b.w.). ETA and ETB receptor antagonists or L-NAME were administered 30 min before ET-1 injection. The levels of the following substances were measured in the lungs homogenates: thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), reduced glutathione (GSH) and tumor necrosis factor-alpha (TNF-α). The results showed that ET-1 significantly increased TBARS, H2O2 (respectively: p<0.001, p<0.02) and TNF-α levels (p<0.02) and decreased the GSH level (p<0.01) vs. control group. On the other hand, prior administration of ETA receptor blocker (BQ123) significantly attenuated TBARS (p<0.01), H2O2 (p<0.02), TNF-α (p<0.02) and increased GSH (p<0.02) levels vs. ET-1. However, prior administration of ETB receptor blocker BQ788 did not cause significant changes in the: TBARS, H2O2 and TNF-α (p>0.05) levels, but significantly increased the GSH level and GSH/GSSG ratio (p<0.05). Administration of L-NAME significantly attenuated TBARS (p<0.001), H2O2 (p<0.05), TNF-α (p<0.01) and increased GSH (p<0.05) levels vs. ET-1. In conclusion, we demonstrated that ET-1 induced oxidative stress in the lungs is mediated by ETA receptors. ETA receptor blockage inhibited generation of free radicals and TNF-α and ameliorated antioxidant properties. Moreover, generation of reactive oxygen species is mediated by NOS in the lungs.
Collapse
Affiliation(s)
- P. KLENIEWSKA
- Experimental and Clinical Physiology, Department of Cardiovascular Physiology, Medical University of Lodz, Poland
| | | |
Collapse
|
46
|
Yang J, Shimada Y, Olsthoorn RCL, Snaar-Jagalska BE, Spaink HP, Kros A. Application of Coiled Coil Peptides in Liposomal Anticancer Drug Delivery Using a Zebrafish Xenograft Model. ACS NANO 2016; 10:7428-35. [PMID: 27504667 DOI: 10.1021/acsnano.6b01410] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The complementary coiled coil forming peptides E4 [(EIAALEK)4] and K4 [(KIAALKE)4] are known to trigger liposomal membrane fusion when tethered to lipid vesicles in the form of lipopeptides. In this study, we examined whether these coiled coil forming peptides can be used for drug delivery applications. First, we prepared E4 peptide modified liposomes containing the far-red fluorescent dye TO-PRO-3 iodide (E4-Lipo-TP3) and confirmed that E4-liposomes could deliver TP3 into HeLa cells expressing K4 peptide on the membrane (HeLa-K) under cell culture conditions in a selective manner. Next, we prepared doxorubicin-containing E4-liposomes (E4-Lipo-DOX) and confirmed that E4-liposomes could also deliver DOX into HeLa-K cells. Moreover, E4-Lipo-DOX showed enhanced cytotoxicity toward HeLa-K cells compared to free doxorubicin. To prove the suitability of E4/K4 coiled coil formation for in vivo drug delivery, we injected E4-Lipo-TP3 or E4-Lipo-DOX into zebrafish xenografts of HeLa-K. As a result, E4-liposomes delivered TP3 to the implanted HeLa-K cells, and E4-Lipo-DOX could suppress cancer proliferation in the xenograft when compared to nontargeted conditions (i.e., zebrafish xenograft with free DOX injection). These data demonstrate that coiled coil formation enables drug selectivity and efficacy in vivo. It is envisaged that these findings are a step forward toward biorthogonal targeting systems as a tool for clinical drug delivery.
Collapse
Affiliation(s)
- Jian Yang
- Leiden Institute of Chemistry-Supramolecular and Biomaterial Chemistry, Leiden University , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Yasuhito Shimada
- Institute of Biology, Leiden University , Leiden 2311 EZ, The Netherlands
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine , Mie 514-8507, Japan
| | - René C L Olsthoorn
- Leiden Institute of Chemistry-Supramolecular and Biomaterial Chemistry, Leiden University , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | | | - Herman P Spaink
- Institute of Biology, Leiden University , Leiden 2311 EZ, The Netherlands
| | - Alexander Kros
- Leiden Institute of Chemistry-Supramolecular and Biomaterial Chemistry, Leiden University , Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
47
|
Nam J, Yeo WS. Controlled drug release using ascorbate-responsive quercetin-conjugated alginate hydrogels. APPLIED BIOLOGICAL CHEMISTRY 2016; 59:579-584. [DOI: 10.1007/s13765-016-0194-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
48
|
Protective Effects of Carvedilol and Vitamin C against Azithromycin-Induced Cardiotoxicity in Rats via Decreasing ROS, IL1-β, and TNF-α Production and Inhibiting NF-κB and Caspase-3 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1874762. [PMID: 27274777 PMCID: PMC4871977 DOI: 10.1155/2016/1874762] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/27/2016] [Accepted: 04/12/2016] [Indexed: 01/24/2023]
Abstract
The Food and Drug Administration recently warned of the fatal cardiovascular risks of azithromycin in humans. In addition, a recently published study documented azithromycin-induced cardiotoxicity in rats. This study aimed to justify the exact cardiovascular events accompanying azithromycin administration in rats, focusing on electrocardiographic, biochemical, and histopathological changes. In addition, the underlying mechanisms were studied regarding reactive oxygen species production, cytokine release, and apoptotic cell-death. Finally, the supposed protective effects of both carvedilol and vitamin C were assessed. Four groups of rats were used: (1) control, (2) azithromycin, (3) azithromycin + carvedilol, and (4) azithromycin + vitamin C. Azithromycin resulted in marked atrophy of cardiac muscle fibers and electrocardiographic segment alteration. It increased the heart rate, lactate dehydrogenase, creatine phosphokinase, malondialdehyde, nitric oxide, interleukin-1 beta (IL1-β), tumor necrosis factor alpha (TNF-α), nuclear factor kappa beta (NF-κB), and caspase-3. It decreased reduced glutathione, glutathione peroxidase, and superoxide dismutase. Carvedilol and vitamin C prevented most of the azithromycin-induced electrocardiographic and histopathological changes. Carvedilol and vitamin C decreased lactate dehydrogenase, malondialdehyde, IL1-β, TNF-α, NF-κB, and caspase-3. Both agents increased glutathione peroxidase. This study shows that both carvedilol and vitamin C protect against azithromycin-induced cardiotoxicity through antioxidant, immunomodulatory, and antiapoptotic mechanisms.
Collapse
|
49
|
Aşcı H, Saygın M, Yeşilot Ş, Topsakal Ş, Cankara FN, Özmen Ö, Savran M. Protective effects of aspirin and vitamin C against corn syrup consumption-induced cardiac damage through sirtuin-1 and HIF-1α pathway. Anatol J Cardiol 2015; 16:648-54. [PMID: 26645266 PMCID: PMC5331347 DOI: 10.5152/anatoljcardiol.2015.6418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective: The aim of this study was to investigate the protective effects of aspirin (AS) and vitamin C (VC) against cardiac damage induced by chronic corn syrup (CS) consumption via a mechanism involving sirtuin-1 (ST-1), hypoxia-inducible factor-1a (HIF-1a), and the caspase-3 pathway in rats. Methods: Forty male Sprague–Dawley rats (14–16 weeks) that weighed 250–300 g were randomly distributed into 5 groups, each containing 8 rats: control group, CS+AS group, CS+VC group, CS+AS+VC group, and CS group. AS (10 mg/kg/day) and VC (200 mg/kg/day) were orally given to the rats. F30 (30% fructose syrup solution) was given to the rats in drinking water for 6 weeks. The rats were sacrificed by exsanguination 24 h after the last administration. Blood samples and tissue were collected for biochemical, histopathological, and immunohistochemical examinations. Non-parametric Kruskal–Wallis test and Mann–Whitney U test used for the parameters without normal distribution and ANOVA and post-hoc LSD tests were used for parameters with a normal distribution to compare groups. Results: Uric acid, creatine kinase (CKMB), and lactate dehydrogenase (LDH) levels were increased in the CS group compared with the control group (1.45±0.39 and p=0.011; 3225.64±598.25 and p=0.004; 3906.83±1064.22 and p=0.002, respectively) and decreased in all the treatment groups. In addition, increased levels of MDA and decreased activity of CAT in the CS group (0.172±0.03 and p=0.000; 0.070±0.005 and p=0.007, respectively) were reversed with AS and VC therapy. A decrease in ST-1 activity and increases in caspase-3 and HIF-1 activities corrected by VC and AS therapy were observed. Conclusion: AS and VC, which display antioxidant and antiapoptotic activities, ameliorated cardiac damage induced by chronic fructose consumption by increasing the levels of ST-1 and decreasing the levels of HIF-1a and caspase-3.
Collapse
Affiliation(s)
- Halil Aşcı
- Department of Pharmacology, Faculty of Medicine, Süleyman Demirel University; Isparta-Turkey.
| | | | | | | | | | | | | |
Collapse
|
50
|
Chakraborty M, Kamath JV, Bhattacharjee A. Potential interaction of green tea extract with hydrochlorothiazide against doxorubicin-induced myocardial damage. J Ayurveda Integr Med 2015; 6:187-93. [PMID: 26604554 PMCID: PMC4630693 DOI: 10.4103/0975-9476.146555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/30/2014] [Accepted: 11/10/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Treatment of ischemic hypertensive patients with hydrochlorothiazide can precipitate cardiac arrhythmias. Green tea, by virtue of its antioxidant potential, is responsible for cardio-protective activity. OBJECTIVE The present study was under taken to evaluate the pharmacodynamic interaction of green tea extract with hydrochlorothiazide (HCTZ) against doxorubicin (DOX)-induced myocardial toxicity. MATERIALS AND METHODS Rats were treated with high (500 mg/kg, p.o.) and low (100 mg/kg, p.o.) dose of green tea extract in alone and interactive groups for 28 days. Standard, high and low dose of interactive groups received hydrochlorothiazide (10 mg/kg, p.o.) for the last 7 days. Apart from normal controls, all other groups were subjected to DOX (3 mg/kg, i.p.) toxicity on Days 1, 7, 14, 21 and 28, and the effect of different treatments was evaluated by changes in electrocardiographic parameters, serum biomarkers and tissue antioxidant levels. Apart from that, lipid profile and histological studies were also carried out. RESULTS Compared with the DOX control group, both high and low dose of green tea exhibited a significant decrease in serum biomarkers and increase in tissue antioxidant levels. Green tea treatment was also responsible for significant improvement in ECG parameter, lipid profile and histological score. Incorporation of high and low dose of green tea with HCTZ exhibited significant protection compared with the HCTZ alone treated group. CONCLUSION The present findings clearly suggest that the green tea extract dose-dependently reduces DOX-induced myocardial toxicity. Green tea when combined with HCTZ can reduce the associated side-effects and exhibits myocardial protection.
Collapse
Affiliation(s)
| | - Jagadish V. Kamath
- Department of Pharmacology, Shree Devi College of Pharmacy, Mangalore, Karnataka, India
| | - Ananya Bhattacharjee
- Department of Pharmacology, Shree Devi College of Pharmacy, Mangalore, Karnataka, India
| |
Collapse
|