1
|
Padhan P, Simran, Kumar N, Verma S. Glutathione S-transferase: A keystone in Parkinson's disease pathogenesis and therapy. Mol Cell Neurosci 2024; 132:103981. [PMID: 39644945 DOI: 10.1016/j.mcn.2024.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder that predominantly affects motor function due to the loss of dopaminergic neurons in the substantia nigra. It presents significant challenges, impacting millions worldwide with symptoms such as tremors, rigidity, bradykinesia, and postural instability, leading to decreased quality of life and increased morbidity. The pathogenesis of Parkinson's disease is multifaceted, involving complex interactions between genetic susceptibility, environmental factors, and aging, with oxidative stress playing a central role in neuronal degeneration. Glutathione S-Transferase enzymes are critical in the cellular defense mechanism against oxidative stress, catalysing the conjugation of the antioxidant glutathione to various toxic compounds, thereby facilitating their detoxification. Recent research underscores the importance of Glutathione S-Transferase in the pathophysiology of Parkinson's disease, revealing that genetic polymorphisms in Glutathione S-Transferase genes influence the risk and progression of the disease. These genetic variations can affect the enzymatic activity of Glutathione S-Transferase, thereby modulating an individual's capacity to detoxify reactive oxygen species and xenobiotics, which are implicated in Parkinson's disease neuropathological processes. Moreover, biochemical studies have elucidated the role of Glutathione S-Transferase in not only maintaining cellular redox balance but also in modulating various cellular signalling pathways, highlighting its neuroprotective potential. From a therapeutic perspective, targeting Glutathione S-Transferase pathways offers promising avenues for the development of novel treatments aimed at enhancing neuroprotection and mitigating disease progression. This review explores the evident and hypothesized roles of Glutathione S-Transferase in Parkinson's disease, providing a comprehensive overview of its importance and potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Pratyush Padhan
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Simran
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeraj Kumar
- Department of Reproductive Biology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sonia Verma
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
James LM, Tsilibary EP, Wanberg EJ, Georgopoulos AP. Negative Association of Cognitive Performance With Blood Serum Neurotoxicity and Its Modulation by Human Herpes Virus 5 (HHV5) Seropositivity in Healthy Women. Neurosci Insights 2024; 19:26331055241258436. [PMID: 38827247 PMCID: PMC11143810 DOI: 10.1177/26331055241258436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/15/2024] [Indexed: 06/04/2024] Open
Abstract
Identification of early influences on cognitive decline is of paramount importance in order to stem the impacts of decrements in cognitive functioning and to potentially intervene. Thus, here we focused on 132 healthy adult women (age range 26-98 years) to (a) determine whether factors circulating in serum may exert neurotoxic effects in vitro, (b) evaluate associations between serum neurotoxicity and cognitive performance, and (c) assess the influence of human herpes virus (HHV) seroprevalence and other factors on apoptosis and cognitive performance. The results documented that the addition of serum from healthy adult women to neural cell cultures resulted in apoptosis, indicating the presence of circulating neurotoxic factors in the serum. Furthermore, apoptosis increased with age, and was associated with decreased cognitive performance. Stepwise regression evaluating the influence of 6 HHVs on apoptosis and cognitive function revealed that only HHV5 (cytomegalovirus; CMV) seropositivity was significantly associated with apoptosis and cognitive decline, controlling for age. These findings document neurotoxic effects of serum from healthy women across the adult lifespan and suggest a unique detrimental influence associated with CMV seropositivity.
Collapse
Affiliation(s)
- Lisa M James
- The Healthy Brain Aging Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Effie-Photini Tsilibary
- The Healthy Brain Aging Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Erik J Wanberg
- The Healthy Brain Aging Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Apostolos P Georgopoulos
- The Healthy Brain Aging Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
3
|
Mitra R, Premraj L, Khoo TK. Neuromelanin: Its role in the pathogenesis of idiopathic Parkinson's disease and potential as a therapeutic target. Parkinsonism Relat Disord 2023:105448. [PMID: 37236833 DOI: 10.1016/j.parkreldis.2023.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Parkinson's disease is an increasingly prevalent condition that involves the marked loss of dopaminergic neurons in the substantia nigra pars compacta. These neurons pigmented with neuromelanin along with other regions of the brain are almost exclusively victims of neurodegeneration in the disease. The link between neuromelanin and Parkinson's disease has been widely studied for decades. While many studies have outlined the pigment's neuroprotective function as a potent free radical scavenger, antioxidant, and ion-chelator, it has also been observed to play a role in cell death due to mitochondrial dysfunction and oxidative stress, especially in the parkinsonian disease state. This is due to the damaging effects of neuromelanin precursors, neuromelanin-related ion dysregulation and intra- and extraneuronal neuromelanin accumulation. Current and emerging therapeutic endeavours guided by these pathological processes may include antioxidant therapy, proteostasis enhancement, ion chelation and neuromelanin-targeted immunotherapy to prevent the accumulation, formation and effects of neuromelanin and oxidative neuromelanin precursors. Some of these therapeutic strategies are already in nascent stages, while others have produced mixed results in clinical trials. This review aims to provide an update on how neuromelanin and neuromelanin-related substances may be linked to the pathogenesis of Parkinson's disease and how future therapeutic strategies may be able to hamper or prevent neuromelanin-related pathological processes and ultimately modify disease progression in Parkinson's.
Collapse
Affiliation(s)
- Ritoban Mitra
- College of Medicine and Public Health, Flinders University, South Australia, Australia.
| | - Lavienraj Premraj
- School of Medicine & Dentistry, Griffith University, Queensland, Australia
| | - Tien K Khoo
- School of Medicine & Dentistry, Griffith University, Queensland, Australia; Graduate School of Medicine, University of Wollongong, New South Wales, Australia
| |
Collapse
|
4
|
De Araújo FM, Frota AF, de Jesus LB, Macedo TC, Cuenca-Bermejo L, Sanchez-Rodrigo C, Ferreira KMS, de Oliveira JVR, de Fatima Dias Costa M, Segura-Aguilar J, Costa SL, Herrero MT, Silva VDA. Aminochrome Induces Neuroinflammation and Dopaminergic Neuronal Loss: A New Preclinical Model to Find Anti-inflammatory and Neuroprotective Drugs for Parkinson's Disease. Cell Mol Neurobiol 2023; 43:265-281. [PMID: 34988761 PMCID: PMC11415180 DOI: 10.1007/s10571-021-01173-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/21/2021] [Indexed: 01/07/2023]
Abstract
Studies have suggested aminochrome as an endogenous neurotoxin responsible for the dopaminergic neuron degeneration in Parkinson's disease (PD). However, neuroinflammation, an important alteration in PD pathogenesis, has been strictly induced in vitro by aminochrome. The aim of this study was to characterize the neuroinflammation induced in vivo by aminochrome. Wistar rats (male, 250-270 g) received a unilateral single dose by stereotaxic injection of saline into three sites in the striatum in the negative control group, or 32 nmol 6-hydroxydopamine (6-OHDA) in the positive control, or 6 nmol aminochrome. After 14 days, histological and molecular analyses were performed. We observed by immunofluorescence that aminochrome, as well as 6-OHDA, induced an increase in the number of Iba-1+ cells and in the number of activated (Iba-1+/ CD68+) microglia. An increase in the number of S100b+ cells and in the GFAP expression were also evidenced in the striatum and the SNpc of animals from aminochrome and positive control group. Dopaminergic neuronal loss was marked by reduction of TH+ cells and confirmed with reduction in the number of Nissl-stained neurons in the SNpc of rats from aminochrome and positive control groups. In addition, we observed by qPCR that aminocrhome induced an increase in the levels of IL-1β, TNF-α, NLRP3, CCL5 and CCR2 mRNA in the SNpc. This work provides the first evidence of microgliosis, astrogliosis and neuroinflammation induced by aminochrome in an in vivo model. Since aminochrome is an endogenous molecule derived from dopamine oxidation present in the targeted neurons in PD, these results reinforce the potential of aminochrome as a useful preclinical model to find anti-inflammatory and neuroprotective drugs for PD. Aminochrome induced dopaminergic neuronal loss, microglial activation, astroglial activation and neuroinflammation marked by an increase in NLRP3, IL1β, TNF-α, CCL2, CCL5 and CCR2.
Collapse
Affiliation(s)
- Fillipe Mendes De Araújo
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
- Clinical & Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain
| | - Annyta Fernandes Frota
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Lívia Bacelar de Jesus
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Ticiane Caribe Macedo
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Lorena Cuenca-Bermejo
- Clinical & Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain
| | - Consuelo Sanchez-Rodrigo
- Clinical & Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain
| | - Kariny Maria Silva Ferreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Juciele Valéria Ribeiro de Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Maria de Fatima Dias Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia, 1027, Santiago, Chile
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Maria Trinidad Herrero
- Clinical & Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain.
| | - Victor Diógenes Amaral Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| |
Collapse
|
5
|
JM-20, a Benzodiazepine-Dihydropyridine Hybrid Molecule, Inhibits the Formation of Alpha-Synuclein-Aggregated Species. Neurotox Res 2022; 40:2135-2147. [PMID: 35997936 DOI: 10.1007/s12640-022-00559-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/20/2022] [Accepted: 08/11/2022] [Indexed: 12/31/2022]
Abstract
Studies showed that JM-20, a benzodiazepine-dihydropyridine hybrid molecule, protects against rotenone and 6-hydroxydopamine neurotoxicity. However, its protective effects against cytotoxicity induced by endogenous neurotoxins involved in Parkinson's disease (PD) pathogenesis have never been investigated. In this study, we evaluated the ability of JM-20 to inhibit alpha-synuclein (aSyn) aggregation. We also evaluated the interactions of JM-20 with aSyn by molecular docking and molecular dynamics and assessed the protective effect of JM-20 against aminochrome cytotoxicity. We demonstrated that JM-20 induced the formation of heterogeneous amyloid fibrils, which were innocuous to primary cultures of mesencephalic cells. Moreover, JM-20 reduced the average size of aSyn positive inclusions in H4 cells transfected with SynT wild-type and synphilin-1-V5, but not in HEK cells transfected with synphilin-1-GFP. In silico studies showed the interaction between JM-20 and the aSyn-binding site. Additionally, we showed that JM-20 protects SH-SY5Y cells against aminochrome cytotoxicity. These results reinforce the potential of JM-20 as a neuroprotective compound for PD and suggest aSyn as a molecular target for JM-20.
Collapse
|
6
|
de Araújo FM, Cuenca-Bermejo L, Fernández-Villalba E, Costa SL, Silva VDA, Herrero MT. Role of Microgliosis and NLRP3 Inflammasome in Parkinson's Disease Pathogenesis and Therapy. Cell Mol Neurobiol 2022; 42:1283-1300. [PMID: 33387119 PMCID: PMC11421755 DOI: 10.1007/s10571-020-01027-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked primarily by motor symptoms such as rigidity, bradykinesia, postural instability and resting tremor associated with dopaminergic neuronal loss in the Substantia Nigra pars compacta (SNpc) and deficit of dopamine in the basal ganglia. These motor symptoms can be preceded by pre-motor symptoms whose recognition can be useful to apply different strategies to evaluate risk, early diagnosis and prevention of PD progression. Although clinical characteristics of PD are well defined, its pathogenesis is still not completely known, what makes discoveries of therapies capable of curing patients difficult to be reached. Several theories about the cause of idiopathic PD have been investigated and among them, the key role of inflammation, microglia and the inflammasome in the pathogenesis of PD has been considered. In this review, we describe the role and relation of both the inflammasome and microglial activation with the pathogenesis, symptoms, progression and the possibilities for new therapeutic strategies in PD.
Collapse
Affiliation(s)
- Fillipe M de Araújo
- Clinical and Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, Campus Mare Nostrum, University of Murcia, Murcia, Spain
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Lorena Cuenca-Bermejo
- Clinical and Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Emiliano Fernández-Villalba
- Clinical and Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Silvia L Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| | - Victor Diogenes A Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| | - Maria Trinidad Herrero
- Clinical and Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, Campus Mare Nostrum, University of Murcia, Murcia, Spain.
| |
Collapse
|
7
|
Ahmed S, El-Sayed MM, Kandeil MA, Khalaf MM. Empagliflozin attenuates Neurodegeneration through Antioxidant, Anti-inflammatory, and Modulation of α-synuclein and Parkin Levels in Rotenone-Induced Parkinson’s Disease in Rats. Saudi Pharm J 2022; 30:863-873. [PMID: 35812142 PMCID: PMC9257853 DOI: 10.1016/j.jsps.2022.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/10/2022] [Indexed: 10/26/2022] Open
|
8
|
Segura-Aguilar J, Muñoz P, Inzunza J, Varshney M, Nalvarte I, Mannervik B. Neuroprotection against Aminochrome Neurotoxicity: Glutathione Transferase M2-2 and DT-Diaphorase. Antioxidants (Basel) 2022; 11:296. [PMID: 35204179 PMCID: PMC8868244 DOI: 10.3390/antiox11020296] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Glutathione is an important antioxidant that plays a crucial role in the cellular protection against oxidative stress and detoxification of electrophilic mutagens, and carcinogens. Glutathione transferases are enzymes catalyzing glutathione-dependent reactions that lead to inactivation and conjugation of toxic compounds, processes followed by subsequent excretion of the detoxified products. Degeneration and loss of neuromelanin-containing dopaminergic neurons in the nigrostriatal neurons generally involves oxidative stress, neuroinflammation, alpha-synuclein aggregation to neurotoxic oligomers, mitochondrial dysfunction, protein degradation dysfunction, and endoplasmic reticulum stress. However, it is still unclear what triggers these neurodegenerative processes. It has been reported that aminochrome may elicit all of these mechanisms and, interestingly, aminochrome is formed inside neuromelanin-containing dopaminergic neurons during neuromelanin synthesis. Aminochrome is a neurotoxic ortho-quinone formed in neuromelanin synthesis. However, it seems paradoxical that the neurotoxin aminochrome is generated during neuromelanin synthesis, even though healthy seniors have these neurons intact when they die. The explanation of this paradox is the existence of protective tools against aminochrome neurotoxicity composed of the enzymes DT-diaphorase, expressed in these neurons, and glutathione transferase M2-2, expressed in astrocytes. Recently, it has been reported that dopaminergic neurons can be protected by glutathione transferase M2-2 from astrocytes, which secrete exosomes containing the protective enzyme.
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology ICBM, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Patricia Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8900000, Chile;
| | - Jose Inzunza
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-14157 Huddinge, Sweden; (J.I.); (M.V.); (I.N.)
| | - Mukesh Varshney
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-14157 Huddinge, Sweden; (J.I.); (M.V.); (I.N.)
| | - Ivan Nalvarte
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-14157 Huddinge, Sweden; (J.I.); (M.V.); (I.N.)
| | - Bengt Mannervik
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, SE-10691 Stockholm, Sweden;
| |
Collapse
|
9
|
Alhassen S, Senel M, Alachkar A. Surface Plasmon Resonance Identifies High-Affinity Binding of l-DOPA to Siderocalin/Lipocalin-2 through Iron-Siderophore Action: Implications for Parkinson's Disease Treatment. ACS Chem Neurosci 2022; 13:158-165. [PMID: 34939797 DOI: 10.1021/acschemneuro.1c00693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
l-3,4-Dihydroxyphenylalanine (l-DOPA), the dopamine precursor, remains the frontline treatment for Parkinson's disease (PD). With the treatment progress, l-DOPA efficacy decreases, necessitating higher and more frequent doses, with higher risks of dyskinesia. l-DOPA chelates iron through its catechol group, forming the l-DOPA:Fe complex; however, the fate of this complex is unknown. Catechol siderophore-like compounds are known to bind siderocalin (Scn)/lipocalin-2 to form stable siderophore:Fe:Scn complexes. Scn is upregulated in PD patients' substantia nigra and may play a role in PD pathophysiology. Therefore, in this study, we used the surface plasmon resonance (SPR) technique to examine the binding properties of l-DOPA to Scn. We found that l-DOPA formed a stable complex with Scn in the presence of Fe3+. Our analysis of the binding properties of l-DOPA precursors and metabolites indicates that the catechol group is necessary but not sufficient to form a stable complex with Scn. Finally, the affinity constant (Kd) of DOPA:Fe3+ binding with Scn (0.8 μM) was lower than l-DOPA plasma peak concentrations in l-DOPA preparations in the past six decades. Our results speculate a significant role for the l-DOPA-Scn complex in the decreased bioavailability of l-DOPA with the progress of PD.
Collapse
Affiliation(s)
- Sammy Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California─Irvine, Irvine, California 92697, United States
| | - Mehmet Senel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California─Irvine, Irvine, California 92697, United States
- Department of Biochemistry, Faculty of Pharmacy, Biruni University, Istanbul 34010, Turkey
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California─Irvine, Irvine, California 92697, United States
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California─Irvine, Irvine, California 92697, United States
- UC Irvine Center for the Neurobiology of Learning and Memory, University of California─Irvine, Irvine, California 92697, United States
| |
Collapse
|
10
|
Segura-Aguilar J, Paris I. Mechanisms of Dopamine Oxidation and Parkinson’s Disease. HANDBOOK OF NEUROTOXICITY 2022:1433-1468. [DOI: 10.1007/978-3-031-15080-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Cao Y, Li B, Ismail N, Smith K, Li T, Dai R, Deng Y. Neurotoxicity and Underlying Mechanisms of Endogenous Neurotoxins. Int J Mol Sci 2021; 22:12805. [PMID: 34884606 PMCID: PMC8657695 DOI: 10.3390/ijms222312805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
Abstract
Endogenous and exogenous neurotoxins are important factors leading to neurodegenerative diseases. In the 1980s, the discovery that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) contributes to Parkinson's disease (PD) symptoms led to new research investigations on neurotoxins. An abnormal metabolism of endogenous substances, such as condensation of bioamines with endogenous aldehydes, dopamine (DA) oxidation, and kynurenine pathway, can produce endogenous neurotoxins. Neurotoxins may damage the nervous system by inhibiting mitochondrial activity, increasing oxidative stress, increasing neuroinflammation, and up-regulating proteins related to cell death. This paper reviews the biological synthesis of various known endogenous neurotoxins and their toxic mechanisms.
Collapse
Affiliation(s)
- Yanlu Cao
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
| | - Bo Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Nafissa Ismail
- Neuroimmunology, Stress and Endocrinology (NISE) Lab, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.I.); (K.S.)
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kevin Smith
- Neuroimmunology, Stress and Endocrinology (NISE) Lab, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.I.); (K.S.)
| | - Tianmei Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
| |
Collapse
|
12
|
Dopaminergic Axons: Key Recitalists in Parkinson's Disease. Neurochem Res 2021; 47:234-248. [PMID: 34637100 DOI: 10.1007/s11064-021-03464-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is associated with dopamine depletion in the striatum owing to the selective and progressive loss of the nigrostriatal dopaminergic neurons, which results in motor dysfunction and secondary clinical manifestations. The dopamine level in the striatum is preserved because of the innervation of the substantia nigra (SN) dopaminergic neurons into it. Therefore, protection of the SN neurons is crucial for maintaining the dopamine level in the striatum and for ensuring the desired motor coordination. Several strategies have been devised to protect the degenerating dopaminergic neurons or to restore the dopamine levels for treating PD. Most of the methods focus exclusively on preventing cell body death in the neurons. Although advances have been made in understanding the disease, the search for disease-modifying drugs is an ongoing process. The present review describes the evidence from studies involving patients with PD as well as PD models that axon terminals are highly vulnerable to exogenous and endogenous insults and degenerate at the early stage of the disease. Impairment of mitochondrial dynamics, Ca2+ homeostasis, axonal transport, and loss of plasticity of axon terminals appear before the neuronal degeneration in PD. Furthermore, distortion of synaptic morphology and reduction of postsynaptic dendritic spines are the neuropathological hallmarks of early-stage disease. Thus, the review proposes a shift in focus from discerning the mechanism of neuronal cell body loss and targeting it to an entirely different approach of preventing axonal degeneration. The review also suggests appropriate strategies to prevent the loss of synaptic terminals, which could induce regrowth of the axon and its auxiliary fibers and might offer relief from the symptomatic features of PD.
Collapse
|
13
|
Goldstein DS. The Catecholaldehyde Hypothesis for the Pathogenesis of Catecholaminergic Neurodegeneration: What We Know and What We Do Not Know. Int J Mol Sci 2021; 22:ijms22115999. [PMID: 34206133 PMCID: PMC8199574 DOI: 10.3390/ijms22115999] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 01/10/2023] Open
Abstract
3,4-Dihydroxyphenylacetaldehyde (DOPAL) is the focus of the catecholaldehyde hypothesis for the pathogenesis of Parkinson’s disease and other Lewy body diseases. The catecholaldehyde is produced via oxidative deamination catalyzed by monoamine oxidase (MAO) acting on cytoplasmic dopamine. DOPAL is autotoxic, in that it can harm the same cells in which it is produced. Normally, DOPAL is detoxified by aldehyde dehydrogenase (ALDH)-mediated conversion to 3,4-dihydroxyphenylacetic acid (DOPAC), which rapidly exits the neurons. Genetic, environmental, or drug-induced manipulations of ALDH that build up DOPAL promote catecholaminergic neurodegeneration. A concept derived from the catecholaldehyde hypothesis imputes deleterious interactions between DOPAL and the protein alpha-synuclein (αS), a major component of Lewy bodies. DOPAL potently oligomerizes αS, and αS oligomers impede vesicular and mitochondrial functions, shifting the fate of cytoplasmic dopamine toward the MAO-catalyzed formation of DOPAL—destabilizing vicious cycles. Direct and indirect effects of DOPAL and of DOPAL-induced misfolded proteins could “freeze” intraneuronal reactions, plasticity of which is required for neuronal homeostasis. The extent to which DOPAL toxicity is mediated by interactions with αS, and vice versa, is poorly understood. Because of numerous secondary effects such as augmented spontaneous oxidation of dopamine by MAO inhibition, there has been insufficient testing of the catecholaldehyde hypothesis in animal models. The clinical pathophysiological significance of genetics, emotional stress, environmental agents, and interactions with numerous proteins relevant to the catecholaldehyde hypothesis are matters for future research. The imposing complexity of intraneuronal catecholamine metabolism seems to require a computational modeling approach to elucidate clinical pathogenetic mechanisms and devise pathophysiology-based, individualized treatments.
Collapse
Affiliation(s)
- David S Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Valdes R, Armijo A, Muñoz P, Hultenby K, Hagg A, Inzunza J, Nalvarte I, Varshney M, Mannervik B, Segura-Aguilar J. Cellular Trafficking of Glutathione Transferase M2-2 Between U373MG and SHSY-S7 Cells is Mediated by Exosomes. Neurotox Res 2021; 39:182-190. [PMID: 33555546 DOI: 10.1007/s12640-020-00327-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022]
Abstract
The enzyme glutathione transferase M2-2, expressed in human astrocytes, increases its expression in the presence of aminochrome and catalyzes the conjugation of aminochrome, preventing its toxic effects. Secretion of the enzyme glutathione transferase M2-2 from U373MG cells, used as a cellular model for astrocytes, has been reported, and the enzyme is taken up by neuroblastoma SYSH-S7 cells and provide protection against aminochrome. The present study provides evidence that glutathione transferase M2-2 is released in exosomes from U373MG cells, thereby providing a means for intercellular transport of the enzyme. With particular relevance to Parkinson disease and other degenerative conditions, we propose a new mechanism by which astrocytes may protect dopaminergic neurons against the endogenous neurotoxin aminochrome.
Collapse
Affiliation(s)
- Raúl Valdes
- Molecular and Clinical Pharmacology ICBM Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alicia Armijo
- Molecular and Clinical Pharmacology ICBM Faculty of Medicine, University of Chile, Santiago, Chile
| | - Patricia Muñoz
- Nucleo de Química Y Bioquímica, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Kjell Hultenby
- Department of Laboratory Medicine, Division of Clinical Research Center, Karolinska Institutet, Huddinge, Sweden
| | - Andres Hagg
- Department of Laboratory Medicine, Division of Clinical Research Center, Karolinska Institutet, Huddinge, Sweden
| | - Jose Inzunza
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ivan Nalvarte
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Mukesh Varshney
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Bengt Mannervik
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Stockholm, Sweden
| | - Juan Segura-Aguilar
- Molecular and Clinical Pharmacology ICBM Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
15
|
Ueda K, Okamoto Y, Aoki A, Jinno H. Catecholamine oxidation-mediated transcriptional inhibition in Mn neurotoxicity. J Toxicol Sci 2020; 45:619-624. [PMID: 33012730 DOI: 10.2131/jts.45.619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Manganese (Mn) poisoning may result in a neurological disorder called manganism. Although the neurotoxic mechanism of Mn is unclear, oxidative stress may be involved based on the interactions between neurotransmitter catecholamines and metals such as iron. Here, we propose a novel mechanism in which Mn oxidizes catecholamines and inhibits cellular transcription. Mn accelerated the oxidation of adrenaline (Ad) and produced adrenochrome (AdC) more effectively than iron. Furthermore, the oxidation of DNA bases increased when Ad, Mn, and iron were present. However, despite the absence of iron, cell viability decreased in the presence of AdC or Ad with Mn, which suggests there is another mechanism independent of oxidative DNA damage. AdC or preincubated Ad with Mn reduced mRNA synthesis in T7 RNA polymerase-driven transcription. RNA synthesis decreased in AdC-treated cells dose-dependently. These results show that Mn disrupts neuronal function via catecholamine oxidation-mediated transcriptional inhibition.
Collapse
Affiliation(s)
- Koji Ueda
- Faculty of Pharmacy, Meijo University
| | | | | | | |
Collapse
|
16
|
Goldstein DS. The "Sick-but-not-Dead" Phenomenon Applied to Catecholamine Deficiency in Neurodegenerative Diseases. Semin Neurol 2020; 40:502-514. [PMID: 32906170 PMCID: PMC10680399 DOI: 10.1055/s-0040-1713874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The catecholamines dopamine and norepinephrine are key central neurotransmitters that participate in many neurobehavioral processes and disease states. Norepinephrine is also the main neurotransmitter mediating regulation of the circulation by the sympathetic nervous system. Several neurodegenerative disorders feature catecholamine deficiency. The most common is Parkinson's disease (PD), in which putamen dopamine content is drastically reduced. PD also entails severely decreased myocardial norepinephrine content, a feature that characterizes two other Lewy body diseases-pure autonomic failure and dementia with Lewy bodies. It is widely presumed that tissue catecholamine depletion in these conditions results directly from loss of catecholaminergic neurons; however, as highlighted in this review, there are also important functional abnormalities in extant residual catecholaminergic neurons. We refer to this as the "sick-but-not-dead" phenomenon. The malfunctions include diminished dopamine biosynthesis via tyrosine hydroxylase (TH) and L-aromatic-amino-acid decarboxylase (LAAAD), inefficient vesicular sequestration of cytoplasmic catecholamines, and attenuated neuronal reuptake via cell membrane catecholamine transporters. A unifying explanation for catecholaminergic neurodegeneration is autotoxicity exerted by 3,4-dihydroxyphenylacetaldehyde (DOPAL), an obligate intermediate in cytoplasmic dopamine metabolism. In PD, putamen DOPAL is built up with respect to dopamine, associated with a vesicular storage defect and decreased aldehyde dehydrogenase activity. Probably via spontaneous oxidation, DOPAL potently oligomerizes and forms quinone-protein adducts with ("quinonizes") α-synuclein (AS), a major constituent in Lewy bodies, and DOPAL-induced AS oligomers impede vesicular storage. DOPAL also quinonizes numerous intracellular proteins and inhibits enzymatic activities of TH and LAAAD. Treatments targeting DOPAL formation and oxidation therefore might rescue sick-but-not-dead catecholaminergic neurons in Lewy body diseases.
Collapse
Affiliation(s)
- David S. Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
17
|
Goldstein DS. The catecholaldehyde hypothesis: where MAO fits in. J Neural Transm (Vienna) 2020; 127:169-177. [PMID: 31807952 PMCID: PMC10680281 DOI: 10.1007/s00702-019-02106-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022]
Abstract
Monoamine oxidase (MAO) plays a central role in the metabolism of the neurotransmitters dopamine, norepinephrine, and serotonin. This brief review focuses on 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is the immediate product of MAO acting on cytoplasmic dopamine. DOPAL is toxic; however, normally DOPAL is converted via aldehyde dehydrogenase (ALDH) to 3,4-dihydroxyphenylacetic acid (DOPAC), which rapidly exits the neurons. In addition to vesicular uptake of dopamine via the vesicular monoamine transporter (VMAT), the two-enzyme sequence of MAO and ALDH keeps cytoplasmic dopamine levels low. Dopamine oxidizes readily to form toxic products that could threaten neuronal homeostasis. The catecholaldehyde hypothesis posits that diseases featuring catecholaminergic neurodegeneration result from harmful interactions between DOPAL and the protein alpha-synuclein, a major component of Lewy bodies in diseases such as Parkinson disease, dementia with Lewy bodies, and pure autonomic failure. DOPAL potently oligomerizes alpha-synuclein, and alpha-synuclein oligomers impede vesicular functions, shifting the fate of cytoplasmic dopamine toward MAO-catalyzed formation of DOPAL-a vicious cycle. When MAO deaminates dopamine to form DOPAL, hydrogen peroxide is generated; and DOPAL, hydrogen peroxide, and divalent metal cations react to form hydroxyl radicals, which peroxidate lipid membranes. Lipid peroxidation products in turn inhibit ALDH, causing DOPAL to accumulate-another vicious cycle. MAO inhibition decreases DOPAL formation but concurrently increases the spontaneous oxidation of dopamine, potentially trading off one form of toxicity for another. These considerations rationalize a neuroprotection strategy based on concurrent treatment with an MAO inhibitor and an anti-oxidant.
Collapse
Affiliation(s)
- David S Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike MSC-1620, Building 10 Room 8N260, Bethesda, MD, 20892-1620, USA.
| |
Collapse
|
18
|
Jinsmaa Y, Isonaka R, Sharabi Y, Goldstein DS. 3,4-Dihydroxyphenylacetaldehyde Is More Efficient than Dopamine in Oligomerizing and Quinonizing α-Synuclein. J Pharmacol Exp Ther 2020; 372:157-165. [PMID: 31744850 PMCID: PMC6978699 DOI: 10.1124/jpet.119.262246] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
Lewy body diseases such as Parkinson's disease involve intraneuronal deposition of the protein α-synuclein (AS) and depletion of nigrostriatal dopamine (DA). Interactions of AS with DA oxidation products may link these neurohistopathologic and neurochemical abnormalities via two potential pathways: spontaneous oxidation of DA to dopamine-quinone and enzymatic oxidation of DA catalyzed by monoamine oxidase to form 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is then oxidized to DOPAL-Q. We compared these two pathways in terms of the ability of DA and DOPAL to modify AS. DOPAL was far more potent than DA both in oligomerizing and forming quinone-protein adducts with (quinonizing) AS. The DOPAL-induced protein modifications were enhanced similarly by pro-oxidation with Cu(II) or tyrosinase and inhibited similarly by antioxidation with N-acetylcysteine. Dopamine oxidation evoked by Cu(II) or tyrosinase did not quinonize AS. In cultured MO3.13 human oligodendrocytes DOPAL resulted in the formation of numerous intracellular quinoproteins that were visualized by near-infrared spectroscopy. We conclude that of the two routes by which oxidation of DA modifies AS and other proteins the route via DOPAL is more prominent. The results support developing experimental therapeutic strategies that might mitigate deleterious modifications of proteins such as AS in Lewy body diseases by targeting DOPAL formation and oxidation. SIGNIFICANCE STATEMENT: Interactions of the protein α-synuclein with products of dopamine oxidation in the neuronal cytoplasm may link two hallmark abnormalities of Parkinson disease: Lewy bodies (which contain abundant AS) and nigrostriatal DA depletion (which produces the characteristic movement disorder). Of the two potential routes by which DA oxidation may alter AS and other proteins, the route via the autotoxic catecholaldehyde 3,4-dihydroxyphenylacetaldehyde is more prominent; the results support experimental therapeutic strategies targeting DOPAL formation and DOPAL-induced protein modifications.
Collapse
Affiliation(s)
- Yunden Jinsmaa
- Autonomic Medicine Section, Clinical Neuroscience Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (Y.J., R.I., D.S.G.); and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
| | - Risa Isonaka
- Autonomic Medicine Section, Clinical Neuroscience Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (Y.J., R.I., D.S.G.); and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
| | - Yehonatan Sharabi
- Autonomic Medicine Section, Clinical Neuroscience Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (Y.J., R.I., D.S.G.); and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
| | - David S Goldstein
- Autonomic Medicine Section, Clinical Neuroscience Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (Y.J., R.I., D.S.G.); and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
| |
Collapse
|
19
|
Ngoungoure VLN, Muñoz P, Tizabi Y, Valdes R, Moundipa PF, Segura-Aguilar J. Protective Effects of Crude Plant Extracts against Aminochrome-induced toxicity in Human Astrocytoma Cells: Implications for Parkinson's Disease. CLINICAL PHARMACOLOGY AND TRANSLATIONAL MEDICINE 2019; 3:125-133. [PMID: 31321384 PMCID: PMC6639011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND/AIMS Aminochrome, an endogenous compound formed during dopamine oxidation can induce neurotoxicity under certain aberrant conditions and induce Parkinson-like syndrome. Glutathione transferase M2 (GSTM2) activity of astrocytes by catalysing the conjugation of aminochrome with glutathione, can offer protection against aminochrome toxicity. Some medicinal toxicity through this plants may exert protective effect against aminochrome mechanism. METHODS In the present study, extracts from plants native to Cameroon, such as Alchornea laxiflora (leaves), Dacryodes edulis (barks), Annona muricata (seeds), Annona senegalensis (barks) were evaluated for their protection against aminochrome-induced toxicity in human glioblastoma/ astrocytoma U373MG wild type and U373MGsiGT6 cells in which GSTM2 expression was 74% silenced. The cells were pre-incubated with the plant extracts for 2 hr before addition of aminochrome (75 μM) and measurement of cell death/viability by flow cytometry after 24 hr incubation. RESULTS The extract of A. laxiflora (1 μg/ml), D. edulis (25 μg/ml), A. muricata (25 μg/ml) and A. senegalensis (25μg/ml) significantly decreased aminochrome-induced toxicity in U373siGST6 and U373MG cells. However, only A. laxiflora and A. muricata significantly increased the mitochondria membrane potential in U373siGST6 cells following aminochrome treatment. CONCLUSION The results indicate that extracts of some Cameroon plants can provide protection against aminochrome-induced toxicity and mitochondria dysfunction in human glioblastoma/astrocytoma cells. Although further identification of active components of these extracts is needed, potential usefulness of these compounds in Parkinson's disease may be suggested.
Collapse
Affiliation(s)
- Viviane L. Ndam Ngoungoure
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Cameroon
- Department of Molecular & Clinical Pharmacology, Faculty of Medicine, ICBM, University of Chile, Santiago, Chile
| | - Patricia Muñoz
- Department of Molecular & Clinical Pharmacology, Faculty of Medicine, ICBM, University of Chile, Santiago, Chile
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Raul Valdes
- Department of Molecular & Clinical Pharmacology, Faculty of Medicine, ICBM, University of Chile, Santiago, Chile
| | - Paul Fewou Moundipa
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Cameroon
| | - Juan Segura-Aguilar
- Department of Molecular & Clinical Pharmacology, Faculty of Medicine, ICBM, University of Chile, Santiago, Chile
| |
Collapse
|
20
|
Segura-Aguilar J. On the Role of Aminochrome in Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Parkinson's Disease. Front Neurosci 2019; 13:271. [PMID: 30983959 PMCID: PMC6449441 DOI: 10.3389/fnins.2019.00271] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/07/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, Faculty of Medicine, ICBM, University of Chile, Santiago, Chile
| |
Collapse
|
21
|
Qiao HH, Zhu LN, Wang Y, Hui JL, Xie WB, Liu C, Chen L, Qiu PM. Implications of alpha-synuclein nitration at tyrosine 39 in methamphetamine-induced neurotoxicity in vitro and in vivo. Neural Regen Res 2019; 14:319-327. [PMID: 30531016 PMCID: PMC6301162 DOI: 10.4103/1673-5374.244795] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Methamphetamine is an amphetamine-type psychostimulant that can damage dopaminergic neurons and cause characteristic pathological changes similar to neurodegenerative diseases such as Parkinson’s disease. However, its specific mechanism of action is still unclear. In the present study, we established a Parkinson’s disease pathology model by exposing SH-SY5Y cells and C57BL/6J mice to methamphetamine. In vitro experiments were performed with 0, 0.5, 1.0, 1.5, 2.0 or 2.5 mM methamphetamine for 24 hours or 2.0 mM methamphetamine for 0-, 2-, 4-, 8-, 16-, and 24-hour culture of SH-SY5Y cells. Additional experimental groups of SH-SY5Y cells were administered a nitric oxide inhibitor, 0.1 mM N-nitro-L-arginine, 1 hour before exposure to 2.0 mM methamphetamine for 24 hours. In vivo experiments: C57BL/6J mice were intraperitoneally injected with N-nitro-L-arginine (8 mg/kg), eight times, at intervals of 12 hours. Methamphetamine 15 mg/kg was intraperitoneally injected eight times, at intervals of 12 hours, but 0.5-hour after each N-nitro-L-arginine injection in the combined group. Western blot assay was used to determine the expression of nitric oxide synthase, α-synuclein (α-Syn), 5G4, nitrated α-synuclein at the residue Tyr39 (nT39 α-Syn), cleaved caspase-3, and cleaved poly ADP-ribose polymerase (PARP) in cells and mouse brain tissue. Immunofluorescence staining was conducted to measure the positive reaction of NeuN, nT39 α-Syn and 5G4. Enzyme linked immunosorbent assay was performed to determine the dopamine levels in the mouse brain. After methamphetamine exposure, α-Syn expression increased; the aggregation of α-Syn 5G4 increased; nT39 α-Syn, nitric oxide synthase, cleaved caspase-3, and cleaved PARP expression increased in the cultures of SH-SY5Y cells and in the brains of C57BL/6J mice; and dopamine levels were reduced in the mouse brain. These changes were markedly reduced when N-nitro-L-arginine was administered with methamphetamine in both SH-SY5Y cells and C57BL/6J mice. These results suggest that nT39 α-Syn aggregation is involved in methamphetamine neurotoxicity.
Collapse
Affiliation(s)
- Hong-Hua Qiao
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lin-Nan Zhu
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yue Wang
- Kingmed Institute for Forensic Science, Guangzhou, Guangdong Province, China
| | - Jia-Liang Hui
- First Clinical Medicine College, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wei-Bing Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangdong Province Key Laboratory of Forensic Genetics, Guangzhou, Guangdong Province, China
| | - Ling Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ping-Ming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
22
|
Huenchuguala S, Sjödin B, Mannervik B, Segura-Aguilar J. Novel Alpha-Synuclein Oligomers Formed with the Aminochrome-Glutathione Conjugate Are Not Neurotoxic. Neurotox Res 2018; 35:432-440. [PMID: 30343424 DOI: 10.1007/s12640-018-9969-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 01/20/2023]
Abstract
Aminochrome induces neurotoxic alpha-synuclein oligomer formation relevant to the etiology of Parkinson's disease. Oxidative stress produces aminochrome from dopamine, but conjugation with glutathione catalyzed by glutathione transferase M2-2 significantly decreases aminochrome-induced toxicity and alpha-synuclein oligomer formation. Notably, in the presence of the aminochrome-glutathione conjugate, previously unknown species of alpha-synuclein oligomers are formed. These aminochrome-glutathione oligomers of alpha-synuclein differ from formerly characterized oligomers and (i) have high molecular weight, and are stable and SDS-resistant, as determined by the Western blot method, (ii) show positive NBT-quinone-protein staining, which indicates the formation of alpha-synuclein adducts containing aminochrome. Furthermore, aminochrome-glutathione alpha-synuclein oligomers (iii) have distinctive shape and size, as determined by transmission electron microscopy, and (iv) are not toxic in U373MG cells. In conclusion, glutathione conjugated with aminochrome induces a new type of alpha-synuclein oligomers of a different size and shape, which have no demonstrable toxicity.
Collapse
Affiliation(s)
- Sandro Huenchuguala
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia, 1027, Santiago-7, Chile.,Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras, 753, Osorno, Chile
| | - Birgitta Sjödin
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Bengt Mannervik
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia, 1027, Santiago-7, Chile.
| |
Collapse
|
23
|
Paul R, Dutta A, Phukan BC, Mazumder MK, Justin-Thenmozhi A, Manivasagam T, Bhattacharya P, Borah A. Accumulation of Cholesterol and Homocysteine in the Nigrostriatal Pathway of Brain Contributes to the Dopaminergic Neurodegeneration in Mice. Neuroscience 2018; 388:347-356. [DOI: 10.1016/j.neuroscience.2018.07.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/15/2018] [Accepted: 07/23/2018] [Indexed: 11/26/2022]
|
24
|
Can we conclude a potential therapeutic action for Parkinson's disease by using postmortem tissue and a preclinical model based on an exogenous neurotoxin? Cell Death Dis 2018; 9:748. [PMID: 29970885 PMCID: PMC6030129 DOI: 10.1038/s41419-018-0798-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/14/2018] [Indexed: 11/13/2022]
|
25
|
Segura-Aguilar J. Comment on: "Activating Autophagy as a Therapeutic Strategy for Parkinson's Disease". CNS Drugs 2018; 32:685-686. [PMID: 29951732 DOI: 10.1007/s40263-018-0533-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
26
|
Segura-Aguilar J, Huenchuguala S. Aminochrome Induces Irreversible Mitochondrial Dysfunction by Inducing Autophagy Dysfunction in Parkinson's Disease. Front Neurosci 2018; 12:106. [PMID: 29593482 PMCID: PMC5859232 DOI: 10.3389/fnins.2018.00106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/12/2018] [Indexed: 01/21/2023] Open
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, Faculty of Medicine, Instituto de Ciencias Biomédicas (ICBM), University of Chile, Santiago, Chile
| | - Sandro Huenchuguala
- Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| |
Collapse
|
27
|
Segura-Aguilar J. Neurotoxins as Preclinical Models for Parkinson's Disease. Neurotox Res 2018; 34:870-877. [PMID: 29313219 DOI: 10.1007/s12640-017-9856-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
Abstract
Translational medicine is one of the major concerns in this century. While significant advances have been made with scientific knowledge, the translation of their promising results has not led to any new therapies. In Parkinson's disease, a long list of clinical studies, based on preclinical models with exogenous neurotoxins, has failed. Therefore, the aim of this opinion paper is to open discussion about preclinical models for Parkinson's disease based on neurotoxins.
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Department of Molecular and Clinical Pharmacology, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
28
|
Lin L, Ye J, Zhang H, Han ZF, Zheng ZH. Degree of dopaminergic degeneration measured by 99mTc-TRODAT-1 SPECT/CT imaging. Neural Regen Res 2018; 13:1281-1287. [PMID: 30028339 PMCID: PMC6065227 DOI: 10.4103/1673-5374.235077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To prevent and treat Parkinson’s disease in its early stages, it is essential to be able to detect the degree of early dopaminergic neuron degeneration. Dopamine transporters (DAT) in the striatum regulate synaptic dopamine levels, and striatal 99mTc-TRODAT-1 single-photon emission computed tomography (-SPECT) imaging is a marker for presynaptic neuronal degeneration. However, the association between the degree of dopaminergic degeneration and in vivo99mTc-TRODAT-1 SPECT imaging is unknown. Therefore, this study investigated the association between the degree of 6-hydroxydopamine (6-OHDA)-induced dopaminergic degeneration and DAT imaging using 99mTc-TRODAT-1 SPECT in rats. Different degrees of nigrostriatal dopamine depletion were generated by injecting different doses of 6-OHDA (2, 4, and 8 μg) into the right medial forebrain bundle. The degree of nigrostriatal dopaminergic neuron degeneration was assessed by rotational behavior and immunohistochemical staining. The results showed that striatal 99mTc-TRODAT-1 binding was significantly diminished both in the ipsilateral and the contralateral sides in the 4 and 8 μg 6-OHDA groups, and that DAT 99mTc-TRODAT-1 binding in the ipsilateral striatum showed a high correlation to apomorphine-induced rotations at 8 weeks post-lesion (r = –0.887, P < 0.01). There were significant correlations between DAT 99mTc-TRODAT-1 binding in the ipsilateral striatum and the amount of tyrosine hydroxylase immunoreactive neurons in the ipsilateral substantia nigra in the 2, 4, and 8 μg 6-OHDA groups at 8 weeks post-lesion (r = 0.899, P < 0.01). These findings indicate that striatal DAT imaging using 99mTc-TRODAT-1 is a useful technique for evaluating the severity of dopaminergic degeneration.
Collapse
Affiliation(s)
- Ling Lin
- Fujian Provincial Key Laboratory of Neuroglia and Disease, Fujian Medical University; Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jing Ye
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Han Zhang
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zhong-Fu Han
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zhi-Hong Zheng
- Fujian Provincial Key Laboratory of Neuroglia and Disease, Fujian Medical University; Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|