1
|
Bhale AS, Meilhac O, d'Hellencourt CL, Vijayalakshmi MA, Venkataraman K. Cholesterol transport and beyond: Illuminating the versatile functions of HDL apolipoproteins through structural insights and functional implications. Biofactors 2024; 50:922-956. [PMID: 38661230 DOI: 10.1002/biof.2057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
High-density lipoproteins (HDLs) play a vital role in lipid metabolism and cardiovascular health, as they are intricately involved in cholesterol transport and inflammation modulation. The proteome of HDL particles is indeed complex and distinct from other components in the bloodstream. Proteomics studies have identified nearly 285 different proteins associated with HDL; however, this review focuses more on the 15 or so traditionally named "apo" lipoproteins. Important lipid metabolizing enzymes closely working with the apolipoproteins are also discussed. Apolipoproteins stand out for their integral role in HDL stability, structure, function, and metabolism. The unique structure and functions of each apolipoprotein influence important processes such as inflammation regulation and lipid metabolism. These interactions also shape the stability and performance of HDL particles. HDLs apolipoproteins have multifaceted roles beyond cardiovascular diseases (CVDs) and are involved in various physiological processes and disease states. Therefore, a detailed exploration of these apolipoproteins can offer valuable insights into potential diagnostic markers and therapeutic targets. This comprehensive review article aims to provide an in-depth understanding of HDL apolipoproteins, highlighting their distinct structures, functions, and contributions to various physiological processes. Exploiting this knowledge holds great potential for improving HDL function, enhancing cholesterol efflux, and modulating inflammatory processes, ultimately benefiting individuals by limiting the risks associated with CVDs and other inflammation-based pathologies. Understanding the nature of all 15 apolipoproteins expands our knowledge of HDL metabolism, sheds light on their pathological implications, and paves the way for advancements in the diagnosis, prevention, and treatment of lipid and inflammatory-related disorders.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Olivier Meilhac
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | - Christian Lefebvre d'Hellencourt
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | | | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Li Y, Luo X, Hua Z, Xue X, Wang X, Pang M, Wang T, Lyu A, Liu Y. Apolipoproteins as potential communicators play an essential role in the pathogenesis and treatment of early atherosclerosis. Int J Biol Sci 2023; 19:4493-4510. [PMID: 37781031 PMCID: PMC10535700 DOI: 10.7150/ijbs.86475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023] Open
Abstract
Atherosclerosis as the leading cause of the cardiovascular disease is closely related to cholesterol deposition within subendothelial areas of the arteries. Significantly, early atherosclerosis intervention is the critical phase for its reversal. As atherosclerosis progresses, early foam cells formation may evolve into fibrous plaques and atheromatous plaque, ulteriorly rupture of atheromatous plaque increases risks of myocardial infarction and ischemic stroke, resulting in high morbidity and mortality worldwide. Notably, amphiphilic apolipoproteins (Apos) can concomitantly combine with lipids to form soluble lipoproteins that have been demonstrated to associate with atherosclerosis. Apos act as crucial communicators of lipoproteins, which not only can mediate lipids metabolism, but also can involve in pro-atherogenic and anti-atherogenic processes of atherosclerosis via affecting subendothelial retention and aggregation of low-density lipoprotein (LDL), oxidative modification of LDL, foam cells formation and reverse cholesterol transport (RCT) in macrophage cells. Correspondingly, Apos can be used as endogenous and/or exogenous targeting agents to effectively attenuate the development of atherosclerosis. The article reviews the classification, structure, and relationship between Apos and lipids, how Apos serve as communicators of lipoproteins to participate in the pathogenesis progression of early atherosclerosis, as well as how Apos as the meaningful targeting mass is used in early atherosclerosis treatment.
Collapse
Affiliation(s)
- Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoxia Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiangpeng Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingshi Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong 999077, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
3
|
El-Darzi N, Mast N, Li Y, Dailey B, Kang M, Rhee DJ, Pikuleva IA. The normalizing effects of the CYP46A1 activator efavirenz on retinal sterol levels and risk factors for glaucoma in Apoj -/- mice. Cell Mol Life Sci 2023; 80:194. [PMID: 37392222 PMCID: PMC10314885 DOI: 10.1007/s00018-023-04848-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
Apolipoprotein J (APOJ) is a multifunctional protein with genetic evidence suggesting an association between APOJ polymorphisms and Alzheimer's disease as well as exfoliation glaucoma. Herein we conducted ocular characterizations of Apoj-/- mice and found that their retinal cholesterol levels were decreased and that this genotype had several risk factors for glaucoma: increased intraocular pressure and cup-to-disk ratio and impaired retinal ganglion cell (RGC) function. The latter was not due to RGC degeneration or activation of retinal Muller cells and microglia/macrophages. There was also a decrease in retinal levels of 24-hydroxycholesterol, a suggested neuroprotectant under glaucomatous conditions and a positive allosteric modulator of N-methyl-D-aspartate receptors mediating the light-evoked response of the RGC. Therefore, Apoj-/- mice were treated with low-dose efavirenz, an allosteric activator of CYP46A1 which converts cholesterol into 24-hydroxycholesterol. Efavirenz treatment increased retinal cholesterol and 24-hydroxycholesterol levels, normalized intraocular pressure and cup-to-disk ratio, and rescued in part RGC function. Retinal expression of Abcg1 (a cholesterol efflux transporter), Apoa1 (a constituent of lipoprotein particles), and Scarb1 (a lipoprotein particle receptor) was increased in EVF-treated Apoj-/- mice, indicating increased retinal cholesterol transport on lipoprotein particles. Ocular characterizations of Cyp46a1-/- mice supported the beneficial efavirenz treatment effects via CYP46A1 activation. The data obtained demonstrate an important APOJ role in retinal cholesterol homeostasis and link this apolipoprotein to the glaucoma risk factors and retinal 24-hydroxycholesterol production by CYP46A1. As the CYP46A1 activator efavirenz is an FDA-approved anti-HIV drug, our studies suggest a new therapeutic approach for treatment of glaucomatous conditions.
Collapse
Affiliation(s)
- Nicole El-Darzi
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yong Li
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Brian Dailey
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Min Kang
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Douglas J Rhee
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
Bashiri G, Padilla MS, Swingle KL, Shepherd SJ, Mitchell MJ, Wang K. Nanoparticle protein corona: from structure and function to therapeutic targeting. LAB ON A CHIP 2023; 23:1432-1466. [PMID: 36655824 PMCID: PMC10013352 DOI: 10.1039/d2lc00799a] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/29/2022] [Indexed: 05/31/2023]
Abstract
Nanoparticle (NP)-based therapeutics have ushered in a new era in translational medicine. However, despite the clinical success of NP technology, it is not well-understood how NPs fundamentally change in biological environments. When introduced into physiological fluids, NPs are coated by proteins, forming a protein corona (PC). The PC has the potential to endow NPs with a new identity and alter their bioactivity, stability, and destination. Additionally, the conformation of proteins is sensitive to their physical and chemical surroundings. Therefore, biological factors and protein-NP-interactions can induce changes in the conformation and orientation of proteins in vivo. Since the function of a protein is closely connected to its folded structure, slight differences in the surrounding environment as well as the surface characteristics of the NP materials may cause proteins to lose or gain a function. As a result, this can alter the downstream functionality of the NPs. This review introduces the main biological factors affecting the conformation of proteins associated with the PC. Then, four types of NPs with extensive utility in biomedical applications are described in greater detail, focusing on the conformation and orientation of adsorbed proteins. This is followed by a discussion on the instances in which the conformation of adsorbed proteins can be leveraged for therapeutic purposes, such as controlling protein conformation in assembled matrices in tissue, as well as controlling the PC conformation for modulating immune responses. The review concludes with a perspective on the remaining challenges and unexplored areas at the interface of PC and NP research.
Collapse
Affiliation(s)
- Ghazal Bashiri
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA.
| | - Marshall S Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah J Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
5
|
Durrington PN, Bashir B, Soran H. Paraoxonase 1 and atherosclerosis. Front Cardiovasc Med 2023; 10:1065967. [PMID: 36873390 PMCID: PMC9977831 DOI: 10.3389/fcvm.2023.1065967] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Paraoxonase 1 (PON1), residing almost exclusively on HDL, was discovered because of its hydrolytic activity towards organophosphates. Subsequently, it was also found to hydrolyse a wide range of substrates, including lactones and lipid hydroperoxides. PON1 is critical for the capacity of HDL to protect LDL and outer cell membranes against harmful oxidative modification, but this activity depends on its location within the hydrophobic lipid domains of HDL. It does not prevent conjugated diene formation, but directs lipid peroxidation products derived from these to become harmless carboxylic acids rather than aldehydes which might adduct to apolipoprotein B. Serum PON1 is inversely related to the incidence of new atherosclerotic cardiovascular disease (ASCVD) events, particularly in diabetes and established ASCVD. Its serum activity is frequently discordant with that of HDL cholesterol. PON1 activity is diminished in dyslipidaemia, diabetes, and inflammatory disease. Polymorphisms, most notably Q192R, can affect activity towards some substrates, but not towards phenyl acetate. Gene ablation or over-expression of human PON1 in rodent models is associated with increased and decreased atherosclerosis susceptibility respectively. PON1 antioxidant activity is enhanced by apolipoprotein AI and lecithin:cholesterol acyl transferase and diminished by apolipoprotein AII, serum amyloid A, and myeloperoxidase. PON1 loses this activity when separated from its lipid environment. Information about its structure has been obtained from water soluble mutants created by directed evolution. Such recombinant PON1 may, however, lose the capacity to hydrolyse non-polar substrates. Whilst nutrition and pre-existing lipid modifying drugs can influence PON1 activity there is a cogent need for more specific PON1-raising medication to be developed.
Collapse
Affiliation(s)
- Paul N Durrington
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Bilal Bashir
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Department of Diabetes, Endocrinology and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Handrean Soran
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Department of Diabetes, Endocrinology and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
6
|
Skrypnik D, Skrypnik K, Suliburska J, Bogdański P. Cardiac rehabilitation may influence leptin and VEGF A crosstalk in patients after acute coronary syndrome. Sci Rep 2022; 12:11825. [PMID: 35821400 PMCID: PMC9276756 DOI: 10.1038/s41598-022-16053-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Leptin, a well-proven cardiovascular risk factor, influences vascular endothelial growth factor A (VEGF A) synthesis via hypoxia-inducible factor 1 alpha (HIF-1A), nuclear factor kappa-light-chain-enhancer of activated B cells (NfkB) and NILCO (Notch, interleukin 1 [IL1] and leptin cross-talk outcome) pathways. This study aimed to investigate the influence of cardiac rehabilitation (CR) on HIF-1A, NfkB and NILCO dependent leptin and VEGF A cross-talk in patients after acute coronary syndrome (ACS). Fifty post-ACS patients underwent a 2-week CR programme (study group S) and were compared to 50 post-ACS subjects who did not undergo CR (control group K). In group S, at baseline and at completion and in group K once, anthropometric, body composition, blood pressure and heart rate measurements were taken and blood sampling was performed. Serum levels of leptin, VEGF A, VEGF receptor 2 (VEGF R2), HIF-1A, NfkB, interleukin 1-alpha (IL1-alpha) and Notch 1 were determined. In group S, serum VEGF A levels increased while leptin, HIF-1A and VEGF R2 levels decreased and completion but not baseline serum leptin correlated positively with serum VEGF A. Also, serum completion VEGF A correlated positively with NfkB and HIF-1A in group S. Correlation analysis in group S confirmed the significant role of the NILCO pathway in the regulation of VEGF A serum levels mediated by HIF-1A and NfkB. CR may induce the predomination of the NILCO pathway interacting with HIF-1A and NfkB over leptin canonical and non-canonical signalling pathways in the leptin influence on VEGF A in post-ACS patients.Trial registration: ClinicalTrials.gov ID: NCT03935438. The CARDIO-REH randomised study.
Collapse
Affiliation(s)
- Damian Skrypnik
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznań University of Medical Sciences, Szamarzewskiego St. 82/84, 60-569, Poznan, Poland.
| | - Katarzyna Skrypnik
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624, Poznan, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624, Poznan, Poland
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznań University of Medical Sciences, Szamarzewskiego St. 82/84, 60-569, Poznan, Poland
| |
Collapse
|
7
|
The Most Promising Biomarkers of Allogeneic Kidney Transplant Rejection. J Immunol Res 2022; 2022:6572338. [PMID: 35669103 PMCID: PMC9167141 DOI: 10.1155/2022/6572338] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/30/2022] [Indexed: 12/13/2022] Open
Abstract
Clinical transplantology is a constantly evolving field of medicine. Kidney transplantation has become standard clinical practice, and it has a significant impact on reducing mortality and improving the quality of life of patients. Allogenic transplantation induces an immune response, which may lead to the rejection of the transplanted organ. The gold standard for evaluating rejection of the transplanted kidney by the recipient's organism is a biopsy of this organ. However, due to the high invasiveness of this procedure, alternative diagnostic methods are being sought. Therefore, the biomarkers may play an essential predictive role in transplant rejection. A review of the most promising biomarkers for early diagnosis and prognosis prediction of allogenic kidney transplant rejection summarizes novel data on neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), C-X-C motif chemokine 10 (CXCL-10), cystatin C (CysC), osteopontin (OPN), and clusterin (CLU) and analyses the dynamics of changes of the biomarkers mentioned above in kidney diseases and the mechanism of rejection of the transplanted kidney.
Collapse
|
8
|
Lu Y, Cui X, Zhang L, Wang X, Xu Y, Qin Z, Liu G, Wang Q, Tian K, Lim KS, Charles CJ, Zhang J, Tang J. The Functional Role of Lipoproteins in Atherosclerosis: Novel Directions for Diagnosis and Targeting Therapy. Aging Dis 2022; 13:491-520. [PMID: 35371605 PMCID: PMC8947823 DOI: 10.14336/ad.2021.0929] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
Dyslipidemia, characterized by a high level of lipids (cholesterol, triglycerides, or both), can increase the risk of developing and progressing atherosclerosis. As atherosclerosis progresses, the number and severity of aterial plagues increases with greater risk of myocardial infarction, a major contributor to cardiovascular mortality. Atherosclerosis progresses in four phases, namely endothelial dysfunction, fatty streak formation, lesion progression and plaque rupture, and eventually thrombosis and arterial obstruction. With greater understanding of the pathological processes underlying atherosclerosis, researchers have identified that lipoproteins play a significant role in the development of atherosclerosis. In particular, apolipoprotein B (apoB)-containing lipoproteins have been shown to associate with atherosclerosis. Oxidized low-density lipoproteins (ox-LDLs) also contribute to the progression of atherosclerosis whereas high-density lipoproteins (HDL) contribute to the removal of cholesterol from macrophages thereby inhibiting the formation of foam cells. Given these known associations, lipoproteins may have potential as biomarkers for predicting risk associated with atherosclerotic plaques or may be targets as novel therapeutic agents. As such, the rapid development of drugs targeting lipoprotein metabolism may lead to novel treatments for atherosclerosis. A comprehensive review of lipoprotein function and their role in atherosclerosis, along with the latest development of lipoprotein targeted treatment, is timely. This review focuses on the functions of different lipoproteins and their involvement in atherosclerosis. Further, diagnostic and therapeutic potential are highlighted giving insight into novel lipoprotein-targetted approaches to treat atherosclerosis.
Collapse
Affiliation(s)
- Yongzheng Lu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) group, Department of Orthopedic Surgery, University of Otago, Christchurch 8011, New Zealand.,Department of Bone and Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Li Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Xu Wang
- Department of Medical Record Management, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yanyan Xu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Zhen Qin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Gangqiong Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Qiguang Wang
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan, China.
| | - Kang Tian
- Department of Bone and Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) group, Department of Orthopedic Surgery, University of Otago, Christchurch 8011, New Zealand.
| | - Chris J Charles
- Christchurch Heart Institute, Department of Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.,Correspondence should be addressed to: Dr. Junnan Tang, Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
9
|
Meng Q, Li X, Zhao M, Lin S, Yu X, Dong G. Study on the Mechanism of Platelet-Released Clusterins Inducing Restenosis after Carotid Endarterectomy by Activating TLR3/NF- κb p65 Signaling Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7631126. [PMID: 35047156 PMCID: PMC8763522 DOI: 10.1155/2022/7631126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 11/18/2022]
Abstract
This study aimed to explore the role of clusterin released by platelet aggregation in restenosis after carotid endarterectomy. 35 patients who underwent carotid endarterectomy due to carotid artery stenosis were enrolled in this study. They were admitted to the Third Affiliated Hospital of Qiqihar Medical University from January 2018 to January 2019. All the patients were divided into two groups: the restenosis group and the nonrestenosis group, according to the follow-up results within 12 months. Peripheral blood was collected on the first day, 6 months, and 12 months after operation. The expression of CLU in serum of plasma and platelet culture medium was detected by an ELISA experiment. The vascular endothelial cells were cultured in vitro with 100 ng/mL of human recombinant CLU added to the medium. Cell proliferation, migration, and invasion were detected by CCK8, scratch, and Transwell invasion tests. The expression level of TLR3 and NF-κb p65 proteins in cells was detected by western blot. TLR3 knockout plasmids in vascular endothelial cell lines were transfected. Cell proliferation and migration were detected by CCK8 and the scratch assay. The CLU content in peripheral blood plasma and supernatant of platelet culture medium was significantly higher in the restenosis group than that of the control group (p=0.003) 6 months after operation (p=0.047) and 12 months after operation (p=0.011). When CLU was added to vascular endothelial cell culture medium, the proliferation and migration were significantly enhanced. The TLR3/NF-κb p65 protein expression level in cells also significantly increased. After the transfection of TLR3 knockout plasmids into vascular endothelial cell lines, CLU cannot promote the proliferation and migration of vascular endothelial cells. Platelet-released clusterin can induce vascular endothelial cell proliferation and migration by activating the TLR3/NF-kb p65 signaling pathway, leading to carotid artery restenosis after carotid endarterectomy.
Collapse
Affiliation(s)
- Qingyu Meng
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Xichun Li
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Mingyu Zhao
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Shusen Lin
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Xiangwen Yu
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Guanglong Dong
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| |
Collapse
|
10
|
Chelliah SS, Bhuvanendran S, Magalingam KB, Kamarudin MNA, Radhakrishnan AK. Identification of blood-based biomarkers for diagnosis and prognosis of Parkinson's disease: A systematic review of proteomics studies. Ageing Res Rev 2022; 73:101514. [PMID: 34798300 DOI: 10.1016/j.arr.2021.101514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022]
Abstract
Parkinson's Disease (PD), a neurodegenerative disorder, is characterised by the loss of motor function and dopamine neurons. Therapeutic avenues remain a challenge due to lack of accuracy in early diagnosis, monitoring of disease progression and limited therapeutic options. Proteomic platforms have been utilised to discover biomarkers for numerous diseases, a tool that may benefit the diagnosis and monitoring of disease progression in PD patients. Therefore, this systematic review focuses on analysing blood-based candidate biomarkers (CB) identified via proteomics platforms for PD. This study systematically reviewed articles across six databases (EMBASE, Cochrane, Ovid Medline, Scopus, Science Direct and PubMed) published between 2010 and 2020. Of the 504 articles identified, 12 controlled-PD studies were selected for further analysis. A total of 115 candidate biomarkers (CB) were identified across selected 12-controlled studies, of which 23 CB were found to be replicable in more than two cohorts. Using the PANTHER Go-Slim classification system and STRING network, the gene function and protein interactions between biomarkers were analysed. Our analysis highlights Apolipoprotein A-I (ApoA-I), which is essential in lipid metabolism, oxidative stress, and neuroprotection demonstrates high replicability across five cohorts with consistent downregulation across four cohorts. Since ApoA-I was highly replicable across blood fractions, proteomic platforms and continents, its relationship with cholesterol, statin and oxidative stress as PD biomarker, its role in the pathogenesis of PD is discussed in this paper. The present study identified ApoA-I as a potential biomarker via proteomics analysis of PD for the early diagnosis and prediction of disease progression.
Collapse
Affiliation(s)
- Shalini Sundramurthi Chelliah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Saatheeyavaane Bhuvanendran
- Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Kasthuri Bai Magalingam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Muhamad Noor Alfarizal Kamarudin
- Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
11
|
Koch M, Aroner SA, Fitzpatrick AL, Longstreth WT, Furtado JD, Mukamal KJ, Jensen MK. HDL (High-Density Lipoprotein) Subspecies, Prevalent Covert Brain Infarcts, and Incident Overt Ischemic Stroke: Cardiovascular Health Study. Stroke 2021; 53:1292-1300. [PMID: 34645286 DOI: 10.1161/strokeaha.121.034299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE Whether HDL (high-density lipoprotein) is associated with risk of vascular brain injury is unclear. HDL is comprised of many apo (apolipoprotein) species, creating distinct subtypes of HDL. METHODS We utilized sandwich ELISA to determine HDL subspecies from plasma collected in 1998/1999 from 2001 CHS (Cardiovascular Health Study) participants (mean age, 80 years). RESULTS In cross-sectional analyses, participants with higher apoA1 in plasma and lower apoE in HDL were less likely to have prevalent covert magnetic resonance imaging-defined infarcts: odds ratio for apoA1 Q4 versus Q1, 0.68 (95% CI, 0.50-0.93), and odds ratio for apoE Q4 versus Q1, 1.36 (95% CI, 1.01-1.84). Similarly, apoA1 in the subspecies of HDL that lacked apoC3, apoJ, or apoE was inversely related to covert infarcts, and apoE in the subspecies of HDL that lacked apoC3 or apoJ was directly related to covert infarcts in prospective analyses. In contrast, the concentrations of apoA1 and apoE in the complementary subspecies of HDL that contained these apos were unrelated to covert infarcts. Patterns of associations between incident overt ischemic stroke and apoA1, apoE, and apoA1 and apoE in subspecies of HDL were similar to those observed for covert infarcts but less pronounced. CONCLUSIONS This study highlights HDL subspecies defined by apo content as relevant biomarkers of covert and overt vascular brain injury.
Collapse
Affiliation(s)
- Manja Koch
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (M.K., S.A.A., J.D.F., K.J.M., M.K.J.)
| | - Sarah A Aroner
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (M.K., S.A.A., J.D.F., K.J.M., M.K.J.).,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston (S.A.A.)
| | - Annette L Fitzpatrick
- Department of Family Medicine, University of Washington, Seattle. (A.L.F.).,Department of Epidemiology, University of Washington, Seattle. (A.L.F.).,Department of Global Health, University of Washington, Seattle. (A.L.F.)
| | - W T Longstreth
- Department of Neurology, University of Washington, Seattle. (W.T.L.).,Department of Epidemiology, University of Washington, Seattle. (W.T.L.)
| | - Jeremy D Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (M.K., S.A.A., J.D.F., K.J.M., M.K.J.)
| | - Kenneth J Mukamal
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (M.K., S.A.A., J.D.F., K.J.M., M.K.J.).,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (K.J.M.)
| | - Majken K Jensen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (M.K., S.A.A., J.D.F., K.J.M., M.K.J.).,Department of Public Health, Section of Epidemiology, University of Copenhagen, Denmark (M.K.J.)
| |
Collapse
|
12
|
Benitez Amaro A, Solanelles Curco A, Garcia E, Julve J, Rives J, Benitez S, Llorente Cortes V. Apolipoprotein and LRP1-Based Peptides as New Therapeutic Tools in Atherosclerosis. J Clin Med 2021; 10:jcm10163571. [PMID: 34441867 PMCID: PMC8396846 DOI: 10.3390/jcm10163571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/17/2022] Open
Abstract
Apolipoprotein (Apo)-based mimetic peptides have been shown to reduce atherosclerosis. Most of the ApoC-II and ApoE mimetics exert anti-atherosclerotic effects by improving lipid profile. ApoC-II mimetics reverse hypertriglyceridemia and ApoE-based peptides such as Ac-hE18A-NH2 reduce cholesterol and triglyceride (TG) levels in humans. Conversely, other classes of ApoE and ApoA-I mimetic peptides and, more recently, ApoJ and LRP1-based peptides, exhibit several anti-atherosclerotic actions in experimental models without influencing lipoprotein profile. These other mimetic peptides display at least one atheroprotective mechanism such as providing LDL stability against mechanical modification or conferring protection against the action of lipolytic enzymes inducing LDL aggregation in the arterial intima. Other anti-atherosclerotic effects exerted by these peptides also include protection against foam cell formation and inflammation, and induction of reverse cholesterol transport. Although the underlying mechanisms of action are still poorly described, the recent findings suggest that these mimetics could confer atheroprotection by favorably influencing lipoprotein function rather than lipoprotein levels. Despite the promising results obtained with peptide mimetics, the assessment of their stability, atheroprotective efficacy and tissue targeted delivery are issues currently under progress.
Collapse
Affiliation(s)
- Aleyda Benitez Amaro
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (A.B.A.); (E.G.)
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain;
| | | | - Eduardo Garcia
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (A.B.A.); (E.G.)
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain;
| | - Josep Julve
- Metabolic Basis of Cardiovascular Risk Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jose Rives
- Biochemistry Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08016 Barcelona, Spain
| | - Sonia Benitez
- Cardiovascular Biochemistry Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Correspondence: (S.B.); or (V.L.C.)
| | - Vicenta Llorente Cortes
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (A.B.A.); (E.G.)
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain;
- CIBERCV, Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (S.B.); or (V.L.C.)
| |
Collapse
|
13
|
Proteomic Profiling Change and Its Implies in the Early Mycosis Fungoides (MF) Using Isobaric Tags for Relative and Absolute Quantification (iTRAQ). BIOMED RESEARCH INTERNATIONAL 2020; 2020:9237381. [PMID: 33299887 PMCID: PMC7707953 DOI: 10.1155/2020/9237381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/01/2020] [Accepted: 10/31/2020] [Indexed: 11/17/2022]
Abstract
Purpose Mycosis fungoides (MF) is the most common T-cell lymphoma, with indolent biologic behavior in the early stage and features of invasive in the tumor stage. The diagnosis of MF is still ambiguous and difficult. We focused on the proteomic profiling change in the pathogenesis of early MF and identified candidate biomarkers for early diagnosis. Methods We collected peripheral blood samples of MF patients and healthy individuals (HI) performed proteomic profiling analysis using isobaric tags for relative and absolute quantification (iTRAQ) platform. Differently expressed proteins (DEPs) were filtered, and involved biological functions were analyzed through Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA) software. Results We identified 78 DEPs including fifty proteins were upregulated and 28 proteins were downregulated in the MF group with HI as a control. Total DEPs were analyzed according to the biological regulation and metabolic process through GO analysis. The pathways of LXR/RXR activation and FXR/RXR activation were significantly activated, in which APOH, CLU, and ITIH4 were involved. The top annotated disease and function network was (Cancer, Organismal Injury and Abnormalities, Reproductive System Disease), with a key node CLU. These DEPs were involved in cancer, including thyroid carcinoma, head and neck carcinoma, and cancer of secretory structure, in which CLU, GNAS, and PKM played an indirect role in the occurrence and development of cancer. Relevant causal network was IL12 (family), which is related to GNAS, PKM, and other DEPs. Conclusion Proteomic profiling of early-stage MF provided candidate protein biomarkers such as CLU, GNAS, and PKM, which benefit the early diagnosis and understanding of the mechanism of MF development. Besides, lipid metabolism may be one of the pathogenesis of MF, and IL12 was a potential marker for the diagnosis and treatment of early MF.
Collapse
|
14
|
Mallia A, Gianazza E, Zoanni B, Brioschi M, Barbieri SS, Banfi C. Proteomics of Extracellular Vesicles: Update on Their Composition, Biological Roles and Potential Use as Diagnostic Tools in Atherosclerotic Cardiovascular Diseases. Diagnostics (Basel) 2020; 10:diagnostics10100843. [PMID: 33086718 PMCID: PMC7588996 DOI: 10.3390/diagnostics10100843] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid-bound vesicles released from cells under physiological and pathological conditions. Basing on biogenesis, dimension, content and route of secretion, they can be classified into exosomes, microvesicles (MVs) and apoptotic bodies. EVs have a key role as bioactive mediators in intercellular communication, but they are also involved in other physiological processes like immune response, blood coagulation, and tissue repair. The interest in studying EVs has increased over the years due to their involvement in several diseases, such as cardiovascular diseases (CVDs), and their potential role as biomarkers in diagnosis, therapy, and in drug delivery system development. Nowadays, the improvement of mass spectrometry (MS)-based techniques allows the characterization of the EV protein composition to deeply understand their role in several diseases. In this review, a critical overview is provided on the EV’s origin and physical properties, as well as their emerging functional role in both physiological and disease conditions, focusing attention on the role of exosomes in CVDs. The most important cardiac exosome proteomic studies will be discussed giving a qualitative and quantitative characterization of the exosomal proteins that could be used in future as new potential diagnostic markers or targets for specific therapies.
Collapse
|
15
|
Peradze N, Farr OM, Mantzoros CS. Research developments in metabolism 2018. Metabolism 2019; 91:70-79. [PMID: 30503805 DOI: 10.1016/j.metabol.2018.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Natia Peradze
- Section of Endocrinology, Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, United States of America.
| | - Olivia M Farr
- Section of Endocrinology, Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, United States of America
| | - Christos S Mantzoros
- Section of Endocrinology, Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
16
|
Barrachina MN, Calderón-Cruz B, Fernandez-Rocca L, García Á. Application of Extracellular Vesicles Proteomics to Cardiovascular Disease: Guidelines, Data Analysis, and Future Perspectives. Proteomics 2019; 19:e1800247. [PMID: 30467982 DOI: 10.1002/pmic.201800247] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/09/2018] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of vesicles composed of a lipid bilayer that carry a large repertoire of molecules including proteins, lipids, and nucleic acids. In this review, some guidelines for plasma-derived EVs isolation, characterization, and proteomic analysis, and the application of the above to cardiovascular disease (CVD) studies are provided. For EVs analysis, blood samples should be collected using a 21-gauge needle, preferably in citrate tubes, and plasma stored for up to 1 year at -80°, using a single freeze-thaw cycle. For proteomic applications, differential centrifugation (including ultracentrifugation steps) is a good option for EVs isolation. EVs characterization is done by transmission electron microscopy, particle enumeration techniques (nanoparticle-tracking analysis, dynamic light scattering), and flow cytometry. Regarding the proteomics strategy, a label-free and gel-free quantitative method is a good choice due to its accuracy and because it minimizes the amount of sample required for clinical applications. Besides the above, main EVs proteomic findings in cardiovascular-related diseases are presented and analyzed in this review, paying especial attention to overlapping results between studies. The latter might offer new insights into the clinical relevance and potential of novel EVs biomarkers identified to date in the context of CVD.
Collapse
Affiliation(s)
- Maria N Barrachina
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade Santiago de Compostela, Santiago de Compostela, 15782, Spain.,Instituto de Investigación, Sanitaria de Santiago (IDIS), Santiago de Compostela, 15706, Spain
| | - Beatriz Calderón-Cruz
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade Santiago de Compostela, Santiago de Compostela, 15782, Spain.,Instituto de Investigación, Sanitaria de Santiago (IDIS), Santiago de Compostela, 15706, Spain
| | - Lucía Fernandez-Rocca
- Clinical Analysis Laboratory, Maciel Hospital, Faculty of Chemistry, University of the Republic, Montevideo, 11000, Uruguay
| | - Ángel García
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade Santiago de Compostela, Santiago de Compostela, 15782, Spain.,Instituto de Investigación, Sanitaria de Santiago (IDIS), Santiago de Compostela, 15706, Spain
| |
Collapse
|
17
|
Dourado PMM. Rosuvastatin Decreases the Formation of Neointima by Increasing Apo J, Reducing Restenosis after Balloon Injury in Rats. Arq Bras Cardiol 2018; 111:569-570. [PMID: 30365679 PMCID: PMC6199503 DOI: 10.5935/abc.20180204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Paulo Magno Martins Dourado
- Faculdade de Medicina da Universidade de São Paulo - Instituto
do Coração (InCor) - Laboratório de Hipertensão
Experimental, São Paulo, SP - Brazil
| |
Collapse
|
18
|
Kwon HK, Jeong H, Hwang D, Park ZY. Comparative proteomic analysis of mouse models of pathological and physiological cardiac hypertrophy, with selection of biomarkers of pathological hypertrophy by integrative Proteogenomics. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:S1570-9639(18)30118-3. [PMID: 30048702 DOI: 10.1016/j.bbapap.2018.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 12/21/2022]
Abstract
To determine fundamental characteristics of pathological cardiac hypertrophy, protein expression profiles in two widely accepted models of cardiac hypertrophy (swimming-trained mouse for physiological hypertrophy and pressure-overload-induced mouse for pathological hypertrophy) were compared using a label-free quantitative proteomics approach. Among 3955 proteins (19,235 peptides, false-discovery rate < 0.01) identified in these models, 486 were differentially expressed with a log2 fold difference ≥ 0.58, or were detected in only one hypertrophy model (each protein from 4 technical replicates, p < .05). Analysis of gene ontology biological processes and KEGG pathways identified cellular processes enriched in one or both hypertrophy models. Processes unique to pathological hypertrophy were compared with processes previously identified in cardiac-hypertrophy models. Individual proteins with differential expression in processes unique to pathological hypertrophy were further confirmed using the results of previous targeted functional analysis studies. Using a proteogenomic approach combining transcriptomic and proteomic analyses, similar patterns of differential expression were observed for 23 proteins and corresponding genes associated with pathological hypertrophy. A total of 11 proteins were selected as early-stage pathological-hypertrophy biomarker candidates, and the results of western blotting for five of these proteins in independent samples confirmed the patterns of differential expression in mouse models of pathological and physiological cardiac hypertrophy.
Collapse
Affiliation(s)
- Hye Kyeong Kwon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyobin Jeong
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea; Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 42988, Republic of Korea; School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Daehee Hwang
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea; Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 42988, Republic of Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
19
|
Maskanakis A, Patelis N, Karaolanis G, Davakis S, Schizas D, Perrea D, Klonaris C, Georgopoulos S, Liakakos T, Bakoyiannis C. Apolipoprotein J as a predictive biomarker for restenosis after carotid endarterectomy: a retrospective study. Acta Pharmacol Sin 2018; 39:1237-1242. [PMID: 29417939 DOI: 10.1038/aps.2017.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022] Open
Abstract
Carotid endarterectomy (CEA) is an effective surgical option for stroke prophylaxis in most patients. Restenosis after CEA can lead to re-intervention and adverse events, but the factors predicting restenosis are poorly understood. Apolipoprotein J (ApoJ) is considered to be a novel predictive factor of vascular restenosis and is associated with a large number of processes related to atherosclerosis and cell-cycle phases. The aim of this study was to elucidate the predictive value of Apo J in internal carotid artery (ICA) restenosis following CEA. This retrospective study examined all prospectively collected data for patients who underwent CEA at our surgical department over a 2-year period. The serum ApoJ levels of 100 patients were examined; 56 patients who underwent CEA comprised the vascular group (VG), and 44 patients who underwent minor surgery comprised the control group (CG). ApoJ samples were obtained preoperatively, 24 h after the surgical procedure and at 1, 6 and 12 months thereafter during the follow-up. The preoperative difference in ApoJ levels between the CG and VG was statistically signifcant; the mean values were 39.11±14.16 and 83.03±35.35 μg/mL, respectively. In the VG, the serum ApoJ levels were 112.09±54.40, 71.20±23.70, 69.92±25.76 and 62.25±19.17 μg/mL at postoperative day 1 and at 1, 6 and 12 months post-operatively, respectively, while the ApoJ concentrations of patients in the CG remained unchanged. Further subdivision of the VG into patients with or without restenosis revealed that restenosis patients presented signifcantly higher mean ApoJ values than non-restenosis VG patients. In summary, ApoJ seems to be an important predictor for carotid restenosis at 6 and 12 months postoperatively.
Collapse
|
20
|
Abdallah BM, Alzahrani AM, Kassem M. Secreted Clusterin protein inhibits osteoblast differentiation of bone marrow mesenchymal stem cells by suppressing ERK1/2 signaling pathway. Bone 2018; 110:221-229. [PMID: 29476977 DOI: 10.1016/j.bone.2018.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
Secreted Clusterin (sCLU, also known as Apolipoprotein J) is an anti-apoptotic glycoprotein involved in the regulation of cell proliferation, lipid transport, extracellular tissue remodeling and apoptosis. sCLU is expressed and secreted by mouse bone marrow-derived skeletal (stromal or mesenchymal) stem cells (mBMSCs), but its functional role in MSC biology is not known. In this study, we demonstrated that Clusterin mRNA expression and protein secretion in conditioned medium increased during adipocyte differentiation and decreased during osteoblast differentiation of mBMSCs. Treatment of mBMSC cultures with recombinant sCLU protein increased cell proliferation and exerted an inhibitory effect on the osteoblast differentiation while stimulated adipocyte differentiation in a dose-dependent manner. siRNA-mediated silencing of Clu expression in mBMSCs reduced adipocyte differentiation and stimulated osteoblast differentiation of mBMSCs. Furthermore, the inhibitory effect of sCLU on the osteoblast differentiation of mBMSCs was mediated by the suppression of extracellular signal-regulated kinase (ERK1/2) phosphorylation. In conclusion, we identified sCLU as a regulator of mBMSCs lineage commitment to osteoblasts versus adipocytes through a mechanism mediated by ERK1/2 signaling. Inhibiting sCLU is a possible therapeutic approach for enhancing osteoblast differentiation and consequently bone formation.
Collapse
Affiliation(s)
- Basem M Abdallah
- Biological Sciences Department, College of Science, King Faisal University, Hofuf, Saudi Arabia; Endocrine Research (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern Denmark, Odense, Denmark.
| | - Abdullah M Alzahrani
- Biological Sciences Department, College of Science, King Faisal University, Hofuf, Saudi Arabia
| | - Moustapha Kassem
- Endocrine Research (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern Denmark, Odense, Denmark; Department of Cellular and Molecular Medicine, DanStem (Danish Stem Cell Center), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Zhang JW, Liu TF, Chen XH, Liang WY, Feng XR, Wang L, Fu SW, McCaffrey TA, Liu ML. Validation of aspirin response-related transcripts in patients with coronary artery disease and preliminary investigation on CMTM5 function. Gene 2017; 624:56-65. [PMID: 28457985 DOI: 10.1016/j.gene.2017.04.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/15/2017] [Accepted: 04/25/2017] [Indexed: 11/28/2022]
Abstract
Aspirin is widely used in the prevention of cardiovascular diseases, but the antiplatelet responses vary from one patient to another. To validate aspirin response related transcripts and illustrate their roles in predicting cardiovascular events, we have quantified the relative expression of 14 transcripts previously identified as related to high on-aspirin platelet reactivity (HAPR) in 223 patients with coronary artery disease (CAD) on regular aspirin treatment. All patients were followed up regularly for cardiovascular events (CVE). The mean age of our enrolled population was 75.80±8.57years. HAPR patients showed no significant differences in terms of co-morbidities and combined drugs. Besides, the relative expression of HLA-DQA1 was significantly lower in low on-aspirin platelet reactivity (LAPR) patients, when compared with HAPR and high normal (HN) group (p=0.028). What's more, the number of arteries involved, HAPR status and the relative expression of CLU, CMTM5 and SPARC were independent risk factors for CVE during follow up (p<0.05). In addition, overexpression of CMTM5 attenuated endothelial cells (ECs) migration and proliferation, with significantly decreased phosphorylated-Akt levels, while its inhibition promoted these processes in vitro (p<0.05).Our study provides evidence that circulating transcripts might be potential biomarkers in predicting cardiovascular events. CMTM5 might exert anti-atherosclerotic effects via suppressing migration and proliferation in the vessel wall. Nevertheless, larger-scale and long-term studies are still needed.
Collapse
Affiliation(s)
- J W Zhang
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - T F Liu
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - X H Chen
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - W Y Liang
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - X R Feng
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - L Wang
- Peking University Center for Human Disease Genomics, Department of Immunology, Health Science Center, Peking University, Beijing, China
| | - Sidney W Fu
- Department of Medicine, George Washington University Medical Center, Washington DC, USA
| | - Timothy A McCaffrey
- Department of Medicine, George Washington University Medical Center, Washington DC, USA
| | - M L Liu
- Department of Geriatrics, Peking University First Hospital, Beijing, China.
| |
Collapse
|