1
|
Chen J, Zeng X, Wang L, Zhang W, Li G, Cheng X, Su P, Wan Y, Li X. Mutual regulation of microglia and astrocytes after Gas6 inhibits spinal cord injury. Neural Regen Res 2025; 20:557-573. [PMID: 38819067 PMCID: PMC11317951 DOI: 10.4103/nrr.nrr-d-23-01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00032/figure1/v/2024-05-28T214302Z/r/image-tiff Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury. Microglia and astrocytes play key roles in the spinal cord injury micro-environment and share a close interaction. However, the mechanisms involved remain unclear. In this study, we found that after spinal cord injury, resting microglia (M0) were polarized into pro-inflammatory phenotypes (MG1 and MG3), while resting astrocytes were polarized into reactive and scar-forming phenotypes. The expression of growth arrest-specific 6 (Gas6) and its receptor Axl were significantly down-regulated in microglia and astrocytes after spinal cord injury. In vitro experiments showed that Gas6 had negative effects on the polarization of reactive astrocytes and pro-inflammatory microglia, and even inhibited the cross-regulation between them. We further demonstrated that Gas6 can inhibit the polarization of reactive astrocytes by suppressing the activation of the Yes-associated protein signaling pathway. This, in turn, inhibited the polarization of pro-inflammatory microglia by suppressing the activation of the nuclear factor-κB/p65 and Janus kinase/signal transducer and activator of transcription signaling pathways. In vivo experiments showed that Gas6 inhibited the polarization of pro-inflammatory microglia and reactive astrocytes in the injured spinal cord, thereby promoting tissue repair and motor function recovery. Overall, Gas6 may play a role in the treatment of spinal cord injury. It can inhibit the inflammatory pathway of microglia and polarization of astrocytes, attenuate the interaction between microglia and astrocytes in the inflammatory microenvironment, and thereby alleviate local inflammation and reduce scar formation in the spinal cord.
Collapse
Affiliation(s)
- Jiewen Chen
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Xiaolin Zeng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Le Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Wenwu Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Gang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Xing Cheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Peiqiang Su
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Williams PTJA, Schelbaum E, Ahmanna C, Alexander H, Kanté K, Soares S, Sharif H, Nothias F, Martin JH. Combined biomaterial scaffold and neuromodulation strategy to promote tissue repair and corticospinal connectivity after spinal cord injury in a rodent model. Exp Neurol 2024; 382:114965. [PMID: 39332797 DOI: 10.1016/j.expneurol.2024.114965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/10/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Spinal cord injury (SCI) damages the trauma site, leading to progressive and secondary structural defects rostral and caudal to the injury. Interruption of ascending and descending pathways produce motor, sensory, and autonomic impairments, driving the need for effective therapies. In this study, we address lesion site repair and promoting descending projections using a combined biomaterial-neuromodulation strategy in a rat model of cervical contusion SCI. To promote tissue repair, we used Chitosan fragmented physical hydrogel suspension (Cfphs), a biomaterial formulation optimized to mitigate inflammation and support tissue remodeling. To promote descending projections, we targeted the corticospinal motor system with dual motor cortex-trans-spinal direct current neuromodulation to promote spared corticospinal tract (CST) axon sprouting rostral and caudal to SCI. Cfphs, injected into the lesion site acutely, was followed by 10 days of daily neuromodulation. Analysis was made at the chronic phase, 8-weeks post-SCI. Compared with SCI only, Cfphs alone or in combination with neuromodulation prevented cavity formation, by promoting tissue remodeling at the injury site, abrogated astrogliosis surrounding the newly formed tissue, and enabled limited CST axon growth into the remodeled injury site. Cfphs alone significantly reduced CST axon dieback and was accompanied by preserving more CST axon gray matter projections rostral to SCI. Cfphs + neuromodulation produced sprouting rostral and caudal to injury. Our findings show that our novel biomaterial-neuromodulation combinatorial strategy achieves significant injury site tissue remodeling and promoted CST projections rostral and caudal to SCI.
Collapse
Affiliation(s)
- P T J A Williams
- City University of New York School of Medicine, Center for Discovery and Innovation, New York, USA
| | - Eva Schelbaum
- City University of New York School of Medicine, Center for Discovery and Innovation, New York, USA
| | - Chaimae Ahmanna
- Neuroscience Paris Seine NPS, CNRS UMR8246, INSERM U1130, UM119, Institut de Biologie Paris Seine IBPS, Sorbonne Université Sciences, Campus UPMC, 75005 Paris, France; Medjeduse, 57 Rue Richelieu, 75002 Paris, France
| | - Heather Alexander
- City University of New York School of Medicine, Center for Discovery and Innovation, New York, USA
| | - Kadia Kanté
- Neuroscience Paris Seine NPS, CNRS UMR8246, INSERM U1130, UM119, Institut de Biologie Paris Seine IBPS, Sorbonne Université Sciences, Campus UPMC, 75005 Paris, France; Medjeduse, 57 Rue Richelieu, 75002 Paris, France
| | - Sylvia Soares
- Neuroscience Paris Seine NPS, CNRS UMR8246, INSERM U1130, UM119, Institut de Biologie Paris Seine IBPS, Sorbonne Université Sciences, Campus UPMC, 75005 Paris, France
| | - Hisham Sharif
- City University of New York School of Medicine, Center for Discovery and Innovation, New York, USA
| | - Fatiha Nothias
- Neuroscience Paris Seine NPS, CNRS UMR8246, INSERM U1130, UM119, Institut de Biologie Paris Seine IBPS, Sorbonne Université Sciences, Campus UPMC, 75005 Paris, France.
| | - John H Martin
- City University of New York School of Medicine, Center for Discovery and Innovation, New York, USA; Graduate Center of the City University of New York School, New York, USA.
| |
Collapse
|
3
|
Zhang K, Wen R, Ma W, Ji H, He X, Yang Z, Liu D, Li X. P2Y12-targeted modulation of microglial phenotypes: A novel therapeutic strategy for enhanced axonal regeneration post-spinal cord injury. Life Sci 2024; 357:123057. [PMID: 39277132 DOI: 10.1016/j.lfs.2024.123057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
AIMS Microglia activation after spinal cord injury (SCI) is a double-edged sword, modulation of the activated microglia populations toward pro-regenerative phenotypes highlights the potential therapeutic implications. P2Y12, a microglia-specific marker, remains underexplored in its capacity to polarize microglial activation populations in SCI repair. We aimed to explore the effects of modulating P2Y12 on microglia function after spinal cord injury, and further on axonal regeneration and motor recovery after spinal cord injury. MATERIALS AND METHODS The study employed both in vitro and in vivo models, using BV2 cells and a mouse model of SCI, respectively. Ticagrelor, a P2Y12 antagonist, was administered via a collagen scaffold to ensure stable and sustained release. Transcriptome sequencing analysis, immunofluorescence staining, and Basso Mouse Scale (BMS) scores were used to assess microglial activation, axonal regeneration, and functional recovery. KEY FINDINGS Herein, we observed P2Y12+ microglia localized predominantly at the lesion periphery within 3 days post injury (dpi), manifesting a pro-inflammatory phenotype, but not anti-inflammatory phenotype. In vitro investigations revealed that P2Y12 inhibition of the activated microglia curtailed pro-inflammatory differentiation while augmenting anti-inflammatory differentiation. SIGNIFICANCE Leveraging this insight, we engineered a collagen scaffold-based delivery system for sustained release of the P2Y12 antagonist, ticagrelor, at the injury site in a mouse complete SCI model. Notably, P2Y12 suppression markedly enhanced axonal regeneration within the injured site and ameliorated lower limb motor functions in SCI mice. Collectively, our findings illuminate P2Y12-targeted microglial modulation as a promising therapeutic approach for SCI.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Runlin Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Wanrong Ma
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410078, Hunan Province, China
| | - Huaqing Ji
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410078, Hunan Province, China
| | - Xinghui He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xing Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410078, Hunan Province, China.
| |
Collapse
|
4
|
Cardoso R, Cardoso FSDS, Ramalho BDS, Maria GDS, Cavalcanti RR, Taboada TB, de Almeida JS, Martinez AMB, de Almeida FM. Inosine Improves Functional Recovery and Cell Morphology Following Compressive Spinal Cord Injury in Mice. Neurotrauma Rep 2024; 5:957-968. [PMID: 39464528 PMCID: PMC11512092 DOI: 10.1089/neur.2024.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Spinal cord injury (SCI) is one of the most serious conditions of the central nervous system, causing motor and sensory deficits that lead to a significant impairment in the quality of life. Previous studies have indicated that inosine can promote regeneration after SCI. Here we investigated the effects of inosine on the behavioral and morphological recovery after a compressive injury. Adult female C57BL/6 mice were subjected to laminectomy and spinal cord compression using a vascular clip. Inosine or saline injections were administered intraperitoneally, with the first dose performed 24 h after injury and daily for 7 days after injury. The mice were evaluated using Basso Mouse Scale (BMS), locomotor rating scale, and pinprick test for 8 weeks. At the end, the animals were anesthetized and euthanized, and the spinal cords were collected for morphological evaluation. Inosine-treated animals presented better results in the immunostaining for oligodendrocytes and in the number of myelinated fibers through semithin sections compared to saline-treated animals, showing that there was a greater preservation of the white matter. Analysis of the immunoreactivity of astrocytes and evaluation of the inflammatory profile with macrophage labeling revealed that the animals of the inosine group had a lower immunoreactivity when compared to control, which suggests a reduction of the glial scar and less inflammation, respectively, leading to a more favorable microenvironment for spinal cord regeneration. Indeed, inosine-treated animals scored higher on the BMS scale and presented better results on the pinprick test, indicating that the treatment contributed to motor and sensory recovery. After the animals were sacrificed, we obtained the electroneuromyography, where the inosine group showed a greater amplitude of the compound muscle action potential. These results indicate that inosine contributed to the regeneration process in the spinal cord of mice submitted to compressive injury and should be further investigated as a candidate for SCI therapy.
Collapse
Affiliation(s)
- Ricardo Cardoso
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Fellipe Soares dos Santos Cardoso
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Bruna dos Santos Ramalho
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Guilherme dos Santos Maria
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Roberta Ramos Cavalcanti
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Tiago Bastos Taboada
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Juliana Silva de Almeida
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Ana Maria Blanco Martinez
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Fernanda Martins de Almeida
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas—ICB/UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Lu ZJ, Pan QL, Lin FX. Epigenetic modifications of inflammation in spinal cord injury. Biomed Pharmacother 2024; 179:117306. [PMID: 39153436 DOI: 10.1016/j.biopha.2024.117306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Spinal cord injury (SCI) is a central nervous system injury that leads to neurological dysfunction or paralysis, which seriously affects patients' quality of life and causes a heavy social and economic burden. The pathological mechanism of SCI has not been fully revealed, resulting in unsatisfactory clinical treatment. Therefore, more research is urgently needed to reveal its precise pathological mechanism. Numerous studies have shown that inflammation is closely related to various pathological processes in SCI. Inflammatory response is an important pathological process leading to secondary injury, and sustained inflammatory response can exacerbate the injury and hinder the recovery of neurological function after injury. Epigenetic modification is considered to be an important regulatory mechanism in the pathological process of many diseases. Epigenetic modification mainly affects the function and characteristics of genes through the reversibility of mechanisms such as DNA methylation, histone modification, and regulation of non-coding RNA, thus having a significant impact on the pathological process of diseases and the survival state of the body. Recently, the role of epigenetic modification in the inflammatory response of SCI has gradually entered the field of view of researchers, and epigenetic modification may be a potential means to treat SCI. In this paper, we review the effects and mechanisms of different types of epigenetic modifications (including histone modifications, DNA methylation, and non-coding RNAs) on post-SCI inflammation and their potential therapeutic effects on inflammation to improve our understanding of the secondary SCI stage. This review aims to help identify new markers, signaling pathways and targeted drugs, and provide theoretical basis and new strategies for the diagnosis and treatment of SCI.
Collapse
Affiliation(s)
- Zhi-Jun Lu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| | - Qi-Lin Pan
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
6
|
Saker D, Sencar L, Coskun G, Sapmaz Ercakalli T, Yilmaz DM, Polat S. Galantamine and wedelolactone combined treatment suppresses LPS-induced NLRP3 inflammasome activation in microglial cells. Immunopharmacol Immunotoxicol 2024:1-10. [PMID: 39279139 DOI: 10.1080/08923973.2024.2405579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
CONTEXT Inflammasome NLR family pyrin domain-containing 3 (NLRP3) is associated with neurological disorders. Neuroinflammation can be suppressed by inhibiting NLRP3 inflammasome activation, decreasing neurodegenerative disorder progression. We devised a therapeutic technique that can reduce neuroinflammation induced by microglial activation, avoiding neurodegeneration. We aimed to investigate the mechanisms underlying the pharmacological effects of galantamine and wedelolactone by evaluating the response of the nuclear factor kappa B (NF-κB) signaling pathway and NLRP3 inflammasome in lipopolysaccharide (LPS)-activated N9 microglia. METHODS LPS and adenosine triphosphate were used to activate the NLRP3 inflammasome in N9 microglial cells, which were pretreated with galantamine and wedelolactone. Caspase-1, NLRP3, NF-κB, and interleukin (IL)-1β levels were measured using RT-qPCR and immunostaining. RESULTS Combined administration of galantamine and wedelolactone rescued microglial cells from LPS-induced cell death. Furthermore, treatment with galantamine and wedelolactone led to the suppression of NF-κB expression. NLRP3, caspase-1, and IL-1β levels were decreased by the combined treatment. DISCUSSION AND CONCLUSION The concurrent administration of galantamine and wedelolactone effectively suppresses the production of inflammatory cytokines and NLRP3 inflammasome activation in microglia. This inhibitory effect is likely linked to the NF-κB signaling pathway modulation. Therefore, this combined treatment is a potential therapeutic approach for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Dilek Saker
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Leman Sencar
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Gulfidan Coskun
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Tugce Sapmaz Ercakalli
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | | | - Sait Polat
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
7
|
Liang G, Lee YZ, Kow ASF, Lee QL, Cheng Lim LW, Yusof R, Tham CL, Ho YC, Lee MT. Neuroprotective effects of Gypenosides: A review on preclinical studies in neuropsychiatric disorders. Eur J Pharmacol 2024; 978:176766. [PMID: 38908668 DOI: 10.1016/j.ejphar.2024.176766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Gynostemma pentaphyllum (Thunb.) Makino is a perennial creeping herb belonging to the Cucurbitaceae family that has a long history of usage in traditional oriental medicine. Gypenosides are the primary bioactive compounds in Gynostemma pentaphyllum. Because of the medicinal value of gypenosides, functional food and supplements containing gypenosides have been promoted and consumed with popularity, especially among Asian communities. This review presented the progress made in the research of pharmacological properties of gypenosides on diseases of the nervous system and their possible mechanism of action. To date, preclinical studies have demonstrated the therapeutic effects of gypenosides in alleviating neuropsychiatric disorders like depression, Parkinson's disease, Alzheimer's disease, secondary dementia, stroke, optic neuritis, etc. Pharmacological studies have discovered that gypenosides can modulate various major signaling pathways like NF-κB, Nrf2, AKT, ERK1/2, contributing to the neuroprotective properties. However, there is a dearth of clinical research on gypenosides, with current investigations on the compounds being mainly conducted in vitro and on animals. Future studies focusing on isolating and purifying novel gypenosides and investigations on exploring the potential molecular mechanism underlying their biological activities are warranted, which may serve as a foundation for further clinical trials for the betterment of human health.
Collapse
Affiliation(s)
- Gengfan Liang
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia.
| | - Yu Zhao Lee
- Office of Postgraduate Studies, UCSI University, Kuala Lumpur, 56000, Malaysia; Faculty of Applied Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia.
| | | | - Qi Long Lee
- School of Health Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia.
| | - Luis Wei Cheng Lim
- School of Health Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia.
| | - Rohana Yusof
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia.
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang , 43400, Selangor, Malaysia; Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang , 43400, Selangor, Malaysia.
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan.
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia; Centre of Research for Mental Health and Well-being, UCSI University, Kuala Lumpur, 56000, Malaysia.
| |
Collapse
|
8
|
Ma D, Fu C, Li F, Ruan R, Lin Y, Li X, Li M, Zhang J. Functional biomaterials for modulating the dysfunctional pathological microenvironment of spinal cord injury. Bioact Mater 2024; 39:521-543. [PMID: 38883317 PMCID: PMC11179178 DOI: 10.1016/j.bioactmat.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 06/18/2024] Open
Abstract
Spinal cord injury (SCI) often results in irreversible loss of sensory and motor functions, and most SCIs are incurable with current medical practice. One of the hardest challenges in treating SCI is the development of a dysfunctional pathological microenvironment, which mainly comprises excessive inflammation, deposition of inhibitory molecules, neurotrophic factor deprivation, glial scar formation, and imbalance of vascular function. To overcome this challenge, implantation of functional biomaterials at the injury site has been regarded as a potential treatment for modulating the dysfunctional microenvironment to support axon regeneration, remyelination at injury site, and functional recovery after SCI. This review summarizes characteristics of dysfunctional pathological microenvironment and recent advances in biomaterials as well as the technologies used to modulate inflammatory microenvironment, regulate inhibitory microenvironment, and reshape revascularization microenvironment. Moreover, technological limitations, challenges, and future prospects of functional biomaterials to promote efficient repair of SCI are also discussed. This review will aid further understanding and development of functional biomaterials to regulate pathological SCI microenvironment.
Collapse
Affiliation(s)
- Dezun Ma
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Changlong Fu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Fenglu Li
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Renjie Ruan
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Yanming Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Min Li
- Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center, 966 Hengyu Road, Fuzhou, 350014, PR China
- Fujian Maternity and Child Health Hospital, 111 Daoshan Road, Fuzhou, 350005, PR China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 111 Daoshan Road, Fuzhou, 350005, PR China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| |
Collapse
|
9
|
Wang H, Zhao C, Rong Q, Cao J, Chen H, Li R, Zhang B, Xu P. The Role of Exosomes from Mesenchymal Stem Cells in Spinal Cord Injury: A Systematic Review. Int J Stem Cells 2024; 17:236-252. [PMID: 38016704 PMCID: PMC11361850 DOI: 10.15283/ijsc23092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 11/30/2023] Open
Abstract
Spinal cord injury (SCI) is a serious nervous system disease that usually leads to the impairment of the motor, sensory, and autonomic nervous functions of the spinal cord, and it places a heavy burden on families and healthcare systems every year. Due to the complex pathophysiological mechanism of SCI and the poor ability of neurons to regenerate, the current treatment scheme has very limited effects on the recovery of spinal cord function. In addition, due to their unique advantages, exosomes can be used as carriers for cargo transport. In recent years, some studies have confirmed that treatment with mesenchymal stem cells (MSCs) can promote the recovery of SCI nerve function. The therapeutic effect of MSCs is mainly related to exosomes secreted by MSCs, and exosomes may have great potential in SCI therapy. In this review, we summarized the repair mechanism of mesenchymal stem cells-derived exosomes (MSCs-Exos) in SCI treatment and discussed the microRNAs related to SCI treatment based on MSCs-Exos and their mechanism of action, which is helpful to further understand the role of exosomes in SCI.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Chunxia Zhao
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Qingqing Rong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Jinghe Cao
- Department of Reproduce, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Hongyi Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Ruolin Li
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Bin Zhang
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Peng Xu
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| |
Collapse
|
10
|
Tan Y, Lai T, Li Y, Tang Q, Zhang W, Liu Q, Wu S, Peng X, Sui X, Reggiori F, Jiang X, Chen Q, Wang C. An oil-in-gel type of organohydrogel loaded with methylprednisolone for the treatment of secondary injuries following spinal cord traumas. J Control Release 2024; 374:505-524. [PMID: 39182693 DOI: 10.1016/j.jconrel.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The secondary injuries following traumatic spinal cord injury (SCI) is a multiphasic and complex process that is difficult to treat. Although methylprednisolone (MP) is the only available pharmacological regime for SCI treatment, its efficacy remains controversial due to its very narrow therapeutic time window and safety concerns associated with high dosage. In this study, we have developed an oil-in-gel type of organohydrogel (OHG) in which the binary oleic-water phases coexist, for the local delivery of MP. This new OHG is fabricated by a glycol chitosan/oxidized hyaluronic acid hydrophilic network that is uniformly embedded with a biocompatible oil phase, and it can be effectively loaded with MP or other hydrophobic compounds. In addition to spatiotemporally control MP release, this biodegradable OHG also provides a brain tissue-mimicking scaffold that can promote tissue regeneration. OHG remarkably decreases the therapeutic dose of MP in animals and extends its treatment course over 21 d, thereby timely manipulating microglia/macrophages and their associated with signaling molecules to restore immune homeostasis, leading to a long-term functional improvement in a complete transection SCI rat model. Thus, this OHG represents a new type of gel for clinical treatment of secondary injuries in SCI.
Collapse
Affiliation(s)
- Yinqiu Tan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, PR China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Ting Lai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Qi Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Weijia Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Qi Liu
- The First Dongguan Affiliated Hospital Guangdong Medical University No. 42, Jiaoping Road Dongguan, Guangdong 523710, PR China
| | - Sihan Wu
- Center for Biomedical Optics and Photonics (CBOP)&College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronics Devices and systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, PR China
| | - Xiao Peng
- Center for Biomedical Optics and Photonics (CBOP)&College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronics Devices and systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaofeng Sui
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark.
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, PR China.
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.
| | - Cuifeng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Department of Neurosurgery, JiuJiang Hospital of Traditional Chinese Medicine, Jiujiang, PR China.
| |
Collapse
|
11
|
Gottipati MK, D'Amato AR, Saksena J, Popovich PG, Wang Y, Gilbert RJ. Delayed administration of interleukin-4 coacervate alleviates the neurotoxic phenotype of astrocytes and promotes functional recovery after a contusion spinal cord injury. J Neural Eng 2024; 21:046052. [PMID: 39029499 DOI: 10.1088/1741-2552/ad6596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/19/2024] [Indexed: 07/21/2024]
Abstract
Objective. Macrophages and astrocytes play a crucial role in the aftermath of a traumatic spinal cord injury (SCI). Infiltrating macrophages adopt a pro-inflammatory phenotype while resident astrocytes adopt a neurotoxic phenotype at the injury site, both of which contribute to neuronal death and inhibit axonal regeneration. The cytokine interleukin-4 (IL-4) has shown significant promise in preclinical models of SCI by alleviating the macrophage-mediated inflammation and promoting functional recovery. However, its effect on neurotoxic reactive astrocytes remains to be elucidated, which we explored in this study. We also studied the beneficial effects of a sustained release of IL-4 from an injectable biomaterial compared to bolus administration of IL-4.Approach. We fabricated a heparin-based coacervate capable of anchoring and releasing bioactive IL-4 and tested its efficacyin vitroandin vivo. Main results. We show that IL-4 coacervate is biocompatible and drives a robust anti-inflammatory macrophage phenotype in culture. We also show that IL-4 and IL-4 coacervate can alleviate the reactive neurotoxic phenotype of astrocytes in culture. Finally, using a murine model of contusion SCI, we show that IL-4 and IL-4 coacervate, injected intraspinally 2 d post-injury, can reduce macrophage-mediated inflammation, and alleviate neurotoxic astrocyte phenotype, acutely and chronically, while also promoting neuroprotection with significant improvements in hindlimb locomotor recovery. We observed that IL-4 coacervate can promote a more robust regenerative macrophage phenotypein vitro, as well as match its efficacyin vivo,compared to bolus IL-4.Significance. Our work shows the promise of coacervate as a great choice for local and prolonged delivery of cytokines like IL-4. We support this by showing that the coacervate can release bioactive IL-4, which acts on macrophages and astrocytes to promote a pro-regenerative environment following a SCI leading to robust neuroprotective and functional outcomes.
Collapse
Affiliation(s)
- Manoj K Gottipati
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
- Department of Neuroscience, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, United States of America
- Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, United States of America
| | - Anthony R D'Amato
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 134 Hollister Drive, 283 Kimball Hall, Ithaca, NY 14853, United States of America
| | - Jayant Saksena
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, United States of America
- Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, United States of America
| | - Yadong Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 134 Hollister Drive, 283 Kimball Hall, Ithaca, NY 14853, United States of America
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
| |
Collapse
|
12
|
Ding Y, Chen Q. Recent advances on signaling pathways and their inhibitors in spinal cord injury. Biomed Pharmacother 2024; 176:116938. [PMID: 38878684 DOI: 10.1016/j.biopha.2024.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Spinal cord injury (SCI) is a serious and disabling central nervous system injury. Its complex pathological mechanism can lead to sensory and motor dysfunction. It has been reported that signaling pathway plays a key role in the pathological process and neuronal recovery mechanism of SCI. Such as PI3K/Akt, MAPK, NF-κB, and Wnt/β-catenin signaling pathways. According to reports, various stimuli and cytokines activate these signaling pathways related to SCI pathology, thereby participating in the regulation of pathological processes such as inflammation response, cell apoptosis, oxidative stress, and glial scar formation after injury. Activation or inhibition of relevant pathways can delay inflammatory response, reduce neuronal apoptosis, prevent glial scar formation, improve the microenvironment after SCI, and promote neural function recovery. Based on the role of signaling pathways in SCI, they may be potential targets for the treatment of SCI. Therefore, understanding the signaling pathway and its inhibitors may be beneficial to the development of SCI therapeutic targets and new drugs. This paper mainly summarizes the pathophysiological process of SCI, the signaling pathways involved in SCI pathogenesis, and the potential role of specific inhibitors/activators in its treatment. In addition, this review also discusses the deficiencies and defects of signaling pathways in SCI research. It is hoped that this study can provide reference for future research on signaling pathways in the pathogenesis of SCI and provide theoretical basis for SCI biotherapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
13
|
Wang X, Cheng Z, Tai W, Shi M, Ayazi M, Liu Y, Sun L, Yu C, Fan Z, Guo B, He X, Sun D, Young W, Ren Y. Targeting foamy macrophages by manipulating ABCA1 expression to facilitate lesion healing in the injured spinal cord. Brain Behav Immun 2024; 119:431-453. [PMID: 38636566 DOI: 10.1016/j.bbi.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024] Open
Abstract
Spinal cord injury (SCI) triggers a complex cascade of events, including myelin loss, neuronal damage, neuroinflammation, and the accumulation of damaged cells and debris at the injury site. Infiltrating bone marrow derived macrophages (BMDMϕ) migrate to the epicenter of the SCI lesion, where they engulf cell debris including abundant myelin debris to become pro-inflammatory foamy macrophages (foamy Mϕ), participate neuroinflammation, and facilitate the progression of SCI. This study aimed to elucidate the cellular and molecular mechanisms underlying the functional changes in foamy Mϕ and their potential implications for SCI. Contusion at T10 level of the spinal cord was induced using a New York University (NYU) impactor (5 g rod from a height of 6.25 mm) in male mice. ABCA1, an ATP-binding cassette transporter expressed by Mϕ, plays a crucial role in lipid efflux from foamy cells. We observed that foamy Mϕ lacking ABCA1 exhibited increased lipid accumulation and a higher presence of lipid-accumulated foamy Mϕ as well as elevated pro-inflammatory response in vitro and in injured spinal cord. We also found that both genetic and pharmacological enhancement of ABCA1 expression accelerated lipid efflux from foamy Mϕ, reduced lipid accumulation and inhibited the pro-inflammatory response of foamy Mϕ, and accelerated clearance of cell debris and necrotic cells, which resulted in functional recovery. Our study highlights the importance of understanding the pathologic role of foamy Mϕ in SCI progression and the potential of ABCA1 as a therapeutic target for modulating the inflammatory response, promoting lipid metabolism, and facilitating functional recovery in SCI.
Collapse
Affiliation(s)
- Xi Wang
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, New Brunswick, NJ 08854, USA; Institute of Neurosciences, Fourth Military Medical University, Xi'an 710032, China; College of Life Sciences and Medicine, Northwest University, Xi'an 710069, China.
| | - Zhijian Cheng
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Wenjiao Tai
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Mingjun Shi
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Maryam Ayazi
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Yang Liu
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Li Sun
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Caiyong Yu
- Institute of Neurosciences, Fourth Military Medical University, Xi'an 710032, China
| | - Zhongmin Fan
- Department of Critical Care Medicine and Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an 710032, China
| | - Bin Guo
- Department of Pathology, Guizhou Medical University, Guiyang 550025, China
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Dongming Sun
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, New Brunswick, NJ 08854, USA
| | - Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, New Brunswick, NJ 08854, USA
| | - Yi Ren
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, New Brunswick, NJ 08854, USA; Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA.
| |
Collapse
|
14
|
Fan C, Cai H, Zhang L, Wu X, Yan J, Jin L, Hu B, He J, Chen Y, Zhao Y, Dai J. Constructing Linear-Oriented Pre-Vascularized Human Spinal Cord Tissues for Spinal Cord Injury Repair. Adv Healthc Mater 2024; 13:e2303388. [PMID: 38537119 DOI: 10.1002/adhm.202303388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Repairing spinal cord injury (SCI) is a global medical challenge lacking effective clinical treatment. Developing human-engineered spinal cord tissues that can replenish lost cells and restore a regenerative microenvironment offers promising potential for SCI therapy. However, creating vascularized human spinal cord-like tissues (VSCT) that mimic the diverse cell types and longitudinal parallel structural features of spinal cord tissues remains a significant hurdle. In the present study, VSCTs are engineered using embryonic human spinal cord-derived neural and endothelial cells on linear-ordered collagen scaffolds (LOCS). Studies have shown that astrocytes and endothelial cells align along the scaffolds in VSCT, supporting axon extension from various human neurons myelinated by oligodendrocytes. After transplantation into SCI rats, VSCT survives at the injury sites and promotes endogenous neural regeneration and vascularization, ultimately reducing scarring and enhancing behavioral functional recovery. It suggests that pre-vascularization of engineered spinal cord tissues is beneficial for SCI treatment and highlights the important role of exogenous endothelial cells in tissue engineering.
Collapse
Affiliation(s)
- Caixia Fan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, China
| | - Hui Cai
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
| | - Lulu Zhang
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xianming Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Junyan Yan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, China
| | - Lifang Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, China
| | - Baowei Hu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, China
| | - Jiaxiong He
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, China
| | - Yanyan Chen
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jianwu Dai
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| |
Collapse
|
15
|
Qian Z, Li R, Zhao T, Xie K, Li P, Li G, Shen N, Gong J, Hong X, Yang L, Li H. Blockade of the ADAM8-Fra-1 complex attenuates neuroinflammation by suppressing the Map3k4/MAPKs axis after spinal cord injury. Cell Mol Biol Lett 2024; 29:75. [PMID: 38755530 PMCID: PMC11100242 DOI: 10.1186/s11658-024-00589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Mechanical spinal cord injury (SCI) is a deteriorative neurological disorder, causing secondary neuroinflammation and neuropathy. ADAM8 is thought to be an extracellular metalloproteinase, which regulates proteolysis and cell adherence, but whether its intracellular region is involved in regulating neuroinflammation in microglia after SCI is unclear. METHODS Using animal tissue RNA-Seq and clinical blood sample examinations, we found that a specific up-regulation of ADAM8 in microglia was associated with inflammation after SCI. In vitro, microglia stimulated by HMGB1, the tail region of ADAM8, promoted microglial inflammation, migration and proliferation by directly interacting with ERKs and Fra-1 to promote activation, then further activated Map3k4/JNKs/p38. Using SCI mice, we used BK-1361, a specific inhibitor of ADAM8, to treat these mice. RESULTS The results showed that administration of BK-1361 attenuated the level of neuroinflammation and reduced microglial activation and recruitment by inhibiting the ADAM8/Fra-1 axis. Furthermore, treatment with BK-1361 alleviated glial scar formation, and also preserved myelin and axonal structures. The locomotor recovery of SCI mice treated with BK-1361 was therefore better than those without treatment. CONCLUSIONS Taken together, the results showed that ADAM8 was a critical molecule, which positively regulated neuroinflammatory development and secondary pathogenesis by promoting microglial activation and migration. Mechanically, ADAM8 formed a complex with ERK and Fra-1 to further activate the Map3k4/JNK/p38 axis in microglia. Inhibition of ADAM8 by treatment with BK-1361 decreased the levels of neuroinflammation, glial formation, and neurohistological loss, leading to favorable improvement in locomotor functional recovery in SCI mice.
Collapse
Affiliation(s)
- Zhanyang Qian
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- Department of Orthopedics, Zhongda Hospital of Southeast University, Nanjing, China
| | - Rulin Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- School of Postgraduate, Dalian Medical University, Dalian, China
| | - Tianyu Zhao
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- School of Postgraduate, Dalian Medical University, Dalian, China
| | - Kunxin Xie
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - PengFei Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- School of Postgraduate, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guangshen Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Na Shen
- School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Jiamin Gong
- School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Hong
- Department of Orthopedics, Zhongda Hospital of Southeast University, Nanjing, China
| | - Lei Yang
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| | - Haijun Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| |
Collapse
|
16
|
Zhang Y, Chen X, Wang X, Xu Y, Li J, Wu Y, Wang Z, Zhang S, Hu J, Qi Q. Hesperetin ameliorates spinal cord injury in rats through suppressing apoptosis, oxidative stress and inflammatory response. Eur J Pharmacol 2024; 971:176541. [PMID: 38556120 DOI: 10.1016/j.ejphar.2024.176541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Spinal cord injury (SCI), a fatal condition, is characterized by progressive tissue degradation and extreme functional deficits with limited treatment options. Hesperetin, a natural flavonoid with potent antioxidant, antiapoptotic and anti-inflammatory properties, has yet to be systematically investigated for its therapeutic effects on neurological damage in rat models of SCI. In this study, rats were given oral hesperetin once daily for 28 days, and their locomotion and histopathological changes were assessed. The findings demonstrated that hesperetin alleviates neurological damage caused by SCI. The observed behavioral improvement could be due to an increase in the survival rate of neurons and oligodendrocytes. This improvement further boosted the ability to repair tissue and form myelin after SCI, ultimately resulting in better neurological outcomes. Furthermore, the present study revealed that hesperetin possesses potent antioxidant capabilities in the context of SCI, reducing the levels of harmful oxygen free radicals and increasing the activity of antioxidant enzymes. Additionally, hesperetin markedly inhibited injury-induced apoptosis, as assessed by caspase-3 immunofluorescence staining and the expression level of caspase-3, indicating the ability of hesperetin to prevent cell death after SCI. Finally, after SCI, hesperetin treatment effectively reduced the expression of inflammatory factors, including IL-1β, TNFα, and NF-kB, demonstrating the anti-inflammatory effect of hesperetin. Together, our results suggest that hesperetin should be considered a valuable therapeutic aid following SCI, as its positive effects on the nervous system, including antioxidant, anti-inflammatory and antiapoptotic effects, may be crucial mechanisms through which hesperetin exerts neuroprotective effects against SCI.
Collapse
Affiliation(s)
- Yuxin Zhang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Xiaojie Chen
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Xiaoxuan Wang
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, China; Clinical Laboratory, Bengbu Municipal Second People Hospital, Bengbu, China
| | - Yibo Xu
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Jiaxin Li
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Yimin Wu
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Ziyao Wang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Suhui Zhang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Jianguo Hu
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China.
| | - Qi Qi
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Basic Medicine, Bengbu Medical University, Bengbu, China.
| |
Collapse
|
17
|
Zakeri Z, Heiderzadeh M, Kocaarslan A, Metin E, Hosseini Karimi SN, Saghati S, Vural A, Akyoldaş G, Baysal K, Yağcı Y, Gürsoy-Özdemir Y, Taşoğlu S, Rahbarghazi R, Sokullu E. Exosomes encapsulated in hydrogels for effective central nervous system drug delivery. Biomater Sci 2024; 12:2561-2578. [PMID: 38602364 DOI: 10.1039/d3bm01055d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The targeted delivery of pharmacologically active molecules, metabolites, and growth factors to the brain parenchyma has become one of the major challenges following the onset of neurodegeneration and pathological conditions. The therapeutic effect of active biomolecules is significantly impaired after systemic administration in the central nervous system (CNS) because of the blood-brain barrier (BBB). Therefore, the development of novel therapeutic approaches capable of overcoming these limitations is under discussion. Exosomes (Exo) are nano-sized vesicles of endosomal origin that have a high distribution rate in biofluids. Recent advances have introduced Exo as naturally suitable bio-shuttles for the delivery of neurotrophic factors to the brain parenchyma. In recent years, many researchers have attempted to regulate the delivery of Exo to target sites while reducing their removal from circulation. The encapsulation of Exo in natural and synthetic hydrogels offers a valuable strategy to address the limitations of Exo, maintaining their integrity and controlling their release at a desired site. Herein, we highlight the current and novel approaches related to the application of hydrogels for the encapsulation of Exo in the field of CNS tissue engineering.
Collapse
Affiliation(s)
- Ziba Zakeri
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
| | - Morteza Heiderzadeh
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
| | - Azra Kocaarslan
- Chemistry Department, Faculty of Science, İstanbul Technical University, İstanbul, Turkey
| | - Ecem Metin
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
| | | | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atay Vural
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Department of Neurology, School of Medicine, KoÒ« University, Istanbul 34450, Turkey
| | - Göktuğ Akyoldaş
- Department of Neurosurgery, Koç University Hospital, Istanbul 34450, Turkey
| | - Kemal Baysal
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Department of Biochemistry, School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Yusuf Yağcı
- Chemistry Department, Faculty of Science, İstanbul Technical University, İstanbul, Turkey
| | - Yasemin Gürsoy-Özdemir
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Department of Neurology, School of Medicine, KoÒ« University, Istanbul 34450, Turkey
| | - Savaş Taşoğlu
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Mechanical Engineering Department, School of Engineering, Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey
| |
Collapse
|
18
|
Morris S, Swift-LaPointe T, Yung A, Prevost V, George S, Bauman A, Kozlowski P, Samadi-Bahrami Z, Fournier C, Mattu PS, Parker L, Streijger F, Hirsch-Reinshagen V, Moore GRW, Kwon BK, Laule C. Advanced Magnetic Resonance Imaging Biomarkers of the Injured Spinal Cord: A Comparative Study of Imaging and Histology in Human Traumatic Spinal Cord Injury. J Neurotrauma 2024; 41:1223-1239. [PMID: 38318802 DOI: 10.1089/neu.2023.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
A significant problem in the diagnosis and management of traumatic spinal cord injury (tSCI) is the heterogeneity of secondary injury and the prediction of neurological outcome. Imaging biomarkers specific to myelin loss and inflammation after tSCI would enable detailed assessment of the pathophysiological processes underpinning secondary damage to the cord. Such biomarkers could be used to biologically stratify injury severity and better inform prognosis for neurological recovery. While much work has been done to establish magnetic resonance imaging (MRI) biomarkers for SCI in animal models, the relationship between imaging findings and the underlying pathology has been difficult to discern in human tSCI because of the paucity of human spinal cord tissue. We utilized post-mortem spinal cords from individuals who had a tSCI to examine this relationship by performing ex vivo MRI scans before histological analysis. We investigated the correlation between the histological distribution of myelin loss and inflammatory cells in the injured spinal cord and a number of myelin and inflammation-sensitive MRI measures: myelin water fraction (MWF), inhomogeneous magnetization transfer ratio (ihMTR), and diffusion tensor and diffusion kurtosis imaging-derived fractional anisotropy (FA) and axial, radial, and mean diffusivity (AD, RD, MD). The histological features were analyzed by staining with Luxol Fast Blue (LFB) for myelin lipids and Class II major histocompatibility complex (Class II MHC) and CD68 for microglia and macrophages. Both MWF and ihMTR were strongly correlated with LFB staining for myelin, supporting the use of both as biomarkers for myelin loss after SCI. A decrease in ihMTR was also correlated with the presence of Class II MHC positive immune cells. FA and RD correlated with both Class II MHC and CD68 and may therefore be useful biomarkers for inflammation after tSCI. Our work demonstrates the utility of advanced MRI techniques sensitive to biological tissue damage after tSCI, which is an important step toward using these MRI techniques in the clinic to aid in decision-making.
Collapse
Affiliation(s)
- Sarah Morris
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Physics and Astronomy, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Taylor Swift-LaPointe
- Physics and Astronomy, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Andrew Yung
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- UBC MRI Research Centre, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Valentin Prevost
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- UBC MRI Research Centre, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Shana George
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Andrew Bauman
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- UBC MRI Research Centre, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Piotr Kozlowski
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Physics and Astronomy, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- UBC MRI Research Centre, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Zahra Samadi-Bahrami
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Caron Fournier
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | | | - Lisa Parker
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Veronica Hirsch-Reinshagen
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - G R Wayne Moore
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Vancouver Spine Surgery Institute, Vancouver, British Columbia, Canada
- Orthopaedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Cornelia Laule
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Physics and Astronomy, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
You Y, Jiang J, Zheng G, Chen Z, Zhu YX, Ma H, Lin H, Guo X, Shi J. In Situ Piezoelectric-Catalytic Anti-Inflammation Promotes the Rehabilitation of Acute Spinal Cord Injury in Synergy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311429. [PMID: 38298173 DOI: 10.1002/adma.202311429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Indexed: 02/02/2024]
Abstract
Relieving inflammation via scavenging toxic reactive oxygen species (ROS) during the acute phase of spinal cord injury (SCI) proves to be an effective strategy to mitigate secondary spinal cord injury and improve recovery of motor function. However, commonly used corticosteroid anti-inflammatory drugs show adverse side effects which may induce increased risk of wound infection. Fortunately, hydrogen (H2), featuring selective antioxidant performance, easy penetrability, and excellent biosafety, is being extensively investigated as a potential anti-inflammatory therapeutic gas for the treatment of SCI. In this work, by a facile in situ growth approach of gold nanoparticles (AuNPs) on the piezoelectric BaTiO3, a particulate nanocomposite with Schottky heterojunction (Au@BT) is synthesized, which can generate H2 continuously by catalyzing H+ reduction through piezoelectric catalysis. Further, theoretical calculations are employed to reveal the piezoelectric catalytic mechanism of Au@BT. Transcriptomics analysis and nontargeted large-scale metabolomic analysis reveal the deeper mechanism of the neuroprotective effect of H2 therapy. The as-prepared Au@BT nanoparticle is first explored as a flexible hydrogen gas generator for efficient SCI therapy. This study highlights a promising prospect of nanocatalytic medicine for disease treatments by catalyzing H2 generation; thus, offering a significant alternative to conventional approaches against refractory spinal cord injury.
Collapse
Affiliation(s)
- Yanling You
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junjie Jiang
- Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, P. R. China
| | - Gang Zheng
- Department of Orthopedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, P. R. China
| | - Zhixin Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ya-Xuan Zhu
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, P. R. China
| | - Hongshi Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, P. R. China
| | - Xiang Guo
- Department of Orthopedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, P. R. China
| |
Collapse
|
20
|
Harmon JN, Hyde JE, Jensen DE, D'cessare EC, Odarenko AA, Bruce MF, Khaing ZZ. Quantifying injury expansion in the cervical spinal cord with intravital ultrafast contrast-enhanced ultrasound imaging. Exp Neurol 2024; 374:114681. [PMID: 38199511 PMCID: PMC10922898 DOI: 10.1016/j.expneurol.2024.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Spinal cord injury is characterized by hemodynamic disruption at the injury epicenter and hypoperfusion in the penumbra, resulting in progressive ischemia and cell death. This degenerative secondary injury process has been well-described, though mostly using ex vivo or depth-limited optical imaging techniques. Intravital contrast-enhanced ultrasound enables longitudinal, quantitative evaluation of anatomical and hemodynamic changes in vivo through the entire spinal parenchyma. Here, we used ultrasound imaging to visualize and quantify subacute injury expansion (through 72 h post-injury) in a rodent cervical contusion model. Significant intraparenchymal hematoma expansion was observed through 72 h post-injury (1.86 ± 0.17-fold change from acute, p < 0.05), while the volume of the ischemic deficit largely increased within 24 h post-injury (2.24 ± 0.27-fold, p < 0.05). Histology corroborated these findings; increased apoptosis, tissue and vessel loss, and sustained tissue hypoxia were observed at 72 h post-injury. Vascular resistance was significantly elevated in the remaining perfused tissue, likely due in part to deformation of the central sulcal artery nearest to the lesion site. In conjunction, substantial hyperemia was observed in all perilesional areas examined except the ipsilesional gray matter. This study demonstrates the utility of longitudinal ultrasound imaging as a quantitative tool for tracking injury progression in vivo.
Collapse
Affiliation(s)
- Jennifer N Harmon
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Jeffrey E Hyde
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Dylan E Jensen
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Emma C D'cessare
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Anton A Odarenko
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Matthew F Bruce
- Applied Physics Laboratory, University of Washington, Seattle, WA, USA.
| | - Zin Z Khaing
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| |
Collapse
|
21
|
Galli R, Uckermann O. Vibrational spectroscopy and multiphoton microscopy for label-free visualization of nervous system degeneration and regeneration. Biophys Rev 2024; 16:219-235. [PMID: 38737209 PMCID: PMC11078905 DOI: 10.1007/s12551-023-01158-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/22/2023] [Indexed: 05/14/2024] Open
Abstract
Neurological disorders, including spinal cord injury, peripheral nerve injury, traumatic brain injury, and neurodegenerative diseases, pose significant challenges in terms of diagnosis, treatment, and understanding the underlying pathophysiological processes. Label-free multiphoton microscopy techniques, such as coherent Raman scattering, two-photon excited autofluorescence, and second and third harmonic generation microscopy, have emerged as powerful tools for visualizing nervous tissue with high resolution and without the need for exogenous labels. Coherent Raman scattering processes as well as third harmonic generation enable label-free visualization of myelin sheaths, while their combination with two-photon excited autofluorescence and second harmonic generation allows for a more comprehensive tissue visualization. They have shown promise in assessing the efficacy of therapeutic interventions and may have future applications in clinical diagnostics. In addition to multiphoton microscopy, vibrational spectroscopy methods such as infrared and Raman spectroscopy offer insights into the molecular signatures of injured nervous tissues and hold potential as diagnostic markers. This review summarizes the application of these label-free optical techniques in preclinical models and illustrates their potential in the diagnosis and treatment of neurological disorders with a special focus on injury, degeneration, and regeneration. Furthermore, it addresses current advancements and challenges for bridging the gap between research findings and their practical applications in a clinical setting.
Collapse
Affiliation(s)
- Roberta Galli
- Medical Physics and Biomedical Engineering, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ortrud Uckermann
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Division of Medical Biology, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
22
|
Guo J, Tang X, Deng P, Hui H, Chen B, An J, Zhang G, Shi K, Wang J, He Y, Hao D, Yang H. Interleukin-4 from curcumin-activated OECs emerges as a central modulator for increasing M2 polarization of microglia/macrophage in OEC anti-inflammatory activity for functional repair of spinal cord injury. Cell Commun Signal 2024; 22:162. [PMID: 38448976 PMCID: PMC10916222 DOI: 10.1186/s12964-024-01539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
Microglia/macrophages are major contributors to neuroinflammation in the central nervous system (CNS) injury and exhibit either pro- or anti-inflammatory phenotypes in response to specific microenvironmental signals. Our latest in vivo and in vitro studies demonstrated that curcumin-treated olfactory ensheathing cells (aOECs) can effectively enhance neural survival and axonal outgrowth, and transplantation of aOECs improves the neurological outcome after spinal cord injury (SCI). The therapeutic effect is largely attributed to aOEC anti-inflammatory activity through the modulation of microglial polarization from the M1 to M2 phenotype. However, very little is known about what viable molecules from aOECs are actively responsible for the switch of M1 to M2 microglial phenotypes and the underlying mechanisms of microglial polarization. Herein, we show that Interleukin-4 (IL-4) plays a leading role in triggering the M1 to M2 microglial phenotype, appreciably decreasing the levels of M1 markers IL‑1β, IL‑6, tumour necrosis factor-alpha (TNF-α) and inducible nitric oxide synthase (iNOS) and elevating the levels of M2 markers Arg-1, TGF-β, IL-10, and CD206. Strikingly, blockade of IL-4 signaling by siRNA and a neutralizing antibody in aOEC medium reverses the transition of M1 to M2, and the activated microglia stimulated with the aOEC medium lacking IL-4 significantly decreases neuronal survival and neurite outgrowth. In addition, transplantation of aOECs improved the neurological function deficits after SCI in rats. More importantly, the crosstalk between JAK1/STAT1/3/6-targeted downstream signals and NF-κB/SOCS1/3 signaling predominantly orchestrates IL-4-modulated microglial polarization event. These results provide new insights into the molecular mechanisms of aOECs driving the M1-to-M2 shift of microglia and shed light on new therapies for SCI through the modulation of microglial polarization.
Collapse
Affiliation(s)
- Jianbin Guo
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xiangwen Tang
- Basic Medical School Academy, Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Peng Deng
- Basic Medical School Academy, Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hao Hui
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Chen
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jing An
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Gaorong Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Kuohao Shi
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jinchao Wang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yuqing He
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
23
|
Shultz RB, Hai N, Zhong Y. Local delivery of AdipoRon from self-assembled microparticles to inhibit myelin lipid uptake and to promote lipid efflux from rat macrophages. J Neural Eng 2024; 21:016028. [PMID: 38359460 DOI: 10.1088/1741-2552/ad29d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
Objective.Abundant lipid-laden macrophages are found at the injury site after spinal cord injury (SCI). These cells have been suggested to be pro-inflammatory and neurotoxic. AdipoRon, an adiponectin receptor agonist, has been shown to promote myelin lipid efflux from mouse macrophage foam cells. While it is an attractive therapeutic strategy, systemic administration of AdipoRon is likely to exert off-target effects. In addition, the pathophysiology after SCI in mice is different from that in humans, whereas rat and human SCI share similar functional and histological outcomes. In this study, we evaluated the effects of AdipoRon on rat macrophage foam cells and developed a drug delivery system capable of providing sustained local release of AdipoRon to the injured spinal cord.Approach.Rat macrophages were treated with myelin debris to generate anin vitromodel of SCI foam cells, and the effects of AdipoRon treatment on myelin uptake and efflux were studied. AdipoRon was then loaded into and released from microparticles made from dextran sulfate and fibrinogen for sustained release.Main results.AdipoRon treatment not only significantly promotes efflux of metabolized myelin lipids, but also inhibits uptake of myelin debris. Myelin debris alone does not appear to be inflammatory, but myelin debris treatment potentiates inflammation when administered along with pro-inflammatory lipopolysaccharide (LPS) and interferon-γ. AdipoRon significantly attenuated myelin lipid-induced potentiation of inflammation. Bioactive AdipoRon can be released in therapeutic doses from microparticles.Significance.These data suggest that AdipoRon is a promising therapeutic capable of reducing lipid accumulation via targeting both myelin lipid uptake and efflux, which potentially addresses chronic inflammation following SCI. Furthermore, we developed microparticle-based drug delivery systems for local delivery of AdipoRon to avoid deleterious side effects. This is the first study to release AdipoRon from drug delivery systems designed to reduce lipid accumulation and inflammation in reactive macrophages after SCI.
Collapse
Affiliation(s)
- Robert B Shultz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, United States of America
| | - Nan Hai
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, United States of America
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, United States of America
| |
Collapse
|
24
|
Wang S, Cheng L. The role of apoptosis in spinal cord injury: a bibliometric analysis from 1994 to 2023. Front Cell Neurosci 2024; 17:1334092. [PMID: 38293650 PMCID: PMC10825042 DOI: 10.3389/fncel.2023.1334092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Background Apoptosis after spinal cord injury (SCI) plays a pivotal role in the secondary injury mechanisms, which cause the ultimate neurologic insults. A better understanding of the molecular and cellular basis of apoptosis in SCI allows for improved glial and neuronal survival via the administrations of anti-apoptotic biomarkers. The knowledge structure, development trends, and research hotspots of apoptosis and SCI have not yet been systematically investigated. Methods Articles and reviews on apoptosis and SCI, published from 1st January 1994 to 1st Oct 2023, were retrieved from the Web of Science™. Bibliometrix in R was used to evaluate annual publications, countries, affiliations, authors, sources, documents, key words, and hot topics. Results A total of 3,359 publications in accordance with the criterions were obtained, which exhibited an ascending trend in annual publications. The most productive countries were the USA and China. Journal of Neurotrauma was the most impactive journal; Wenzhou Medical University was the most prolific affiliation; Cuzzocrea S was the most productive and influential author. "Apoptosis," "spinal-cord-injury," "expression," "activation," and "functional recovery" were the most frequent key words. Additionally, "transplantation," "mesenchymal stemness-cells," "therapies," "activation," "regeneration," "repair," "autophagy," "exosomes," "nlrp3 inflammasome," "neuroinflammation," and "knockdown" were the latest emerging key words, which may inform the hottest themes. Conclusions Apoptosis after SCI may cause the ultimate neurological damages. Development of novel treatments for secondary SCI mainly depends on a better understanding of apoptosis-related mechanisms in molecular and cellular levels. Such therapeutic interventions involve the application of anti-apoptotic agents, free radical scavengers, as well as anti-inflammatory drugs, which can be targeted to inhibit core events in cellular and molecular injury cascades pathway.
Collapse
Affiliation(s)
- Siqiao Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Yang Z, Sheng M, Wang M, Cheng L, Sun X. PKR inhibitor protects spinal cord injury through mitigating endoplasmic reticulum stress and pyroptosis. Neurochem Int 2024; 172:105632. [PMID: 37866691 DOI: 10.1016/j.neuint.2023.105632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/21/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
OBJECTIVES The goal of the study was to reveal the regulatory role of protein kinase R (PKR) in spinal cord injury (SCI), a devasting disorder of the neurological system, and to elucidate its potential mechanism. METHODS The established animal and cellular models of SCI were treated by the PKR inhibitor C12. Histological injury and tissue apoptosis were assessed via H&E staining and TUNEL assays, respectively. Basso-Beattie-Bresnahan (BBB) scoring as well as forelimb grip strength tests were employed to evaluate functional recovery. The production of ROS and cytokines were appraised via their related commercial kits. Western blot and immunofluorescence assay were used to examine protein expression. CCK-8 method was used to assay cell activity. Co-immunoprecipitation assay was conducted to measure the affinity of PKR with STAT1. RESULTS PKR expression was enhanced following SCI, and the PKR inhibitor C16 mitigated histological injury, cell apoptosis and water content in spinal cord, and improved function recovery following SCI. Meanwhile, C16 attenuated ER stress, pyroptosis, NLRP3 inflammasome and inflammation in mice with SCI and in BV-2 cells challenged with LPS. Additionally, PKR interacted with STAT1 in BV-2 cells, and STAT1 knockdown inhibited ER stress, pyroptosis and inflammation in BV-2 cells challenged with LPS. The protective role of C16 in BV-2 cells exposed to LPS were partly abolished by STAT1 overexpression. CONCLUSION PKR inhibition might be a prospective effective approach to attenuating SCI and accelerating function recovery through modulating microglial pyroptosis and ER stress.
Collapse
Affiliation(s)
- Ze Yang
- Spine Minimally Invasive Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Ming Sheng
- Joint Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Meng Wang
- Spine Minimally Invasive Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Long Cheng
- Spine Minimally Invasive Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Xin Sun
- Spine Minimally Invasive Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China.
| |
Collapse
|
26
|
Wei F, Wang T, Wang C, Zhang Z, Zhao J, Heng W, Tang Z, Du M, Yan X, Li X, Guo Z, Qian J, Zhou C. Cytoplasmic Escape of Mitochondrial DNA Mediated by Mfn2 Downregulation Promotes Microglial Activation via cGas-Sting Axis in Spinal Cord Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305442. [PMID: 38009491 PMCID: PMC10811505 DOI: 10.1002/advs.202305442] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/16/2023] [Indexed: 11/29/2023]
Abstract
Neuroinflammation is associated with poor outcomes in patients with spinal cord injury (SCI). Recent studies have demonstrated that stimulator of interferon genes (Sting) plays a key role in inflammatory diseases. However, the role of Sting in SCI remains unclear. In the present study, it is found that increased Sting expression is mainly derived from activated microglia after SCI. Interestingly, knockout of Sting in microglia can improve the recovery of neurological function after SCI. Microglial Sting knockout restrains the polarization of microglia toward the M1 phenotype and alleviates neuronal death. Furthermore, it is found that the downregulation of mitofusin 2 (Mfn2) expression in microglial cells leads to an imbalance in mitochondrial fusion and division, inducing the release of mitochondrial DNA (mtDNA), which mediates the activation of the cGas-Sting signaling pathway and aggravates inflammatory response damage after SCI. A biomimetic microglial nanoparticle strategy to deliver MASM7 (named MSNs-MASM7@MI) is established. In vitro, MSNs-MASM7@MI showed no biological toxicity and effectively delivered MASM7. In vivo, MSNs-MASM7@MI improves nerve function after SCI. The study provides evidence that cGas-Sting signaling senses Mfn2-dependent mtDNA release and that its activation may play a key role in SCI. These findings provide new perspectives and potential therapeutic targets for SCI treatment.
Collapse
Affiliation(s)
- Fei‐Long Wei
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Tian‐Fu Wang
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Chao‐Li Wang
- Department of Pharmaceutical AnalysisSchool of PharmacyFourth Military Medical UniversityXi'an710032China
| | - Zhen‐Peng Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences BeijingResearch Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical SciencesInstitute of LifeomicsBeijing102206China
| | - Jing‐Wei Zhao
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Wei Heng
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Zhen Tang
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Ming‐Rui Du
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Xiao‐Dong Yan
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Xiao‐Xiang Li
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Zheng Guo
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Ji‐Xian Qian
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Cheng‐Pei Zhou
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| |
Collapse
|
27
|
Rosner J, de Andrade DC, Davis KD, Gustin SM, Kramer JLK, Seal RP, Finnerup NB. Central neuropathic pain. Nat Rev Dis Primers 2023; 9:73. [PMID: 38129427 PMCID: PMC11329872 DOI: 10.1038/s41572-023-00484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Central neuropathic pain arises from a lesion or disease of the central somatosensory nervous system such as brain injury, spinal cord injury, stroke, multiple sclerosis or related neuroinflammatory conditions. The incidence of central neuropathic pain differs based on its underlying cause. Individuals with spinal cord injury are at the highest risk; however, central post-stroke pain is the most prevalent form of central neuropathic pain worldwide. The mechanisms that underlie central neuropathic pain are not fully understood, but the pathophysiology likely involves intricate interactions and maladaptive plasticity within spinal circuits and brain circuits associated with nociception and antinociception coupled with neuronal hyperexcitability. Modulation of neuronal activity, neuron-glia and neuro-immune interactions and targeting pain-related alterations in brain connectivity, represent potential therapeutic approaches. Current evidence-based pharmacological treatments include antidepressants and gabapentinoids as first-line options. Non-pharmacological pain management options include self-management strategies, exercise and neuromodulation. A comprehensive pain history and clinical examination form the foundation of central neuropathic pain classification, identification of potential risk factors and stratification of patients for clinical trials. Advanced neurophysiological and neuroimaging techniques hold promise to improve the understanding of mechanisms that underlie central neuropathic pain and as predictive biomarkers of treatment outcome.
Collapse
Affiliation(s)
- Jan Rosner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Daniel C de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Karen D Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sylvia M Gustin
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - John L K Kramer
- International Collaboration on Repair Discoveries, ICORD, University of British Columbia, Vancouver, Canada
- Department of Anaesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Rebecca P Seal
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
28
|
Hong JY, Lee J, Kim H, Yeo C, Jeon WJ, Lee YJ, Ha IH. Shinbaro2 enhances axonal extension beyond the glial scar for functional recovery in rats with contusive spinal cord injury. Biomed Pharmacother 2023; 168:115710. [PMID: 37862963 DOI: 10.1016/j.biopha.2023.115710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating event that often results in the inflammatory condition of glial scar tissue formation, impeding neural regeneration and recovery. Reducing the inflammatory response and inhibiting glial formation are promising strategies for improving SCI outcomes. Here, we introduce a new role for Shinbaro2 (Sh2), known for its anti-inflammatory and pain-reducing effects, in ameliorating glial scars formed in the damaged spinal cord and promoting axon growth after SCI. Sh2 was applied at various concentrations to cultivate primary spinal cord neurons. Concentrations of 1 and 2 mg/mL effectively enhanced cell viability and axonal outgrowth in spinal cord neurons subjected to hydrogen peroxide or laceration injury. Sh2 helped reduce neuroinflammation by increasing anti-inflammatory M2 macrophages (arginase 1) and decreasing inflammatory cells, ultimately reducing lesion size. In scar formation, Sh2 inhibited the expression of β-catenin and nestin in reactive astrocytes in the injured spinal cord. Moreover, Sh2 suppressed the expression of chondroitin sulfate proteoglycans and SOX9, which are involved in scar formation. Furthermore, Sh2 promoted the sprouting of serotonergic axons and the growth of neurofibrillary tangles, enhancing motor function recovery in SCI. These findings highlight the potential of Sh2 as an SCI therapeutic intervention, offering hope for neural and functional restoration in individuals with this debilitating condition.
Collapse
Affiliation(s)
- Jin Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - Hyun Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - Wan-Jin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea.
| |
Collapse
|
29
|
Fu SP, Wu XC, Yang RL, Zhao DZ, Cheng J, Qian H, Ao J, Zhang Q, Zhang T. The role and mechanisms of mesenchymal stem cells regulating macrophage plasticity in spinal cord injury. Biomed Pharmacother 2023; 168:115632. [PMID: 37806094 DOI: 10.1016/j.biopha.2023.115632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Spinal Cord Injury (SCI) is a devastating neurological disorder comprising primary mechanical injury and secondary inflammatory response-mediated injury for which an effective treatment is still unavailable. It is well known that secondary inflammatory responses are a significant cause of difficulties in neurological recovery. An immune imbalance between M1/M2 macrophages at the sites of injury is involved in developing and progressing the secondary inflammatory response. Recently, Mesenchymal Stem Cells (MSCs) have shown significant therapeutic potential in tissue engineering and regenerative medicine due to their potential multidirectional differentiation and immunomodulatory properties. Accumulating evidence shows that MSCs can regulate the balance of M1/M2 macrophage polarization, suppress downstream inflammatory responses, facilitate tissue repair and regeneration, and improve the prognosis of SCI. This article briefly overviews the impact of macrophages and MSCs on SCI and repair. It discusses the mechanisms by which MSCs regulate macrophage plasticity, including paracrine action, release of exosomes and apoptotic bodies, and metabolic reprogramming. Additionally, the article summarizes the relevant signaling pathways of MSCs that regulate macrophage polarization.
Collapse
Affiliation(s)
- Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiang-Chong Wu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Rui-Lin Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - De-Zhi Zhao
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jie Cheng
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Hu Qian
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
30
|
Akbari-Gharalari N, Ghahremani-Nasab M, Naderi R, Aliyari-Serej Z, Karimipour M, Shahabi P, Ebrahimi-Kalan A. Improvement of spinal cord injury symptoms by targeting the Bax/Bcl2 pathway and modulating TNF-α/IL-10 using Platelet-Rich Plasma exosomes loaded with dexamethasone. AIMS Neurosci 2023; 10:332-353. [PMID: 38188010 PMCID: PMC10767060 DOI: 10.3934/neuroscience.2023026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 01/09/2024] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition that results in impaired sensory and motor function due to the limited self-regenerative ability of the spinal cord. To address this issue, combination therapy has been proposed as an effective treatment strategy for SCI regeneration. In this study, Platelet-Rich Plasma (PRP)-derived exosomes loaded with dexamethasone were utilized in a mouse model of SCI compression. PRP-derived exosomes loaded with dexamethasone (Dex) were prepared using ultracentrifugation and sonication methods and were administered to the mice via intravenous injection. Following a four-week duration, behavioral assessments were administered to assess functional recuperation, and diverse metrics encompassing the expression of genes associated with apoptosis and antiapoptosis, serum cytokine concentrations and tissue sampling were subjected to thorough examination. The results of this study demonstrated that mice treated with PRP-derived exosomes loaded with Dex (ExoDex) exhibited altered levels of TNF-α and IL-10, along with decreased Bax and increased Bcl2 expression in comparison to the model group. Furthermore, intravenously injected ExoDex reduced the size of the lesion site, lymphocyte infiltration, vacuolation, cavity size and tissue disorganization while also improving locomotor recovery. We propose that the utilization of exosome-loaded Dex therapy holds potential as a promising and clinically relevant approach for injured spinal cord repair. However, further extensive research is warranted in this domain to validate and substantiate the outcomes presented in this study.
Collapse
Affiliation(s)
- Naeimeh Akbari-Gharalari
- Department of Neurosciences and Cognition, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ghahremani-Nasab
- Department of Tissue Engineering, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Naderi
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zeinab Aliyari-Serej
- Department of Applied Cell Sciences, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Rahmanian M, Ghahremani A, Kesharwani P, Oroojalian F, Sahebkar A. Nanomedicine innovations in spinal cord injury management: Bridging the gap. ENVIRONMENTAL RESEARCH 2023; 235:116563. [PMID: 37423366 DOI: 10.1016/j.envres.2023.116563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Spinal cord injury (SCI) has devastating effects on a person's physical, social, and professional well-being. It is a life-altering neurological condition that significantly impacts individuals and their caregivers on a socioeconomic level. Recent advancements in medical therapy have greatly improved the diagnosis, stability, survival rates, and overall well-being of SCI patients. However, there are still limited options available for enhancing neurological outcomes in these patients. The complex pathophysiology of SCI, along with the numerous biochemical and physiological changes that occur in the damaged spinal cord, contribute to this gradual improvement. Currently, there are no therapies that offer the possibility of recovery for SCI, although several therapeutic approaches are being developed. However, these therapies are still in the early stages and have not yet demonstrated effectiveness in repairing the damaged fibers, which hinders cellular regeneration and the full restoration of motor and sensory functions. Considering the importance of nanotechnology and tissue engineering in treating neural tissue injuries, this review focuses on the latest advancements in nanotechnology for SCI therapy and tissue healing. It examines research articles from the PubMed database that specifically address SCI in the field of tissue engineering, with an emphasis on nanotechnology as a therapeutic approach. The review evaluates the biomaterials used for treating this condition and the techniques employed to create nanostructured biomaterials.
Collapse
Affiliation(s)
- Mohsen Rahmanian
- School of Medicine, North Khorasan University of Medical Sciences, Bojnord, Iran
| | - Amirali Ghahremani
- Department of Neurology, North Khorasan University of Medical Sciences, Bojnord, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Jiang C, Chen Z, Wang X, Zhang Y, Guo X, Fan H, Huang D, He Y, Tang X, Ai Y, Liu Y, Yang H, Hao D. Curcumin-activated Olfactory Ensheathing Cells Improve Functional Recovery After Spinal Cord Injury by Modulating Microglia Polarization Through APOE/TREM2/NF-κB Signaling Pathway. J Neuroimmune Pharmacol 2023; 18:476-494. [PMID: 37658943 PMCID: PMC10577109 DOI: 10.1007/s11481-023-10081-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023]
Abstract
Transplantation of curcumin-activated olfactory ensheathing cells (aOECs) improved functional recovery in spinal cord injury (SCI) rats. Nevertheless, little is known considering the underlying mechanisms. At the present study, we investigated the promotion of regeneration and functional recovery after transplantation of aOECs into rats with SCI and the possible underlying molecular mechanisms. Primary OECs were prepared from the olfactory bulb of rats, followed by treatment with 1µM CCM at 7-10 days of culture, resulting in cell activation. Concomitantly, rat SCI model was developed to evaluate the effects of transplantation of aOECs in vivo. Subsequently, microglia were isolated, stimulated with 100 ng/mL lipopolysaccharide (LPS) for 24 h to polarize to M1 phenotype and treated by aOECs conditional medium (aOECs-CM) and OECs conditional medium (OECs-CM), respectively. Changes in the expression of pro-inflammatory and anti-inflammatory phenotypic markers expression were detected using western blotting and immunofluorescence staining, respectively. Finally, a series of molecular biological experiments including knock-down of triggering receptor expressed on myeloid cells 2 (TREM2) and analysis of the level of apolipoprotein E (APOE) expression were performed to investigate the underlying mechanism of involvement of CCM-activated OECs in modulating microglia polarization, leading to neural regeneration and function recovery. CCM-activated OECs effectively attenuated deleterious inflammation by regulating microglia polarization from the pro-inflammatory (M1) to anti-inflammatory (M2) phenotype in SCI rats and facilitated functional recovery after SCI. In addition, microglial polarization to M2 elicited by aOECs-CM in LPS-induced microglia was effectively reversed when TREM2 expression was downregulated. More importantly, the in vitro findings indicated that aOECs-CM potentiating LPS-induced microglial polarization to M2 was partially mediated by the TREM2/nuclear factor kappa beta (NF-κB) signaling pathway. Besides, the expression of APOE significantly increased in CCM-treated OECs. CCM-activated OECs could alleviate inflammation after SCI by switching microglial polarization from M1 to M2, which was likely mediated by the APOE/TREM2/NF-κB pathway, and thus ameliorated neurological function. Therefore, the present finding is of paramount significance to enrich the understanding of underlying molecular mechanism of aOECs-based therapy and provide a novel therapeutic approach for treatment of SCI.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, 710054 China
| | - Zhe Chen
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, 710054 China
| | - Xiaohui Wang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, 710054 China
| | - Yongyuan Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, 710054 China
| | - Xinyu Guo
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, 710054 China
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
| | - Hong Fan
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004 China
| | - Dageng Huang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, 710054 China
| | - Yuqing He
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
| | - Xiangwen Tang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
- Basic Medical School Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046 China
| | - Yixiang Ai
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, 710054 China
| | - Youjun Liu
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, 710054 China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, 710054 China
- Department of spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, 710054 China
| |
Collapse
|
33
|
Ding Y, Chen Q. The NF-κB Pathway: a Focus on Inflammatory Responses in Spinal Cord Injury. Mol Neurobiol 2023; 60:5292-5308. [PMID: 37286724 DOI: 10.1007/s12035-023-03411-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Spinal cord injury (SCI) is a type of central nervous system trauma that can lead to severe nerve injury. Inflammatory reaction after injury is an important pathological process leading to secondary injury. Long-term stimulation of inflammation can further deteriorate the microenvironment of the injured site, leading to the deterioration of neural function. Understanding the signaling pathways that regulate responses after SCI, especially inflammatory responses, is critical for the development of new therapeutic targets and approaches. Nuclear transfer factor-κB (NF-κB) has long been recognized as a key factor in regulating inflammatory responses. The NF-κB pathway is closely related to the pathological process of SCI. Inhibition of this pathway can improve the inflammatory microenvironment and promote the recovery of neural function after SCI. Therefore, the NF-κB pathway may be a potential therapeutic target for SCI. This article reviews the mechanism of inflammatory response after SCI and the characteristics of NF-κB pathway, emphasizing the effect of inhibiting NF-κB on the inflammatory response of SCI to provide a theoretical basis for the biological treatment of SCI.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
34
|
Kalashnikova I, Cambell H, Kolpek D, Park J. Optimization and characterization of miRNA-129-5p-encapsulated poly (lactic- co-glycolic acid) nanoparticles to reprogram activated microglia. NANOSCALE ADVANCES 2023; 5:3439-3452. [PMID: 37383067 PMCID: PMC10295030 DOI: 10.1039/d3na00149k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/05/2023] [Indexed: 06/30/2023]
Abstract
Microglia have become a therapeutic target of many inflammation-mediated diseases in the central nervous system (CNS). Recently, microRNA (miRNA) has been proposed as an important regulator of immune responses. Specifically, miRNA-129-5p has been shown to play critical roles in the regulation of microglia activation. We have demonstrated that biodegradable poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) modulated innate immune cells and limited neuroinflammation after injury to the CNS. In this study, we optimized and characterized PLGA-based NPs for miRNA-129-5p delivery to utilize their synergistic immunomodulatory features for activated microglia modulation. A series of nanoformulations employing multiple excipients including epigallocatechin gallate (EGCG), spermidine (Sp), or polyethyleneimine (PEI) for miRNA-129-5p complexation and miRNA-129-5p conjugation to PLGA (PLGA-miR) were utilized. We characterized a total of six nanoformulations through physicochemical, biochemical, and molecular biological methods. In addition, we investigated the immunomodulatory effects of multiple nanoformulations. The data indicated that the immunomodulatory effects of nanoformulation, PLGA-miR with the excipient Sp (PLGA-miR+Sp) and PEI (PLGA-miR+PEI) were significant compared to other nanoformulations including naked PLGA-based NP. These nanoformulations promoted a sustained release of miRNA-129-5p and polarization of activated microglia into a more pro-regenerative phenotype. Moreover, they enhanced the expression of multiple regeneration-associated factors, while alleviating the expression of pro-inflammatory factors. Collectively, the proposed nanoformulations in this study highlight the promising therapeutic tools for synergistic immunomodulatory effects between PLGA-based NPs and miRNA-129-5p to modulate activated microglia which will have numerous applications for inflammation-derived diseases.
Collapse
Affiliation(s)
- Irina Kalashnikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 S. Limestone Lexington KY 40506 USA +1-859-257-1850
| | - Heather Cambell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 S. Limestone Lexington KY 40506 USA +1-859-257-1850
| | - Daniel Kolpek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 S. Limestone Lexington KY 40506 USA +1-859-257-1850
| | - Jonghyuck Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 S. Limestone Lexington KY 40506 USA +1-859-257-1850
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky Lexington KY USA
| |
Collapse
|
35
|
Lund MC, Ellman DG, Nielsen PV, Raffaele S, Fumagalli M, Guzman R, Degn M, Brambilla R, Meyer M, Clausen BH, Lambertsen KL. Selective Inhibition of Soluble Tumor Necrosis Factor Alters the Neuroinflammatory Response following Moderate Spinal Cord Injury in Mice. BIOLOGY 2023; 12:845. [PMID: 37372129 DOI: 10.3390/biology12060845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Clinical and animal model studies have implicated inflammation and glial and peripheral immune cell responses in the pathophysiology of spinal cord injury (SCI). A key player in the inflammatory response after SCI is the pleiotropic cytokine tumor necrosis factor (TNF), which exists both in both a transmembrane (tmTNF) and a soluble (solTNF) form. In the present study, we extend our previous findings of a therapeutic effect of topically blocking solTNF signaling after SCI for three consecutive days on lesion size and functional outcome to study the effect on spatio-temporal changes in the inflammatory response after SCI in mice treated with the selective solTNF inhibitor XPro1595 and compared to saline-treated mice. We found that despite comparable TNF and TNF receptor levels between XPro1595- and saline-treated mice, XPro1595 transiently decreased pro-inflammatory interleukin (IL)-1β and IL-6 levels and increased pro-regenerative IL-10 levels in the acute phase after SCI. This was complemented by a decrease in the number of infiltrated leukocytes (macrophages and neutrophils) in the lesioned area of the spinal cord and an increase in the number of microglia in the peri-lesion area 14 days after SCI, followed by a decrease in microglial activation in the peri-lesion area 21 days after SCI. This translated into increased myelin preservation and improved functional outcomes in XPro1595-treated mice 35 days after SCI. Collectively, our data suggest that selective targeting of solTNF time-dependently modulates the neuroinflammatory response by favoring a pro-regenerative environment in the lesioned spinal cord, leading to improved functional outcomes.
Collapse
Affiliation(s)
- Minna Christiansen Lund
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Ditte Gry Ellman
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Pernille Vinther Nielsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
| | - Stefano Raffaele
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Raphael Guzman
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Matilda Degn
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Roberta Brambilla
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Brain Research Inter-Disciplinary Guided Excellence (BRIDGE), Department of Clinical Research, 5000 Odense, Denmark
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- Brain Research Inter-Disciplinary Guided Excellence (BRIDGE), Department of Clinical Research, 5000 Odense, Denmark
| | - Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Brain Research Inter-Disciplinary Guided Excellence (BRIDGE), Department of Clinical Research, 5000 Odense, Denmark
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- Brain Research Inter-Disciplinary Guided Excellence (BRIDGE), Department of Clinical Research, 5000 Odense, Denmark
| |
Collapse
|
36
|
Ortega MA, Fraile-Martinez O, García-Montero C, Haro S, Álvarez-Mon MÁ, De Leon-Oliva D, Gomez-Lahoz AM, Monserrat J, Atienza-Pérez M, Díaz D, Lopez-Dolado E, Álvarez-Mon M. A comprehensive look at the psychoneuroimmunoendocrinology of spinal cord injury and its progression: mechanisms and clinical opportunities. Mil Med Res 2023; 10:26. [PMID: 37291666 PMCID: PMC10251601 DOI: 10.1186/s40779-023-00461-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating and disabling medical condition generally caused by a traumatic event (primary injury). This initial trauma is accompanied by a set of biological mechanisms directed to ameliorate neural damage but also exacerbate initial damage (secondary injury). The alterations that occur in the spinal cord have not only local but also systemic consequences and virtually all organs and tissues of the body incur important changes after SCI, explaining the progression and detrimental consequences related to this condition. Psychoneuroimmunoendocrinology (PNIE) is a growing area of research aiming to integrate and explore the interactions among the different systems that compose the human organism, considering the mind and the body as a whole. The initial traumatic event and the consequent neurological disruption trigger immune, endocrine, and multisystem dysfunction, which in turn affect the patient's psyche and well-being. In the present review, we will explore the most important local and systemic consequences of SCI from a PNIE perspective, defining the changes occurring in each system and how all these mechanisms are interconnected. Finally, potential clinical approaches derived from this knowledge will also be collectively presented with the aim to develop integrative therapies to maximize the clinical management of these patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Sergio Haro
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Ángel Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Ana M. Gomez-Lahoz
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Mar Atienza-Pérez
- Service of Rehabilitation, National Hospital for Paraplegic Patients, Carr. de la Peraleda, S/N, 45004 Toledo, Spain
| | - David Díaz
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Elisa Lopez-Dolado
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology Service and Internal Medicine, University Hospital Príncipe de Asturias (CIBEREHD), 28806 Alcala de Henares, Spain
| |
Collapse
|
37
|
Shafqat A, Albalkhi I, Magableh HM, Saleh T, Alkattan K, Yaqinuddin A. Tackling the glial scar in spinal cord regeneration: new discoveries and future directions. Front Cell Neurosci 2023; 17:1180825. [PMID: 37293626 PMCID: PMC10244598 DOI: 10.3389/fncel.2023.1180825] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Axonal regeneration and functional recovery are poor after spinal cord injury (SCI), typified by the formation of an injury scar. While this scar was traditionally believed to be primarily responsible for axonal regeneration failure, current knowledge takes a more holistic approach that considers the intrinsic growth capacity of axons. Targeting the SCI scar has also not reproducibly yielded nearly the same efficacy in animal models compared to these neuron-directed approaches. These results suggest that the major reason behind central nervous system (CNS) regeneration failure is not the injury scar but a failure to stimulate axon growth adequately. These findings raise questions about whether targeting neuroinflammation and glial scarring still constitute viable translational avenues. We provide a comprehensive review of the dual role of neuroinflammation and scarring after SCI and how future research can produce therapeutic strategies targeting the hurdles to axonal regeneration posed by these processes without compromising neuroprotection.
Collapse
|
38
|
Mussen F, Broeckhoven JV, Hellings N, Schepers M, Vanmierlo T. Unleashing Spinal Cord Repair: The Role of cAMP-Specific PDE Inhibition in Attenuating Neuroinflammation and Boosting Regeneration after Traumatic Spinal Cord Injury. Int J Mol Sci 2023; 24:ijms24098135. [PMID: 37175842 PMCID: PMC10179671 DOI: 10.3390/ijms24098135] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is characterized by severe neuroinflammation and hampered neuroregeneration, which often leads to permanent neurological deficits. Current therapies include decompression surgery, rehabilitation, and in some instances, the use of corticosteroids. However, the golden standard of corticosteroids still achieves minimal improvements in functional outcomes. Therefore, new strategies tackling the initial inflammatory reactions and stimulating endogenous repair in later stages are crucial to achieving functional repair in SCI patients. Cyclic adenosine monophosphate (cAMP) is an important second messenger in the central nervous system (CNS) that modulates these processes. A sustained drop in cAMP levels is observed during SCI, and elevating cAMP is associated with improved functional outcomes in experimental models. cAMP is regulated in a spatiotemporal manner by its hydrolyzing enzyme phosphodiesterase (PDE). Growing evidence suggests that inhibition of cAMP-specific PDEs (PDE4, PDE7, and PDE8) is an important strategy to orchestrate neuroinflammation and regeneration in the CNS. Therefore, this review focuses on the current evidence related to the immunomodulatory and neuroregenerative role of cAMP-specific PDE inhibition in the SCI pathophysiology.
Collapse
Affiliation(s)
- Femke Mussen
- Department of Neuroscience, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
| | - Jana Van Broeckhoven
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
- Department of Immunology and Infection, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
| | - Niels Hellings
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
- Department of Immunology and Infection, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
| | - Melissa Schepers
- Department of Neuroscience, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229ER Maastricht, The Netherlands
| |
Collapse
|
39
|
Rong Y, Wang Z, Tang P, Wang J, Ji C, Chang J, Zhu Y, Ye W, Bai J, Liu W, Yin G, Yu L, Zhou X, Cai W. Engineered extracellular vesicles for delivery of siRNA promoting targeted repair of traumatic spinal cord injury. Bioact Mater 2023; 23:328-342. [PMID: 36474657 PMCID: PMC9706413 DOI: 10.1016/j.bioactmat.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/26/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
Spinal cord injury (SCI) is a severe disease of the nervous system that causes irreparable damage and loss of function, for which no effective treatments are available to date. Engineered extracellular vesicles (EVs) carrying therapeutic molecules hold promise as an alternative SCI therapy depending on the specific functionalized EVs and the appropriate engineering strategy. In this study, we demonstrated the design of a drug delivery system of peptide CAQK-modified, siRNA-loaded EVs (C-EVs-siRNA) for SCI-targeted therapy. The peptide CAQK was anchored through a chemical modification to the membranes of EVs isolated from induced neural stem cells (iNSCs). CCL2-siRNA was then loaded into the EVs through electroporation. The modified EVs still maintained the basic properties of EVs and showed favorable targeting and therapeutic effects in vitro and in vivo. C-EVs-siRNA specifically delivered siRNA to the SCI region and was taken up by target cells. C-EVs-siRNA used the inherent anti-inflammatory and neuroreparative functions of iNSCs-derived EVs in synergy with the loaded siRNA, thus enhancing the therapeutic effect against SCI. The combination of targeted modified EVs and siRNA effectively regulated the microenvironmental disturbance after SCI, promoted the transformation of microglia/macrophages from M1 to M2 and limited the negative effects of the inflammatory response and neuronal injury on functional recovery in mice after SCI. Thus, engineered EVs are a potentially feasible and efficacious treatment for SCI, and may also be used to develop targeted treatments for other diseases.
Collapse
Affiliation(s)
- Yuluo Rong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhuanghui Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Pengyu Tang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiaxing Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chengyue Ji
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jie Chang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yufeng Zhu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wu Ye
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jianling Bai
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wei Liu
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Lipeng Yu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xuhui Zhou
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
- Department of Orthopedics, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, 200003, China
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| |
Collapse
|
40
|
Zeng CW. Multipotent Mesenchymal Stem Cell-Based Therapies for Spinal Cord Injury: Current Progress and Future Prospects. BIOLOGY 2023; 12:biology12050653. [PMID: 37237467 DOI: 10.3390/biology12050653] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Spinal cord injury (SCI) represents a significant medical challenge, often resulting in permanent disability and severely impacting the quality of life for affected individuals. Traditional treatment options remain limited, underscoring the need for novel therapeutic approaches. In recent years, multipotent mesenchymal stem cells (MSCs) have emerged as a promising candidate for SCI treatment due to their multifaceted regenerative capabilities. This comprehensive review synthesizes the current understanding of the molecular mechanisms underlying MSC-mediated tissue repair in SCI. Key mechanisms discussed include neuroprotection through the secretion of growth factors and cytokines, promotion of neuronal regeneration via MSC differentiation into neural cell types, angiogenesis through the release of pro-angiogenic factors, immunomodulation by modulating immune cell activity, axonal regeneration driven by neurotrophic factors, and glial scar reduction via modulation of extracellular matrix components. Additionally, the review examines the various clinical applications of MSCs in SCI treatment, such as direct cell transplantation into the injured spinal cord, tissue engineering using biomaterial scaffolds that support MSC survival and integration, and innovative cell-based therapies like MSC-derived exosomes, which possess regenerative and neuroprotective properties. As the field progresses, it is crucial to address the challenges associated with MSC-based therapies, including determining optimal sources, intervention timing, and delivery methods, as well as developing standardized protocols for MSC isolation, expansion, and characterization. Overcoming these challenges will facilitate the translation of preclinical findings into clinical practice, providing new hope and improved treatment options for individuals living with the devastating consequences of SCI.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
41
|
Liu J, Tian J, Xie R, Chen L. CK2 inhibitor DMAT ameliorates spinal cord injury by increasing autophagy and inducing anti-inflammatory microglial polarization. Neurosci Lett 2023; 805:137222. [PMID: 37019269 DOI: 10.1016/j.neulet.2023.137222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Spinal cord injury (SCI) is a destructive and disabling nerve injury from which complete recovery has not yet been achieved due to complex pathology. Casein kinase II (CK2) is a pleiotropic serine/threonine protein kinase that plays an essential role in the nervous system. This study aimed to investigate the role of CK2 in SCI to understand the pathogenesis of SCI and explore new therapeutic methods. The SCI rat model of C5 unilateral clamp was established by modified clamp method in male adult SD rats. Then, CK2 inhibitor DMAT was used to treat SCI rats, and the behaviour, pathological changes in the spinal cord and microglial polarization were analysed. Additionally, the effects of DMAT on the polarization and autophagy of microglial BV-2 cells were investigated in vitro, and the effects of BV-2 polarization on spinal cord neuronal cells were analysed by Transwell coculture. Results showed that DMAT significantly increased the BBB score, improved histopathological injury, decreased the expression of inflammatory cytokines, and promoted M2 polarization of microglia in SCI rats. In vitro experiments further confirmed that DMAT could promote the polarization of BV-2 to the M2 type, promote autophagy, and reverse the LPS-induced decline in cell viability and increase in apoptosis of neuronal cells. The use of 3-MA confirmed that autophagy plays an important role in DMAT promoting M2 polarization of BV-2 to improve neuronal cell viability. In conclusion, CK2 inhibitor DMAT improved SCI by inducing anti-inflammatory polarization of microglia through autophagy and is a potential therapeutic target for SCI.
Collapse
|
42
|
The Role of Tumor Necrosis Factor Following Spinal Cord Injury: A Systematic Review. Cell Mol Neurobiol 2023; 43:925-950. [PMID: 35604578 DOI: 10.1007/s10571-022-01229-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022]
Abstract
Pre-clinical studies place tumor necrosis factor (TNF) as a central player in the inflammatory response after spinal cord injury (SCI), and blocking its production and/or activity has been proposed as a possible treatment option after SCI. This systematic review provides an overview of the literature on the temporal and cellular expression of TNF after SCI and clarifies the potential for its therapeutic manipulation in SCI. A systematic search was performed in EMBASE (Ovid), MEDLINE (Ovid), and Web of Science (Core Collection). The search terms were the MeSH forms of tumor necrosis factor and spinal cord injury in the different databases, and the last search was performed on February 3, 2021. We found twenty-four articles examining the expression of TNF, with most using a thoracic contusive SCI model in rodents. Two articles described the expression of TNF receptors in the acute phase after SCI. Twenty-one articles described the manipulation of TNF signaling using genetic knock-out, pharmaceutical inhibition, or gain-of-function approaches. Overall, TNF expression increased rapidly after SCI, within the first hours, in resident cells (neurons, astrocytes, oligodendrocytes, and microglia) and again in macrophages in the chronic phase after injury. The review underscores the complexity of TNF's role after SCI and indicates that TNF inhibition is a promising therapeutic option. This review concludes that TNF plays a significant role in the inflammatory response after SCI and suggests that targeting TNF signaling is a feasible therapeutic approach.
Collapse
|
43
|
Ge X, Zhou Z, Yang S, Ye W, Wang Z, Wang J, Xiao C, Cui M, Zhou J, Zhu Y, Wang R, Gao Y, Wang H, Tang P, Zhou X, Wang C, Cai W. Exosomal USP13 derived from microvascular endothelial cells regulates immune microenvironment and improves functional recovery after spinal cord injury by stabilizing IκBα. Cell Biosci 2023; 13:55. [PMID: 36915206 PMCID: PMC10012460 DOI: 10.1186/s13578-023-01011-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Spinal cord injury (SCI) can result in irreversible sensory and motor disability with no effective treatment currently. After SCI, infiltrated macrophages accumulate in epicenter through destructed blood-spinal cord barrier (BSCB). Further, great majority of macrophages are preferentially polarized to M1 phenotype, with only a few transient M2 phenotype. The purpose of this study was to explore roles of vascular endothelial cells in microglia/macrophages polarization and the underlying mechanism. Lipopolysaccharide (LPS) was used to pretreat BV2 microglia and RAW264.7 macrophages followed by administration of conditioned medium from microvascular endothelial cell line bEnd.3 cells (ECM). Analyses were then performed to determine the effects of exosomes on microglia/macrophages polarization and mitochondrial function. The findings demonstrated that administration of ECM shifted microglia/macrophages towards M2 polarization, ameliorated mitochondrial impairment, and reduced reactive oxygen species (ROS) production in vitro. Notably, administration of GW4869, an exosomal secretion inhibitor, significantly reversed these observed benefits. Further results revealed that exosomes derived from bEnd.3 cells (Exos) promote motor rehabilitation and M2 polarization of microglia/macrophages in vivo. Ubiquitin-specific protease 13 (USP13) was shown to be significantly enriched in BV2 microglia treated with Exos. USP13 binds to, deubiquitinates and stabilizes the NF-κB inhibitor alpha (IκBα), thus regulating microglia/macrophages polarization. Administration of the selective IκBα inhibitor betulinic acid (BA) inhibited the beneficial effect of Exos in vivo. These findings uncovered the potential mechanism underlying the communications between vascular endothelial cells and microglia/macrophages after SCI. In addition, this study indicates exosomes might be a promising therapeutic strategy for SCI treatment.
Collapse
Affiliation(s)
- Xuhui Ge
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zheng Zhou
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Siting Yang
- Department of Anesthesiology and Nursing, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wu Ye
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhuanghui Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiaxing Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chenyu Xiao
- Department of Human Anatomy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Min Cui
- Department of Human Anatomy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jiawen Zhou
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yufeng Zhu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Rixiao Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yu Gao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Haofan Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Pengyu Tang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xuhui Zhou
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Ce Wang
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
44
|
Dai C, Qu B, Peng B, Liu B, Li Y, Niu C, Peng B, Li D. Phosphoglycerate mutase 5 facilitates mitochondrial dysfunction and neuroinflammation in spinal tissues after spinal cord injury. Int Immunopharmacol 2023; 116:109773. [PMID: 36773566 DOI: 10.1016/j.intimp.2023.109773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/27/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023]
Abstract
Spinal cord injury (SCI) is a high incidence worldwide that causes a heavy physical and psychological burden to patients. It is urgent to further reveal the pathological mechanism and effective treatment of SCI. Mitochondrial dysfunction plays an important role in the disease progression of SCI. As a mitochondrial membrane protein, phosphoglycerate mutase 5 (PGAM5) is mainly involved in mitochondrial function and mitosis to modulate cellular physiological functions, but the roles of PGAM5 in spinal tissues remain to be unreported after SCI. The purpose of this study was to evaluate the role of PGAM5 in SCI mice and its relationship with neuroinflammation. The results showed that the mitochondrial membrane protein PGAM5 was involved in microglia activation after SCI, and PGAM5 deletion could improve mitochondrial dysfunction (including abnormal mtDNA, ATP synthases, and ATP levels, Cyt C expression, and ROS and rGSH levels) in spinal cord tissue after SCI, Arg1/iNOS mRNA level, iNOS expression, and pro-inflammatory cytokines TNF-α, IL-1β, and IL-18 levels. In vitro, H2O2 increased TNF-α, IL-1β, and IL-18 levels in BV2 cells, and PGAM5-sh and Nrf2 activators significantly reversed H2O2-induced iNOS expression and proinflammatory cytokine production. Furthermore, IP/Western blotting results revealed that PGAM5-sh treatment significantly reduced the interaction of PGAM5 with Nrf2 and enhanced the nuclear translocation of Nrf2 in BV2 cells. The data suggested that PGAM5 was involved in the cascade of oxidative stress and inflammatory response in microglia via facilitating the expression level of Nrf2 in the nucleus after SCI. It provided a reference for clarifying the pathological mechanism and therapeutic target of SCI.
Collapse
Affiliation(s)
- Chen Dai
- Orthopedics and Trauma Department, The 963rd (224th) Hospital of People's Liberation Army, 963rd Hospital of Joint Logistics Support Force of PLA, Jiamusi, Heilongjiang 154007, China; Department of Orthopedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing 100039, China
| | - Bo Qu
- Tianjin University, Tianjin Key Laboratory for Disaster and Emergency Medicine Technology, Tianjin 300072, China
| | - Bibo Peng
- Outpatient Department, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100039, China
| | - Bin Liu
- Department of Orthopaedics, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yongchao Li
- Department of Orthopedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing 100039, China
| | - Chunlei Niu
- Department of Orthopedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing 100039, China
| | - Baogan Peng
- Department of Orthopedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing 100039, China.
| | - Duanming Li
- Department of Orthopedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing 100039, China.
| |
Collapse
|
45
|
Gu G, Zhu B, Ren J, Song X, Fan B, Ding H, Shang J, Wu H, Li J, Wang H, Li J, Wei Z, Feng S. Ang-(1-7)/MasR axis promotes functional recovery after spinal cord injury by regulating microglia/macrophage polarization. Cell Biosci 2023; 13:23. [PMID: 36739421 PMCID: PMC9899400 DOI: 10.1186/s13578-023-00967-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/19/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory response is an essential part of secondary injury after spinal cord injury (SCI). During this period, the injury may be exacerbated through the release of a large number of inflammatory factors and the polarization of infiltrating macrophages and microglia towards M1. Ang-(1-7), mainly generated by Ang II via angiotensin-converting enzyme 2 (ACE2), can specifically bind to the G protein-coupled receptor Mas (MasR) and plays an important role in regulating inflammation and alleviating oxidative stress. METHODS We aimed to investigate whether activating the Ang-(1-7)/MasR axis in rats after SCI can regulate local neuroinflammation to achieve functional recovery and obtain its potential mechanism. MasR expression of bone marrow-derived macrophages was determined by Western blot. Immunofluorescence, Western blot, Flow cytometry, and RT-qPCR were applied to evaluate the polarization of Ang-(1-7) on macrophages and the regulation of inflammatory cytokines. Previous evaluation of the spinal cord and bladder after SCI was conducted by hematoxylin-eosin staining, Basso, Beattie, and Bresnahan (BBB) score, inclined plate test, electrophysiology, and catwalk were used to evaluate the functional recovery of rats. RESULTS MasR expression increased in macrophages under inflammatory conditions and further elevated after Ang-(1-7) treatment. Both in vivo and in vitro results confirmed that Ang-(1-7) could regulate the expression of inflammatory cytokines by down-regulating proinflammatory cytokines and up-regulating anti-inflammatory cytokines, and bias the polarization direction of microglia/macrophages to M2 phenotypic. After SCI, Ang-(1-7) administration in situ led to better histological and functional recovery in rats, and this recovery at least partly involved the TLR4/NF-κB signaling pathway. CONCLUSION As shown in our data, activating Ang-(1-7)/MasR axis can effectively improve the inflammatory microenvironment after spinal cord injury, promote the polarization of microglia/macrophages towards the M2 phenotype, and finally support the recovery of motor function. Therefore, we suggest using Ang-(1-7) as a feasible treatment strategy for spinal cord injury to minimize the negative consequences of the inflammatory microenvironment after spinal cord injury.
Collapse
Affiliation(s)
- Guangjin Gu
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Bin Zhu
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Jie Ren
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Xiaomeng Song
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Baoyou Fan
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Han Ding
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Jun Shang
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Heng Wu
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Junjin Li
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Hongda Wang
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Jinze Li
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Zhijian Wei
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China ,Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong China
| | - Shiqing Feng
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China ,Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong China
| |
Collapse
|
46
|
Walsh CM, Gull K, Dooley D. Motor rehabilitation as a therapeutic tool for spinal cord injury: New perspectives in immunomodulation. Cytokine Growth Factor Rev 2023; 69:80-89. [PMID: 36114092 DOI: 10.1016/j.cytogfr.2022.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/27/2022] [Indexed: 02/07/2023]
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition that significantly impacts motor, sensory and autonomic function in patients. Despite advances in therapeutic approaches, there is still no curative therapy currently available. Neuroinflammation is a persisting event of the secondary injury phase of SCI that affects functional recovery, and modulation of the inflammatory response towards a beneficial anti-inflammatory state can improve recovery in preclinical SCI models. In human SCI patients, rehabilitative exercise, or motor rehabilitation as we will refer to it from here on out, remains the cornerstone of treatment to increase functional capacity and prevent secondary health implications. Motor rehabilitation is known to have anti-inflammatory effects; however, current literature is lacking in the description of the effect of motor rehabilitation on inflammation in the context of SCI. Understanding the effect on different inflammatory markers after SCI should enable the optimization of motor rehabilitation as a therapeutic regime. This review extensively describes the effect of motor rehabilitation on selected inflammatory mediators in both preclinical and human SCI studies. Additionally, we summarize how the type, duration, and intensity of motor rehabilitation can affect the inflammatory response after SCI. In doing so, we introduce a new perspective on how motor rehabilitation can be optimized as an immunomodulatory therapy to improve patient outcome after SCI.
Collapse
Affiliation(s)
- Ciara M Walsh
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Khadija Gull
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
47
|
Zhang X, Liu F, Gu Z. Tissue Engineering in Neuroscience: Applications and Perspectives. BME FRONTIERS 2023; 4:0007. [PMID: 37849680 PMCID: PMC10521717 DOI: 10.34133/bmef.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 10/19/2023] Open
Abstract
Neurological disorders have always been a threat to human physical and mental health nowadays, which are closely related to the nonregeneration of neurons in the nervous system (NS). The damage to the NS is currently difficult to repair using conventional therapies, such as surgery and medication. Therefore, repairing the damaged NS has always been a vast challenge in the area of neurology. Tissue engineering (TE), which integrates the cell biology and materials science to reconstruct or repair organs and tissues, has widespread applications in bone, periodontal tissue defects, skin repairs, and corneal transplantation. Recently, tremendous advances have been made in TE regarding neuroscience. In this review, we summarize TE's recent progress in neuroscience, including pathological mechanisms of various neurological disorders, the concepts and classification of TE, and the most recent development of TE in neuroscience. Lastly, we prospect the future directions and unresolved problems of TE in neuroscience.
Collapse
Affiliation(s)
- Xiaoge Zhang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fuyao Liu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Gu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
48
|
Schepici G, Silvestro S, Mazzon E. Regenerative Effects of Exosomes-Derived MSCs: An Overview on Spinal Cord Injury Experimental Studies. Biomedicines 2023; 11:biomedicines11010201. [PMID: 36672709 PMCID: PMC9855467 DOI: 10.3390/biomedicines11010201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition usually induced by the initial mechanical insult that can lead to permanent motor and sensory deficits. At present, researchers are investigating potential therapeutic strategies to ameliorate the neuro-inflammatory cascade that occurs post-injury. Although the use of mesenchymal stromal/stem (MSCs) as a potential therapy in application to regenerative medicine promoted anti-inflammatory and neuroprotective effects, several disadvantages limit their use. Therefore, recent studies have reported the effects of exosomes-derived MSCs (MSC-EXOs) as an innovative therapeutic option for SCI patients. It is noteworthy that MSC-EXOs can maintain the integrity of the blood-spinal cord barrier (BSCB), promoting angiogenic, proliferative, and anti-oxidant effects, as well as immunomodulatory, anti-inflammatory, and antiapoptotic properties. Therefore, in this study, we summarized the preclinical studies reported in the literature that have shown the effects of MSC-EXOs as a new molecular target to counteract the devastating effects of SCI.
Collapse
|
49
|
González P, González-Fernández C, Maqueda A, Pérez V, Escalera-Anzola S, Rodríguez de Lope Á, Arias FJ, Girotti A, Rodríguez FJ. Silk-Elastin-like Polymers for Acute Intraparenchymal Treatment of the Traumatically Injured Spinal Cord: A First Systematic Experimental Approach. Pharmaceutics 2022; 14:pharmaceutics14122713. [PMID: 36559207 PMCID: PMC9784492 DOI: 10.3390/pharmaceutics14122713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the promising potential of hydrogel-based therapeutic approaches for spinal cord injury (SCI), the need for new biomaterials to design effective strategies for SCI treatment and the outstanding properties of silk-elastin-like polymers (SELP), the potential use of SELPs in SCI is currently unknown. In this context, we assessed the effects elicited by the in vivo acute intraparenchymal injection of an SELP named (EIS)2-RGD6 in a clinically relevant model of SCI. After optimization of the injection system, the distribution, structure, biodegradability, and cell infiltration capacity of (EIS)2-RGD6 were assessed. Finally, the effects exerted by the (EIS)2-RGD6 injection-in terms of motor function, myelin preservation, astroglial and microglia/macrophage reactivity, and fibrosis-were evaluated. We found that (EIS)2-RGD6 can be acutely injected in the lesioned spinal cord without inducing further damage, showing a widespread distribution covering all lesioned areas with a single injection and facilitating the formation of a slow-degrading porous scaffold at the lesion site that allows for the infiltration and/or proliferation of endogenous cells with no signs of collapse and without inducing further microglial and astroglial reactivity, as well as even reducing SCI-associated fibrosis. Altogether, these observations suggest that (EIS)2-RGD6-and, by extension, SELPs-could be promising polymers for the design of therapeutic strategies for SCI treatment.
Collapse
Affiliation(s)
- Pau González
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
| | | | - Alfredo Maqueda
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
| | - Virginia Pérez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
| | - Sara Escalera-Anzola
- Smart Devices for NanoMedicine Group University of Valladolid, 47003 Valladolid, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | | | - Francisco Javier Arias
- Smart Devices for NanoMedicine Group University of Valladolid, 47003 Valladolid, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | - Alessandra Girotti
- Smart Devices for NanoMedicine Group University of Valladolid, 47003 Valladolid, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Correspondence: (A.G.); (F.J.R.)
| | - Francisco Javier Rodríguez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
- Correspondence: (A.G.); (F.J.R.)
| |
Collapse
|
50
|
Ma D, Shen H, Chen F, Liu W, Zhao Y, Xiao Z, Wu X, Chen B, Lu J, Shao D, Dai J. Inflammatory Microenvironment-Responsive Nanomaterials Promote Spinal Cord Injury Repair by Targeting IRF5. Adv Healthc Mater 2022; 11:e2201319. [PMID: 36165212 DOI: 10.1002/adhm.202201319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/21/2022] [Indexed: 01/28/2023]
Abstract
Spinal cord injury (SCI) involves excessive inflammatory responses, which are characterized by the existence of high levels of proinflammatory M1 macrophages rather than prohealing M2 macrophages, and oxidative stress. Interferon regulatory factor 5 (IRF5) is a promising therapeutic target in regulation of macrophage reprogramming from the M1 to M2 phenotype. However, knockdown of IRF5 expression mediated by small interfering RNA (siRNA) is limited by instability and poor cellular uptake. In the present study, polyethylenimine-conjugated, diselenide-bridged mesoporous silica nanoparticles are tailored to regulate macrophage polarization by controllably delivering siRNA to silence IRF5. The MSN provides reactive oxygen species (ROS)-responsive degradation and release, while polyethylenimine-function offers efficient loading of siRNA-IRF5 and enhanced endosome escape. As a consequence, the intelligent nanomaterial effectively transfects the siRNA-IRF5 with its remaining high stability and bioactivity, thereby effectively regulating the M1-to-M2 macrophage conversion in vitro and in vivo. Importantly, administration of the functional nanomaterial in crush SCI mice suppresses excessive inflammation, enhances neuroprotection, and promotes locomotor restoration. Collectively, the ROS-responsive nanomedicine provides a gene silencing strategy for regulating macrophage polarization and oxidative balance in SCI repair.
Collapse
Affiliation(s)
- Dezun Ma
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - He Shen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
| | - Weiyuan Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Xianming Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Junna Lu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
| | - Dan Shao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|