1
|
Li G, Stampas A, Komatsu Y, Gao X, Huard J, Pan S. Proteomics in orthopedic research: Recent studies and their translational implications. J Orthop Res 2024; 42:1631-1640. [PMID: 38897819 DOI: 10.1002/jor.25917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/10/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
Proteomics is a growing field that offers insights into various aspects of disease processes and therapy responses. Within the field of orthopedics, there are a variety of diseases that have a poor prognosis due to a lack of targeted curative therapy or disease modifying therapy. Other diseases have been difficult to manage in part due to lack of clinical biomarkers that offer meaningful insight into disease progression or severity. As an emerging technology, proteomics has been increasingly applied in studying bone biology and an assortment of orthopedics related diseases, such as osteoarthritis, osteosarcoma and bone tumors, osteoporosis, traumatic bone injury, spinal cord injury, hip and knee arthroplasty, and fragile healing. These efforts range from mechanistic studies for elucidating novel insights in tissue activity and metabolism to identification of candidate biomarkers for diagnosis, prognosis, and targeted treatment. The knowledge gained from these proteomic and functional studies has provided unique perspectives in studying orthopedic diseases. In this review, we seek to report on the current state of the proteomic study in the field of orthopedics, overview the advances in clinically applicable discoveries, and discuss the opportunities that may guide us for future research.
Collapse
Affiliation(s)
- George Li
- School of Medicine, Texas A&M University, Bryan, Texas, USA
| | - Argyrios Stampas
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Physical Medicine and Rehabilitation, TIRR Memorial Hermann Hospital, Houston, Texas, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Xueqin Gao
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Sheng Pan
- Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
2
|
Sunshine MD, Bindi VE, Nguyen BL, Doerr V, Boeno FP, Chandran V, Smuder AJ, Fuller DD. Oxygen therapy attenuates neuroinflammation after spinal cord injury. J Neuroinflammation 2023; 20:303. [PMID: 38110993 PMCID: PMC10729514 DOI: 10.1186/s12974-023-02985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Acute hyperbaric O2 (HBO) therapy after spinal cord injury (SCI) can reduce inflammation and increase neuronal survival. To our knowledge, it is unknown if these benefits of HBO require hyperbaric vs. normobaric hyperoxia. We used a C4 lateralized contusion SCI in adult male and female rats to test the hypothesis that the combination of hyperbaria and 100% O2 (i.e. HBO) more effectively mitigates spinal inflammation and neuronal loss, and enhances respiratory recovery, as compared to normobaric 100% O2. Experimental groups included spinal intact, SCI no O2 therapy, and SCI + 100% O2 delivered at normobaric pressure (1 atmosphere, ATA), or at 2- or 3 ATA. O2 treatments lasted 1-h, commenced within 2-h of SCI, and were repeated for 10 days. The spinal inflammatory response was assessed with transcriptomics (RNAseq) and immunohistochemistry. Gene co-expression network analysis showed that the strong inflammatory response to SCI was dramatically diminished by both hyper- and normobaric O2 therapy. Similarly, both HBO and normobaric O2 treatments reduced the prevalence of immunohistological markers for astrocytes (glial fibrillary acidic protein) and microglia (ionized calcium binding adaptor molecule) in the injured spinal cord. However, HBO treatment also had unique impacts not detected in the normobaric group including upregulation of an anti-inflammatory cytokine (interleukin-4) in the plasma, and larger inspiratory tidal volumes at 10-days (whole body-plethysmography measurements). We conclude that normobaric O2 treatment can reduce the spinal inflammatory response after SCI, but pressured O2 (i.e., HBO) provides further benefit.
Collapse
Affiliation(s)
- Michael D Sunshine
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Victoria E Bindi
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Branden L Nguyen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Vivian Doerr
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Franccesco P Boeno
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | | | - Ashley J Smuder
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Abstract
Anterior cervical spine surgery is a common type of neck surgery in orthopaedics. Swallowing disorder is one of the most common complications after surgery. It is characterized by food entering the esophagus from the mouth through the pharynx. The process of reaching the stomach is hampered and leads to increases in a range of risk factors that affect the health of the patient. This article reviews relevant literature reports from recent years retrieved from various national and international medical databases, aiming to find more economical, effective, and simple perioperative nursing strategies for patients with cervical anterior surgery through evidence-based thinking and methods, with the aim of developing a personalized care model that is easy to implement and has a long-lasting effect and a wide range of rehabilitation benefits to better serve patients.
Collapse
Affiliation(s)
- Liu Wei
- Liu Wei, MM, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Li Sulian, MM, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Li Tonglian, MM, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Zhang Yan, MM, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Liu Zongchao, MD, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Li Sulian
- Liu Wei, MM, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Li Sulian, MM, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Li Tonglian, MM, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Zhang Yan, MM, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Liu Zongchao, MD, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Li Tonglian
- Liu Wei, MM, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Li Sulian, MM, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Li Tonglian, MM, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Zhang Yan, MM, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Liu Zongchao, MD, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Zhang Yan
- Liu Wei, MM, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Li Sulian, MM, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Li Tonglian, MM, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Zhang Yan, MM, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Liu Zongchao, MD, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Liu Zongchao
- Liu Wei, MM, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Li Sulian, MM, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Li Tonglian, MM, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Zhang Yan, MM, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Liu Zongchao, MD, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Siglioccolo A, Gammaldi R, Vicinanza V, Galardo A, Caterino V, Palmese S, Ferraiuoli C, Calicchio A, Romanelli A. Advance in hyperbaric oxygen therapy in spinal cord injury. Chin J Traumatol 2023:S1008-1275(23)00044-5. [PMID: 37271686 DOI: 10.1016/j.cjtee.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Spinal cord injury (SCI) is a severe lesion comporting various motor, sensory and sphincter dysfunctions, abnormal muscle tone and pathological reflex, resulting in a severe and permanent lifetime disability. The primary injury is the immediate effect of trauma and includes compression, contusion, and shear injury to the spinal cord. A secondary and progressive injury usually follows, beginning within minutes and evolving over several hours after the first ones. Because ischemia is one of the most important mechanisms involved in secondary injury, a treatment to increase the oxygen tension of the injured site, such as hyperbaric oxygen therapy, should theoretically help recovery. Although a meta-analysis concluded that hyperbaric oxygen therapy might be helpful for clinical treatment as a safe, promising and effective choice to limit secondary injury when appropriately started, useful and well-defined protocols/guidelines still need to be created, and its application is influenced by local/national practice. The topic is not a secondary issue because a well-designed randomized controlled trial requires a proper sample size to demonstrate the clinical efficacy of a treatment, and the absence of a common practice guideline represents a limit for results generalization. This narrative review aims to reassemble the evidence on hyperbaric oxygen therapy to treat SCI, focusing on adopted protocols in the studies and underlining the critical issues. Furthermore, we tried to elaborate on a protocol with a flowchart for an evidence-based hyperbaric oxygen therapy treatment. In conclusion, a rationale and shared protocol to standardize as much as possible is needed for the population to be studied, the treatment to be adopted, and the outcomes to be evaluated. Further studies, above all, well-designed randomized controlled trials, are needed to clarify the role of hyperbaric oxygen therapy as a strategic tool to prevent/reduce secondary injury in SCI and evaluate its effectiveness based on an evidence-based treatment protocol. We hope that adopting the proposed protocol can reduce the risk of bias and drive future studies.
Collapse
Affiliation(s)
- Antonio Siglioccolo
- Department of Anaesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria "San Giovanni Di Dio e Ruggi D'Aragona", Via San Leonardo, 84125, Salerno, Campania, Italy; Department of Diving and Hyperbaric Medicine, Azienda Ospedaliero Universitaria "San Giovanni Di Dio e Ruggi D'Aragona", Via San Leonardo, 84125, Salerno, Campania, Italy
| | - Renato Gammaldi
- Department of Anaesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria "San Giovanni Di Dio e Ruggi D'Aragona", Via San Leonardo, 84125, Salerno, Campania, Italy; Department of Diving and Hyperbaric Medicine, Azienda Ospedaliero Universitaria "San Giovanni Di Dio e Ruggi D'Aragona", Via San Leonardo, 84125, Salerno, Campania, Italy
| | - Veronica Vicinanza
- Department of Anaesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria "San Giovanni Di Dio e Ruggi D'Aragona", Via San Leonardo, 84125, Salerno, Campania, Italy; Department of Diving and Hyperbaric Medicine, Azienda Ospedaliero Universitaria "San Giovanni Di Dio e Ruggi D'Aragona", Via San Leonardo, 84125, Salerno, Campania, Italy
| | - Alessio Galardo
- Department of Anaesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria "San Giovanni Di Dio e Ruggi D'Aragona", Via San Leonardo, 84125, Salerno, Campania, Italy; Department of Diving and Hyperbaric Medicine, Azienda Ospedaliero Universitaria "San Giovanni Di Dio e Ruggi D'Aragona", Via San Leonardo, 84125, Salerno, Campania, Italy
| | - Vittorio Caterino
- Department of Anaesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria "San Giovanni Di Dio e Ruggi D'Aragona", Via San Leonardo, 84125, Salerno, Campania, Italy; Department of Diving and Hyperbaric Medicine, Azienda Ospedaliero Universitaria "San Giovanni Di Dio e Ruggi D'Aragona", Via San Leonardo, 84125, Salerno, Campania, Italy
| | - Salvatore Palmese
- Department of Anaesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria "San Giovanni Di Dio e Ruggi D'Aragona", Via San Leonardo, 84125, Salerno, Campania, Italy
| | - Carmine Ferraiuoli
- Department of Anaesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria "San Giovanni Di Dio e Ruggi D'Aragona", Via San Leonardo, 84125, Salerno, Campania, Italy; Department of Diving and Hyperbaric Medicine, Azienda Ospedaliero Universitaria "San Giovanni Di Dio e Ruggi D'Aragona", Via San Leonardo, 84125, Salerno, Campania, Italy
| | - Alessandro Calicchio
- Resident in Anaesthesia and Intensive Care, "Federico II" University, Via Sergio Pansini, 80131, Naples, Campania, Italy
| | - Antonio Romanelli
- Department of Anaesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria "San Giovanni Di Dio e Ruggi D'Aragona", Via San Leonardo, 84125, Salerno, Campania, Italy.
| |
Collapse
|
5
|
Li Z, Hou X, Liu X, Ma L, Tan J. Hyperbaric Oxygen Therapy-Induced Molecular and Pathway Changes in a Rat Model of Spinal Cord Injury: A Proteomic Analysis. Dose Response 2022; 20:15593258221141579. [PMID: 36458280 PMCID: PMC9706077 DOI: 10.1177/15593258221141579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Hyperbaric Oxygen Therapy (HBOT) has definitive therapeutic effects on spinal cord injury (SCI), but its mechanism of action is still unclear. Here, we've conducted a systemic proteomic analysis to identify differentially expressed proteins (DEPs) between SCI rats and HBOT + SCI rats. The function clustering analysis showed that the top enriched pathways of DEPs include oxygen transport activity, oxygen binding, and regulation of T cell proliferation. The results of functional and signal pathway analyses indicated that metabolic pathways, thermogenesis, LXR/RXR activation, acute phase response signaling, and the intrinsic prothrombin pathway in the SCI + HBOT group was higher than SCI group.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Rehabilitation
Medicine, Guangzhou
Xinhua University, Guangzhou,
China
- Hyperbaric Oxygen Department,
Shenzhen
People’s Hospital, Shenzhen,
China
| | - Xiaomin Hou
- Hyperbaric Oxygen Department,
Beijing
Chaoyang Hospital Capital Medical
University, Beijing, China
| | - Xuehua Liu
- Hyperbaric Oxygen Department,
Beijing
Chaoyang Hospital Capital Medical
University, Beijing, China
| | - Linlin Ma
- Hyperbaric Oxygen Department,
Beijing
Chaoyang Hospital Capital Medical
University, Beijing, China
| | - Jiewen Tan
- Department of Rehabilitation
Medicine, Guangzhou
Xinhua University, Guangzhou,
China
| |
Collapse
|
6
|
Liu F, Liang Z, Cui Y, Lin H, Guo Z, Qin W, Cheng B, Yang W. Hyperbaric Oxygen Improves the Survival and Angiogenesis of Fat Grafts after Autologous Fat Transplantation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6738959. [PMID: 35647192 PMCID: PMC9142289 DOI: 10.1155/2022/6738959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/15/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022]
Abstract
Objective Currently, autologous fat transplantation (AFT) still has a low graft survival rate. Elevation of the AFT graft survival rate is a challenge. This study investigated the effect of hyperbaric oxygen (HBO) on AFT. Methods Twelve adult male SD rats were randomly divided into two groups after AFT: the control group (n = 6) and the HBO group (n = 6). The rats were killed at 7, 14, and 28 days after transplantation to take the transplanted adipose tissues. The volume and weight of the tissues were detected. The pathological changes in the adipose tissues were observed after H&E staining. Microvessel density and levels of transforming growth factor- (TGF-) β, tumor necrosis factor- (TNF-) α, and malondialdehyde (MDA) in the transplanted adipose tissues were measured with CD31 immunohistochemical stain, ELISA, and biochemical reagents, respectively. Additionally, the protein expression levels of vascular endothelial growth factor- (VEGF-) A and platelet-derived growth factor- (PDGF) A in the adipose tissues were detected by Western blot. Results HBO significantly preserved the volume and weight of the transplanted adipose tissue (p < 0.01) and maintained the pathological structure of the transplanted adipose tissue. HBO therapy was effective in reducing inflammatory factor (TGF-β and TNF-α) levels and oxidative stress (MDA) in the transplanted adipose tissue (p < 0.01) and significantly increased the level of CD31 and angiogenesis-related factors including VEGF-A and PDGF-A (p < 0.01) to promote angiogenesis. Conclusion HBO therapy regulated the immune response of fat grafts, stimulated their angiogenesis, and ultimately promoted their survival after AFT.
Collapse
Affiliation(s)
- Fei Liu
- Department of Plastic and Cosmetic Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052 Guangdong, China
| | - Zhi Liang
- Department of Plastic and Cosmetic Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052 Guangdong, China
| | - Ye Cui
- Department of Plastic and Cosmetic Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052 Guangdong, China
| | - HaiBo Lin
- Department of Plastic and Cosmetic Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052 Guangdong, China
| | - ZhengDong Guo
- Department of Plastic and Cosmetic Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052 Guangdong, China
| | - WangChi Qin
- Department of Plastic and Cosmetic Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052 Guangdong, China
| | - Bin Cheng
- Department of Plastic and Cosmetic Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052 Guangdong, China
| | - WeiGuo Yang
- Department of Plastic and Cosmetic Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052 Guangdong, China
| |
Collapse
|
7
|
Turner S, Sunshine MD, Chandran V, Smuder AJ, Fuller DD. Hyperbaric oxygen therapy after mid-cervical spinal contusion injury. J Neurotrauma 2022; 39:715-723. [PMID: 35152735 PMCID: PMC9081027 DOI: 10.1089/neu.2021.0412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hyperbaric oxygen (HBO) therapy is frequently used to treat peripheral wounds or decompression sickness. Evidence suggests that HBO therapy can provide neuroprotection and has an anti-inflammatory impact after neurological injury, including spinal cord injury (SCI). Our primary purpose was to conduct a genome-wide screening of mRNA expression changes in the injured spinal cord after HBO therapy. An mRNA gene array was used to evaluate samples taken from the contused region of the spinal cord following a lateralized mid-cervical contusion injury in adult female rats. HBO therapy consisted of daily, 1-h sessions (3.0 ATA, 100% O2) initiated on the day of SCI and continued for 10 days. Gene set enrichment analyses indicated that HBO upregulated genes in pathways associated with electron transport, mitochondrial function, and oxidative phosphorylation, and downregulated genes in pathways associated with inflammation (including cytokines and nuclear factor kappa B [NF-κB]) and apoptotic signaling. In a separate cohort, spinal cord histology was performed to verify whether the HBO treatment impacted neuronal cell counts or inflammatory markers. Compared with untreated rats, there were increased NeuN positive cells in the spinal cord of HBO-treated rats (p = 0.004). We conclude that HBO therapy, initiated shortly after SCI and continued for 10 days, can alter the molecular signature of the lesioned spinal cord in a manner consistent with a neuroprotective impact.
Collapse
Affiliation(s)
- Sara Turner
- University of Florida, Physical Therapy, Gainesville, Florida, United States
| | - Michael D. Sunshine
- University of Florida, 3463, Physical Therapy, 1149 South Newell Drive, L1-168, Gainesville, Florida, United States, 32601
- University of Florida
| | | | - Ashley J Smuder
- University of Florida, Applied Physiology and Kinesiology, Gainesville, Florida, United States
| | - David D Fuller
- University of Florida, Physical Therapy, 100 S. Newell Dr., PO Box 100154, Gainesville, Florida, United States, 32610
| |
Collapse
|
8
|
Sri Dewi Untari NK, Kusumastuti K, Suryokusumo G, Sudiana IK. Protective Effect of Hyperbaric Oxygen Treatment on Axon Degeneration after Acute Motor Axonal Neuropathy. Autoimmune Dis 2021; 2021:6627779. [PMID: 34790416 PMCID: PMC8592739 DOI: 10.1155/2021/6627779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Acute motor axonal neuropathy (AMAN) is a disease that leads to acute flaccid paralysis and may result from the binding of antibody and antigen to the spinal cord. The objective of this study is to evaluate the protective effect of hyperbaric oxygen treatment (HBOT) on axon degeneration of the spinal cord and sciatic nerve of the AMAN model rabbit. Axonal degeneration was assessed by evaluating glutathione (GSH) activity, interleukin-1β (IL-1β) expression, and clinical and histopathological features. METHODS Twenty-one New Zealand rabbits were divided into three groups. The treatment group was exposed to 100% oxygen at 2.4 ATA 90 minutes for 10 days at a decompression rate of 2.9 pounds per square inch/minute. GSH level was evaluated using an enzyme-linked immune-sorbent assay. An expression of IL-1β in the spinal cord was determined by immunohistochemistry. Clinical appearances were done by motor scale and body weight. Histological features observed neuronal swelling and inflammatory infiltration in the sagittal lumbar region and the undulation of the longitudinal sciatic nerve. RESULTS Rabbits exposed to HBO had high GSH activity levels (p < 0.05) but unexpectedly had high IL1β expression (p > 0.05). In addition, the HBO-exposed rabbits had a better degree of undulation, the size of neuronal swelling was smaller, the number of macrophages was higher, and motor function was better than the AMAN model rabbits (p < 0.05). CONCLUSIONS These findings indicate that HBO therapy can decrease axon degeneration by triggering GSH activity, increasing IL-1β level, and restoring tissues and motor status. In conclusion, HBO has a protective effect on axon degeneration of the spinal cord and sciatic nerve of the AMAN model rabbit.
Collapse
Affiliation(s)
- Ni Komang Sri Dewi Untari
- Department of Hyperbaric, Drs. Med. Rijadi S. Phys. Naval Health Institute, Surabaya, Indonesia
- Department of Neurology, Faculty of Medicine, Hang Tuah University, Surabaya, Indonesia
- Department of Neurology, Dr. Ramelan Navy Hospital, Surabaya, Indonesia
- Hyperbaric Medicine, Basic Medical Science, Airlangga University, Surabaya, Indonesia
| | - Kurnia Kusumastuti
- Department of Neurology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Guritno Suryokusumo
- Department of Hyperbaric, Faculty of Medicine, Pembangunan Nasional University, Jakarta, Indonesia
| | - I Ketut Sudiana
- Department of Pathology Anatomy, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
9
|
Sun C, Li B, Duan H, Tao B, Zhao C, Li W, Pang Y, Fan B, Feng S. Cytokine expressions of spinal cord injury treated by neurotropin and nafamostat mesylate. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:489. [PMID: 33850886 PMCID: PMC8039678 DOI: 10.21037/atm-21-649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Spinal cord injury (SCI) leads to severe physical disability and sensory dysfunction. Neurotropin (NTP) has been used clinically to alleviate neuropathic pain, while nafamostat mesylate (NM) used clinical on pancreatitis patients through inhibiting synthetic serine protease. Our previous studies showed that NTP and NM were able to repair SCI. However, the underlying mechanism has not been fully explored after treatment with these 2 different drugs. Methods The drugs NTP and NM were administered on a contusion SCI Wistar rat model. Cytokine array analysis was performed to describe the changes of 67 proteins after acute SCI. Hierarchical clustering and volcano plot analysis were conducted to clarify protein change profiles. The differently expressed proteins related to biological processes were analyzed by functional protein association networks, Gene Ontology and pathway analysis. Flow cytometric analysis was detected to reflect the activation of immune system after drug intervention, while withdrawal threshold and BBB score were detected to evaluated the mechanical allodynia and functional recovery after SCI. Results HGF, β-NGF, and activin were the 3 most upregulated proteins, while the receptor for RAGE, IL-1α, and TNF-α were the 3 most downregulated proteins after NTP treatment. Adiponectin, decorin and CTACK were the 3 most upregulated proteins, while RAGE, IL-1α, and IL-1β were the 3 most downregulated proteins in the NM group. Number of lymphocytes was decreased while BBB score was increased both in NTP and NM group. But only NTP could improve mechanical pain threshold after SCI. Conclusions The PI3K-Akt, Jak-STAT signaling pathway and apoptosis might participate in SCI restoration by NTP, while the MAPK and NOD-like receptor signaling pathway may participated in repairing SCI with NM. We concluded that NTP regulated the microenvironment via a neuroprotective effect and inhibition of inflammation to repair SCI, while NM healed SCI through an anti-inflammatory effect. Both NTP and NM could down-regulate the activation of immune system and improve the functional recovery while only NTP could improve the pathological neuralgia after SCI. Elucidating the molecular mechanisms of these 2 clinical drugs indicates that they their expected to be effective clinical treatment for SCI.
Collapse
Affiliation(s)
- Chao Sun
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huiquan Duan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Tao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Chenxi Zhao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenxiang Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yilin Pang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Baoyou Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
10
|
Liu L, Wan J, Dai M, Ye X, Liu C, Tang C, Zhu L. Effects of oxygen generating scaffolds on cell survival and functional recovery following acute spinal cord injury in rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:115. [PMID: 33247423 DOI: 10.1007/s10856-020-06453-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Persistent local oxygen delivery is crucial to create a microenvironment for cell survival and nerve regeneration in acute spinal cord injury (SCI). This study aimed to fabricate calcium peroxide-based microspheres incorporated into a 3-D construct scaffold as a novel oxygen release therapy for SCI. The scaffolds were able to generate oxygen over the course of 21 days when incubated under hypoxic conditions. In vitro, GFP-labeled bone marrow-derived mesenchymal stem cells (MSCs) were planted into the scaffolds. We observed that scaffolds could enhance MSC survival under hypoxic conditions for more than 21 days. Oxygen generating scaffolds were transplanted into spinal cord injury sites of rats in vivo. Twelve weeks following transplantation, cavity areas in the injury/graft site were significantly reduced due to tissue regeneration. Additionally, the oxygen generating scaffolds improved revascularization as observed through vWF immunostaining. A striking feature was the occurrence of nerve fiber regeneration in the lesion sites, which eventually led to significant locomotion recovery. The present results indicate that the oxygen generating scaffolds have the property of sustained local oxygen release, thus facilitating regeneration in injured spinal cords.
Collapse
Affiliation(s)
- Liangle Liu
- Department of Spinal Surgery, Orthopaedic Medical Center,Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
- Rui'an People's Hospital & the third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Junming Wan
- Tongde Hospital of Zhejiang Province, Hanzhou, 310002, China
| | - Minghai Dai
- Rui'an People's Hospital & the third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xiuzhi Ye
- Rui'an People's Hospital & the third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chun Liu
- Department of Spinal Surgery, Orthopaedic Medical Center,Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Chengxuan Tang
- Rui'an People's Hospital & the third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopaedic Medical Center,Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
11
|
Smuder AJ, Turner SM, Schuster CM, Morton AB, Hinkley JM, Fuller DD. Hyperbaric Oxygen Treatment Following Mid-Cervical Spinal Cord Injury Preserves Diaphragm Muscle Function. Int J Mol Sci 2020; 21:ijms21197219. [PMID: 33007822 PMCID: PMC7582297 DOI: 10.3390/ijms21197219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/17/2022] Open
Abstract
Oxidative damage to the diaphragm as a result of cervical spinal cord injury (SCI) promotes muscle atrophy and weakness. Respiratory insufficiency is the leading cause of morbidity and mortality in cervical spinal cord injury (SCI) patients, emphasizing the need for strategies to maintain diaphragm function. Hyperbaric oxygen (HBO) increases the amount of oxygen dissolved into the blood, elevating the delivery of oxygen to skeletal muscle and reactive oxygen species (ROS) generation. It is proposed that enhanced ROS production due to HBO treatment stimulates adaptations to diaphragm oxidative capacity, resulting in overall reductions in oxidative stress and inflammation. Therefore, we tested the hypothesis that exposure to HBO therapy acutely following SCI would reduce oxidative damage to the diaphragm muscle, preserving muscle fiber size and contractility. Our results demonstrated that lateral contusion injury at C3/4 results in a significant reduction in diaphragm muscle-specific force production and fiber cross-sectional area, which was associated with augmented mitochondrial hydrogen peroxide emission and a reduced mitochondrial respiratory control ratio. In contrast, rats that underwent SCI followed by HBO exposure consisting of 1 h of 100% oxygen at 3 atmospheres absolute (ATA) delivered for 10 consecutive days demonstrated an improvement in diaphragm-specific force production, and an attenuation of fiber atrophy, mitochondrial dysfunction and ROS production. These beneficial adaptations in the diaphragm were related to HBO-induced increases in antioxidant capacity and a reduction in atrogene expression. These findings suggest that HBO therapy may be an effective adjunctive therapy to promote respiratory health following cervical SCI.
Collapse
Affiliation(s)
- Ashley J. Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (A.B.M.); (J.M.H.)
- Breathing Research and Therapeutics, University of Florida, Gainesville, FL 32610, USA;
- Correspondence:
| | - Sara M. Turner
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (S.M.T.); (C.M.S.)
| | - Cassandra M. Schuster
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (S.M.T.); (C.M.S.)
| | - Aaron B. Morton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (A.B.M.); (J.M.H.)
| | - J. Matthew Hinkley
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (A.B.M.); (J.M.H.)
| | - David D. Fuller
- Breathing Research and Therapeutics, University of Florida, Gainesville, FL 32610, USA;
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (S.M.T.); (C.M.S.)
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
12
|
The Treatment of Perioperative Spinal Cord Injury With Hyperbaric Oxygen Therapy: A Case Report. Spine (Phila Pa 1976) 2020; 45:E1127-E1131. [PMID: 32205701 DOI: 10.1097/brs.0000000000003502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Case report (level IV evidence). OBJECTIVE To describe a potential novel application of hyperbaric oxygen therapy (HBOT) in the successful treatment of a postoperative spinal cord injury. SUMMARY OF BACKGROUND DATA A 68-year-old man presented with an acute spinal cord injury (ASIA impairment scale D), on the background of degenerative lower thoracic and lumbar canal stenosis. He underwent emergent decompression and instrumented fusion (T9-L5), with an uncomplicated intraoperative course and no electrophysiological changes. Immediate postoperative assessment demonstrated profound bilateral limb weakness (1/5 on the Medical Research Council [MRC] grading scale, ASIA impairment scale B), without radiological abnormality. METHODS Conventional medical management (hypertension, level 2 care) was instigated with the addition of Riluzole, with no effect after 30 hours. At 36 hours 100% oxygen at 2.8 atmospheres was applied for 90 minutes, and repeated after 8 hours, with a further three treatments over 48 hours. RESULTS The patient demonstrated near-immediate improvement in lower limb function to anti-gravity (MRC grading 3/5) after one treatment. Motor improvement continued over the following treatments, and after 2 weeks the patient was ambulatory. At 4 months, the patient demonstrated normal motor function with no sphincteric disturbance. CONCLUSION The application of HBOT contributed to the immediate and sustained improvement (ASIA B to ASIA E) in motor recovery after postoperative spinal cord injury. HBOT may represent a new avenue of therapy for spinal cord injury, and requires further prospective investigation. LEVEL OF EVIDENCE 4.
Collapse
|
13
|
Xu ZX, Albayar A, Dollé JP, Hansel G, Bianchini J, Sullivan PZ, Cullen DK, Smith DH, Ozturk AK. Dorsal root ganglion axons facilitate and guide cortical neural outgrowth: In vitro modeling of spinal cord injury axonal regeneration. Restor Neurol Neurosci 2020; 38:1-9. [DOI: 10.3233/rnn-190933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zi-Xing Xu
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Ahmed Albayar
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jean-Pierre Dollé
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gisele Hansel
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Justin Bianchini
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Douglas H. Smith
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ali K. Ozturk
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Xia X, Li C, Wang Y, Deng X, Ma Y, Ding L, Zheng J. Reprogrammed astrocytes display higher neurogenic competence, migration ability and cell death resistance than reprogrammed fibroblasts. Transl Neurodegener 2020; 9:6. [PMID: 32071715 PMCID: PMC7011554 DOI: 10.1186/s40035-020-0184-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 01/30/2020] [Indexed: 12/20/2022] Open
Abstract
The direct reprogramming of somatic cells into induced neural progenitor cells (iNPCs) has been envisioned as a promising approach to overcome ethical and clinical issues of pluripotent stem cell transplantation. We previously reported that astrocyte-derived induced pluripotent stem cells (iPSCs) have more tendencies for neuronal differentiation than fibroblast-derived iPSCs. However, the differences of neurogenic potential between astrocyte-derived iNPCs (AiNPCs) and iNPCs from non-neural origins, such as fibroblast-derived iNPCs (FiNPCs), and the underlying mechanisms remain unclear. Our results suggested that AiNPCs exhibited higher differentiation efficiency, mobility and survival capacities, compared to FiNPCs. The whole transcriptome analysis revealed higher activities of TGFβ signaling in AiNPCs, versus FiNPCs, following a similar trend between astrocytes and fibroblasts. The higher neurogenic competence, migration ability, and cell death resistance of AiNPCs could be abrogated using TGFβ signaling inhibitor LY2157299. Hence, our study demonstrates the difference between iNPCs generated from neural and non-neural cells, together with the underlying mechanisms, which, provides valuable information for donor cell selection in the reprogramming approach.
Collapse
Affiliation(s)
- Xiaohuan Xia
- 1Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Chunhong Li
- 1Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Yi Wang
- 1Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Xiaobei Deng
- 1Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Yizhao Ma
- 1Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Lu Ding
- 1Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Jialin Zheng
- 1Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China.,2Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092 China.,3Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930 USA.,4Department of Pathology and Microbiology, University of Nebraska Medical Center,, Omaha, NE 68198-5930 USA
| |
Collapse
|
15
|
Li Y, Guo Y, Fan Y, Tian H, Li K, Mei X. Melatonin Enhances Autophagy and Reduces Apoptosis to Promote Locomotor Recovery in Spinal Cord Injury via the PI3K/AKT/mTOR Signaling Pathway. Neurochem Res 2019; 44:2007-2019. [PMID: 31325156 DOI: 10.1007/s11064-019-02838-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/11/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) leads to neuronal death resulting in central nervous system (CNS) dysfunction; however, the pathogenesis is still poorly understood. Melatonin (MT), a hormone secreted mainly by the pineal gland, is associated with neuroprotective effects against SCI. Enhanced autophagy can promote the recovery of locomotor function and reduce apoptosis after SCI. Interestingly, MT increases autophagy in SCI in vivo. Nevertheless, the ability of MT to increase autophagy and decrease apoptosis, and the potential effects on the recovery of motor neurons in the anterior horn after SCI remain to be clarified. In this study, we discovered that MT treatment improved motor function recovery in a rat SCI model. Indeed, MT upregulated the expression of the phosphatidylinositol 3-kinase (PI3K), while expression of protein kinase B (AKT) and mammalian target of rapamycin (mTOR) was downregulated after SCI. Additionally, MT increased the expression of autophagy-activating proteins, while the expression of apoptosis-activating proteins in neurons was decreased following SCI. Furthermore, autophagy was inhibited, while apoptosis was induced in SCI model rats and lipopolysaccharide (LPS)-stimulated primary neurons by treatment with MT, the PI3K inhibitor 3-methyladenine (3-MA) and mTOR inhibitor Rapamycin (Rapa). Collectively, our results suggest that MT can improve the recovery of locomotor function by enhancing autophagy as well as reducing apoptosis after SCI in rats, probably via the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yuanlong Li
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China.,Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yue Guo
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Yue Fan
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - He Tian
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Kuo Li
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Xifan Mei
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
16
|
Evaluation of hyperbaric oxygen therapy for spinal cord injury in rats with different treatment course using diffusion tensor imaging. Spinal Cord 2019; 57:404-411. [PMID: 30643168 DOI: 10.1038/s41393-018-0238-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/26/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022]
Abstract
STUDY DESIGN Animal study. OBJECTIVES To evaluate the efficacy of hyperbaric oxygen (HBO) therapy for spinal cord injury (SCI) in rats with different treatment course using diffusion tensor imaging (DTI). SETTING Hospital in Fuzhou, China. METHODS Fifty adult Sprague-Dawley rats were grouped as: (A) sham-operated group (n = 10); (B) SCI without HBO therapy group (n = 10); (C) SCI with HBO therapy for 2 weeks (SCI+HBO2W) group (n = 10); (D) SCI with HBO therapy for 4 weeks (SCI+HBO4W) group (n = 10); (E) SCI with HBO therapy for 6 weeks (SCI+HBO6W) group (n = 10). Basso Beattie Bresnahan (BBB) scores and diffusion tensor imaging parameters including fractional anisotropy (FA), mean diffusivity (MD), radial diffusion (RD), and axial diffusion (AD) values in the injury epicenter, as well as 2 mm rostral and caudal to the injury epicenter were collected and analyzed 6 weeks post-injury. RESULTS Higher BBB score and FA values were found in the SCI+HBO4W group than in the SCI and SCI+HBO2W groups (all P < 0.05), whereas no significant differences of these metrics were observed between the SCI+HBO4W and SCI+HBO6W groups. MD and RD values of the SCI+HBO4W group were significantly lower than those of the SCI group (all P < 0.01). FA values were positively correlated with BBB scores. MD and RD values were negatively correlated with BBB scores. CONCLUSION DTI parameters, especially FA, could non-invasively and quantifiably evaluate the efficacy of HBO treatment for rats with SCI and 4 weeks may be the more appropriate treatment course.
Collapse
|
17
|
Effect of hyperbaric oxygen therapy on HMGB1/NF-κB expression and prognosis of acute spinal cord injury: A randomized clinical trial. Neurosci Lett 2018; 692:47-52. [PMID: 30391318 DOI: 10.1016/j.neulet.2018.10.059] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 11/21/2022]
Abstract
Although there are reports of the beneficial effects of hyperbaric oxygen (HBO) therapy in experimental settings, there are few clinical trials of HBO therapy for acute spinal cord injury (SCI). We investigated the effect of HBO in acute SCI by measuring plasma high mobility group box 1 (HMGB1) and nuclear factor kappa-B (NF-κB) levels, and by monitoring changes in electromyogram F-persistence (the percentage of discernible F-waves) and F-chronodispersion (the difference between minimal and maximal latency). We enrolled 79 acute SCI patients and randomly divided them into control (conventional treatment) and the treatment (conventional treatment plus HBO therapy) groups. Plasma was collected before treatment and after treatment on 1st, 3rd, 7th, 10th and 30th day for the measurement of HMGB1 and NF-κB. Electromyogram F-waves were detected before therapy and after therapy on the 10th and 30th days. Clinical profiles and neurological outcomes were evaluated using American Spinal Injury Association (ASIA) and Frankel Grade scores. Compared to the control group, HBO therapy down-regulated HMGB1 and NF-κB expression in patients with acute SCI on days 3, 7, 10 and 30 (p < 0.05). F-wave chronodispersion decreased at days 10 and 30 (p < 0.01) following HBO. ASIA and Frankel Grade motor/pain scores in the treatment group were significantly improved on day 30 (p < 0.01). There was a positive correlation between plasma NF-κB at day 7 and F-wave dispersion at day 30 (r = 0.76, p = 0.00). In summary, HBO therapy regulated the inflammatory reaction in secondary SCI by decreasing plasma HMGB1/NF-κB levels and reducing the dispersion of electromyogram F-waves of the lower limbs, thereby promoting neurological function recovery.
Collapse
|
18
|
Wu ZS, Lo JJ, Wu SH, Wang CZ, Chen RF, Lee SS, Chai CY, Huang SH. Early Hyperbaric Oxygen Treatment Attenuates Burn-Induced Neuroinflammation by Inhibiting the Galectin-3-Dependent Toll-Like Receptor-4 Pathway in a Rat Model. Int J Mol Sci 2018; 19:ijms19082195. [PMID: 30060489 PMCID: PMC6121430 DOI: 10.3390/ijms19082195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
Hyperbaric oxygen (HBO) treatment has been proven to decrease neuroinflammation in rats. This study aimed to determine the potential mechanism underlying the anti-inflammatory effects of HBO treatment on burn-induced neuroinflammation in rats. Thirty-six adult male Sprague-Dawley (SD) rats were randomly assigned to the following six groups (n = 6 per group): (1) sham burn with sham HBO treatment; (2) sham burn with HBO treatment; (3) burn with one-week sham HBO treatment; (4) burn with two-week sham HBO treatment; (5) burn with one-week HBO treatment; and (6) burn with two-week HBO treatment. SD rats that received third-degree burn injury were used as a full-thickness burn injury model. Subsequently, we analyzed the expression of proteins involved in the galectin-3 (Gal-3)-dependent Toll-like receptor-4 (TLR-4) pathway through enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC) analysis, and Western blotting. A behavior test was also conducted, which revealed that HBO treatment significantly suppressed mechanical hypersensitivity in the burn with HBO treatment group compared to the burn with sham HBO treatment group (p < 0.05). ELISA results showed that tumor necrosis factor α (TNF-α) and interleukin 1 beta (IL-1β) levels in the dorsal horn of the spinal cord and the skin significantly decreased in the burn with HBO treatment group compared with the burn with sham HBO treatment group (p < 0.05). Western blotting results demonstrated that HBO treatment significantly reduced the expression of Gal-3 and TLR-4 in the dorsal horn of the spinal cord in the burn with HBO treatment group compared with the burn with sham HBO treatment group (p < 0.05). IHC analysis showed that the expression of Gal-3, TLR-4, CD68 and CD45 in the dorsal horn of the spinal cord was significantly lower in the burn with HBO treatment group than in the burn with sham HBO treatment group (p < 0.05), and the expression of CD68 and macrophage migration inhibitory factor (MIF) in the right hind paw skin was significantly lower. The expression of vimentin and fibroblast growth factor in the right hind paw skin was significantly higher after HBO treatment (p < 0.05). This study proved that early HBO treatment relieves neuropathic pain, inhibits the Gal-3-dependent TLR-4 pathway, and suppresses microglia and macrophage activation in a rat model.
Collapse
Affiliation(s)
- Zong-Sheng Wu
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Jing-Jou Lo
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Sheng-Hua Wu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, 807 Kaohsiung, Taiwan.
- Department of Anesthesiology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Chau-Zen Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, 807 Kaohsiung, Taiwan.
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Rong-Fu Chen
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, 807 Kaohsiung, Taiwan.
| | - Su-Shin Lee
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, 807 Kaohsiung, Taiwan.
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Shu-Hung Huang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, 807 Kaohsiung, Taiwan.
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Hyperbaric Oxygen Therapy Room, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| |
Collapse
|
19
|
Liska GM, Lippert T, Russo E, Nieves N, Borlongan CV. A Dual Role for Hyperbaric Oxygen in Stroke Neuroprotection: Preconditioning of the Brain and Stem Cells. CONDITIONING MEDICINE 2018; 1:151-166. [PMID: 30079404 PMCID: PMC6075658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stroke continues to be an extremely prevalent disease and poses a great challenge in developing safe and effective therapeutic options. Hyperbaric oxygen therapy (HBOT) has demonstrated significant pre-clinical effectiveness for the treatment of acute ischemic stroke, and limited potential in treating chronic neurological deficits. Reported benefits include reductions in oxidative stress, inflammation, neural apoptosis, and improved physiological metrics such as edema and oxygen perfusion, all of which contribute to improved functional recovery. This pre-clinical evidence has failed to translate into an effective evidence-based therapy, however, due in large part to significant inconsistencies in treatment protocols and design of clinical studies. While the medical community works to standardize clinical protocols in an effort to advance HBOT for acute stroke, pre-clinical investigations continue to probe novel applications of HBOT in an effort to optimize stroke neuroprotection. One such promising strategy is HBOT preconditioning. Based upon the premise of mild oxidative stress priming the brain for tolerating the full-blown oxidative stress inherent in stroke, HBOT preconditioning has displayed extensive efficacy. Here, we first review the pre-clinical and clinical evidence supporting HBOT delivery following ischemic stroke and then discuss the scientific basis for HBOT preconditioning as a neuroprotective strategy. Finally, we propose the innovative concept of stem cell preconditioning, in tandem with brain preconditioning, as a promising regenerative pathway for maximizing the application of HBOT for ischemic stroke treatment.
Collapse
Affiliation(s)
| | | | | | | | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL
| |
Collapse
|
20
|
Falavigna A, Quadros FW, Teles AR, Wong CC, Barbagallo G, Brodke D, Al-Mutair A, Riew KD. Worldwide Steroid Prescription for Acute Spinal Cord Injury. Global Spine J 2018; 8:303-310. [PMID: 29796379 PMCID: PMC5958488 DOI: 10.1177/2192568217735804] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
STUDY DESIGN Cross-sectional study. OBJECTIVES To continue the line of a previous publication using steroid for acute spinal cord injury (SCI) by spine surgeons from Latin America (LA) and assess the current status of methylprednisolone (MP) prescription in Europe (EU), Asia Pacific (AP), North America (NA), and Middle East (ME) to determine targets for educational activities suitable for each region. METHODS The English version of a previously published questionnaire was used to evaluate opinions about MP administration in acute SCI in LA, EU, AP, NA, and ME. This Internet-based survey was conducted by members of AOSpine. The questionnaire asked about demographic features, background with management of spine trauma patients, routine administration of MP in acute SCI, and reasons for MP administration. RESULTS A total of 2659 responses were obtained for the electronic questionnaire from LA, EU, AP, NA, and ME. The number of spine surgeons that treat SCI was 2206 (83%). The steroid was used by 1198 (52.9%) surgeons. The uses of MP were based predominantly on the National Acute Spinal Cord Injury Study III study (n = 595, 50%). The answers were most frequently given by spine surgeons from AP, ME, and LA. These regions presented a statistically significant difference from North America (P < .001). The number of SCI patients treated per year inversely influenced the use of MP. The higher the number of patients treated, the lower the administration rates of MP observed. CONCLUSIONS The study identified potential targets for educational campaigns, aiming to reduce inappropriate practices of MP administration.
Collapse
Affiliation(s)
- Asdrubal Falavigna
- Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil,Asdrubal Falavigna, Universidade de Caxias do Sul, Rua General Arcy da Rocha Nóbrega, 401/602 Caxias do Sul, RS, Brazil.
| | | | | | | | | | | | - Abdulaziz Al-Mutair
- Alrazi Hospital, Ministry of Health & Kuwait Institute for Medical Specialization, Adailiya, Kuwait
| | | |
Collapse
|
21
|
Hyperbaric Oxygen Therapy After Acute Thoracic Spinal Cord Injury: Improvement of Locomotor Recovery in Rats. Spine (Phila Pa 1976) 2018; 43:E442-E447. [PMID: 28837532 DOI: 10.1097/brs.0000000000002387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A controlled laboratory study. OBJECTIVE The aim of this study was to analyze the effectiveness of hyperbaric therapy (HT) using mild and moderate models of spinal cord injury (SCI). SUMMARY OF BACKGROUND DATA SCI can cause permanent impairment with socioeconomic consequences. The motor deficit occurs by two mechanisms: destruction of neuronal cells and local inflammatory response, resulting in hypoxia. HT acts by increasing oxygen in the injured area. METHODS Thoracic laminectomy was performed in 72 female Wistar rats. The MASCIS impactor was used at 12.5 mm (n = 35) and 25 mm (n = 35) of height to perform, respectively, mild and moderate SCI. Muscle strength was assessed through the Basso, Beattie, and Bresnahan scale (BBB) on days 1, 7, 14, 21, and 28 after SCI. The animals were randomized into five subgroups with seven animals each: (1) control group had SCI without HT; (2) HT 30 minutes after SCI; (3) HT 30 minutes after SCI and daily for 7 days; (4) HT 12 hours after SCI; and (5) HT 12 hours after SCI and daily for 7 days. HT was performed at 2.5 atm for 1 hour. RESULTS There was a linear relationship between injury severity and motor deficit until day 21, with similar BBB scores on day 28. A pattern of uniform lesions was observed in the mild SCI, with lower variation of BBB when compared with moderate SCI. All animals that underwent HT had significant improvement in motor function and histology when compared with control group. Regardless of the injury model, animals submitted to 7-day protocols had an early improvement in motor function and a smaller area of histological injury. CONCLUSION The present study reported that the sooner HT is begun after mild and moderate SCI and the larger the number of sessions, the greater and earlier is the motor recovery and smaller is the tissue injury. LEVEL OF EVIDENCE N/A.
Collapse
|
22
|
Falavigna A, da Silva PG, Conzatti LP, Corbellini LM, Cagliari CS, Pasqualotto FF. Improving Sperm Viability After Spinal Cord Injury Using Hyperbaric Therapy. World Neurosurg 2018; 113:e232-e238. [PMID: 29432942 DOI: 10.1016/j.wneu.2018.01.216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 11/15/2022]
Abstract
BACKGROUND Infertility is one of many complications of spinal cord injury (SCI) in male patients, who are often at the peak of their reproductive life. This study evaluated effects of hyperbaric therapy (HT) on quality of sperm of rats with SCI and correlated the findings with histologic analysis of the testicles. METHODS This experimental study comprised 18 rats that were submitted to SCI with a MASCIS Impactor and randomly allocated to either a HT or a control group. Testicular biopsies were performed on the first and 28th day of the study; 4 parameters were evaluated: concentration of sperm per mL, number of round cells per field, number of inflammatory cells per field (peroxidase [Endtz] test), and sperm viability (hypo-osmotic swelling test). RESULTS There was no difference in sperm concentration between the HT group (P = 0.41) and control group (P = 0.74) during 28 days. From day 1 to day 28, sperm viability decreased twice as much in the control group (P = 0.001) compared with the HT group (P = 0.017). There was no difference between the groups in mean sperm concentration and number of round and inflammatory cells. On the first day, there was no difference in sperm viability between groups. There was a significantly higher (P = 0.001) percentage of viable sperm in the HT group (86.8 ± 5.6) compared with the control group (48.8 ± 21.8) on day 28. CONCLUSIONS SCI increased the number of round and inflammatory cells and diminished sperm viability in both groups. HT promoted greater sperm viability in rats with SCI.
Collapse
Affiliation(s)
- Asdrubal Falavigna
- Department of Neurosurgery, University of Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil.
| | - Pedro G da Silva
- Department of Neurosurgery, University of Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Lucas P Conzatti
- Department of Neurosurgery, University of Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Louise M Corbellini
- Department of Neurosurgery, University of Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Caroline S Cagliari
- Department of Neurosurgery, University of Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Fabio F Pasqualotto
- Department of Neurosurgery, University of Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
23
|
Expression of RGMb in brain tissue of MCAO rats and its relationship with axonal regeneration. J Neurol Sci 2017; 383:79-86. [DOI: 10.1016/j.jns.2017.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 11/24/2022]
|
24
|
Fu H, Li F, Thomas S, Yang Z. Hyperbaric oxygenation alleviates chronic constriction injury (CCI)-induced neuropathic pain and inhibits GABAergic neuron apoptosis in the spinal cord. Scand J Pain 2017; 17:330-338. [PMID: 28927648 DOI: 10.1016/j.sjpain.2017.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/28/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND AIMS Dysfunction of GABAergic inhibitory controls contributes to the development of neuropathic pain. We examined our hypotheses that (1) chronic constriction injury (CCI)-induced neuropathic pain is associated with increased spinal GABAergic neuron apoptosis, and (2) hyperbaric oxygen therapy (HBO) alleviates CCI-induced neuropathic pain by inhibiting GABAergic neuron apoptosis. METHODS Male rats were randomized into 3 groups: CCI, CCI+HBO and the control group (SHAM). Mechanical allodynia was tested daily following CCI procedure. HBO rats were treated at 2.4 atmospheres absolute (ATA) for 60min once per day. The rats were euthanized and the spinal cord harvested on day 8 and 14 post-CCI. Detection of GABAergic cells and apoptosis was performed. The percentages of double positive stained cells (NeuN/GABA), cleaved caspase-3 or Cytochrome C in total GABAergic cells or in total NeuN positive cells were calculated. RESULTS HBO significantly alleviated mechanical allodynia. CCI-induced neuropathic pain was associated with significantly increased spinal apoptotic GABA-positive neurons. HBO considerably decreased these spinal apoptotic cells. Cytochrome-C-positive neurons and cleaved caspase-3-positive neurons were also significantly higher in CCI rats. HBO significantly decreased these positive cells. Caspase-3 mRNA was also significantly higher in CCI rats. HBO reduced mRNA expression of caspase-3. CONCLUSIONS CCI-induced neuropathic pain was associated with increased apoptotic GABAergic neurons induced by activation of key proteins of mitochondrial apoptotic pathways in the dorsal horn of the spinal cord. HBO alleviated CCI-induced neuropathic pain and reduced GABAergic neuron apoptosis. The beneficial effect of HBO may be via its inhibitory role in CCI-induced GABAergic neuron apoptosis by suppressing mitochondrial apoptotic pathways in the spinal cord. IMPLICATIONS Increased apoptotic GABAergic neurons induced by activation of key proteins of mitochondrial apoptotic pathways in the dorsal horn of the spinal cord is critical in CCI-induced neuropathic pain. The inhibitory role of HBO in GABAergic neuron apoptosis suppresses ongoing neuropathic pain.
Collapse
Affiliation(s)
- Huiqun Fu
- Department of Anesthesiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Fenghua Li
- Department of Anesthesiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Sebastian Thomas
- Pain Treatment Center, Upstate Medical University, Syracuse, NY 13210, USA
| | - Zhongjin Yang
- Department of Anesthesiology, Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
25
|
Abstract
Spinal cord injury (SCI) is a complex disease process that involves both primary and secondary mechanisms of injury and can leave patients with devastating functional impairment as well as psychological debilitation. While no curative treatment is available for spinal cord injury, current therapeutic approaches focus on reducing the secondary injury that follows SCI. Hyperbaric oxygen (HBO) therapy has shown promising neuroprotective effects in several experimental studies, but the limited number of clinical reports have shown mixed findings. This review will provide an overview of the potential mechanisms by which HBO therapy may exert neuroprotection, provide a summary of the clinical application of HBO therapy in patients with SCI, and discuss avenues for future studies.
Collapse
Affiliation(s)
| | - Jason H Huang
- Texas A&M College of Medicine, Temple, Texas, USA.,Department of Neurosurgery, Baylor Scott & White Healthcare, Temple, Texas, USA
| |
Collapse
|
26
|
Abstract
Cervical spine trauma in the athlete is not an insignificant occurrence with possibly catastrophic results. Football remains one of the most common and most well studied sporting activities associated with spine injuries. Transient spinal cord and peripheral nerve injuries may manifest as quadriparesis or burners/stingers with symptoms that resolve completely. More severe spinal cord injuries, typically from axial loading on the cervical spine, will cause bilateral symptoms with residual neurological deficit. Acute Trauma Life Support principles must always be applied to the player with a potential spine injury. Recent positional statements by National Athletic Trainers' Association advocate equipment removal on the field by 3 individuals with appropriate training, a shift from previous recommendations. This recommendation is still under debate, but equipment removal in the field is an option depending on staff training. The use of steroids in acute spinal cord injury remains controversial. Moderate systemic hypothermia has theoretical benefits for reducing spinal cord damage in the setting of an acute injury. Although it has been studied in the laboratory, only a few clinical trials have been performed and further research is necessary before routine implementation of hypothermia protocols.
Collapse
|
27
|
Abstract
In recent years, hyperbaric oxygen (HBO) has been used in the treatment of a lot of diseases such as decompression sickness, arterial gas embolism, carbon dioxide poisoning, soft tissue infection, refractory osteomyelitis, and problematic wound, but little is known about its application in liver transplantation. Although several studies have been conducted to investigate the protective effects of HBO on liver transplantation and liver preservation, there are still some controversies on this issue, especially its immunomodulatory effect. In this short review, we briefly summarize the findings supporting the application of HBO during liver transplantation (including donors and recipients).
Collapse
Affiliation(s)
- Hu Lv
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cui-Hong Han
- Department of Pathology, the First Hospital of Jining City, Jining, Shandong Province, China
| | - Xue-Jun Sun
- Department of Diving and Hyperbaric Medicine, Secondary Military Medical University, Shanghai, China
| | - Wen-Wu Liu
- Department of Diving and Hyperbaric Medicine, Secondary Military Medical University, Shanghai, China
| |
Collapse
|
28
|
Kong X, Gao J. Macrophage polarization: a key event in the secondary phase of acute spinal cord injury. J Cell Mol Med 2016; 21:941-954. [PMID: 27957787 PMCID: PMC5387136 DOI: 10.1111/jcmm.13034] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/29/2016] [Indexed: 01/18/2023] Open
Abstract
Acute spinal cord injury (SCI) has become epidemic in modern society. Despite advances made in the understanding of the pathogenesis and improvements in early recognition and treatment, it remains a devastating event, often producing severe and permanent disability. SCI has two phases: acute and secondary. Although the acute phase is marked by severe local and systemic events such as tissue contusion, ischaemia, haemorrhage and vascular damage, the outcome of SCI are mainly influenced by the secondary phase. SCI causes inflammatory responses through the activation of innate immune responses that contribute to secondary injury, in which polarization‐based macrophage activation is a hallmarker. Macrophages accumulated within the epicentre and the haematoma of the injured spinal cord play a significant role in this inflammation. Depending on their phenotype and activation status, macrophages may initiate secondary injury mechanisms and/or promote CNS regeneration and repair. When it comes to therapies for SCI, very few can be performed in the acute phase. However, as macrophage activation and polarization switch are exquisitely sensitive to changes in microenvironment, some trials have been conducted to modulate macrophage polarization towards benefiting the recovery of SCI. Given this, it is important to understand how macrophages and SCI interrelate and interact on a molecular pathophysiological level. This review provides a comprehensive overview of the immuno‐pathophysiological features of acute SCI mainly from the following perspectives: (i) the overview of the pathophysiology of acute SCI, (ii) the roles of macrophage, especially its polarization switch in acute SCI, and (iii) newly developed neuroprotective therapies modulating macrophage polarization in acute SCI.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Hu Q, Manaenko A, Matei N, Guo Z, Xu T, Tang J, Zhang JH. Hyperbaric oxygen preconditioning: a reliable option for neuroprotection. Med Gas Res 2016; 6:20-32. [PMID: 27826420 PMCID: PMC5075679 DOI: 10.4103/2045-9912.179337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brain injury is the leading cause of death and disability worldwide and clinically there is no effective therapy for neuroprotection. Hyperbaric oxygen preconditioning (HBO-PC) has been experimentally demonstrated to be neuroprotective in several models and has shown efficiency in patients undergoing on-pump coronary artery bypass graft (CABG) surgery. Compared with other preconditioning stimuli, HBO is benign and has clinically translational potential. In this review, we will summarize the results in experimental brain injury and clinical studies, elaborate the mechanisms of HBO-PC, and discuss regimes and opinions for future interventions in acute brain injury.
Collapse
Affiliation(s)
- Qin Hu
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Anatol Manaenko
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nathanael Matei
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Zhenni Guo
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Ting Xu
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
30
|
Sun Y, Liu D, Su P, Lin F, Tang Q. Changes in autophagy in rats after spinal cord injury and the effect of hyperbaric oxygen on autophagy. Neurosci Lett 2016; 618:139-145. [PMID: 26949182 DOI: 10.1016/j.neulet.2016.02.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/17/2016] [Accepted: 02/26/2016] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to explore the effects of Hyperbaric oxygen (HBO) on the autophagic changes after induction of spinal cord injury (SCI) in rats. A total of 75 rats were randomly divided into the sham-operated group, the spinal cord injury group, and the SCI+HBO group. We found that at 7 d and 14 d after surgery, the BBB scores were higher in the SCI+HBO group in comparison to the SCI group. The expression of Beclin-1 and LC3II was upregulated in the SCI and SCI+HBO groups after SCI. Fluorescently stained Beclin-1 and LC3II proteins were barely detectable in the sham group. In contrast, Beclin-l and LC3II expression was observed in neurons and glial cells from the SCI and SCI+HBO groups. Beclin-1 and LC3II expression appeared at 6h after SCI. At each time point, Beclin-1 and LC3II expression was significantly higher in the SCI+HBO group compared to the SCI group. These results suggest that autophagy is activated in rats after SCI and sustained over a period of time. HBO treatment enhances autophagy expression in rats after SCI and accelerates cell repair rate, which may represent one of the mechanisms of action of HBO in the treatment of SCI.
Collapse
Affiliation(s)
- Yongming Sun
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu 215004, China
| | - Dong Liu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu 215004, China
| | - Peng Su
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu 215004, China
| | - Fanguo Lin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu 215004, China
| | - Qifeng Tang
- Department of Anesthesiology, Suzhou BenQ Medical Center, Nanjing Medical University, Suzhou 215009, China.
| |
Collapse
|
31
|
Peng CG, Zhang SQ, Wu MF, Lv Y, Wu DK, Yang Q, Gu R. Hyperbaric oxygen therapy combined with Schwann cell transplantation promotes spinal cord injury recovery. Neural Regen Res 2015; 10:1477-82. [PMID: 26604910 PMCID: PMC4625515 DOI: 10.4103/1673-5374.165520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2015] [Indexed: 11/09/2022] Open
Abstract
Schwann cell transplantation and hyperbaric oxygen therapy each promote recovery from spinal cord injury, but it remains unclear whether their combination improves therapeutic results more than monotherapy. To investigate this, we used Schwann cell transplantation via the tail vein, hyperbaric oxygen therapy, or their combination, in rat models of spinal cord contusion injury. The combined treatment was more effective in improving hindlimb motor function than either treatment alone; injured spinal tissue showed a greater number of neurite-like structures in the injured spinal tissue, somatosensory and motor evoked potential latencies were notably shorter, and their amplitudes greater, after combination therapy than after monotherapy. These findings indicate that Schwann cell transplantation combined with hyperbaric oxygen therapy is more effective than either treatment alone in promoting the recovery of spinal cord in rats after injury.
Collapse
Affiliation(s)
- Chuan-gang Peng
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shu-quan Zhang
- Department of Orthopedics, Tianjin Nankai Hospital, Tianjin, China
| | - Min-fei Wu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Lv
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Dan-kai Wu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qi Yang
- Department of Dynaecology and Obstetrics, China-Japan Union Hosptial of Jilin University, Changchun, Jilin Province, China
| | - Rui Gu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|