1
|
Zhu L, Li C, Gong X, Xu Z, Zhang H. Nebulized Budesonide Prevents Airway Inflammation in Children with High Total IgE Levels After Open Heart Surgery with Cardiopulmonary Bypass: A Prospective Randomized Controlled Trial. Pediatr Cardiol 2024:10.1007/s00246-024-03649-9. [PMID: 39292258 DOI: 10.1007/s00246-024-03649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Cardiopulmonary bypass (CPB) is a crucial technique used to repair congenital heart defects (CHD); however, it may induce inflammatory response, leading to airway inflammation and need for prolonged mechanical ventilation. In this study, we aimed to evaluate the effect of budesonide nebulization in children with high serum total immunoglobulin E (tIgE) levels undergoing surgical repair of CHD via CPB. We conducted a randomized, single-center, controlled trial at a tertiary teaching hospital. One-hundred and one children with high tIgE were enrolled and randomized into the budesonide nebulization group (BUD group, n = 50) or the normal saline nebulization group (NS group, n = 51) between January 2020 and December 2020. Budesonide or normal saline was administered through a vibrating mesh nebulizer during mechanical ventilation every 8 h. Blood and bronchoalveolar lavage fluid (BALF) samples were examined and data on airway mechanics and clinical outcomes were recorded. IL-6 and IL-8 levels in the blood and BALF samples significantly increased after CPB in both groups. Budesonide inhalation reduced IL-6 and IL-8 levels in the blood and BALF samples in children with high tIgE (P < 0.05). The mean airway pressure, PCO2, and oxygen index in the BUD group were significantly lower than those in the NS group after the first inhalation dose and persisted until almost 24 h after surgery. The peak inspiratory pressure and drive pressure were lower in the BUD group than in the NS group at nearly 24 h after surgery, with no significant difference at other time points. Additionally, the duration of mechanical ventilation, number of noninvasive ventilations after extubation, and number of patients using aerosol-inhaled bronchodilators after CICU in the BUD group were significantly lower than those in the NS group (P < 0.05). Children with high preoperative tIgE levels are at risk of airway inflammation after cardiopulmonary bypass. Inhaling budesonide during postoperative mechanical ventilation can reduce the intensity of inflammatory reactions, shorten the duration of mechanical ventilation, reduce airway pressure and the utilization of NIV after extubation.
Collapse
Affiliation(s)
- Limin Zhu
- Cardiac Intensive Care Unit, Department of Cardiovascular and Thoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Chunxiang Li
- Cardiac Intensive Care Unit, Department of Cardiovascular and Thoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Xiaolei Gong
- Cardiac Intensive Care Unit, Department of Cardiovascular and Thoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Zhuoming Xu
- Cardiac Intensive Care Unit, Department of Cardiovascular and Thoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Haibo Zhang
- Department of Cardiovascular and Thoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
2
|
Abdelkader AA, Alsfouk BA, Saleh A, Abdelrahim MEA, Saeed H. Comparative Efficacy of Inhaled and Intravenous Corticosteroids in Managing COVID-19-Related Acute Respiratory Distress Syndrome. Pharmaceutics 2024; 16:952. [PMID: 39065649 PMCID: PMC11279829 DOI: 10.3390/pharmaceutics16070952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening condition in which the lungs fail to provide sufficient oxygen to the body's vital organs. It is commonly associated with COVID-19 patients. Severe cases of COVID-19 can lead to lung damage and organ failure due to an immune response in the body. To mitigate these effects, corticosteroids, which are known for their anti-inflammatory properties, have been suggested as a potential treatment option. The primary focus of this study was to assess the impact of various corticosteroid administration methods on the outcomes of patients with COVID-19. Methods: The current study was conducted on COVID-19 patients divided into three groups. The first group was administered 6 mg of intravenous (IV) dexamethasone; the second group received 1 mg/kg of IV methylprednisolone (methylprednisolone); and the third group received budesonide respirable solution at a dosage of 1mg twice daily. The neubilizer used was a vibrating mesh nebulizer (VMN). All patients received standard care. We found that dexamethasone administered intravenously led to a significant reduction in C-reactive protein levels, surpassing the effectiveness of both IV methylprednisolone and inhaled budesonide. Oxygen saturation without mask change over time showed statistically significant differences (p = 0.004) in favor of the budesonide and dexamethasone groups for all days. Individuals who received methylprednisolone showed a significant decrease in mortality rate and an extended survival duration, with statistical significance observed at p = 0.024. The rest of the parameters, including ferritin, lymphocytes, total leukocyte count, platelets, hemoglobin, urea, serum potassium, serum sodium, serum creatinine, serum glutamic-pyruvic transaminase, serum glutamic-oxaloacetic transaminase, uric acid, albumin, globulin, erythrocyte sedimentation rate, international normalized ratio, oxygen saturation with flow, and oxygen flow, showed no statistically significant differences between the three drugs. In conclusion, treatment with IV methylprednisolone (1 mg/kg) resulted in a shorter hospital stay, decreased reliance on ventilation, and improved health outcomes for COVID-19 patients compared to using dexamethasone at a daily dosage of 6 mg or budesonide respirable solution at a dosage of 1mg twice daily.
Collapse
Affiliation(s)
- Ahmed A. Abdelkader
- Clinical Pharmacy Department, Faculty of Pharmacy, Heliopolis University, Cairo 11765, Egypt
| | - Bshra A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (B.A.A.); (A.S.)
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (B.A.A.); (A.S.)
| | - Mohamed E. A. Abdelrahim
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt; (M.E.A.A.); (H.S.)
| | - Haitham Saeed
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt; (M.E.A.A.); (H.S.)
| |
Collapse
|
3
|
Nemcova N, Kosutova P, Kolomaznik M, Mateffy S, Turianikova Z, Calkovska A, Mikolka P. The effect of budesonide delivered by high-frequency oscillatory ventilation on acute inflammatory response in severe lung injury in adult rabbits. Physiol Res 2023; 72:S509-S521. [PMID: 38165755 PMCID: PMC10861260 DOI: 10.33549/physiolres.935232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/15/2023] [Indexed: 02/01/2024] Open
Abstract
The inflammation present in acute respiratory distress syndrome (ARDS) and thereby associated injury to the alveolar-capillary membrane and pulmonary surfactant can potentiate respiratory failure. Even considering the high mortality rate of severe ARDS, glucocorticoids appear to be a reasonable treatment option along with an appropriate route of delivery to the distal lung. This study aimed to investigate the effect of budesonide therapy delivered intratracheally by high-frequency oscillatory ventilation (HFOV) on lung function and inflammation in severe ARDS. Adult New Zealand rabbits with respiratory failure (P/F<13.3 kPa) induced by intratracheal instillation of hydrochloric acid (HCl, 3 ml/kg, pH 1.5) followed by high tidal ventilation (VT 20 ml/kg) to mimic ventilator-induced lung injury (VILI) were treated with intratracheal bolus of budesonide (0.25 mg/kg, Pulmicort) delivered by HFOV (frequency 8 Hz, MAP 1 kPa, deltaP 0.9 kPa). Saline instead of HCl without VILI with HFOV delivered air bolus instead of therapy served as healthy control. All animals were subjected to lung-protective ventilation for 4 h, and respiratory parameters were monitored regularly. Postmortem, lung injury, wet-to-dry weight ratio, leukocyte shifts, and levels of cytokines in plasma and lung were evaluated. Budesonide therapy improved the lung function (P/F ratio, oxygenation index, and compliance), decreased the cytokine levels, reduced lung edema and neutrophils influx into the lung, and improved lung architecture in interstitial congestion, hyaline membrane, and atelectasis formation compared to untreated animals. This study indicates that HFOV delivered budesonide effectively ameliorated respiratory function, and attenuated acid-induced lung injury in a rabbit model of severe ARDS.
Collapse
Affiliation(s)
- N Nemcova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
4
|
Gonzalez H, McCarthy S, Masterson C, Byrnes D, Sallent I, Horan E, Elliman SJ, Vella G, Mello AP, Silva JD, Krasnodembskaya AD, MacLoughlin R, Laffey JG, O'Toole D. Nebulised mesenchymal stem cell derived extracellular vesicles ameliorate E. coli induced pneumonia in a rodent model. Stem Cell Res Ther 2023; 14:151. [PMID: 37280647 DOI: 10.1186/s13287-023-03385-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) derived extracellular vesicles (EVs) have been proposed as an alternative to cell therapy, creating new possible delivery modalities such as nebulisation. We wished to investigate the therapeutic potential of directly nebulised MSC-EVs in the mitigation of Escherichia coli-induced pneumonia. METHODS EV size, surface markers and miRNA content were assessed pre- and post-nebulisation. BEAS2B and A459 lung cells were exposed to lipopolysaccharide (LPS) and treated with nebulised bone marrow (BM) or umbilical cord (UC) MSC-EVs. Viability assays (MTT) and inflammatory cytokine assays were performed. THP-1 monocytes were stimulated with LPS and nebulised BM- or UC-EVs and phagocytosis activity was measured. For in vivo experiments, mice received LPS intratracheally (IT) followed by BM- or UC-EVs intravenously (IV) and injury markers assessed at 24 h. Rats were instilled with E. coli bacteria IT and BM- or UC-EVs delivered IV or by direct nebulisation. At 48 h, lung damage was assessed by physiological parameters, histology and inflammatory marker presence. RESULTS MSC-EVs retained their immunomodulatory and wound healing capacity after nebulisation in vitro. EV integrity and content were also preserved. Therapy with IV or nebulised MSC-EVs reduced the severity of LPS-induced lung injury and E. coli-induced pneumonia by reducing bacterial load and oedema, increasing blood oxygenation and improving lung histological scores. MSC-EV treated animals also showed lower levels of inflammatory cytokines and inflammatory-related markers. CONCLUSIONS MSC-EVs given IV attenuated LPS-induced lung injury, and nebulisation of MSC-EVs did not affect their capacity to attenuate lung injury caused by E. coli pneumonia, as evidenced by reduction in bacterial load and improved lung physiology.
Collapse
Affiliation(s)
- Hector Gonzalez
- REMEDI at CÚRAM Centre for Medical Device Research, University of Galway, Galway, Ireland
| | - Sean McCarthy
- REMEDI at CÚRAM Centre for Medical Device Research, University of Galway, Galway, Ireland
| | - Claire Masterson
- REMEDI at CÚRAM Centre for Medical Device Research, University of Galway, Galway, Ireland
| | - Declan Byrnes
- REMEDI at CÚRAM Centre for Medical Device Research, University of Galway, Galway, Ireland
| | - Ignacio Sallent
- REMEDI at CÚRAM Centre for Medical Device Research, University of Galway, Galway, Ireland
| | - Emma Horan
- Orbsen Therapeutics, IDA Business Park, Dangan, Galway, Ireland
| | | | - Gabriele Vella
- Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Adriele P Mello
- Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Johnatas D Silva
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Anna D Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | - John G Laffey
- REMEDI at CÚRAM Centre for Medical Device Research, University of Galway, Galway, Ireland
| | - Daniel O'Toole
- REMEDI at CÚRAM Centre for Medical Device Research, University of Galway, Galway, Ireland.
| |
Collapse
|
5
|
González HE, McCarthy SD, Masterson C, Laffey JG, MacLoughlin R, O’Toole D. Nebulized mesenchymal stem cell derived conditioned medium ameliorates Escherichia coli induced pneumonia in a rat model. Front Med (Lausanne) 2023; 10:1162615. [PMID: 37332742 PMCID: PMC10272576 DOI: 10.3389/fmed.2023.1162615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Background Mesenchymal stem cells (MSC) have shown immense therapeutic promise in a range of inflammatory diseases, including acute respiratory distress syndrome (ARDS), and are rapidly advancing through clinical trials. Among their multimodal mechanisms of action, MSCs exert strong immunomodulatory effects via their secretome, which contains cytokines, small molecules, extracellular vesicles, and a range of other factors. Recent studies have shown that the MSC secretome can recapitulate many of the beneficial effects of the MSC itself. We aimed to determine the therapeutic capacity of the MSC secretome in a rat bacterial pneumonia model, especially when delivered directly to the lung by nebulization which is a technique more appropriate for the ventilated patient. Methods Conditioned medium (CM) was generated from human bone marrow derived MSCs in the absence of antibiotics and serum supplements. Post-nebulization lung penetration was estimated through nebulization of CM to a cascade impactor and simulated lung and quantification of collected total protein and IL-8 cytokine. Control and nebulized CM was added to a variety of lung cell culture models and injury resolution assessed. In a rat E. coli pneumonia model, CM was instilled or administered by nebulization and lung injury and inflammation assessed at 48 h. Results MSC-CM was predicted to have good distal lung penetration and delivery when administered by nebulizer. Both control and nebulized CM reduced NF-κB activation and inflammatory cytokine production in lung cell culture, while promoting cell viability and would closure in oxidative stress and scratch wound models. In a rat bacterial pneumonia model, both instilled and nebulizer delivered CM improved lung function, increasing blood oxygenation and reducing carbon dioxide levels compared to unconditioned medium controls. A reduction in bacterial load was also observed in both treatment groups. Inflammatory cytokines were reduced significantly by both liquid and aerosol CM administration, with less IL-1β, IL-6, and CINC1 in these groups compared to controls. Conclusion MSC-CM is a potential therapeutic for pneumonia ARDS, and administration is compatible with vibrating mesh nebulization.
Collapse
Affiliation(s)
- Héctor E. González
- REMEDI at CÚRAM Medical Devices Center and Discipline of Anesthesia, University of Galway, Galway, Ireland
| | - Sean D. McCarthy
- REMEDI at CÚRAM Medical Devices Center and Discipline of Anesthesia, University of Galway, Galway, Ireland
| | - Claire Masterson
- REMEDI at CÚRAM Medical Devices Center and Discipline of Anesthesia, University of Galway, Galway, Ireland
| | - John G. Laffey
- REMEDI at CÚRAM Medical Devices Center and Discipline of Anesthesia, University of Galway, Galway, Ireland
| | | | - Daniel O’Toole
- REMEDI at CÚRAM Medical Devices Center and Discipline of Anesthesia, University of Galway, Galway, Ireland
| |
Collapse
|
6
|
Salem HF, Moubarak GA, Ali AA, Salama AAA, Salama AH. Budesonide-Loaded Bilosomes as a Targeted Delivery Therapeutic Approach Against Acute Lung Injury in Rats. J Pharm Sci 2023; 112:760-770. [PMID: 36228754 PMCID: PMC9549718 DOI: 10.1016/j.xphs.2022.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/02/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022]
Abstract
Budesonide (BUD), a glucocorticoids drug, inhibits all steps in the inflammatory response. It can reduce and treat inflammation and other symptoms associated with acute lung injury such as COVID-19. Loading BUD into bilosomes could boost its therapeutic activity, and lessen its frequent administration and side effects. Different bilosomal formulations were prepared where the independent variables were lipid type (Cholesterol, Phospholipon 80H, L-alpha phosphatidylcholine, and Lipoid S45), bile salt type (Na cholate and Na deoxycholate), and drug concentration (10, 20 mg). The measured responses were: vesicle size, entrapment efficiency, and release efficiency. One optimum formulation (composed of cholesterol, Na cholate, and 10 mg of BUD) was selected and investigated for its anti-inflammatory efficacy in vivo using Wistar albino male rats. Randomly allocated rats were distributed into four groups: The first: normal control group and received intranasal saline, the second one acted as the acute lung injury model received intranasal single dose of 2 mg/kg potassium dichromate (PD). Whereas the third and fourth groups received the market product (Pulmicort® nebulising suspension 0.5 mg/ml) and the optimized formulation (0.5 mg/kg; intranasal) for 7 days after PD instillation, respectively. Results showed that the optimized formulation decreased the pro-inflammatory cytokines TNF-α, and TGF-β contents as well as reduced PKC content in lung. These findings suggest the potentiality of BUD-loaded bilosomes for the treatment of acute lung injury with the ability of inhibiting the pro-inflammatory cytokines induced COVID-19.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ghada Abdelsabour Moubarak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt
| | - Adel A Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Abeer A A Salama
- Pharmacology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Alaa H Salama
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt; Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
7
|
Brodin D, Tornhammar P, Ueda P, Krifors A, Westerlund E, Athlin S, Wojt S, Elvstam O, Neumann A, Elshani A, Giesecke J, Edvardsson-Källkvist J, Bunpuckdee S, Unge C, Larsson M, Johansson B, Ljungberg J, Lindell J, Hansson J, Blennow O, Andersson DP. Inhaled ciclesonide in adults hospitalised with COVID-19: a randomised controlled open-label trial (HALT COVID-19). BMJ Open 2023; 13:e064374. [PMID: 36813503 PMCID: PMC9950582 DOI: 10.1136/bmjopen-2022-064374] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVE To assess the efficacy of inhaled ciclesonide in reducing the duration of oxygen therapy (an indicator of time to clinical improvement) among adults hospitalised with COVID-19. DESIGN Multicentre, randomised, controlled, open-label trial. SETTING 9 hospitals (3 academic hospitals and 6 non-academic hospitals) in Sweden between 1 June 2020 and 17 May 2021. PARTICIPANTS Adults hospitalised with COVID-19 and receiving oxygen therapy. INTERVENTION Inhaled ciclesonide 320 µg two times a day for 14 days versus standard care. MAIN OUTCOME MEASURES Primary outcome was duration of oxygen therapy, an indicator of time to clinical improvement. Key secondary outcome was a composite of invasive mechanical ventilation/death. RESULTS Data from 98 participants were analysed (48 receiving ciclesonide and 50 receiving standard care; median (IQR) age, 59.5 (49-67) years; 67 (68%) men). Median (IQR) duration of oxygen therapy was 5.5 (3-9) days in the ciclesonide group and 4 (2-7) days in the standard care group (HR for termination of oxygen therapy 0.73 (95% CI 0.47 to 1.11), with the upper 95% CI being compatible with a 10% relative reduction in oxygen therapy duration, corresponding to a <1 day absolute reduction in a post-hoc calculation). Three participants in each group died/received invasive mechanical ventilation (HR 0.90 (95% CI 0.15 to 5.32)). The trial was discontinued early due to slow enrolment. CONCLUSIONS In patients hospitalised with COVID-19 receiving oxygen therapy, this trial ruled out, with 0.95 confidence, a treatment effect of ciclesonide corresponding to more than a 1 day reduction in duration of oxygen therapy. Ciclesonide is unlikely to improve this outcome meaningfully. TRIAL REGISTRATION NUMBER NCT04381364.
Collapse
Affiliation(s)
- Daniel Brodin
- Department of Medicine, Capio S:t Göran's Hospital, Stockholm, Sweden
| | - Per Tornhammar
- Functional Area of Emergency Medicine, Karolinska Institute, Stockholm, Sweden
| | - Peter Ueda
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Anders Krifors
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Centre for Clinical Research Västmanland, Uppsala University, Uppsala, Sweden
| | - Eli Westerlund
- Department of Clinical Sciences, Danderyd Hospital, Stockholm, Sweden
| | - Simon Athlin
- School of Medical Science, Örebro University, Örebro, Sweden
| | - Sandra Wojt
- Department of Internal Medicine, Danderyd Hospital, Stockholm, Sweden
| | - Olof Elvstam
- Department of Infectious Diseases, Central Hospital Växjö, Vaxjo, Sweden
| | - Anca Neumann
- Department of Medicine, Capio S:t Göran's Hospital, Stockholm, Sweden
| | - Arsim Elshani
- Department of Medicine and Geriatrics, Karlskoga Hospital, Karlskoga, Sweden
| | - Julia Giesecke
- Functional Area of Emergency Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Sayam Bunpuckdee
- Functional Area of Emergency Medicine, Karolinska Institute, Stockholm, Sweden
| | - Christian Unge
- Department of Internal Medicine, Danderyd Hospital, Stockholm, Sweden
| | - Martin Larsson
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Björn Johansson
- Department of Infectious Diseases, Halland's Hospital Halmstad, Halmstad, Sweden
| | - Johan Ljungberg
- Department of Infectious Diseases, Halland's Hospital Halmstad, Halmstad, Sweden
| | - Jonas Lindell
- Department of Infectious Diseases, Visby Hospital, Visby, Sweden
| | - Johan Hansson
- Department of Infectious Diseases, Östersund Hospital, Ostersund, Sweden
| | - Ola Blennow
- Department of Medicine, Capio S:t Göran's Hospital, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Peter Andersson
- Department of Medicine Huddinge H7, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Battaglini D, Robba C, Pelosi P, Rocco PRM. Treatment for acute respiratory distress syndrome in adults: A narrative review of phase 2 and 3 trials. Expert Opin Emerg Drugs 2022; 27:187-209. [PMID: 35868654 DOI: 10.1080/14728214.2022.2105833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Ventilatory management and general supportive care of acute respiratory distress syndrome (ARDS) in the adult population have led to significant clinical improvements, but morbidity and mortality remain high. Pharmacologic strategies acting on the coagulation cascade, inflammation, oxidative stress, and endothelial cell injury have been targeted in the last decade for patients with ARDS, but only a few of these have shown potential benefits with a meaningful clinical response and improved patient outcomes. The lack of availability of specific pharmacologic treatments for ARDS can be attributed to its complex pathophysiology, different risk factors, huge heterogeneity, and difficult classification into specific biological phenotypes and genotypes. AREAS COVERED In this narrative review, we briefly discuss the relevance and current advances in pharmacologic treatments for ARDS in adults and the need for the development of new pharmacological strategies. EXPERT OPINION Identification of ARDS phenotypes, risk factors, heterogeneity, and pathophysiology may help to design clinical trials personalized according to ARDS-specific features, thus hopefully decreasing the rate of failed clinical pharmacologic trials. This concept is still under clinical investigation and needs further development.
Collapse
Affiliation(s)
- Denise Battaglini
- Dipartimento di Anestesia e Rianimazione, Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Chiara Robba
- Dipartimento di Anestesia e Rianimazione, Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Largo Rosanna Benzi, 10, 16132, Genoa, Italy.,Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Paolo Pelosi
- Dipartimento di Anestesia e Rianimazione, Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Largo Rosanna Benzi, 10, 16132, Genoa, Italy.,Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, RJ 21941-902, Brazil.,COVID-19 Virus Network from Ministry of Science, Technology, and Innovation, Brazilian Council for Scientific and Technological Development, and Foundation Carlos Chagas Filho Research Support of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Saha R, Assouline B, Mason G, Douiri A, Summers C, Shankar-Har M. The Impact of Sample Size Misestimations on the Interpretation of ARDS Trials: Systematic Review and Meta-analysis. Chest 2022; 162:1048-1062. [PMID: 35643115 DOI: 10.1016/j.chest.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/06/2022] [Accepted: 05/04/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Indeterminate randomized controlled trials (RCTs) in ARDS may arise from sample size misspecification, leading to abandonment of efficacious therapies. RESEARCH QUESTIONS If evidence exists for sample size misspecification in ARDS RCTs, has this led to rejection of potentially beneficial therapies? Does evidence exist for prognostic enrichment in RCTs using mortality as a primary outcome? STUDY DESIGN AND METHODS We identified 150 ARDS RCTs commencing recruitment after the 1994 American European Consensus Conference ARDS definition and published before October 31, 2020. We examined predicted-observed sample size, predicted-observed control event rate (CER), predicted-observed average treatment effect (ATE), and the relationship between observed CER and observed ATE for RCTs with mortality and nonmortality primary outcome measures. To quantify the strength of evidence, we used Bayesian-averaged meta-analysis, trial sequential analysis, and Bayes factors. RESULTS Only 84 of 150 RCTs (56.0%) reported sample size estimations. In RCTs with mortality as the primary outcome, CER was overestimated in 16 of 28 RCTs (57.1%). To achieve predicted ATE, interventions needed to prevent 40.8% of all deaths, compared with the original prediction of 29.3%. Absolute reduction in mortality ≥ 10% was observed in 5 of 28 RCTs (17.9%), but predicted in 21 of 28 RCTs (75%). For RCTs with mortality as the primary outcome, no association was found between observed CER and observed ATE (pooled OR: β = -0.04; 95% credible interval, -0.18 to 0.09). We identified three interventions that are not currently standard of care with a Bayesian-averaged effect size of > 0.20 and moderate strength of existing evidence: corticosteroids, airway pressure release ventilation, and noninvasive ventilation. INTERPRETATION Reporting of sample size estimations was inconsistent in ARDS RCTs, and misspecification of CER and ATE was common. Prognostic enrichment strategies in ARDS RCTs based on all-cause mortality are unlikely to be successful. Bayesian methods can be used to prioritize interventions for future effectiveness RCTs.
Collapse
Affiliation(s)
- Rohit Saha
- Critical Care Centre, King's College London, London, United Kingdom; School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Benjamin Assouline
- Service de Médecine Intensive Réanimation, Faculté de Médecine Sorbonne Université, Hôpital Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Georgina Mason
- Critical Care Centre, King's College London, London, United Kingdom
| | - Abdel Douiri
- School of Population Health & Environmental Sciences, King's College London, London, United Kingdom; National Institute for Health Research Comprehensive Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Charlotte Summers
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Manu Shankar-Har
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
10
|
Alsultan M, Obeid A, Alsamarrai O, Anan MT, Bakr A, Soliman N, Kurdy M, Mosa MH, Saleh Z, Hujij F, Barhoum J. Efficacy of Colchicine and Budesonide in Improvement Outcomes of Patients with Coronavirus Infection 2019 in Damascus, Syria: A Randomized Control Trial. Interdiscip Perspect Infect Dis 2021; 2021:2129006. [PMID: 34984065 PMCID: PMC8720363 DOI: 10.1155/2021/2129006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023] Open
Abstract
COVID-19 was reported in China in 2019 and has spread worldwide. Transmission occurs through respiratory secretions and, less commonly, through contaminated surfaces. The severity of the disease can range from asymptomatic to acute respiratory distress syndrome (ARDS). In this study, we aim to investigate the efficacy of two agents (oral colchicine and budesonide inhaler) in COVID-19 infection management, compared with supportive care alone. 77 patients were admitted to the isolation section of Al Assad University Hospital, between the 1st of August and the 30th of August. A total of 49 patients were included in this randomized control trial, after excluding ineligible patients. The random sample was divided into three groups; the first group was supportive care plus colchicine, the second group was supportive care plus budesonide inhaler, and the control group was supportive care alone. PaO2/FiO2 was improved in the budesonide group, higher than the supportive and colchicine groups. The median hospitalization days were shorter when using colchicine or budesonide, opposed to supportive care alone (8 vs 10 days, respectively). 34 patients (69.3%) were discharged, and 27 patients (55.1%) were followed up until they were weaned from oxygen and made a complete recovery. There was a significant decrease in mortality with colchicine (3 patients; 21.4%) compared with supportive care (7 patients; 33.3%) and the budesonide group (5 patients; 35.7%).
Collapse
Affiliation(s)
- Mohammad Alsultan
- Department of Nephrology, Al Assad and Al Mouwasat University Hospitals, Damascus, Syria
| | - Ameer Obeid
- Department of Infectious Diseases, Al Assad and Al Mouwasat University Hospitals, Damascus, Syria
| | - Omar Alsamarrai
- Department of Neurology, Al Assad and Al Mouwasat University Hospitals, Damascus, Syria
| | | | - Aliaa Bakr
- Department of Oncology, Al Biruni University Hospital, Damascus, Syria
| | - Nawwar Soliman
- Department of Internal Medicine, Al Assad and Al Mouwasat University Hospitals, Damascus, Syria
| | - Mamdoh Kurdy
- Department of Oncology, Al Biruni University Hospital, Damascus, Syria
| | - Muhannad Hag Mosa
- Department of Internal Medicine, Al Assad and Al Mouwasat University Hospitals, Damascus, Syria
| | - Zain Saleh
- Department of Neurology, Al Assad and Al Mouwasat University Hospitals, Damascus, Syria
| | - Fatima Hujij
- Department of Internal Medicine, Al Assad and Al Mouwasat University Hospitals, Damascus, Syria
| | - Jafar Barhoum
- Department of Rheumatology, Al Assad and Al Mouwasat University Hospitals, Damascus, Syria
| |
Collapse
|
11
|
Antiviral Effect of Budesonide against SARS-CoV-2. Viruses 2021; 13:v13071411. [PMID: 34372616 PMCID: PMC8310374 DOI: 10.3390/v13071411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Treatment options for COVID-19, a disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, are currently severely limited. Therefore, antiviral drugs that efficiently reduce SARS-CoV-2 replication or alleviate COVID-19 symptoms are urgently needed. Inhaled glucocorticoids are currently being discussed in the context of treatment for COVID-19, partly based on a previous study that reported reduced recovery times in cases of mild COVID-19 after inhalative administration of the glucocorticoid budesonide. Given various reports that describe the potential antiviral activity of glucocorticoids against respiratory viruses, we aimed to analyze a potential antiviral activity of budesonide against SARS-CoV-2 and circulating variants of concern (VOC) B.1.1.7 (alpha) and B.1.351 (beta). We demonstrate a dose-dependent inhibition of SARS-CoV-2 that was comparable between all viral variants tested while cell viability remains unaffected. Our results are encouraging as they could indicate a multimodal mode of action of budesonide against SARS-CoV-2 and COVID-19, which could contribute to an improved clinical performance.
Collapse
|
12
|
Saha R, Assouline B, Mason G, Douiri A, Summers C, Shankar-Hari M. Impact of differences in acute respiratory distress syndrome randomised controlled trial inclusion and exclusion criteria: systematic review and meta-analysis. Br J Anaesth 2021; 127:85-101. [PMID: 33812666 PMCID: PMC9768208 DOI: 10.1016/j.bja.2021.02.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/31/2021] [Accepted: 02/21/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Control-arm mortality varies between acute respiratory distress syndrome (ARDS) RCTs. METHODS We systematically reviewed ARDS RCTs that commenced recruitment after publication of the American-European Consensus (AECC) definition (MEDLINE, Embase, and Cochrane central register of controlled trials; January 1994 to October 2020). We assessed concordance of RCT inclusion criteria to ARDS consensus definitions and whether exclusion criteria are strongly or poorly justified. We estimated the proportion of between-trial difference in control-arm 28-day mortality explained by the inclusion criteria and RCT design characteristics using meta-regression. RESULTS A literature search identified 43 709 records. One hundred and fifty ARDS RCTs were included; 146/150 (97.3%) RCTs defined ARDS inclusion criteria using AECC/Berlin definitions. Deviations from consensus definitions, primarily aimed at improving ARDS diagnostic certainty, frequently related to duration of hypoxaemia (117/146; 80.1%). Exclusion criteria could be grouped by rationale for selection into strongly or poorly justified criteria. Common poorly justified exclusions included pregnancy related, age, and comorbidities (infectious/immunosuppression, hepatic, renal, and human immunodeficiency virus/acquired immunodeficiency syndrome). Control-arm 28-day mortality varied between ARDS RCTs (mean: 29.8% [95% confidence interval: 27.0-32.7%; I2=88.8%; τ2=0.02; P<0.01]), and differed significantly between RCTs with different Pao2:FiO2 ratio inclusion thresholds (26.6-39.9 kPa vs <26.6 kPa; P<0.01). In a meta-regression model, inclusion criteria and RCT design characteristics accounted for 30.6% of between-trial difference (P<0.01). CONCLUSIONS In most ARDS RCTs, consensus definitions are modified to use as inclusion criteria. Between-RCT mortality differences are mostly explained by the Pao2:FiO2 ratio threshold within the consensus definitions. An exclusion criteria framework can be applied when designing and reporting exclusion criteria in future ARDS RCTs.
Collapse
Affiliation(s)
- Rohit Saha
- Critical Care, King's College Hospital NHS Foundation Trust, London, UK
| | | | - Georgina Mason
- Critical Care, King's College Hospital NHS Foundation Trust, London, UK
| | - Abdel Douiri
- School of Population Health & Environmental Sciences, King's College London, London, UK; National Institute for Health Research Comprehensive Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Manu Shankar-Hari
- Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK; School of Immunology & Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
13
|
Levitt JE, Festic E, Desai M, Hedlin H, Mahaffey KW, Rogers AJ, Gajic O. The ARREST Pneumonia Clinical Trial. Rationale and Design. Ann Am Thorac Soc 2021; 18:698-708. [PMID: 33493423 PMCID: PMC8008996 DOI: 10.1513/annalsats.202009-1115sd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/22/2021] [Indexed: 01/11/2023] Open
Abstract
Patients hospitalized for pneumonia are at high risk for mortality. Effective therapies are therefore needed. Recent randomized clinical trials suggest that systemic steroids can reduce the length of hospital stays among patients hospitalized for pneumonia. Furthermore, preliminary findings from a feasibility study demonstrated that early treatment with a combination of an inhaled corticosteroid and a bronchodilator can improve oxygenation and reduce risk of respiratory failure in patients at risk of acute respiratory distress syndrome. Whether such a combination administered early is effective in reducing acute respiratory failure (ARF) among patients hospitalized with pneumonia is unknown. Here we describe the ARREST Pneumonia (Arrest Respiratory Failure due to Pneumonia) trial designed to address this question. ARREST Pneumonia is a two-arm, randomized, double-blinded, placebo-controlled trial designed to test the efficacy of a combination of an inhaled corticosteroid and a β-agonist compared with placebo for the prevention of ARF in hospitalized participants with severe pneumonia. The primary outcome is ARF within 7 days of randomization, defined as a composite endpoint of intubation and mechanical ventilation; need for high-flow nasal cannula oxygen therapy or noninvasive ventilation for >36 hours (each alone or combined); or death within 36 hours of being placed on respiratory support. The planned enrollment is 600 adult participants at 10 academic medical centers. In addition, we will measure selected plasma biomarkers to better understand mechanisms of action. The trial is funded by the U.S. National Heart Lung and Blood Institute.Clinical trial registered with www.clinicaltrials.gov (NCT04193878).
Collapse
Affiliation(s)
| | - Emir Festic
- Division of Pulmonary Medicine and
- Department of Critical Care, Mayo Clinic, Jacksonville, Florida
| | - Manisha Desai
- Stanford Center for Biomedical Informatics and Research, and
| | - Haley Hedlin
- Stanford Center for Biomedical Informatics and Research, and
| | - Kenneth W. Mahaffey
- Stanford Center for Clinical Research, Stanford University, Stanford, California
| | | | - Ognjen Gajic
- Division of Pulmonary Medicine and
- Department of Critical Care, Mayo Clinic, Rochester, Minnesota; and
| | - on behalf of ARREST Pneumonia Clinical Trial Investigators
- Division of Pulmonary, Allergy and Critical Care Medicine
- Stanford Center for Biomedical Informatics and Research, and
- Stanford Center for Clinical Research, Stanford University, Stanford, California
- Division of Pulmonary Medicine and
- Department of Critical Care, Mayo Clinic, Jacksonville, Florida
- Division of Pulmonary Medicine and
- Department of Critical Care, Mayo Clinic, Rochester, Minnesota; and
- Pulmonary, Critical Care, Allergy and Sleep Medicine Program, University of California, San Francisco, San Francisco, California
| |
Collapse
|
14
|
Miyazawa D, Kaneko G. Clinical trials of inhaled beclomethasone and mometasone for COVID-19 should be conducted. J Med Virol 2021; 93:637-638. [PMID: 32776550 PMCID: PMC7436531 DOI: 10.1002/jmv.26413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Affiliation(s)
| | - Gen Kaneko
- School of Arts & SciencesUniversity of Houston‐VictoriaVictoriaTexas
| |
Collapse
|
15
|
Yang J, Zhang W, Feng J. Low serum indium levels induce expression disorders of some inflammatory factors. Int Arch Occup Environ Health 2020; 94:23-30. [PMID: 32514666 DOI: 10.1007/s00420-020-01553-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 05/27/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES It has been reported that occupational exposure to indium compounds, including indium-tin oxide, can induce pulmonary inflammation resulting in serious indium lung disease. However, whether there is an early effect of indium exposure on inflammatory factor expression remains unclear. METHODS Twenty indium-tin oxide processing workers and 15 healthy volunteers were recruited to measure serum indium levels, respiratory symptoms, pulmonary function, and serum inflammatory factor levels. RESULTS Although low serum indium was detected in workers, lung abnormalities were not increased, compared with healthy population. However, serum G-CSF, IL-4, IL-5, TNF-alpha, and TNF-beta levels were significantly increased, while IL-16 and TIMP-1 were obviously down-regulated in indium-tin oxide processing workers. These inflammatory factor levels showed a significant correlation with serum indium levels. CONCLUSIONS Basing on our findings, we speculate that low serum indium levels may induce inflammatory responses, which may be an adaptive response or may cause lung diseases. Therefore, further experiments or follow-up is needed. However, better safeguard procedures and indium exposure reduction should be considered in ITO industry.
Collapse
Affiliation(s)
- Jianping Yang
- Shenzhen Bao'an District Center for Disease Control and Prevention, No. 3, Haixiu Road, Bao'an District, Shenzhen, 518053, China.
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601, Huangpu Road, Tianhe District, Guangzhou, 510632, China.
| | - Jing Feng
- Occupational Health Department, Bao'an Centre for Disease Control and Prevention, 3# Haixiu Road, Bao'an District, Shenzhen, China
| |
Collapse
|
16
|
McCarthy SD, González HE, Higgins BD. Future Trends in Nebulized Therapies for Pulmonary Disease. J Pers Med 2020; 10:E37. [PMID: 32397615 PMCID: PMC7354528 DOI: 10.3390/jpm10020037] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Aerosol therapy is a key modality for drug delivery to the lungs of respiratory disease patients. Aerosol therapy improves therapeutic effects by directly targeting diseased lung regions for rapid onset of action, requiring smaller doses than oral or intravenous delivery and minimizing systemic side effects. In order to optimize treatment of critically ill patients, the efficacy of aerosol therapy depends on lung morphology, breathing patterns, aerosol droplet characteristics, disease, mechanical ventilation, pharmacokinetics, and the pharmacodynamics of cell-drug interactions. While aerosol characteristics are influenced by drug formulations and device mechanisms, most other factors are reliant on individual patient variables. This has led to increased efforts towards more personalized therapeutic approaches to optimize pulmonary drug delivery and improve selection of effective drug types for individual patients. Vibrating mesh nebulizers (VMN) are the dominant device in clinical trials involving mechanical ventilation and emerging drugs. In this review, we consider the use of VMN during mechanical ventilation in intensive care units. We aim to link VMN fundamentals to applications in mechanically ventilated patients and look to the future use of VMN in emerging personalized therapeutic drugs.
Collapse
Affiliation(s)
- Sean D. McCarthy
- Anaesthesia, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland; (S.D.M.); (H.E.G.)
- Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Héctor E. González
- Anaesthesia, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland; (S.D.M.); (H.E.G.)
- Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Brendan D. Higgins
- Physiology, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
17
|
Expert consensus on nebulization therapy in pre-hospital and in-hospital emergency care. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:487. [PMID: 31700923 PMCID: PMC6803223 DOI: 10.21037/atm.2019.09.44] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/06/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Chinese College of Emergency Physicians (CCEP)
- Correspondence to: Xiaodong Zhao. Department of Emergency, First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China. ; Xuezhong Yu. Department of Emergency, Peking Union Medical College Hospital, Beijing 100032, China.
| | - Emergency Committee of PLA
- Correspondence to: Xiaodong Zhao. Department of Emergency, First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China. ; Xuezhong Yu. Department of Emergency, Peking Union Medical College Hospital, Beijing 100032, China.
| | - Beijing Society for Emergency Medicine
- Correspondence to: Xiaodong Zhao. Department of Emergency, First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China. ; Xuezhong Yu. Department of Emergency, Peking Union Medical College Hospital, Beijing 100032, China.
| | - Chinese Emergency Medicine
- Correspondence to: Xiaodong Zhao. Department of Emergency, First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China. ; Xuezhong Yu. Department of Emergency, Peking Union Medical College Hospital, Beijing 100032, China.
| |
Collapse
|
18
|
Lewis SR, Pritchard MW, Thomas CM, Smith AF. Pharmacological agents for adults with acute respiratory distress syndrome. Cochrane Database Syst Rev 2019; 7:CD004477. [PMID: 31334568 PMCID: PMC6646953 DOI: 10.1002/14651858.cd004477.pub3] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a life-threatening condition caused by direct or indirect injury to the lungs. Despite improvements in clinical management (for example, lung protection strategies), mortality in this patient group is at approximately 40%. This is an update of a previous version of this review, last published in 2004. OBJECTIVES To evaluate the effectiveness of pharmacological agents in adults with ARDS on mortality, mechanical ventilation, and fitness to return to work at 12 months. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, and CINAHL on 10 December 2018. We searched clinical trials registers and grey literature, and handsearched reference lists of included studies and related reviews. SELECTION CRITERIA We included randomized controlled trials (RCTs) comparing pharmacological agents with control (placebo or standard therapy) to treat adults with established ARDS. We excluded trials of nitric oxide, inhaled prostacyclins, partial liquid ventilation, neuromuscular blocking agents, fluid and nutritional interventions and medical oxygen. We excluded studies published earlier than 2000, because of changes to lung protection strategies for people with ARDS since this date. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for inclusion, extracted data, and assessed risks of bias. We assessed the certainty of evidence with GRADE. MAIN RESULTS We included 48 RCTs with 6299 participants who had ARDS; two included only participants with mild ARDS (also called acute lung injury). Most studies included causes of ARDS that were both direct and indirect injuries. We noted differences between studies, for example the time of administration or the size of dose, and because of unclear reporting we were uncertain whether all studies had used equivalent lung protection strategies.We included five types of agents as the primary comparisons in the review: corticosteroids, surfactants, N-acetylcysteine, statins, and beta-agonists. We included 15 additional agents (sivelestat, mesenchymal stem cells, ulinastatin, anisodimine, angiotensin-converting enzyme (ACE) inhibitor, recombinant human ACE2 (palifermin), AP301, granulocyte-macrophage colony stimulating factor (GM-CSF), levosimendan, prostacyclins, lisofylline, ketaconazole, nitroglycerins, L-2-oxothiazolidine-4-carboxylic acid (OTZ), and penehyclidine hydrochloride).We used GRADE to downgrade outcomes for imprecision (because of few studies and few participants), for study limitations (e.g. high risks of bias) and for inconsistency (e.g. differences between study data).Corticosteroids versus placebo or standard therapyCorticosteroids may reduce all-cause mortality within three months by 86 per 1000 patients (with as many as 161 fewer to 19 more deaths); however, the 95% confidence interval (CI) includes the possibility of both increased and reduced deaths (risk ratio (RR) 0.77, 95% CI 0.57 to 1.05; 6 studies, 574 participants; low-certainty evidence). Due to the very low-certainty evidence, we are uncertain whether corticosteroids make little or no difference to late all-cause mortality (later than three months) (RR 0.99, 95% CI 0.64 to 1.52; 1 study, 180 participants), or to the duration of mechanical ventilation (mean difference (MD) -4.30, 95% CI -9.72 to 1.12; 3 studies, 277 participants). We found that ventilator-free days up to day 28 (VFD) may be improved with corticosteroids (MD 4.09, 95% CI 1.74 to 6.44; 4 studies, 494 participants; low-certainty evidence). No studies reported adverse events leading to discontinuation of study medication, or fitness to return to work at 12 months (FTR).Surfactants versus placebo or standard therapyWe are uncertain whether surfactants make little or no difference to early mortality (RR 1.08, 95% CI 0.91 to 1.29; 9 studies, 1338 participants), or whether they reduce late all-cause mortality (RR 1.28, 95% CI 1.01 to 1.61; 1 study, 418 participants). Similarly, we are uncertain whether surfactants reduce the duration of mechanical ventilation (MD -2.50, 95% CI -4.95 to -0.05; 1 study, 16 participants), make little or no difference to VFD (MD -0.39, 95% CI -2.49 to 1.72; 2 studies, 344 participants), or to adverse events leading to discontinuation of study medication (RR 0.50, 95% CI 0.17 to 1.44; 2 studies, 88 participants). We are uncertain of these effects because we assessed them as very low-certainty. No studies reported FTR.N-aceytylcysteine versus placeboWe are uncertain whether N-acetylcysteine makes little or no difference to early mortality, because we assessed this as very low-certainty evidence (RR 0.64, 95% CI 0.32 to 1.30; 1 study, 36 participants). No studies reported late all-cause mortality, duration of mechanical ventilation, VFD, adverse events leading to study drug discontinuation, or FTR.Statins versus placeboStatins probably make little or no difference to early mortality (RR 0.99, 95% CI 0.78 to 1.26; 3 studies, 1344 participants; moderate-certainty evidence) or to VFD (MD 0.40, 95% CI -0.71 to 1.52; 3 studies, 1342 participants; moderate-certainty evidence). Statins may make little or no difference to duration of mechanical ventilation (MD 2.70, 95% CI -3.55 to 8.95; 1 study, 60 participants; low-certainty evidence). We could not include data for adverse events leading to study drug discontinuation in one study because it was unclearly reported. No studies reported late all-cause mortality or FTR.Beta-agonists versus placebo controlBeta-blockers probably slightly increase early mortality by 40 per 1000 patients (with as many as 119 more or 25 fewer deaths); however, the 95% CI includes the possibility of an increase as well as a reduction in mortality (RR 1.14, 95% CI 0.91 to 1.42; 3 studies, 646 participants; moderate-certainty evidence). Due to the very low-certainty evidence, we are uncertain whether beta-agonists increase VFD (MD -2.20, 95% CI -3.68 to -0.71; 3 studies, 646 participants), or make little or no difference to adverse events leading to study drug discontinuation (one study reported little or no difference between groups, and one study reported more events in the beta-agonist group). No studies reported late all-cause mortality, duration of mechanical ventilation, or FTR. AUTHORS' CONCLUSIONS We found insufficient evidence to determine with certainty whether corticosteroids, surfactants, N-acetylcysteine, statins, or beta-agonists were effective at reducing mortality in people with ARDS, or duration of mechanical ventilation, or increasing ventilator-free days. Three studies awaiting classification may alter the conclusions of this review. As the potential long-term consequences of ARDS are important to survivors, future research should incorporate a longer follow-up to measure the impacts on quality of life.
Collapse
Affiliation(s)
- Sharon R Lewis
- Royal Lancaster InfirmaryLancaster Patient Safety Research UnitPointer Court 1, Ashton RoadLancasterUKLA1 4RP
| | - Michael W Pritchard
- Royal Lancaster InfirmaryLancaster Patient Safety Research UnitPointer Court 1, Ashton RoadLancasterUKLA1 4RP
| | - Carmel M Thomas
- Greater Manchester Mental Health NHS Foundation TrustDepartment of Research and InnovationHarrop HousePrestwichManchesterUKM25 3BL
| | - Andrew F Smith
- Royal Lancaster InfirmaryDepartment of AnaesthesiaAshton RoadLancasterLancashireUKLA1 4RP
| | | |
Collapse
|
19
|
Ji M, Chen T, Wang B, Chen M, Ding Q, Chen L, Fang Y, Yu X, Chen Y, Wang X, He Y, Jiang Y. Effects of ulinastatin combined with mechanical ventilation on oxygen metabolism, inflammation and stress response and antioxidant capacity of ARDS. Exp Ther Med 2018; 15:4665-4670. [PMID: 29805484 PMCID: PMC5952097 DOI: 10.3892/etm.2018.6012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/21/2017] [Indexed: 01/07/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a disease that seriously threatens human life and health. The aim of the study was to investigate the effects of ulinastatin combined with mechanical ventilation on oxygen metabolism, inflammation and stress response, as well as the antioxidant capacity of ARDS. Eighty patients with ARDS treated in Yiwu Central Hospital from January, 2015 to December, 2016 were enrolled in the present study and divided into the observation (n=40) and control (n=40) groups, using a random number table. The control group was treated with mechanical ventilation, while the observation group, based on treatment of the control group, was treated with ulinastatin for 14 consecutive days as one course of treatment. The changes in the relevant indexes of oxygen metabolism, lung function, time of ventilator treatment, total hospital stay, and St. George's Respiratory Questionnaire (SGRQ) score of the two groups after intervention were compared, and the changes in inflammatory cytokine levels, dopamine receptor-related hormone levels, superoxide dismutase (SOD), malondialdehyde (MDA) and total antioxidant capacity of the two groups before intervention and at 1 and 4 weeks after intervention were compared. After intervention, the arterial blood lactate in the observation group was significantly lower than that in the control group (P<0.05), the oxygen uptake rate was significantly higher than that in the control group (P<0.05) and the arterial oxygen content was significantly higher than that in the control group (P<0.05). In the lung function indexes, the FEV1 and FEV1/FVC levels in the observation group were smaller than those in the control group (P<0.05), the duration of ventilator treatment was significantly shorter than that in the control group (P<0.05), and the hospital stay was significantly less than that in the control group (P<0.05). Prior to intervention, SGRQ scores in the two groups were not statistically significant (P>0.05). At 1 and 4 weeks after intervention, the SGRQ scores of the observation group were significantly increased to those of the control group (P<0.05). The tumor levels of necrosis factor-α (TNF-α), interleukin-6 (IL-6) and CRP were significantly lower than those of the control group (P<0.05). The levels of adrenaline and norepinephrine were significantly lower than those of the control group (P<0.05). The levels of MDA, SOD and the total antioxidant capacity were significantly increased to those of control group (P<0.05). The application of ulinastatin combined with mechanical ventilation in ARDS patients is of great significance in improving the oxygen delivery-consumption balance of body, increasing the lung function, reducing the inflammatory and stress response, and improving the antioxidant capacity.
Collapse
Affiliation(s)
- Mingxia Ji
- Department of Emergency, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Tiejiang Chen
- Department of Emergency, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Baiming Wang
- Department of Emergency, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Mengyan Chen
- Department of Emergency, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Qianqian Ding
- Department of Emergency, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Lingchao Chen
- Department of Emergency, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Yuejuan Fang
- Department of Emergency, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Xiaofang Yu
- Department of Emergency, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Yanzhen Chen
- Department of Emergency, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Xiaohua Wang
- Department of Emergency, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Yiyue He
- Department of Emergency, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Yong Jiang
- Department of Emergency, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| |
Collapse
|
20
|
Artigas A, Camprubí-Rimblas M, Tantinyà N, Bringué J, Guillamat-Prats R, Matthay MA. Inhalation therapies in acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:293. [PMID: 28828368 DOI: 10.21037/atm.2017.07.21] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The defining features of acute respiratory distress syndrome (ARDS) are an excessive inflammatory respiratory response associated with high morbidity and mortality. Treatment consists mainly of measures to avoid worsening lung injury and cannot reverse the underlying pathophysiological process. New pharmacological agents have shown promising results in preclinical studies; however, they have not been successfully translated to patients with ARDS. The lack of effective therapeutic interventions has resulted in a recent interest in strategies to prevent ARDS with treatments delivering medications directly to the lungs by inhalation and nebulization, hopefully minimizing systemic adverse events. We analyzed the effect of different aerosolized drugs such as bronchodilators, corticosteroids, pulmonary vasodilators, anticoagulants, mucolytics and surfactant. New therapeutic strategies and ongoing trials using carbon monoxide (CO) and AP301 peptide are also briefly reviewed.
Collapse
Affiliation(s)
- Antonio Artigas
- Institut d'Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Critical Care Center, Corporació Sanitària Universitaria Parc Taulí, Sabadell, Spain
| | - Marta Camprubí-Rimblas
- Institut d'Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Neus Tantinyà
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Josep Bringué
- Institut d'Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Raquel Guillamat-Prats
- Institut d'Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Michael A Matthay
- Departments of Medicine and Anesthesia and Cardiovascular Research Institute, University of California, San Francisco, USA
| |
Collapse
|