1
|
Liu J, Zou J, Wang J, Wang R, Zhai S, Chang X, Zhang X, Sun J, Luan F, Shi Y. Extraction, purification, structural features, and pharmacological properties of polysaccharides from Houttuynia cordata: A review. Int J Biol Macromol 2024; 279:135230. [PMID: 39218180 DOI: 10.1016/j.ijbiomac.2024.135230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Houttuynia cordata Thunb, also known as "Chinese medicine antibiotic", is a medicine food homology plant. It has functions of clearing heat, eliminating toxins, in folk medicine. The extraction purification and bioactivity of Houttuynia cordata polysaccharides (HCPs) have been of wide interest to researchers in recent years studies. Studies have confirmed that HCPs exhibit various biofunctionalities, such as anti-inflammatory, antiviral, antibacterial, antioxidant, immunomodulatory, regulation of gut microbiota, and gut-lung axis, as well as anti-radiation, and anti-cancer properties. Therefore, a comprehensive systematic review is needed to summarize the recent advances of HCPs and facilitate a better understanding of their biofunctionalities. This paper reviews the research progress of HCPs in extraction and purification methods, chemical structures, biological activities, possible mechanisms of action, and potential application prospects, which can provide some valuable insights and updated information for their further development and application of HCPs in the fields of therapeutic agents, functional foods, cosmetics, animal feeds.
Collapse
Affiliation(s)
- Jing Liu
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jingyuan Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Rui Wang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xi'an 712046, Shaanxi, PR China
| | - Sicheng Zhai
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xi'an 712046, Shaanxi, PR China
| | - Xing Chang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
2
|
Lin Y, He C, Liu J, Chung HY, Chen ZY, Wong WT. Houttuynia cordata Thunb. Extracts Alleviate Atherosclerosis and Modulate Gut Microbiota in Male Hypercholesterolemic Hamsters. Nutrients 2024; 16:3290. [PMID: 39408257 PMCID: PMC11478543 DOI: 10.3390/nu16193290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background and Aims: Hypercholesterolemia leads to cardiovascular diseases and atherosclerosis. Previous studies have highlighted the crucial role of gut microbiota in alleviating atherosclerosis progression and reducing plasma cholesterol. However, the protective effects of Houttuynia cordata Thunb (HCT), a well-known fishy Chinese herb, against hypercholesterolemia and vasculopathy remain largely unknown. This study aims to explore the effects of HCT extracts on vascular health and gut microbiota in golden Syrian hamsters with hypercholesterolemia. Methods: The hypercholesterolemia hamster model was established by feeding with a high-cholesterol diet. Aqueous or ethanolic HCT extracts were mixed with diet and concurrently given to hamsters for Six weeks. Plasma lipid profiles were evaluated. Aortas were collected to detect fatty streak areas. Feces were collected to analyze the abundance of microorganisms in the gut microbiota. Results: HCT ethanolic extract treatment remarkedly decreased plasma levels of total cholesterol and high-density lipoprotein cholesterol in hypercholesterolemic hamsters. Notably, both aqueous and ethanolic extracts of HCT reduced atherosclerotic plaques in hamsters fed with a high-cholesterol diet. Strikingly, the effects of HCT ethanolic extract in reducing atherosclerotic plaques are greater than aqueous extract. Furthermore, at the phylum level, the relative abundance of Firmicutes was decreased in hamsters treated with aqueous and ethanolic extracts of HCT. By contrast, the abundance of Bacteroidetes was increased by HCT treatment. At the family level, HCT extract favourably modulated the relative abundance of Porphyromonadaceae and Bacteroidales_S24-7_group. These findings indicate that HCT extracts may facilitate the growth of short-chain fatty acids-producing bacteria to alter gut microbiota composition, contributing to the reduction of plasma lipid levels. Conclusions: This study offers evidence demonstrating the effects of HCT extracts on alleviating atherosclerosis and lowering plasma cholesterol levels in the male hypercholesterolemic hamster model, offering novel insights into the pharmacological effects and promoting the application of HCT. This study highlights the potential of HCT as a dietary supplement to alleviate atherosclerosis, lower plasma cholesterol, and modulate the abundance of microorganisms in gut microbiota.
Collapse
Affiliation(s)
- Yuhong Lin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Y.L.); (C.H.); (H.-Y.C.); (Z.-Y.C.)
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chufeng He
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Y.L.); (C.H.); (H.-Y.C.); (Z.-Y.C.)
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianhui Liu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China;
| | - Hau-Yin Chung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Y.L.); (C.H.); (H.-Y.C.); (Z.-Y.C.)
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Y.L.); (C.H.); (H.-Y.C.); (Z.-Y.C.)
| | - Wing-Tak Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Y.L.); (C.H.); (H.-Y.C.); (Z.-Y.C.)
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
3
|
Soni S, Gambhir L, Sharma G, Sharma A, Kapoor N. Unraveling the treasure trove of phytochemicals in mitigating the Salmonella enterica infection. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01192-x. [PMID: 39212846 DOI: 10.1007/s12223-024-01192-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Foodborne diseases triggered by various infectious micro-organisms are contributing significantly to the global disease burden as well as to increasing mortality rates. Salmonella enterica belongs to the most prevalent form of bacteria accountable for significant burden of foodborne illness across the globe. The conventional therapeutic approach to cater to Salmonella enterica-based infections relies on antibiotic therapy, but the rapid emergence of the antibiotic resistance strains of Salmonella sp. necessitates the development of alternative treatment and prevention strategies. In light of this growing concern, the scientific community is rigorously exploring novel phytochemicals harnessed from medicinally important plants as a promising approach to curb Salmonella enterica infections. A variety of phytochemicals belonging to alkaloids, phenols, flavonoid, and terpene classes are reported to exhibit their inhibitory activity against bacterial cell communication, membrane proteins, efflux pumps, and biofilm formation among drug resistant Salmonella strains. The present review article delves to discuss the emergence of antibiotic resistance among Salmonella enterica strains, various plant sources, identification of phytochemicals, and the current state of research on the use of phytochemicals as antimicrobial agents against Salmonella enterica, shedding light on the promising potential of phytochemicals in the fight against this pathogen.
Collapse
Affiliation(s)
- Saurabh Soni
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Lokesh Gambhir
- School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, 248001, India
| | - Gaurav Sharma
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Asha Sharma
- Department of Zoology, Swargiya P. N. K. S. Govt. PG College, Dausa, 303303, India
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India.
| |
Collapse
|
4
|
Zhao D, Yang C, Xiao C, Zhou T, Wu D, Wang S, Kang C, Guo L, Yang Y, Lyu C. Quality evaluation and identification of Houttuynia cordata bleached with sodium metabisulfite based on whole spectrum metabolomics. Food Chem X 2024; 22:101463. [PMID: 38798794 PMCID: PMC11127148 DOI: 10.1016/j.fochx.2024.101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Houttuynia Cordata (HC) is a widely distributed plant in Asia and is used extensively for both food and medicinal purposes. A preliminary investigation found that HC is often bleached with sodium metabisulfite solution during its field processing, leading to health risks. In this study, the effects of sodium metabisulfite on the quality of HC were comprehensively evaluated using volatile and non-volatile targeted metabolomic methods. The results revealed a positive correlation between the extent of chemical composition changes and the bleaching time. These notable changes mainly occurred at the initial stage of bleaching. Subsequently, an untargeted UPLC/Q-TOF MS method was used to explore the potential chemical bleaching markers in bleached HC. The marker 1-hydroxy-3-oxodecane-1-sulfonic acid was subsequently prepared, isolated, and identified. Market sample verification further validated the accuracy and effectiveness of this marker.
Collapse
Affiliation(s)
- Dan Zhao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - ChangGui Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - ChengHong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - DeHua Wu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR. China
| | - Sheng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR. China
| | - ChuanZhi Kang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR. China
| | - LanPing Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR. China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - ChaoGeng Lyu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR. China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, 100700, China
| |
Collapse
|
5
|
Wang Y, He X, Wang H, Hu W, Sun L. Qingfei xieding prescription ameliorates mitochondrial DNA-initiated inflammation in bleomycin-induced pulmonary fibrosis through activating autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117820. [PMID: 38286157 DOI: 10.1016/j.jep.2024.117820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingfei Xieding prescription was gradually refined and produced by Hangzhou Red Cross Hospital. The raw material includes Ephedra sinica Stapf, Morus alba L., Bombyx Batryticatus, Gypsum Fibrosum, Prunus armeniaca L. var. ansu Maxim., Houttuynia cordata Thunb. , Pueraria edulis Pamp. Paeonia L., Scutellaria baicalensis Georgi and Anemarrhena asphodeloides Bge. It is effective in clinical adjuvant treatment of patients with pulmonary diseases. AIM OF THE STUDY To explore the efficacy and underlying mechanism of Qingfei Xieding (QF) in the treatment of bleomycin-induced mouse model. MATERIALS AND METHODS TGF-β induced fibrotic phenotype in vitro. Bleomycin injection induced lung tissue fibrosis mouse model in vivo. Flow cytometry was used to detect apoptosis, cellular ROS and lipid oxidation. Mitochondria substructure was observed by transmission electron microscopy. Autophagolysosome and nuclear entry of P65 were monitored by immunofluorescence. Quantitative real-time PCR was performed to detect the transcription of genes associated with mtDNA-cGAS-STING pathway and subsequent inflammatory signaling activation. RESULTS TGF-β induced the expression of α-SMA and Collagen I, inhibited cell viability in lung epithelial MLE-12 cells that was reversed by QF-containing serum. TGF-β-mediated downregulation in autophagy, upregulation in lipid oxidation and ROS contents, and mitochondrial damage were rescued by QF-containing serum treatment, but CQ exposure, an autophagy inhibitor, prevented the protective role of QF. In addition to that, the decreased autophagolysosome in TGF-β-exposed MLE-12 cells was reversed by QF and restored to low level in the combination treatment of QF and CQ. Mechanistically, QF-containing serum treatment significantly inhibited mtDNA-cGAS-STING pathway and subsequent inflammatory signaling in TGF-β-challenged cells, which were abolished by CQ-mediated autophagy inhibition. In bleomycin-induced mouse model, QF ameliorated pulmonary fibrosis, reduced mortality, re-activated autophagy in lung tissues and restrained mtDNA-cGAS-STING inflammation pathway. However, the protective effects of QF in bleomycin-induced model mice were also abrogated by CQ. CONCLUSION QF alleviated bleomycin-induced pulmonary fibrosis by activating autophagy, inhibiting mtDNA-cGAS-STING pathway-mediated inflammation. This research recognizes the protection role of QF on bleomycin-induced mouse model, and offers evidence for the potentiality of QF in clinical application for pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Yunguang Wang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, PR China.
| | - Xinxin He
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China.
| | - Huijie Wang
- Department of Tuberculosis, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, PR China.
| | - Wei Hu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| | - Lifang Sun
- Department of Tuberculosis, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, PR China; Department of Tuberculosis, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
6
|
Wu X, Li H. The research progress regarding the antitumor effects and mechanisms of active ingredients in Houttuynia cordata. Asian J Surg 2024; 47:1616-1618. [PMID: 38087694 DOI: 10.1016/j.asjsur.2023.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/01/2023] [Indexed: 03/13/2024] Open
Affiliation(s)
- Xinyu Wu
- The Third Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hegen Li
- The Third Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
7
|
Cheng Z, Lin S, Wu Z, Lin C, Zhang Q, Xu C, Li J, Long C. Study on medicinal food plants in the Gaoligongshan Biosphere Reserve, the richest biocultural diversity center in China. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2024; 20:10. [PMID: 38225656 PMCID: PMC10790445 DOI: 10.1186/s13002-023-00638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Traditional knowledge associated with medicinal food plants (MFPs) plays a vital role in fighting hidden hunger and safeguarding the health of local people. MFPs resources are abundant in the Gaoligongshan area, a biosphere reserve with the richest biocultural diversity in China. Local people of different linguistic groups also have rich traditional botanical knowledge. However, there are still few comprehensive and systematic studies on MFPs there. METHODS Ethnobotanical investigation including market survey, semi-structured interviews, free listing and key informant interviews was conducted in the Gaoligongshan area, Western Yunnan, Southwest China. A total of 13 local farmers' markets were selected and information about medicinal food plants, including food categories, medicinal and edible parts, modes of consumption, medicinal effects, and distribution were collected. The relative occurrence frequency (RFO) and cultural food significance index (CFSI) were calculated to identify the culturally significant MFPs. RESULTS A total of 184 species of MFPs, belonging to 83 families, were collected in the Gaoligongshan area, including vegetables (77), medicinal diets (26), fruits (25), spices (18), herbal tea (13), tea substitutes (11), substitutes for staple food (8), nuts (5), oils and fats (4), and dye material (1). The most frequently used families were Fabaceae, Asteraceae and Apiaceae, with 11, 10, and 9 species, respectively. The most frequently used plant parts were the stems, followed by fruits and leaves. Based on the evaluation results of the CFSI and RFO indices, 18 species of MFPs with magnificent local cultural importance have been screened out, such as Houttuynia cordata, Eryngium foetidum, Sechium edule, Centella asiatica and Pseudocydonia sinensis. CONCLUSION These findings have guiding significance for conservation of traditional knowledge associated with MFPs and facilitation of scientific utilization of MFPs to meet local people's needs for a healthy life.
Collapse
Affiliation(s)
- Zhuo Cheng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Shuyan Lin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Ziyi Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Chen Lin
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qing Zhang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Congli Xu
- Yunnan Gaoligongshan National Nature Reserve (Baoshan Bureau), Yunnan, 678000, China
| | - Jiahua Li
- Yunnan Gaoligongshan National Nature Reserve (Longyang Branch of Baoshan Bureau), Yunnan, 678000, China
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China.
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
- Institute of National Security Studies, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
8
|
Wei P, Luo Q, Hou Y, Zhao F, Li F, Meng Q. Houttuynia Cordata Thunb.: A comprehensive review of traditional applications, phytochemistry, pharmacology and safety. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155195. [PMID: 37956635 DOI: 10.1016/j.phymed.2023.155195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/15/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Houttuynia Cordata Thunb. (H. cordata; Saururaceae) is a medicine food homology plant that is grown in many Asian countries. Its main phytochemical constituents are volatile oils, flavonoids, polysaccharides and alkaloids. It has considerable clinical applications and health benefits. PURPOSE This paper reviews the existing literatures and patents, summarizes the phytochemistry, pharmacological activity, safety and economic botanical applications of H. cordata, and provides a reference for systematic study of the pharmacological effects of H. cordata, improvement of quality standards and further development of its medicinal resources. METHODS A comprehensive search of literature and patents on H. cordata and its active ingredients published before June 2023 was conducted using PubMed, Google Scholar, Web of Science, and China Knowledge Network. RESULTS H. cordata is not only edible and medicinal but also used in various aspects of daily life such as fermented beverages, nutraceuticals, feed and cosmetics. The main phytochemical constituents of H. cordata are volatile oils, flavonoids, organic acids and alkaloids. Several in vitro and in vivo studies and clinical trials have found that H. cordata extracts possess antioxidant, anti-inflammatory, antitumor, antibacterial, hepatoprotective and renal, immunomodulatory and potent antiviral effects. The mechanisms of expression of these pharmacological effects are related to the blood-brain barrier, lipophilicity, cAMP signaling and skin permeability, including blocking the MAPK signaling pathway, inhibiting the secretion of inflammatory factors such as TNF-α and IL-1β, and activating the AMPK pathway. CONCLUSION This paper provides a comprehensive review of the progress of research on the traditional applications, botany, chemical composition, pharmacological effects and safety of H. cordata and discusses for the first time the economic botanical aspects, which were not explored in the previous reviews. H. cordata has a wide range of bioactive substances whose therapeutic potential has not been fully exploited, and it could provide a new non-toxic approach to many diseases. This traditional medicinal food plant should receive more attention and in-depth research in the future.
Collapse
Affiliation(s)
- Panpan Wei
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qin Luo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yun Hou
- Department of Histology and Embryology, Basic Medical College, Binzhou Medical University, Yantai 264003, China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Feng Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
9
|
Sangeet S, Khan A. An in-silico approach to identify bioactive phytochemicals from Houttuynia cordata Thunb. As potential inhibitors of human glutathione reductase. J Biomol Struct Dyn 2023:1-20. [PMID: 38109166 DOI: 10.1080/07391102.2023.2294181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Cellular infections are central to the etiology of various diseases, notably cancer and malaria. Counteracting cellular oxidative stress via the inhibition of glutathione reductase (GR) has emerged as a promising therapeutic strategy. Houttuynia cordata, a medicinal plant known for its potent antioxidant properties, has been the focus of our investigation. In this study, we conducted comprehensive in silico analyses involving the phytochemical constituents of H. cordata to identify potential natural GR inhibitors. Our methodological approach encompassed multiple in silico techniques, including molecular docking, molecular dynamics simulations, MMPBSA analysis, and dynamic cross-correlation analysis. Out of 13 docked phytochemicals, Quercetin, Quercitrin, and Sesamin emerged as particularly noteworthy due to their exceptional binding affinities for GR. Notably, our investigation demonstrated that Quercetin and Sesamin exhibited promising outcomes compared to the well-established pharmaceutical agent N-acetylcysteine (NAC). Molecular dynamics analyses provided insights into the ability of these phytochemicals to induce structural compaction and stabilization of the GR protein, as evidenced by changes in radius of gyration and solvent-accessible surface area. Moreover, MMPBSA analysis highlighted the crucial roles of specific residues, namely Gly27, Gly28, Ser51, His52, and Val61, in mediating essential interactions with these phytochemicals. Furthermore, an assessment of Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADME-Tox) profiles underscored the favourable drug-like attributes of these phytochemicals. Thus, the current findings underscore the immense potential of Houttuynia cordata phytochemicals as potent antioxidants with the capacity to combat a spectrum of maladies, including malaria and cancer. This study not only unveils novel therapeutic avenues but also underscores the distinctive outcomes and paramount significance of harnessing H. cordata phytochemicals for their efficacious antioxidant properties.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Satyam Sangeet
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India
- CompObelisk, Mirzapur, India
| | - Arshad Khan
- CompObelisk, Mirzapur, India
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, India
| |
Collapse
|
10
|
Wang S, Li L, Chen Y, Liu Q, Zhou S, Li N, Wu Y, Yuan J. Houttuynia cordata thunb. alleviates inflammatory bowel disease by modulating intestinal microenvironment: a research review. Front Immunol 2023; 14:1306375. [PMID: 38077358 PMCID: PMC10702737 DOI: 10.3389/fimmu.2023.1306375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex group of chronic intestinal diseases, the cause of which has not yet been clarified, but it is widely believed that the disorder of the intestinal microenvironment and its related functional changes are key factors in the development of the disease. Houttuynia cordata thunb. is a traditional plant with abundant resources and long history of utilization in China, which has attracted widespread attention in recent years due to its potential in the treatment of IBD. However, its development and utilization are limited owing to the aristolochic acid alkaloids contained in it. Therefore, based on the relationship between the intestinal microenvironment and IBD, this article summarizes the potential mechanisms by which the main active ingredients of Houttuynia cordata thunb., such as volatile oils, polysaccharides, and flavonoids, and related traditional Chinese medicine preparations, such as Xiezhuo Jiedu Formula, alleviate IBD by regulating the intestinal microenvironment. At the same time, combined with current reports, the medicinal and edible safety of Houttuynia cordata thunb. is explained for providing ideas for further research and development of Houttuynia chordate thunb. in IBD disease, more treatment options for IBD patients, and more insights into the therapeutic potential of plants with homology of medicine and food in intestinal diseases, and even more diseases.
Collapse
Affiliation(s)
- Si Wang
- First Clinical School of Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Lei Li
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuhan Chen
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qian Liu
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shengyu Zhou
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ning Li
- First Clinical School of Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yueying Wu
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jiali Yuan
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
11
|
Grazul M, Kwiatkowski P, Hartman K, Kilanowicz A, Sienkiewicz M. How to Naturally Support the Immune System in Inflammation-Essential Oils as Immune Boosters. Biomedicines 2023; 11:2381. [PMID: 37760822 PMCID: PMC10525302 DOI: 10.3390/biomedicines11092381] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Efficient functionality of the immune system is needed to fight against the development of infectious diseases, including, among others, serious recurrent chronic infections. Research has shown that many modern common diseases, such as inflammatory bowel diseases and cardiovascular diseases, e.g., thromboembolism, cancer, obesity, or depression, are connected with inflammatory processes. Therefore, new, good stimulators of the immune system's response are sought. They include synthetic compounds as well as biological preparations such as lipopolysaccharides, enzymes, bacterial metabolites, and secondary metabolites of plants, demonstrating a multidirectional effect. Essential oils are characterized by many invaluable activities, including antimicrobial, antioxidant, anti-inflammatory, and immunostimulating. Essential oils may stimulate the immune system via the utilization of their constituents, such as antibodies, cytokines, and dendritic cells. Some essential oils may stimulate the proliferation of immune-competent cells, including polymorphonuclear leukocytes, macrophages, dendritic cells, natural killer cells, and B and T lymphocytes. This review is focused on the ability of essential oils to affect the immune system. It is also possible that essential oil components positively interact with recommended anti-inflammatory and antimicrobial drugs. Thus, there is a need to explore possible synergies between essential oils and their active ingredients for medical use.
Collapse
Affiliation(s)
- Magdalena Grazul
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Kacper Hartman
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
12
|
Zhang S, Zhang H, Chen S, Yang L, Chen X, Jiang H. Widely targeted metabolomic deciphers the vertical spatial distribution of flavor substances in Houttuynia cordata Thunb. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
The Current Landscape of Bioactive Molecules against DENV: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:2236210. [PMID: 36818227 PMCID: PMC9937760 DOI: 10.1155/2023/2236210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/09/2023] [Accepted: 01/23/2023] [Indexed: 02/12/2023]
Abstract
With a 30-fold increase in incidence over the previous 50 years, dengue fever is now the most widespread viral disease transmitted by mosquitoes in the world. The intricate interaction of the human defense system, hereditary predisposition, and specific bitterness elements is more likely to be the pathogenesis of dengue. There are presently no viable treatments for dengue. Synthetic drugs which are used against this ailment also show major side effects. There must be a deeper understanding of the underlying mechanism generating severe symptoms to develop auguring markers, cutting-edge diagnostics, and treatments and finally a well-rounded and secure antiserum. Hence, the aim is to search for safer and more potent drugs derived from plants. Plants or herbs are mainly targeting replication or its enzyme or specific stereotypes, though an exact mechanism of phytoconstituents interfering with the viral replication is still undiscovered. The present attempt provided the update with the objective to bringing up forward pathophysiological eventualities involved in dengue virus along with the naturally derived treatment relevant to provide the impregnable therapy by evading the noxious symptoms for dengue fever. Governor's plum, Cryptocarya chartacea, magnolia berry, and Chinese ginger are such plants exhibiting many effective phytoconstituents against DENV and can be further explored for novel drug discovery by medicinal scientists.
Collapse
|
14
|
Cheng T, Xu C, Wu D, Yan G, Wang C, Wang T, Shao J. Sodium houttuyfonate derived from Houttuynia cordata Thunb improves intestinal malfunction via maintaining gut microflora stability in Candida albicans overgrowth aggravated ulcerative colitis. Food Funct 2023; 14:1072-1086. [PMID: 36594429 DOI: 10.1039/d2fo02369e] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Candida albicans is a common opportunistic pathogen and normally resides in the human gut. Increasing number of reports link the overgrowth of C. albicans to the severity of ulcerative colitis (UC). Sodium houttuyfonate (SH), a derivative of the medicinal herb Houttuynia cordata Thunb, has been demonstrated to exhibit decent antifungal and anti-inflammatory activities. We showed previously that SH could ameliorate colitis mice infected with C. albicans. However, it is unclear whether the therapeutic effect of SH is connected to its modulation of intestinal microflora in UC. In this study, the impact of SH on the gut microbiota was explored in both cohabitation and non-cohabitation patterns. The results showed that in UC mice inflicted by C. albicans, the administration of SH could greatly improve the pathological signs, weaken the oxidative stress and inflammatory response, and enhance the intestinal mucosal integrity. By 16S rRNA gene sequencing, we found that C. albicans interference caused intestinal microbiota dysbiosis accompanied by an increase of some harmful pathogens including Klebsiella and Bacteroides. In contrast, SH could modulate the abundance and diversity of microbiota with an increase of several beneficial bacteria comprising short-chain fatty acid-producing bacteria (Lachnospiraceae_NK4A136_group, Intestinimonas) and probiotics (Lactobacillus and Alloprevotella). Furthermore, the cohabitation strategy could also prove the efficacy of SH, indicating a role of transmissible gut flora in the colitis model. These findings suggest that SH might be an effective compound for the treatment of UC complicated by C. albicans overgrowth through maintaining gut microbiota homeostasis, thereby improving intestinal function.
Collapse
Affiliation(s)
- Ting Cheng
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China.
| | - Chen Xu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China.
| | - Daqiang Wu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China. .,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China
| | - Guiming Yan
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China.
| | - Changzhong Wang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China. .,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China
| | - Tianming Wang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China.
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China. .,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China
| |
Collapse
|
15
|
Analysis of Volatile Compounds from Different Parts of Houttuynia cordata Thunb. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248893. [PMID: 36558024 PMCID: PMC9783048 DOI: 10.3390/molecules27248893] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Houttuynia cordata Thunb. is a medicinal and edible plant that has been commonly used in traditional Chinese medicine since ancient times. This study used headspace solid-phase microextraction (HS-SPME) and direct injection, combined with gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), to identify the volatile compounds in H. cordata. Extraction from different parts of the plant using different extraction techniques for the identification of volatile compounds were determined. A total of 93 volatile components were analyzed in the leaves, stems, rhizomes, and whole plant samples of H. cordata. The leaves contained more (Z)-3-hexenal, β-myrcene, (Z)-β-ocimene, and (4E,6E)-allo-ocimene; the stems contained more geranyl acetate and nerolidol; and rhizomes contained more α-pinene, β-pinene, limonene, 2-undecanone, and decanoyl acetaldehyde. Among them, the essential oil extracted by HS-SPME could produce more monoterpenes, while direct injection could obtain higher contents of aliphatic ketones, terpene esters, sesquiterpenes, and was more conducive to the extraction of 2-undecanone and decanoyl acetaldehyde.
Collapse
|
16
|
Cen L, Yi T, Hao Y, Shi C, Shi X, Lu Y, Chen D, Zhu H. Houttuynia cordata polysaccharides alleviate ulcerative colitis by restoring intestinal homeostasis. Chin J Nat Med 2022; 20:914-924. [PMID: 36549805 DOI: 10.1016/s1875-5364(22)60220-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Indexed: 12/24/2022]
Abstract
Houttuynia cordata is traditionally used as phytoantibiotics for treating lung disease in China. Houttuynia cordata polysaccharides (HCPs) have been reported to alleviate influenza virus-induced intestinal and lung immune injury by regulating the gut-lung axis. The present study aims to investigate the effects and mechanisms of HCPs on ulcerative colitis (UC). Male C57BL/6 mice were induced by dextran sodium sulfate (DSS) to establish the UC animal model. Our results showed that HCPs significantly reduced the weight loss and the shortening of colon length in colitis mice, and relieved the pathological damage of colon mucosa and inhibited the expression of pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6, etc. It was suggested that HCPs could significantly improve DSS-induced colitis in mice. HCPs directly protected intestinal epithelial cells, ameliorated epithelial barrier dysfunction and cell apoptosis, which was also proved in H2O2 stimulated cell apoptosis model. HCPs inhibited inflammation in the colon, which was related to suppressing the infiltration of macrophages, inhibiting the expression of pro-inflammatory cytokines and proteins (TLR4, NF-κB), and restoring the dysfunction of Th17 and Treg cells. HCPs also restored the alteration of intestinal flora induced by DSS, increased the abundance ofFirmicutes and Bacteroides, and reduced the abundance of Proteobacteria. This study confirmed the protective effect of Houttuynia cordata polysaccharide extracted from traditional Chinese medicine on ulcerative colitis, of which the mechanism was closely related to the maintenance of intestinal homeostasis (intestinal barrier, immune cells, and intestinal bacteria).
Collapse
Affiliation(s)
- Lifeng Cen
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 200000, China
| | - Tong Yi
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 200000, China
| | - Yuanzhen Hao
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 200000, China
| | - Chenchen Shi
- Division of Spine, Department of Orthopedics, Tongji Hospital, Shanghai 200000, China
| | - Xunlong Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 200000, China
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 200000, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 200000, China.
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 200000, China.
| |
Collapse
|
17
|
Ghosh A, Ghosh B, Parihar N, Ilaweibaphyrnai M, Panda SR, Alexander A, Chella N, Murty U, Naidu V, Kumar G J, Pemmaraju DB. Nutraceutical prospects of Houttuynia cordata against the infectious viruses. FOOD BIOSCI 2022; 50:101977. [PMID: 36059903 PMCID: PMC9423882 DOI: 10.1016/j.fbio.2022.101977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
Abstract
The novel enveloped β-coronavirus SARS-CoV-2 (COVID-19) has offered a surprising health challenge all over the world. It develops severe pneumonia leading to acute respiratory distress syndrome (ARDS). Like SARS-COV-2, other encapsulated viruses like HIV, HSV, and influenza have also offered a similar challenge in the past. In this regard, many antiviral drugs are being explored with varying degrees of success to combat the associated pathological conditions. Therefore, upon scientific validation & development, these antiviral phytochemicals can attain a futuristic nutraceutical prospect in managing different encapsulated viruses. Houttuynia cordata (HC) is widely reported for activities such as antioxidant, anti-inflammatory, and antiviral properties. The major antiviral bioactive components of HC include essential oils (methyl n-nonyl ketone, lauryl aldehyde, capryl aldehyde), flavonoids (quercetin, rutin, hyperin, quercitrin, isoquercitrin), and alkaloids (norcepharadione B) & polysaccharides. HC can further be explored as a potential nutraceutical agent in the therapy of encapsulated viruses like HIV, HSV, and influenza. The review listed various conventional and green technologies that are being employed to extract potent phytochemicals with diverse activities from the HC. It was indicated that HC also inhibited molecular targets like 3C-like protease (3CLPRO) and RNA-dependent RNA polymerase (RdRp) of COVID-19 by blocking viral RNA synthesis and replication. Antioxidant and hepatoprotective effects of HC have been evident in impeding complications from marketed drugs during antiviral therapies. The use of HC as a nutraceutical is localized within some parts of Southeast Asia. Further technological advances can establish it as a nutraceutical-based functional food against pathogenic enveloped viruses like COVID 19.
Collapse
Affiliation(s)
- Aparajita Ghosh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| | - Bijoyani Ghosh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| | - Nidhi Parihar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| | - Myrthong Ilaweibaphyrnai
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| | - Samir R Panda
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| | - Naveen Chella
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| | - Usn Murty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| | - Vgm Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| | - Jagadeesh Kumar G
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| | - Deepak B Pemmaraju
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| |
Collapse
|
18
|
Wang J, Dempsey E, Corr SC, Kukula-Koch W, Sasse A, Sheridan H. The Traditional Chinese Medicine Houttuynia cordata Thunb decoction alters intestinal barrier function via an EGFR dependent MAPK (ERK1/2) signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154353. [PMID: 35932606 DOI: 10.1016/j.phymed.2022.154353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND A traditionally prepared aqueous extract (= decoction) of Houttuynia cordata Thunb (Yu xing cao) (HC) is widely used in Traditional Chinese Medicine (TCM) to treat inflammatory disease. Previous chemical and biological studies on HC have mainly focused on organic extracts rather than the aqueous decoction, which is the traditional formulation. PURPOSE The study aimed to investigate whether the chemical composition of HC aqueous decoction (HCD) varies with geographical sourcing, to investigate the mechanism of action of HCD, and to determine if chemical variation impacts on HCDs anti-inflammatory activity. METHOD Sixteen samples of HC were purchased from Sichuan, Hubei and Anhui provinces in the People's Republic of China (PRC) and were prepared by the traditional decoction method to yield their corresponding HCDs. A Quality Control (QC) sample was prepared by combining individual HCD extracts. HCDs were analysed by Nuclear Magnetic Resonance (NMR) and High-Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS). The anti-inflammatory activities associated with intestinal barrier function of HCD were studied by tumor necrosis factor-α (TNF-α) activated Caco-2 monolayers in vitro and in vivo using Dextran Sulfate Sodium (DSS)-induced murine colitis. Proteins involved in inflammation, mRNA levels, disease severity scores, and histology involved in intestinal inflammation were analysed. RESULTS HCD samples exhibited different chemical fingerprints and three regional outliers were identified by Principal Component Analysis (PCA). Fifteen phytochemical metabolites were identified and quantified. HCD showed in vitro anti-inflammatory activity, enhancing zonula occludens-1 (ZO-1), occludin, interleukin (IL)-10 and decreasing IL-1β, IL-6 and epidermal growth factor receptor (EGFR) via an EGFR-dependent mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 1/2 (ERK 1/2) signaling pathway. This beneficial effect on intestinal inflammation was also seen in the in vivo colitis model at a molecular level in colonic tissues. CONCLUSION This study shows that the test HCDs were chemically different, resulting in different levels of activity on intestinal barrier function and inflammation. Moreover, a "Daodi" product showed the greatest biological activity in this study, thus validating the importance of the "Daodi" quality material in TCM and supporting the traditional used of HCD for the treatment of inflammation.
Collapse
Affiliation(s)
- Jinfan Wang
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland; Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| | - Elaine Dempsey
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Sinéad C Corr
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Poland
| | - Astrid Sasse
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland; Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| | - Helen Sheridan
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland; Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
19
|
Dedvisitsakul P, Watla-iad K. Antioxidant activity and antidiabetic activities of Northern Thai indigenous edible plant extracts and their phytochemical constituents. Heliyon 2022; 8:e10740. [PMID: 36185148 PMCID: PMC9519484 DOI: 10.1016/j.heliyon.2022.e10740] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/25/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetes mellitus is the most common non-infective disease characterized by hyperglycemia (high level of blood glucose). Formation of advanced glycation end products (AGEs) in long termed-hyperglycemia and oxidative stress are the key factors to accelerate diabetic complications. To screen potential candidates for treating diabetes, total phenolic content, total flavonoid content, antioxidant activity from crude extracts of some Thai edible plants were primarily assessed, and the inhibiting potential of diabetes and its complications provided from some of these plants were evaluated in terms of their inhibitory activities of α-amylase, α-glycosidase, and AGEs formation. The highest amounts of phenolic and flavonoid compounds were found in the ethanolic extract of Caesalpinia mimosoides (S20, 12.63 ± 1.70 mg GAE/g DW) and Glochidion hirsutum (S8, 3.02 ± 0.25 mg CE/g DW), respectively. The highest antioxidant activity was found in Schinus terebinthifolius Raddi (S26, 217.94 ± 32.30 μg AAE/g DW) whereas the highest inhibitory activities of α-amylase and α-glycosidase were obtained from Basella alba L. (S11, IC50 = 0.21 ± 0.01 mg/ml) and S. terebinthifolius (S26, IC50 = 0.05 ± 0.02 mg/ml) respectively. The inhibitory effects of AGEs formation were studied in vitro using two model systems: BSA-glucose and BSA-methylglycoxal (MGO). The extracts of Glochidion hirsutum (Roxb.) Voigt (S8, IC50 = 0.20 ± 0.01 mg/ml) and Polygonum odoratum Lour. (S13, IC50 = 0.03 ± 0.01 mg/ml) exhibited the inhibitory activity of AGEs formation derived from glucose (BSA-glucose system) stronger than aminoguanidine (AG) (0.26 ± 0.00 mg/ml), which is a common AGEs formation inhibitory drug. By BSA-MGO assay, the inhibition of some selected extracts in this study (G. hirsutum, G. sphaerogynum, and S. terebinthifolius with IC50 = 0.11 ± 0.01, 0.11 ± 0.01, and 0.10 ± 0.00 mg/ml, respectively) were slightly less efficient than AG (the IC50 = 0.06 ± 0.00 mg/ml). These results indicated that some selected Thai edible plants in this present study provided potential applications towards the prevention of diabetes and their complications via the inhibitory of α-amylase, α-glycosidase, AGEs formation, and oxidative stress. This fundamental information would be important for alternative drug discovery and nutritional recommendations for diabetic patients.
Collapse
Affiliation(s)
- Plaipol Dedvisitsakul
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Microbial Products and Innovation (MP&I) Research Unit, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kanchana Watla-iad
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Chemical Innovation for Sustainability, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Corresponding author.
| |
Collapse
|
20
|
Rafiq S, Hao H, Ijaz M, Raza A. Pharmacological Effects of Houttuynia cordata Thunb (H. cordata): A Comprehensive Review. Pharmaceuticals (Basel) 2022; 15:ph15091079. [PMID: 36145299 PMCID: PMC9501394 DOI: 10.3390/ph15091079] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Houttuynia cordata Thunb (H. cordata) is a rhizomatous, herbaceous, and perennial plant widely distributed in Asia. It has multiple chemical constituents, such as alkaloids, essential oils, phenolic acids, and flavonoids used against various health problems. The essential oils and flavonoids are the main components of H. cordata that play an essential role in disease treatment and traditional health care. Moreover, the leaves and stems of H. cordata have a long medicinal history in China. In addition, H. cordata is used against several health issues, such as cold, cough, fever, pneumonia, mumps, and tumors, due to its anti-inflammatory, anti-bacterial, anti-viral, anti-oxidant, and anti-tumor effects. It protects organs due to its anti-inflammatory activity. H. cordata regulates immunity by enhancing immune barriers of the oral cavity, vagina, and gastrointestinal tract, and shows broad-spectrum activity against liver, lung, breast, and colon tumors. However, there are some gaps to be filled to understand its pathways and mechanisms. Mechanisms such as its interaction with cells, cell membranes, and various drugs are important. Studies in relation to the blood–brain barrier, lipophilicity, cAMP signaling, and skin permeability, including pharmaceutical effects, will be very useful. This review includes the biological and pharmacological activities of H. cordata based on up-to-date research.
Collapse
Affiliation(s)
- Shahzad Rafiq
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Correspondence: ; Tel.: +86-158-7181-2208
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Ahmed Raza
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
21
|
Scutellaria petiolata Hemsl. ex Lace & Prain (Lamiaceae).: A New Insight in Biomedical Therapies. Antioxidants (Basel) 2022; 11:antiox11081446. [PMID: 35892648 PMCID: PMC9331036 DOI: 10.3390/antiox11081446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
The recent investigation was designed to explore Scutellaria petiolata Hemsl. ex Lace & Prain (Lamiaceae) whole plant in various extracts (methanol (SPM), dichloromethane (SPDCM), n-Hexane (SPNH), and aqueous (SPAQ) for a phytochemicals assessment, ESI-LC-MS chemical analysis, in vitro antimicrobials, and antioxidants and in vivo anti-inflammatory and analgesic potential. The qualitative detection shows that all the representative groups were present in the analyzed samples. The examined samples display the greatest amount of total flavonoid content (TFC, 78.2 ± 0.22 mg QE/mg) and total phenolic contents (TPC, 66.2 ± 0.33 mg GAE/g) in the SPM extract. The SPM extract proceeded to the ESI-LC-MS to identify the chemical constituents that presented nineteen bioactive ingredients, depicted for the first time from S. petiolata mainly contributed by flavonoids. The analyzed samples produced considerable capability to defy the microbes. The SPM extract was observed effective and offered an appreciable zone of inhibition (ZOI), 17.8 ± 0.04 mm against the bacterial strain Salmonellatyphi and 18.8 ± 0.04 mm against Klebsiella pneumonia. Moreover, the SPM extract also exhibited 19.4 ± 0.01 mm against the bacterial strains Bacillus atrophaeus and 18.8 ± 0.04 mm against Bacillus subtilis in comparison to the standard levofloxacin (Gram-negative) and erythromycin (Gram-positive) bacterial strains that displayed 23.6 ± 0.02 mm and 23.2 ± 0.05 mm ZOI, correspondingly. In addition to that, the SPD fraction was noticed efficiently against the fungal strains used with ZOI 19.07 ± 0.02 mm against Aspergillus parasiticus and 18.87 ± 0.04 mm against the Aspergillus niger as equated to the standard with 21.5 ± 0.02 mm ZOI. In the DPPH (2,2-diphenyl-1-picrylhydrazyl) analysis, the SPM extract had the maximum scavenging capacity with IC50 of 78.75 ± 0.19 µg/mL succeeded by the SPDCM fraction with an IC50 of 140.50 ± 0.20 µg/mL free radicals scavenging potential. Through the ABTS (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) assay, the similar extract (SPM) presented an IC50 = 85.91 ± 0.24 µg/mL followed by the SPDCM fractions with IC50 = 182.50 ± 0.35 µg/mL, and n-Hexane fractions were reported to be the least active between the tested samples in comparison to ascorbic acid of IC50 = 67.14 ± 0.25 µg/mL for DPPH and IC50 of 69.96 ± 0.18 µg/mL for ABTS assay. In the in vivo activities, the SPM extract was the most effective with 55.14% inhibition as compared to diclofenac sodium with 70.58% inhibition against animals. The same SPM crude extract with 50.88% inhibition had the most analgesic efficacy as compared to aspirin having 62.19% inhibition. Hence, it was assumed from our results that all the tested samples, especially the SPM and SPDCM extracts, have significant capabilities for the investigated activities that could be due to the presence of the bioactive compounds. Further research is needed to isolate the responsible chemical constituents to produce innovative medications.
Collapse
|
22
|
Chang KW, Lin TY, Fu SL, Ping YH, Chen FP, Kung YY. A Houttuynia cordata-based Chinese herbal formula improved symptoms of allergic rhinitis during the COVID-19 pandemic. J Chin Med Assoc 2022; 85:717-722. [PMID: 35421875 DOI: 10.1097/jcma.0000000000000732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The symptoms of coronavirus disease 2019 (COVID-19) such as hyposmia, rhinorrhea, nasal obstruction, and cough are similar to those of chronic allergic rhinitis (AR). Such symptoms can easily lead AR patients to unnecessary anxiety, misdiagnosis, and invasive diagnostic tests in the COVID-19 pandemic. Interleukin-6 (IL-6) is an important mediator for chronic AR and plays a crucial role in the inflammation of COVID-19. Houttuynia cordata (HC) has been shown to reduce nasal congestion and swelling by suppressing the activation of IL-6 and is used to fight COVID-19. A novel HC-based Chinese herbal formula, Zheng-Yi-Fang (ZYF), was developed to test effects on nasal symptoms of patients with AR in the COVID-19 pandemic. METHODS Participants aged between 20 and 60 years with at least a 2-year history of moderate to severe perennial AR were enrolled. Eligible participants were randomly allocated to either the intervention group (taking ZYF) or the control group (using regular western medicine) for 4 weeks. The Chinese version of the Rhinosinusitis Outcome Measures was used to evaluate impacts on quality of life and nasal symptoms of participants with AR. In addition, the effect of ZYF on lipopolysaccharide (LPS)-induced IL-6 was investigated. RESULTS Participants with AR taking ZYF improved their symptoms of nasal obstruction, nasal secretion, hyposmia, and postnasal drip in comparison with those of the control group. Meanwhile, ZYF exhibited inhibition of IL-6 secretion in the LPS-induced inflammatory model. CONCLUSION ZYF has potential effects to relieve nasal symptoms for AR during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Kai-Wei Chang
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Tung-Yi Lin
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shu-Ling Fu
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yueh-Hsin Ping
- Department of Pharmacology, School of Medicine and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Fang-Pey Chen
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yen-Ying Kung
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
23
|
Kong P, Abe JP, Nakagawa-Izumi A, Kajiyama M, Enomae T. Preparation of an eco-friendly antibacterial agent for food packaging containing Houttuynia cordata Thunb. extract. RSC Adv 2022; 12:16141-16152. [PMID: 35733681 PMCID: PMC9155177 DOI: 10.1039/d2ra02178a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
This study aims to develop an antibacterial agent that can be used for food packaging. Essential oils of Houttuynia cordata Thunb., a well-known medical herb, were extracted by two methods: multi-solvent consecutive extraction method and single ethanol extraction with a pre-heating method. Consequently, the extract obtained by the single ethanol extraction with a pre-heating method was more satisfactory from the operational and economic aspects. Afterwards, one of the encapsulation techniques: co-precipitation method using β-cyclodextrins as wall materials, was applied to form capsules for the protection of the obtained extract. After the capsule synthesis, the results of scanning electron micrographs and X-ray diffraction showed β-cyclodextrin crystallites in the form of thinner plates became oriented upon co-precipitation. Combining the results of Fourier transform-infrared spectra and an antibacterial assay using Bacillus subtilis as an object microorganism, the extract was confirmed to be successfully encapsulated within hollow cavities of β-cyclodextrins. A significant inhibitory activity on the growth and breeding of Bacillus subtilis was observed after the addition of fabricated capsules, which suggests the capsules containing the Houttuynia cordata Thunb. extract can be used as eco-friendly antibacterial agents for food packaging.
Collapse
Affiliation(s)
- Peifu Kong
- Degree Programs in Life and Earth Sciences, University of Tsukuba Tsukuba Ibaraki 305-8572 Japan
| | - Junichi Peter Abe
- Faculty of Life and Environmental Sciences, University of Tsukuba Tsukuba Ibaraki 305-8572 Japan
| | - Akiko Nakagawa-Izumi
- Faculty of Life and Environmental Sciences, University of Tsukuba Tsukuba Ibaraki 305-8572 Japan
| | - Mikio Kajiyama
- Faculty of Life and Environmental Sciences, University of Tsukuba Tsukuba Ibaraki 305-8572 Japan
| | - Toshiharu Enomae
- Faculty of Life and Environmental Sciences, University of Tsukuba Tsukuba Ibaraki 305-8572 Japan
| |
Collapse
|
24
|
Wang N, Zhu Y, Li D, Basang W, Huang Y, Liu K, Luo Y, Chen L, Li C, Zhou X. 2-Methyl Nonyl Ketone From Houttuynia Cordata Thunb Alleviates LPS-Induced Inflammatory Response and Oxidative Stress in Bovine Mammary Epithelial Cells. Front Chem 2022; 9:793475. [PMID: 35174140 PMCID: PMC8842123 DOI: 10.3389/fchem.2021.793475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Mastitis is one of the most common diseases in dairy cows, causing huge economic losses to the dairy industry every year. Houttuynia Cordata Thunb (H.cordata) is a traditional Chinese herbal medicine that is widely used in clinical treatment. However, the therapeutic effect of 2-methyl nonyl ketone (MNK), the main volatile oil component in the aqueous vapor extract of H. cordata, on mastitis has been less studied. The purpose of this study was to investigate the protective effect and mechanism of MNK against lipopolysaccharide (LPS)-induced mastitis in vitro. The results showed that MNK pretreatment of the bovine mammary epithelial cell line (MAC-T) enhanced cell viability and inhibited LPS-induced reactive oxygen species (ROS) production and inflammatory response. MNK reduced the production of pro-inflammatory cytokines such as interleukin (IL) and tumor necrosis factor-α (TNF-α) by repressing LPS-induced activation of Toll-like receptor 4-nuclear factor-κB (TLR4-NF-κB) signaling pathway. In addition, MNK protected cells from inflammatory responses by blocking the downstream signaling of inflammatory factors. MNK also induced Heme Oxygenase-1 (HO-1) production by Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway through AKT and extracellular signal-regulated kinase (ERK) pathways, thereby reducing LPS-induced oxidative damage for MAC-T cells. In conclusion, MNK played a protective role against LPS-induced cell injury. This provides a theoretical basis for the research and development of MNK as a novel therapeutic agent for mastitis.
Collapse
Affiliation(s)
- Nan Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yanbin Zhu
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Institute of Veterinary and Animal Husbandry, Lhasa, China
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Dandan Li
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Wangdui Basang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Institute of Veterinary and Animal Husbandry, Lhasa, China
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Yiqiu Huang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Kening Liu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yuxin Luo
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
- *Correspondence: Chunjin Li, ; Xu Zhou,
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
- *Correspondence: Chunjin Li, ; Xu Zhou,
| |
Collapse
|
25
|
Hyperoside and Quercitrin in Houttuynia cordata Extract Attenuate UVB-Induced Human Keratinocyte Cell Damage and Oxidative Stress via Modulation of MAPKs and Akt Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11020221. [PMID: 35204104 PMCID: PMC8868276 DOI: 10.3390/antiox11020221] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Ultraviolet radiation is a major environmental harmful factor on human skin. In this paper, we investigate the potential mechanism of Houttuynia cordata extract on UVB-induced HaCaT keratinocyte cell death and inflammation. We found that Houttuynia cordata ethyl acetate extract fraction (HC-EA) protected against UVB-induced cell damage. The HPLC results indicate that quercitrin and hyperoside are the major polyphenolics in HC-EA and are responsible for providing protection against UVB-induced cell death. These responses were associated with the regulation of caspase-9 and caspase-3 activation, which rescued HaCaT cells from UVB-induced apoptosis. In addition, HC-EA, quercitrin, and hyperoside attenuated UVB-induced inflammatory mediators, including IL-6, IL-8, COX-2, and iNOS. Furthermore, the treatment of cells with HC-EA and its active compounds abolished intracellular ROS and increased levels of heme oxygenase-1 and superoxide dismutase. UVB-induced ROS production mediated Akt and mitogen activated protein kinases (MAPKs) pathways, including p38, ERK, and JNK. Our results show HC-EA, quercitrin, and hyperoside decreased UVB-induced p38 and JNK phosphorylation, while increasing ERK and Akt phosphorylation. MAPKs and Akt mediated cell survival and death were confirmed by specific inhibitors to Akt and MAPKs. Thus, HC-EA, which contains quercitrin and hyperoside, protected keratinocyte from UVB-induced oxidative damage and inflammation through the modulation of MAPKs and Akt signaling.
Collapse
|
26
|
Study of the Contents of Analogues of Aristolochic Acid in Houttuynia cordata by Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry. Foods 2022; 11:foods11030302. [PMID: 35159454 PMCID: PMC8834043 DOI: 10.3390/foods11030302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, a new and simple method was established for the simultaneous determination of analogues of aristolochic acids (aristolochic acid I, aristolochic acid II, aristolactam I and aristolactam AII) in Houttuynia cordata by ultra-high performance liquid chromatography–quadrupole/time-of-flight mass spectrometry (UHPLC–Q/TOF-MS). The samples were ultrasonically extracted with methanol, purified with HC-C18, and then separated on a C18 column (75 × 2.1 mm, 2.0 μm) at 35 °C. Under the optimized conditions, aristolochic acid I (AA-I), aristolochic acid II (AA-II), aristolactam I (AL-I) and aristolactam AII (AL-AII) all showed good linear regression (not less than 0.9987). The average recoveries of the four analytes were within the range of 72.3–105.5%, with the relative standard deviations (RSDs) being ≤7.6%. The proposed method was then applied to the determination of Houttuynia cordata samples collected from different regions in China. The results showed that none of the three carcinogenic substances (aristolochic acid I, aristolochic acid II and aristolactam I) were detected in any of the 22 samples collected from 22 different regions of China, while aristolactam AII, which has not been reported to have genotoxicity, was detected in all samples. This study provides a valuable reference for the further safety assessment of Houttuynia cordata.
Collapse
|
27
|
Zhang Y, Liu Y, Zhang B, Gao L, Jie J, Deng X, Liu X, Sun D, Song L, Luo J. A natural compound hyperoside targets Salmonella Typhimurium T3SS needle protein InvG. Food Funct 2022; 13:9761-9771. [DOI: 10.1039/d2fo00908k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The antimicrobial actions of natural compounds derived from medicinal plants have been well documented. However, their detailed mechanism underlying the action against microorganisms remains largely unexplored. Salmonella enterica is a...
Collapse
|
28
|
Mapoung S, Umsumarng S, Semmarath W, Arjsri P, Srisawad K, Thippraphan P, Yodkeeree S, Dejkriengkraikul P. Photoprotective Effects of a Hyperoside-Enriched Fraction Prepared from Houttuynia cordata Thunb. on Ultraviolet B-Induced Skin Aging in Human Fibroblasts through the MAPK Signaling Pathway. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122628. [PMID: 34961096 PMCID: PMC8708340 DOI: 10.3390/plants10122628] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 05/11/2023]
Abstract
Ultraviolet-B (UVB) irradiation causes skin damage via deleterious effects including oxidative stress, inflammation, and collagen degradation. The photoprotective effects of a hyperoside-enriched fraction obtained from Houttuynia cordata Thunb. (H. cordata) on the attenuation of UVB-induced skin aging in human fibroblasts were investigated. The solvent-partition technique was used to establish the hyperoside-enriched fraction of H. cordata (HcEA). The active compounds identified in the H. cordata extracts were hyperoside, quercitrin, chlorogenic acid, and rutin. With regard to the photoprotective effects of H. cordata on UVB-irradiated dermal fibroblasts, HcEA and hyperoside inhibited intracellular ROS production and inflammatory cytokine secretions (IL-6 and IL-8), while increasing collagen type I synthesis along with downregulating MMP-1 gene and protein expressions. Mechanistically, the hyperoside-enriched fraction obtained from H. cordata inhibited UVB-irradiated skin aging through regulation of the MAPK signaling pathway by attenuating the activation of JNK/ERK/c-Jun in human dermal fibroblasts. The hyperoside-enriched fraction of H. cordata exerted potent anti-skin aging properties against UVB exposure. The findings of this study can be applied in the cosmetics industry, as H. cordata extract can potentially be used in pharmaceutical or cosmetic formulations as a photoprotective or anti-skin aging agent.
Collapse
Affiliation(s)
- Sariya Mapoung
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sonthaya Umsumarng
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Veterinary Biosciences and Veterinary Public Health, Division of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warathit Semmarath
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
| | - Punnida Arjsri
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
| | - Kamonwan Srisawad
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
| | - Pilaiporn Thippraphan
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
- Correspondence:
| |
Collapse
|
29
|
Wu Z, Deng X, Hu Q, Xiao X, Jiang J, Ma X, Wu M. Houttuynia cordata Thunb: An Ethnopharmacological Review. Front Pharmacol 2021; 12:714694. [PMID: 34539401 PMCID: PMC8440972 DOI: 10.3389/fphar.2021.714694] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022] Open
Abstract
Houttuynia cordata Thunb (H. cordata; Saururaceae) is widely distributed in Asian regions. It plays an important role in traditional health care and disease treatment, as its aboveground stems and leaves have a long medicinal history in China and are used in the treatment of pneumonia and lung abscess. In clinical treatment, it can usually be combined with other drugs to treat dysentery, cold, fever, and mumps; additionally, H. cordata is an edible plant. This review summarizes detailed information on the phytochemistry and pharmacological effects of H. cordata. By searching the keywords “H. cordata and lung”, “H. cordata and heart”, “H. cordata and liver”, and “H. cordata and inflammation” in PubMed, Web of Science and ScienceDirect, we screened out articles with high correlation in the past ten years, sorted out the research contents, disease models and research methods of the articles, and provided a new perspective on the therapeutic effects of H. cordata. A variety of its chemical constituents are characteristic of medicinal plants, the chemical constituents were isolated from H. cordata, including volatile oils, alkaloids, flavonoids, and phenolic acids. Flavonoids and volatile oils are the main active components. In pharmacological studies, H. cordata showed organ protective activity, such as reducing the release of inflammatory factors to alleviate lung injury. Moreover, H. cordata regulates immunity, enhances the immune barriers of the vagina, oral cavity, and intestinal tract, and combined with the antibacterial and antiviral activity of its extract, effectively reduces pathogen infection. Furthermore, experiments in vivo and in vitro showed significant anti-inflammatory activity, and its chemical derivatives exert potential therapeutic activity against rheumatoid arthritis. Antitumour action is also an important pharmacological activity of H. cordata, and studies have shown that H. cordata has a notable effect on lung tumour, liver tumour, colon tumour, and breast tumour. This review categorizes the biological activities of H. cordata according to modern research papers, and provides insights into disease prevention and treatment of H. cordata.
Collapse
Affiliation(s)
- Zhao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Jiang
- School of Physical Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingquan Wu
- Department of Pharmacy, Sichuan Orthopedic Hospital, Chengdu, China
| |
Collapse
|
30
|
YE HAITAO, LUO SHIQIONG, YANG ZHANNAN, WANG YUANSHUAI, DING QIAN. Latent Pathogenic Fungi in the Medicinal Plant Houttuynia cordata Thunb. Are Modulated by Secondary Metabolites and Colonizing Microbiota Originating from Soil. Pol J Microbiol 2021; 70:359-372. [PMID: 34584530 PMCID: PMC8458996 DOI: 10.33073/pjm-2021-034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/05/2022] Open
Abstract
Latent pathogenic fungi (LPFs) affect plant growth, but some of them may stably colonize plants. LPFs were isolated from healthy Houttuynia cordata rhizomes to reveal this mechanism and identified as Ilyonectria liriodendri, an unidentified fungal sp., and Penicillium citrinum. Sterile H. cordata seedlings were cultivated in sterile or non-sterile soils and inoculated with the LPFs, followed by the plants' analysis. The in vitro antifungal activity of H. cordata rhizome crude extracts on LPF were determined. The effect of inoculation of sterile seedlings by LPFs on the concentrations of rhizome phenolics was evaluated. The rates of in vitro growth inhibition amongst LPFs were determined. The LPFs had a strong negative effect on H. cordata in sterile soil; microbiota in non-sterile soil eliminated such influence. There was an interactive inhibition among LPFs; the secondary metabolites also regulated their colonization in H. cordata rhizomes. LPFs changed the accumulation of phenolics in H. cordata. The results provide that colonization of LPFs in rhizomes was regulated by the colonizing microbiota of H. cordata, the secondary metabolites in the H. cordata rhizomes, and the mutual inhibition and competition between the different latent pathogens.
Collapse
Affiliation(s)
- HAI-TAO YE
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, China
| | - SHI-QIONG LUO
- School of Life Science, Guizhou Normal University, Guiyang Guizhou, China
| | - ZHAN-NAN YANG
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, China
| | - YUAN-SHUAI WANG
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, China
| | - QIAN DING
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, China
| |
Collapse
|
31
|
Khameneh B, Eskin NAM, Iranshahy M, Fazly Bazzaz BS. Phytochemicals: A Promising Weapon in the Arsenal against Antibiotic-Resistant Bacteria. Antibiotics (Basel) 2021; 10:1044. [PMID: 34572626 PMCID: PMC8472480 DOI: 10.3390/antibiotics10091044] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
The extensive usage of antibiotics and the rapid emergence of antimicrobial-resistant microbes (AMR) are becoming important global public health issues. Many solutions to these problems have been proposed, including developing alternative compounds with antimicrobial activities, managing existing antimicrobials, and rapidly detecting AMR pathogens. Among all of them, employing alternative compounds such as phytochemicals alone or in combination with other antibacterial agents appears to be both an effective and safe strategy for battling against these pathogens. The present review summarizes the scientific evidence on the biochemical, pharmacological, and clinical aspects of phytochemicals used to treat microbial pathogenesis. A wide range of commercial products are currently available on the market. Their well-documented clinical efficacy suggests that phytomedicines are valuable sources of new types of antimicrobial agents for future use. Innovative approaches and methodologies for identifying plant-derived products effective against AMR are also proposed in this review.
Collapse
Affiliation(s)
- Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran;
| | - N. A. Michael Eskin
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran;
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
32
|
Ju L, Zhang J, Wang F, Zhu D, Pei T, He Z, Han Z, Wang M, Ma Y, Xiao W. Chemical profiling of Houttuynia cordata Thunb. by UPLC-Q-TOF-MS and analysis of its antioxidant activity in C2C12 cells. J Pharm Biomed Anal 2021; 204:114271. [PMID: 34325249 DOI: 10.1016/j.jpba.2021.114271] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 12/09/2022]
Abstract
Houttuynia cordata Thunb. ("Yu-Xing-Cao"), a traditional Chinese medicinal herb, has long been used to treat various diseases. However, detailed information regarding the chemical constituents of H. cordata aqueous extract is lacking, and the molecular basis of its beneficial effects on muscle is unknown. To investigate these points, in this study, we used ultra-performance liquid chromatography coupled with quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS) in positive and negative ion modes to profile and identify the major constituents of H. cordata water extract. A total of 63 peaks were identified based on mass and fragmentation characteristics, including 29 organic acids and their glycosides, 17 flavonoids, 7 volatiles, 4 pyrimidine and purine derivatives, 2 alkaloids, 2 amino acids, 1 isovanillin, and 1 coumarin. The total flavonoid and polyphenol contents of the extract were 4.77 and 139.15 mg/mL, respectively, by ultraviolet spectrophotometry. The cytoprotective activity of H. cordata aqueous extract was evaluated using C2C12 cells treated with tumor necrosis factor (TNF)-α to induce oxidative challenge. The TNF-α induced decrease in cell viability was reversed by treatment for 48 h with the extract; moreover, superoxide dismutase activity was increased while reactive oxygen species level was decreased. These results provide molecular-level evidence for the antioxidant effect of H. cordata extract and highlight its therapeutic potential for the treatment of muscle injury or diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Liliang Ju
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jiaxing Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fujing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Daoqi Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Tingting Pei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhuoen He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhongxiao Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Mingqing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| | - Yun Ma
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
33
|
Subhawa S, Naiki-Ito A, Kato H, Naiki T, Komura M, Nagano-Matsuo A, Yeewa R, Inaguma S, Chewonarin T, Banjerdpongchai R, Takahashi S. Suppressive Effect and Molecular Mechanism of Houttuynia cordata Thunb. Extract against Prostate Carcinogenesis and Castration-Resistant Prostate Cancer. Cancers (Basel) 2021; 13:cancers13143403. [PMID: 34298624 PMCID: PMC8306559 DOI: 10.3390/cancers13143403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/20/2021] [Accepted: 07/04/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary This study explored the chemopreventive effects of Houttuynia cordata Thunb. (HCT) extracts against prostate carcinogenesis in both androgen-sensitive prostate cancer and castration-resistant prostate cancer (CRPC) using the Transgenic Rat for Adenocarcinoma of Prostate (TRAP) model, CRPC xenograft mice, and prostate cancer cell lines. HCT suppressed cell proliferation and stimulated apoptosis via inactivation of AKT/ERK/MAPK in both androgen-sensitive prostate cancer and CRPC cell lines. HCT also inhibited cell migration and EMT phenotypes through the STAT3/Snail/Twist pathway. One of the active compounds of HCT was identified as rutin. Consistent with in vitro study, the incidence of adenocarcinoma in the TRAP model and CRPC tumor growth in the xenograft model were suppressed by induction of apoptosis and inactivation of AKT/ERK/MAPK by HCT intake. Our data demonstrated that HCT attenuated androgen-sensitive prostate cancer and CRPC by mechanisms that may involve inhibition of cell growth and caspase-dependent apoptosis pathways. Abstract Houttuynia cordata Thunb. (HCT) is a well-known Asian medicinal plant with biological activities used in the treatment of many diseases including cancer. This study investigated the effects of HCT extract and its ethyl acetate fraction (EA) on prostate carcinogenesis and castration-resistant prostate cancer (CRPC). HCT and EA induced apoptosis in androgen-sensitive prostate cancer cells (LNCaP) and CRPC cells (PCai1) through activation of caspases, down-regulation of androgen receptor, and inactivation of AKT/ERK/MAPK signaling. Rutin was found to be a major component in HCT (44.00 ± 5.61 mg/g) and EA (81.34 ± 5.21 mg/g) in a previous study. Rutin had similar effects to HCT/EA on LNCaP cells and was considered to be one of the active compounds. Moreover, HCT/EA inhibited cell migration and epithelial-mesenchymal transition phenotypes via STAT3/Snail/Twist pathways in LNCaP cells. The consumption of 1% HCT-mixed diet significantly decreased the incidence of adenocarcinoma in the lateral prostate lobe of the Transgenic rat for adenocarcinoma of prostate model. Similarly, tumor growth of PCai1 xenografts was significantly suppressed by 1% HCT treatment. HCT also induced caspase-dependent apoptosis via AKT inactivation in both in vivo models. Together, the results of in vitro and in vivo studies indicate that HCT has inhibitory effects against prostate carcinogenesis and CRPC. This plant therefore should receive more attention as a source for the future development of non-toxic chemopreventive agents against various cancers.
Collapse
Affiliation(s)
- Subhawat Subhawa
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (S.S.); (H.K.); (T.N.); (M.K.); (A.N.-M.); (R.Y.); (S.I.); (S.T.)
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, 110 Intravaroros Rd., Sripoom, Muang, Chiang Mai 50200, Thailand;
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (S.S.); (H.K.); (T.N.); (M.K.); (A.N.-M.); (R.Y.); (S.I.); (S.T.)
- Correspondence: (A.N.-I.); (R.B.); Tel.: +81-52-853-8156 (A.N.-I.); +66-53-93-5325 (R.B.); Fax: +81-52-842-0817 (A.N.-I.); +66-53-894-031 (R.B.)
| | - Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (S.S.); (H.K.); (T.N.); (M.K.); (A.N.-M.); (R.Y.); (S.I.); (S.T.)
| | - Taku Naiki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (S.S.); (H.K.); (T.N.); (M.K.); (A.N.-M.); (R.Y.); (S.I.); (S.T.)
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (S.S.); (H.K.); (T.N.); (M.K.); (A.N.-M.); (R.Y.); (S.I.); (S.T.)
| | - Aya Nagano-Matsuo
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (S.S.); (H.K.); (T.N.); (M.K.); (A.N.-M.); (R.Y.); (S.I.); (S.T.)
| | - Ranchana Yeewa
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (S.S.); (H.K.); (T.N.); (M.K.); (A.N.-M.); (R.Y.); (S.I.); (S.T.)
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, 110 Intravaroros Rd., Sripoom, Muang, Chiang Mai 50200, Thailand;
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (S.S.); (H.K.); (T.N.); (M.K.); (A.N.-M.); (R.Y.); (S.I.); (S.T.)
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, 110 Intravaroros Rd., Sripoom, Muang, Chiang Mai 50200, Thailand;
| | - Ratana Banjerdpongchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, 110 Intravaroros Rd., Sripoom, Muang, Chiang Mai 50200, Thailand;
- Correspondence: (A.N.-I.); (R.B.); Tel.: +81-52-853-8156 (A.N.-I.); +66-53-93-5325 (R.B.); Fax: +81-52-842-0817 (A.N.-I.); +66-53-894-031 (R.B.)
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (S.S.); (H.K.); (T.N.); (M.K.); (A.N.-M.); (R.Y.); (S.I.); (S.T.)
| |
Collapse
|
34
|
Modeling habitat suitability of Houttuynia cordata Thunb (Ceercao) using MaxEnt under climate change in China. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101324] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Abiri R, Abdul-Hamid H, Sytar O, Abiri R, Bezerra de Almeida E, Sharma SK, Bulgakov VP, Arroo RRJ, Malik S. A Brief Overview of Potential Treatments for Viral Diseases Using Natural Plant Compounds: The Case of SARS-Cov. Molecules 2021; 26:molecules26133868. [PMID: 34202844 PMCID: PMC8270261 DOI: 10.3390/molecules26133868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic, as well as the more general global increase in viral diseases, has led researchers to look to the plant kingdom as a potential source for antiviral compounds. Since ancient times, herbal medicines have been extensively applied in the treatment and prevention of various infectious diseases in different traditional systems. The purpose of this review is to highlight the potential antiviral activity of plant compounds as effective and reliable agents against viral infections, especially by viruses from the coronavirus group. Various antiviral mechanisms shown by crude plant extracts and plant-derived bioactive compounds are discussed. The understanding of the action mechanisms of complex plant extract and isolated plant-derived compounds will help pave the way towards the combat of this life-threatening disease. Further, molecular docking studies, in silico analyses of extracted compounds, and future prospects are included. The in vitro production of antiviral chemical compounds from plants using molecular pharming is also considered. Notably, hairy root cultures represent a promising and sustainable way to obtain a range of biologically active compounds that may be applied in the development of novel antiviral agents.
Collapse
Affiliation(s)
- Rambod Abiri
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia; or
| | - Hazandy Abdul-Hamid
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia; or
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| | - Oksana Sytar
- Educational and Scientific Center “Institute of Biology and Medicine”, Department of Plant Biology, Taras Shevchenko National University of Kyiv, Volodymyrska 60, 01033 Kyiv, Ukraine;
- Department of Plant Physiology, Slovak University of Agriculture Nitra, A. Hlinku 2, 94976 Nitra, Slovakia
| | - Ramin Abiri
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6718773654, Iran;
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718773654, Iran
| | - Eduardo Bezerra de Almeida
- Biological and Health Sciences Centre, Laboratory of Botanical Studies, Department of Biology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil;
| | - Surender K. Sharma
- Department of Physics, Central University of Punjab, Bathinda 151401, India;
| | - Victor P. Bulgakov
- Department of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity (Institute of Biology and Soil Science), Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| | - Randolph R. J. Arroo
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Sonia Malik
- Health Sciences Graduate Program, Biological & Health Sciences Centre, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), University of Orléans, 1 Rue de Chartres-BP 6759, 45067 Orleans, France
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| |
Collapse
|
36
|
Chen H, Sha X, Luo Y, Chen J, Li X, Wang J, Cao G, Peng X. Acute and subacute toxicity evaluation of Houttuynia cordata ethanol extract and plasma metabolic profiling analysis in both male and female rats. J Appl Toxicol 2021; 41:2068-2082. [PMID: 34057207 DOI: 10.1002/jat.4198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
Houttuynia cordata has been used as a traditional medicine for more than 1500 years. It has aroused wide public concern about its safety in the past few years, for it contains various aristolactams. However, the safety of H. cordata extract remains unclear. In the present study, single dose (2000 mg/kg) and subacute (250, 500, and 1000 mg/kg/day for 28 days) oral toxicity studies of the 95% ethanol extract of H. cordata (HCE) were performed in both male and female Sprague-Dawley (SD) rats. Hematological, biochemical, histopathological parameters, and plasma metabolic profiling were assessed. The single-dose toxicity of HCE was more than 2000 mg/kg. The subacute toxicity results showed that no significant adverse effect of HCE was observed at 250 mg/kg/day. However, five rats died in 500 and 1000 mg/kg/day groups and exhibited toxicities to liver and kidney. Plasma metabolic profiling analysis suggested that a number of metabolic disturbances were induced by oral administration of HCE, focusing on energy metabolism, amino acid metabolism, and lipids metabolism. Moreover, it appeared that male rats were more susceptible to the toxic effects of HCE than female rats. Therefore, in this preliminary study, oral administration of HCE 250 mg/kg/day can be regarded as the no observed adverse effect level in rats over 28 days. However, long-term use of HCE with large doses exhibited some hepatotoxicity and nephrotoxicity in rats.
Collapse
Affiliation(s)
- Hongjiang Chen
- College of Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, China
| | - Xiuxiu Sha
- College of Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, China
| | - Yiyuan Luo
- College of Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, China
| | - Jianwei Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Juan Wang
- College of Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, China
| | - Gang Cao
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Peng
- College of Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, China
| |
Collapse
|
37
|
Bibi S, Sarfraz A, Mustafa G, Ahmad Z, Zeb MA, Wang YB, Khan T, Khan MS, Kamal MA, Yu H. Impact of Traditional Plants and their Secondary Metabolites in the Discovery of COVID-19 Treatment. Curr Pharm Des 2021; 27:1123-1143. [PMID: 33213320 DOI: 10.2174/1381612826666201118103416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Coronavirus Disease-2019 belongs to the family of viruses which cause serious pneumonia along with fever, breathing issues and infection of lungs, and was first reported in China and later spread worldwide. OBJECTIVE Several studies and clinical trials have been conducted to identify potential drugs and vaccines for Coronavirus Disease-2019. The present study listed natural secondary metabolites identified from plant sources with antiviral properties and could be a safer and tolerable treatment for Coronavirus Disease-2019. METHODS A comprehensive search on the reported studies was conducted using different search engines such as Google Scholar, SciFinder, Sciencedirect, Medline PubMed, and Scopus for the collection of research articles based on plant-derived secondary metabolites, herbal extracts, and traditional medicine for coronavirus infections. RESULTS Status of COVID-19 worldwide and information of important molecular targets involved in COVID- 19 are described, and through literature search, it is highlighted that numerous plant species and their extracts possess antiviral properties and are studied with respect to coronavirus treatments. Chemical information, plant source, test system type with a mechanism of action for each secondary metabolite are also mentioned in this review paper. CONCLUSION The present review has listed plants that have presented antiviral potential in the previous coronavirus pandemics and their secondary metabolites, which could be significant for the development of novel and a safer drug which could prevent and cure coronavirus infection worldwide.
Collapse
Affiliation(s)
- Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environment, Institute of Herbal Biotic Resource, Yunnan University, Kunming 650504, Yunnan, China
| | - Ayesha Sarfraz
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Ghazala Mustafa
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zeeshan Ahmad
- Kohsar Homeopathic Medical College, Rawalpindi, Pakistan
| | - Muhammad A Zeb
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yuan-Bing Wang
- Yunnan Herbal Laboratory, College of Ecology and Environment, Institute of Herbal Biotic Resource, Yunnan University, Kunming 650504, Yunnan, China
| | - Tahir Khan
- Yunnan Herbal Laboratory, College of Ecology and Environment, Institute of Herbal Biotic Resource, Yunnan University, Kunming 650504, Yunnan, China
| | - Muhammad S Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Mohammad A Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environment, Institute of Herbal Biotic Resource, Yunnan University, Kunming 650504, Yunnan, China
| |
Collapse
|
38
|
Liu Y, Yang Y, Wang B, Wang R, Pang J, Jiang Y, Liu Y. Development and Verification of a Precolumn Derivatization LC-MS/MS Method for the Pharmacokinetic Study of Houttuynine of Houttuynia Essential Oil. Molecules 2021; 26:2327. [PMID: 33923761 PMCID: PMC8073230 DOI: 10.3390/molecules26082327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 02/03/2023] Open
Abstract
Houttuynia essential oil (HEO) has excellent antiviral, anti-inflammatory, and other pharmacological effects, but the lack of effective analytical methods to quantify HEO in plasma has hindered its better clinical monitoring. Houttuynine (Hou) is one of the main active ingredients and quality control substances of HEO, so the pharmacokinetic study of HEO could be conducted by determining Hou blood concentration. Hou is active and not stable in plasma, which makes its blood concentration difficult to measure. In this work, a novel liquid chromatography tandem mass spectrometry (LC-MS/MS) method for Hou determination in rat blood was established that involves Hou being derivatized with 2, 4-dinitrophenylhydrazine to form a stable compound to prevent degradation. Herein, p-Tolualdehyde-2,4-dinitrophenylphenylhydrazone was selected as an internal standard substance and the LC-MS/MS method was evaluated for selectivity, precision, accuracy, calibration limit, matrix effect, recovery, and stability. Good linearity (r2 = 0.998) was reached in the range of 2-2000 ng/mL, and the lower limit of quantification of Hou was determined to be 2 ng/mL. The mean intra-assay accuracy ranged from 77.7% to 115.6%, whereas the intra-assay precision (relative standard deviation, RSD) was below 11.42%. The matrix effect value for Hou in rat plasma was greater than 75%, and for the internal standard (IS) it was 104.56% ± 3.62%. The extraction recovery of Hou were no less than 90%, and for the IS it was 96.50% ± 4.68%. Our method is sensitive and reliable and has been successfully applied to the pharmacokinetic analysis of Hou in rats given HEO via gavage and injection.
Collapse
Affiliation(s)
- Yuanyuan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (Y.L.); (Y.Y.); (B.W.); (R.W.); (J.P.); (Y.J.)
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (Y.L.); (Y.Y.); (B.W.); (R.W.); (J.P.); (Y.J.)
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, China
| | - Bangyuan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (Y.L.); (Y.Y.); (B.W.); (R.W.); (J.P.); (Y.J.)
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, China
| | - Renyun Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (Y.L.); (Y.Y.); (B.W.); (R.W.); (J.P.); (Y.J.)
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, China
| | - Jianmei Pang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (Y.L.); (Y.Y.); (B.W.); (R.W.); (J.P.); (Y.J.)
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, China
| | - Yu Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (Y.L.); (Y.Y.); (B.W.); (R.W.); (J.P.); (Y.J.)
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (Y.L.); (Y.Y.); (B.W.); (R.W.); (J.P.); (Y.J.)
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, China
| |
Collapse
|
39
|
Shang Z, Xu L, Xiao Y, Du W, An R, Ye M, Qiao X. A global profiling strategy using comprehensive two-dimensional liquid chromatography coupled with dual-mass spectrometry platforms: Chemical analysis of a multi-herb Chinese medicine formula as a case study. J Chromatogr A 2021; 1642:462021. [PMID: 33714771 DOI: 10.1016/j.chroma.2021.462021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/31/2021] [Accepted: 02/22/2021] [Indexed: 01/16/2023]
Abstract
Although ultraviolet detector or mass spectrometer could be coupled with two-dimensional liquid chromatography (2DLC) to analyze complex constituents, full detection and identification of the compounds are difficult. Suffering from biased UV detection and insufficient MS data interpretation, a number of minor compounds are neglected though they are separated. In this study, we report a global chemical profiling strategy using comprehensive 2DLC coupled with dual-MS platforms, including Orbitrap-MS and QqQ-MS. It was exemplified by an 11-herb Chinese medicine formula Xiaoer-Feire-Kechuan (XFK). Firstly, constituents in XFK were separated on a CSH C18 × Phenyl-Hexyl 2DLC system with a practical peak capacity of 990.5 and an orthogonality of 90.3%. Secondly, untargeted mass spectral data was collected using dd-MS2 scan on an Orbitrap-MS. In total 542 peaks were detected, which was 4 times of that detected by 2DLC/UV (131 peaks). A total of 108 compounds were tentatively identified. Thirdly, targeted mass spectral data was collected for 8 characteristic substructures using neutral loss and precursor ion (NL/PRE) scan on a QqQ-MS. Extracted ion chromatogram was used to recognize minor constituents. An additional of 151 compounds were detected. Our study indicated that comprehensive 2DLC coupled with dd-MS2 and NL/PRE-MS is a powerful technique for the global profiling of multi-component systems.
Collapse
Affiliation(s)
- Zhanpeng Shang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Lulu Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yao Xiao
- Agilent Technologies, 3 Wangjing North Road, Beijing 100102, China
| | - Wei Du
- Agilent Technologies, 3 Wangjing North Road, Beijing 100102, China
| | - Rong An
- Agilent Technologies, 3 Wangjing North Road, Beijing 100102, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
40
|
Umeoguaju FU, Ephraim-Emmanuel BC, Patrick-Iwuanyanwu KC, Zelikoff JT, Orisakwe OE. Plant-Derived Food Grade Substances (PDFGS) Active Against Respiratory Viruses: A Systematic Review of Non-clinical Studies. Front Nutr 2021; 8:606782. [PMID: 33634160 PMCID: PMC7900554 DOI: 10.3389/fnut.2021.606782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Human diet comprises several classes of phytochemicals some of which are potentially active against human pathogenic viruses. This study examined available evidence that identifies existing food plants or constituents of edible foods that have been reported to inhibit viral pathogenesis of the human respiratory tract. SCOPUS and PUBMED databases were searched with keywords designed to retrieve articles that investigated the effect of plant-derived food grade substances (PDFGS) on the activities of human pathogenic viruses. Eligible studies for this review were those done on viruses that infect the human respiratory tract. Forty six (46) studies met the specified inclusion criteria from the initial 5,734 hits. The selected studies investigated the effects of different PDFGS on the infectivity, proliferation and cytotoxicity of different respiratory viruses including influenza A virus (IAV), influenza B virus (IBV), Respiratory syncytial virus (RSV), human parainfluenza virus (hPIV), Human coronavirus NL63 (HCoV-NL63), and rhinovirus (RV) in cell lines and mouse models. This review reveals that PDFGS inhibits different stages of the pathological pathways of respiratory viruses including cell entry, replication, viral release and viral-induced dysregulation of cellular homeostasis and functions. These alterations eventually lead to the reduction of virus titer, viral-induced cellular damages and improved survival of host cells. Major food constituents active against respiratory viruses include flavonoids, phenolic acids, tannins, lectins, vitamin D, curcumin, and plant glycosides such as glycyrrhizin, acteoside, geniposide, and iridoid glycosides. Herbal teas such as guava tea, green and black tea, adlay tea, cistanche tea, kuding tea, licorice extracts, and edible bird nest extracts were also effective against respiratory viruses in vitro. The authors of this review recommend an increased consumption of foods rich in these PDFGS including legumes, fruits (e.g berries, citrus), tea, fatty fish and curcumin amongst human populations with high prevalence of respiratory viral infections in order to prevent, manage and/or reduce the severity of respiratory virus infections.
Collapse
Affiliation(s)
- Francis U. Umeoguaju
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| | - Benson C. Ephraim-Emmanuel
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
- Department of Dental Health Sciences, Ogbia, Bayelsa State College of Health Technology, Otakeme, Nigeria
| | - Kingsley C. Patrick-Iwuanyanwu
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| | - Judith T. Zelikoff
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Orish Ebere Orisakwe
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
- Department of Experimental Pharmacology and Toxicology, Faculty of Pharmacy, University of Port Harcourt, Port Harcourt, Nigeria
| |
Collapse
|
41
|
Sytar O, Brestic M, Hajihashemi S, Skalicky M, Kubeš J, Lamilla-Tamayo L, Ibrahimova U, Ibadullayeva S, Landi M. COVID-19 Prophylaxis Efforts Based on Natural Antiviral Plant Extracts and Their Compounds. Molecules 2021; 26:727. [PMID: 33573318 PMCID: PMC7866841 DOI: 10.3390/molecules26030727] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
During the time of the novel coronavirus disease 2019 (COVID-19) pandemic, it has been crucial to search for novel antiviral drugs from plants and well as other natural sources as alternatives for prophylaxis. This work reviews the antiviral potential of plant extracts, and the results of previous research for the treatment and prophylaxis of coronavirus disease and previous kinds of representative coronaviruses group. Detailed descriptions of medicinal herbs and crops based on their origin native area, plant parts used, and their antiviral potentials have been conducted. The possible role of plant-derived natural antiviral compounds for the development of plant-based drugs against coronavirus has been described. To identify useful scientific trends, VOSviewer visualization of presented scientific data analysis was used.
Collapse
Affiliation(s)
- Oksana Sytar
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Plant Biology, Institute of Biology, Kiev National, University of Taras Shevchenko, Volodymyrska, 64, 01033 Kyiv, Ukraine
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (M.S.); (J.K.); (L.L.-T.)
| | - Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, 47189-63616 Khuzestan, Iran;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (M.S.); (J.K.); (L.L.-T.)
| | - Jan Kubeš
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (M.S.); (J.K.); (L.L.-T.)
| | - Laura Lamilla-Tamayo
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (M.S.); (J.K.); (L.L.-T.)
| | - Ulkar Ibrahimova
- Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2A, Az 1073 Baku, Azerbaijan; (U.I.); (S.I.)
| | - Sayyara Ibadullayeva
- Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2A, Az 1073 Baku, Azerbaijan; (U.I.); (S.I.)
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, 56126 Behbahan, Italy
| |
Collapse
|
42
|
Liu Z, Jin M, Li Y, Liu J, Xiao X, Bi H, Pan Z, Shi H, Xie X, Zhang M, Gao X, Li L, Ouyang W, Tang L, Wu J, Yang Y, Hu J, Liu Z. Efficacy and Safety of Houttuynia Eye Drops Atomization Treatment for Meibomian Gland Dysfunction-Related Dry Eye Disease: A Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. J Clin Med 2020; 9:jcm9124022. [PMID: 33322753 PMCID: PMC7763017 DOI: 10.3390/jcm9124022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose: To evaluate the efficacy and safety of Houttuynia eye drops (a Chinese traditional medicine) atomization treatment in meibomian gland dysfunction (MGD)-related dry eye disease (DED) patients. Methods: A total of 240 eligible patients diagnosed with MGD-related DED were assigned either Houttuynia eye drops or placebo for atomization once daily for four weeks in a multi-center, randomized, double-blind, placebo-controlled clinical study. Primary outcome evaluations used included eye symptom score (using the Chinese Dry Eye Questionnaire), meibum quality, and tear break-up time (TBUT), while safety evaluations included adverse events (AEs), visual acuity, and intraocular pressure monitoring. Indicators were measured at baseline as well as one week, two weeks, and four weeks after treatment. Results: Primary outcome measures of the Houttuynia group were improved compared with their placebo counterparts following four-week treatment. Eye symptom scores were significantly reduced relative to the baseline in the Houttuynia group (mean ± standard error of the mean, 9.00 ± 0.61) compared with the placebo group (6.29 ± 0.55; p = 0.0018). Reduction in meibum quality score in the Houttuynia group (0.91 ± 0.10) was also significantly higher compared with the placebo group (0.57 ± 0.10; p = 0.0091), while TBUT in the treatment group (6.30 ± 0.22) was also longer than in the latter (5.60 ± 0.24; p = 0.0192). No medication-related adverse events were observed. Conclusions: Atomization treatment with Houttuynia eye drops is both clinically and statistically effective for the treatment of mild to moderate MGD-related DED patients. This approach is generally safe and was tolerated well by patients.
Collapse
Affiliation(s)
- Zhaolin Liu
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China; (Z.L.); (W.O.); (L.T.); (J.W.); (Y.Y.); (J.H.)
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Department of Ocular Surface, Xiamen University Affiliated Xiamen Eye Center, Xiamen 361102, China
| | - Ming Jin
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing100029, China;
| | - Ying Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing 100006, China;
| | - Jun Liu
- Department of Ophthalmology, Shenzhen Eye Hospital, Shenzhen 518040, China;
| | - Xianghua Xiao
- Department of Ophthalmology, Xi’an First Hospital, Shaanxi Eye Research Institute, Shaanxi 710001, China;
| | - Hongsheng Bi
- Department of Ophthalmology, Shandong University of Traditional Chinese Medicine Affiliated Eye Hospital, Jinan 250004, China; (H.B.); (X.X.)
| | - Zhiqiang Pan
- Department of Ophthalmology, Capital Medical University Affiliated Beijing Tongren Hospital, Beijing 100730, China;
| | - Huijun Shi
- Department of Ophthalmology, Hebei Eye Hospital, Xingtai 054001, China; (H.S.); (M.Z.)
| | - Xiaofeng Xie
- Department of Ophthalmology, Shandong University of Traditional Chinese Medicine Affiliated Eye Hospital, Jinan 250004, China; (H.B.); (X.X.)
| | - Minglian Zhang
- Department of Ophthalmology, Hebei Eye Hospital, Xingtai 054001, China; (H.S.); (M.Z.)
| | - Xuemin Gao
- Technical Center for Drug Research and Evaluation of China Association of Traditional Chinese Medicine, Beijing 100061, China; (X.G.); (L.L.)
| | - Lei Li
- Technical Center for Drug Research and Evaluation of China Association of Traditional Chinese Medicine, Beijing 100061, China; (X.G.); (L.L.)
| | - Weijie Ouyang
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China; (Z.L.); (W.O.); (L.T.); (J.W.); (Y.Y.); (J.H.)
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Department of Ocular Surface, Xiamen University Affiliated Xiamen Eye Center, Xiamen 361102, China
| | - Liying Tang
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China; (Z.L.); (W.O.); (L.T.); (J.W.); (Y.Y.); (J.H.)
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Department of Ocular Surface, Xiamen University Affiliated Xiamen Eye Center, Xiamen 361102, China
| | - Jieli Wu
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China; (Z.L.); (W.O.); (L.T.); (J.W.); (Y.Y.); (J.H.)
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Department of Ocular Surface, Xiamen University Affiliated Xiamen Eye Center, Xiamen 361102, China
| | - Yiran Yang
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China; (Z.L.); (W.O.); (L.T.); (J.W.); (Y.Y.); (J.H.)
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Department of Ocular Surface, Xiamen University Affiliated Xiamen Eye Center, Xiamen 361102, China
| | - Jiaoyue Hu
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China; (Z.L.); (W.O.); (L.T.); (J.W.); (Y.Y.); (J.H.)
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Department of Ocular Surface, Xiamen University Affiliated Xiamen Eye Center, Xiamen 361102, China
| | - Zuguo Liu
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China; (Z.L.); (W.O.); (L.T.); (J.W.); (Y.Y.); (J.H.)
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Department of Ocular Surface, Xiamen University Affiliated Xiamen Eye Center, Xiamen 361102, China
- Correspondence: ; Tel./Fax: +86-592-2183761
| |
Collapse
|
43
|
Tsai KC, Huang YC, Liaw CC, Tsai CI, Chiou CT, Lin CJ, Wei WC, Lin SJS, Tseng YH, Yeh KM, Lin YL, Jan JT, Liang JJ, Liao CC, Chiou WF, Kuo YH, Lee SM, Lee MY, Su YC. A traditional Chinese medicine formula NRICM101 to target COVID-19 through multiple pathways: A bedside-to-bench study. Biomed Pharmacother 2020; 133:111037. [PMID: 33249281 PMCID: PMC7676327 DOI: 10.1016/j.biopha.2020.111037] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
COVID-19 is a global pandemic, with over 50 million confirmed cases and 1.2 million deaths as of November 11, 2020. No therapies or vaccines so far are recommended to treat or prevent the new coronavirus. A novel traditional Chinese medicine formula, Taiwan Chingguan Yihau (NRICM101), has been administered to patients with COVID-19 in Taiwan since April 2020. Its clinical outcomes and pharmacology have been evaluated. Among 33 patients with confirmed COVID-19 admitted in two medical centers, those (n = 12) who were older, sicker, with more co-existing conditions and showing no improvement after 21 days of hospitalization were given NRICM101. They achieved 3 consecutive negative results within a median of 9 days and reported no adverse events. Pharmacological assays demonstrated the effects of the formula in inhibiting the spike protein/ACE2 interaction, 3CL protease activity, viral plaque formation, and production of cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α. This bedside-to-bench study suggests that NRICM101 may disrupt disease progression through its antiviral and anti-inflammatory properties, offering promise as a multi-target agent for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing Street, Taipei 11031, Taiwan.
| | - Yi-Chia Huang
- Department of Chinese Medicine, Tri-Service General Hospital, National Defense Medical Center, No.325, Section 2, Chenggong Road, Neihu District, Taipei 11490, Taiwan.
| | - Chia-Ching Liaw
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Chia-I Tsai
- Department of Traditional Chinese Medicine, Taichung Veterans General Hospital, No. 1650, Taiwan Boulevard Section 4, Seatwen District, Taichung 407204, Taiwan.
| | - Chun-Tang Chiou
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Chien-Jung Lin
- Department of Chinese Medicine, Tri-Service General Hospital, National Defense Medical Center, No.325, Section 2, Chenggong Road, Neihu District, Taipei 11490, Taiwan.
| | - Wen-Chi Wei
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Sunny Jui-Shan Lin
- Department of Chinese Medicine, Tri-Service General Hospital, National Defense Medical Center, No.325, Section 2, Chenggong Road, Neihu District, Taipei 11490, Taiwan.
| | - Yu-Hwei Tseng
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Kuo-Ming Yeh
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Road, Neihu District, Taipei 11490, Taiwan.
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei 11529, Taiwan.
| | - Jia-Tsrong Jan
- Genomic Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan.
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei 11529, Taiwan.
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei 11529, Taiwan.
| | - Wen-Fei Chiou
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Yao-Haur Kuo
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Shen-Ming Lee
- Department of Statistic, Feng Chia University, No. 100, Wenhwa Road, Seatwen District, Taichung 40724, Taiwan.
| | - Ming-Yung Lee
- Department of Data Science and Big Data Analytics, Providence University, Taichung, No. 200, Section 7, Taiwan Boulevard, Shalu District, Taichung 43301, Taiwan.
| | - Yi-Chang Su
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan.
| |
Collapse
|
44
|
Chan CK, Pan G, Chan W. Analysis of aristolochic acids in Houttuynia cordata by liquid chromatography-tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 56:e4652. [PMID: 32975339 DOI: 10.1002/jms.4652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/09/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Houttuynia cordata (H. cordata) is a popular vegetable in Asian countries and is also used extensively as herbal medicine in treating various diseases. H. cordata contains aristolactams, which have a similar Chinese name as aristolochic acids (AAs); hence, an emerging concern in the greater China region has arisen about the potential linkage between H. cordata and aristolochic acid nephropathy (AAN). However, only a single study has tested for the presence of AAs in H. cordata samples, and the analysis was limited by the analytical sensitivity of the method. Thus, further analysis of AAs in H. cordata using analytical method of higher sensitivity is needed to alleviate public anxiety over the use of this popular vegetable. In this study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was used to analyze H. cordata samples for the natural existence of aristolochic acid I (AA-I) and aristolochic acid II (AA-II), which are the most carcinogenic and nephrotoxic compounds in the AA family. After evaluating the method performance by fortifying blank samples with three concentrations of AAs, the validated method was applied to identify AA-I and AA-II in both fresh and sun-dried H. cordata samples (n = 20) collected from different cities in China. The LC-MS/MS method achieved method detection limits (MDLs) as low as 2 ng/g of AAs in H. cordata. Analysis of the collected fresh and sun-dried H. cordata samples revealed that AA-I and AA-II either do not exist naturally in H. cordata or exist at concentrations below the MDLs. Therefore, it is not very likely that consumption of H. cordata will result in AAN because AA-I and AA-II, the nephrotoxic and carcinogenic culprits of AAN, are not produced naturally in the plant or are produced at levels that do not pose a risk of AAN.
Collapse
Affiliation(s)
- Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Guanrui Pan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
45
|
Bukvicki D, Gottardi D, Prasad S, Novakovic M, Marin PD, Tyagi AK. The Healing Effects of Spices in Chronic Diseases. Curr Med Chem 2020; 27:4401-4420. [DOI: 10.2174/0929867325666180831145800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 06/14/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022]
Abstract
Spices are not only just herbs used in culinary for improving the taste of dishes,
they are also sources of a numerous bioactive compounds significantly beneficial for health.
They have been used since ancient times because of their antimicrobial, anti-inflammatory
and carminative properties. Several scientific studies have suggested their protective role
against chronic diseases. In fact, their active compounds may help in arthritis, neurodegenerative
disorders (Alzheimer’s, Parkinson, Huntington’s disease, amyotrophic lateral sclerosis,
etc.), diabetes, sore muscles, gastrointestinal problems and many more. In the present study,
possible roles of spices and their active components, in chronic diseases (cancer, arthritis,
cardiovascular diseases, etc.) along with their mechanism of action have been reviewed.
Collapse
Affiliation(s)
- Danka Bukvicki
- University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, 11 000 Belgrade, Serbia
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, United States
| | - Miroslav Novakovic
- University of Belgrade, National Institute, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000 Belgrade, Serbia
| | - Petar D. Marin
- University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, 11 000 Belgrade, Serbia
| | - Amit Kumar Tyagi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, United States
| |
Collapse
|
46
|
Huang SS, Chen TY, Deng JS, Pao LH, Cheng YC, Chao J. An Ethnobotanical Study on Qīng-Căo-Chá Tea in Taiwan. Front Pharmacol 2020; 11:931. [PMID: 32670061 PMCID: PMC7329985 DOI: 10.3389/fphar.2020.00931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Herbal tea, a beverage prepared from a variety of plant materials excluding the leaves of the tea plant Camellia sinensis (L.) Kuntze of the family Theaceae, for a long time, has been consumed by most Chinese people for preventive and/or therapeutic health care. Usually, it is brewed or prepared as a decoction of local plants in water. The qīng-căo-chá tea, a commercial herbal tea, is the most common among many differently formulated herbal teas in Taiwan. For hundreds of years, qīng-căo-chá tea has played an important role in the prevention and treatment of diseases associated with the environmental conditions in Taiwan. However, research studies in this field have been insufficient. The raw material formulas of qīng-căo-chá tea have always been passed down from “masters” to “apprentices.” Hence, there is no systematic collation or record, and, therefore, there is a need to assess and confirm the composition, safety, and effectiveness of the raw materials. This study aimed to document the uses of Taiwan's qīng-căo-chá tea through a semi-structured interview survey and investigate the background of traditional practitioners, tea compositions, and plant origins and uses. This will improve our understanding of the knowledge inherited by the practitioners and the theoretical basis of the medicinal uses of these teas. In our field investigation, we visited 86 shops and assessed 71 raw ingredients of qīng-căo-chá tea. A semi-structured questionnaire was used to conduct the interviews. During the interviews, in addition to written records, audio and video recordings were made, and photographs were taken with the permission of the interviewees. The qīng-căo-chá raw materials have long been used as herbal teas, although more research should clarify their efficacy and safety. Traditional sellers of qīng-căo-chá tea were mainly males, and most shops have been in operation for more than 71 years. Some of the raw materials were derived from multiple sources, including different plants, and were often mixed without any safety concerns. To our knowledge, this is the first systematic ethnobotanical study on qīng-căo-chá tea that assesses and confirms its herbal ingredients. Our study represents a reference for herbal teas in Taiwan that can be used by the public and regulatory agencies.
Collapse
Affiliation(s)
| | - Ting-Yang Chen
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Li-Heng Pao
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Jung Chao
- Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| |
Collapse
|
47
|
Woranam K, Senawong G, Utaiwat S, Yunchalard S, Sattayasai J, Senawong T. Anti-inflammatory activity of the dietary supplement Houttuynia cordata fermentation product in RAW264.7 cells and Wistar rats. PLoS One 2020; 15:e0230645. [PMID: 32210452 PMCID: PMC7094840 DOI: 10.1371/journal.pone.0230645] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/04/2020] [Indexed: 01/16/2023] Open
Abstract
Houttuynia cordata Thunb. has been used as a traditional medicine to treat a variety of ailments in Asian countries such as China, Japan, South Korea, and Thailand. In Thailand, H. cordata fermentation products (HCFPs) are commercially produced and popularly consumed throughout the country without experimental validation. Anti-inflammatory activity of H. cordata fresh leaves or aerial parts has previously been reported, however, the anti-inflammatory activity of the commercially available HCFPs produced by the industrialized process has not yet been investigated. The aim of this study was to evaluate in vitro and in vivo anti-inflammatory potential of the selected industrialized HCFP. LPS-induced RAW264.7 and carrageenan-induced paw edema models were used to evaluate the anti-inflammatory activity of HCFP. The phenolic acid components of HCFP aqueous and methanolic extracts were investigated using HPLC analysis. In RAW264.7 cells, the HCFP aqueous and methanolic extracts reduced NO production and suppressed LPS-stimulated expression of PGE2, iNOS, IL-1β, TNF-α and IL-6 levels in a concentration-dependent manner, however, less effect on COX-2 level was observed. In Wistar rats, 3.08 and 6.16 mL/kg HCFP reduced paw edema after 2 h carrageenan stimulation, suggesting the second phase anti-edematous effect similar to diclofenac (150 mg/kg). Whereas, 6.16 mL/kg HCFP also reduced paw edema after 1 h carrageenan stimulation, suggesting the first phase anti-edematous effect. Quantitative HPLC revealed the active phenolic compounds including syringic, vanillic, p-hydroxybenzoic and ferulic acids, which possess anti-inflammatory activity. Our results demonstrated for the first time the anti-inflammatory activity of the industrialized HCFP both in vitro and in vivo, thus validating its promising anti-inflammation potential.
Collapse
Affiliation(s)
- Khanutsanan Woranam
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Gulsiri Senawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Suppawit Utaiwat
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sirinda Yunchalard
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
| | - Jintana Sattayasai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thanaset Senawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- Natural Product Research Unit, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
48
|
The Effects of Houttuynia cordata Thunb and Piper ribesioides Wall Extracts on Breast Carcinoma Cell Proliferation, Migration, Invasion and Apoptosis. Molecules 2020; 25:molecules25051196. [PMID: 32155880 PMCID: PMC7179460 DOI: 10.3390/molecules25051196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022] Open
Abstract
Houttuynia cordata Thunb. (HCT) and Piper ribesioides Wall. (PR) are common herbs that are widely distributed throughout East Asia and possess various biological properties including anti-cancer effects. However, in breast cancer, their mechanisms responsible for anti-carcinogenic effects have not been clarified yet. In this study, the inhibitory effects of HCT and PR ethanolic extracts on breast cancer cell proliferation, migration, invasion and apoptosis were examined. In MCF-7 and MDA-MB-231 cells, HCT and PR extracts at low concentrations can inhibit colony formation and induce G1 cell cycle arrest by downregulating cyclinD1 and CDK4 expression. Additionally, HCT and PR extracts also decreased the migration and invasion of both breast cancer cell lines through inhibition of MMP-2 and MMP-9 secretion. Moreover, the induction of apoptosis was observed in breast cancer cells treated with high concentrations of HCT and PR extracts. Not only stimulated caspases activity, but HCT and PR extracts also upregulated the expression of caspases and pro-apoptotic Bcl-2 family proteins in breast cancer cells. Altogether, these findings provide the rationale to further investigate the potential actions of HCT and PR extracts against breast cancer in vivo.
Collapse
|
49
|
Cheng D, Sun L, Zou S, Chen J, Mao H, Zhang Y, Liao N, Zhang R. Antiviral Effects of Houttuynia cordata Polysaccharide Extract on Murine Norovirus-1 (MNV-1)-A Human Norovirus Surrogate. Molecules 2019; 24:molecules24091835. [PMID: 31086065 PMCID: PMC6539669 DOI: 10.3390/molecules24091835] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/08/2023] Open
Abstract
Houttuynia cordata is an herbal plant rich in polysaccharides and with several pharmacological activities. Human noroviruses (HuNoVs) are the most common cause of foodborne viral gastroenteritis throughout the world. In this study, H. cordata polysaccharide (HP), with a molecular weight of ~43 kDa, was purified from H. cordata water extract (HWE). The polysaccharide HP was composed predominantly of galacturonic acid, galactose, glucose, and xylose in a molar ratio of 1.56:1.49:1.26:1.11. Methylation and NMR analyses revealed that HP was a pectin-like acidic polysaccharide mainly consisting of α-1,4-linked GalpA, β-1,4-linked Galp, β-1,4-linked Glcp, and β-1,4-linked Xylp residues. To evaluate the antiviral activity of H. cordata extracts, we compared the anti-norovirus potential of HP with HWE and ethanol extract (HEE) from H. cordata by plaque assay (plaque forming units (PFU)/mL) for murine norovirus-1 (MNV-1), a surrogate of HuNoVs. Viruses at high (8.09 log10 PFU/mL) or low (4.38 log10 PFU/mL) counts were mixed with 100, 250, and 500 μg/mL of HP, HWE or HEE and incubated for 30 min at room temperature. H. cordata polysaccharide (HP) was more effective than HEE in reducing MNV-1 plaque formation, but less effective than HWE. When MNV-1 was treated with 500 μg/mL HP, the infectivity of MNV-1 decreased to an undetectable level. The selectivity indexes of each sample were 1.95 for HEE, 5.74 for HP, and 16.14 for HWE. The results of decimal reduction time and transmission electron microscopic revealed that HP has anti-viral effects by deforming and inflating virus particles, thereby inhibiting the penetration of viruses in target cells. These findings suggest that HP might have potential as an antiviral agent in the treatment of viral diseases.
Collapse
Affiliation(s)
- Dongqing Cheng
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310006, China.
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Liang Sun
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310006, China.
| | - Songyan Zou
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Jiang Chen
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310006, China.
| | - Haiyan Mao
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310006, China.
| | - Yanjun Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310006, China.
| | - Ningbo Liao
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310006, China.
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, CA 94720, USA.
| | - Ronghua Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310006, China.
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
50
|
Enhancing the immune response in the sea cucumber Apostichopus japonicus by addition of Chinese herbs Houttuynia cordata Thunb as a food supplement. AQUACULTURE AND FISHERIES 2019. [DOI: 10.1016/j.aaf.2018.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|