1
|
Richardson TE, Orr ME, Orr TC, Rohde SK, Ehrenberg AJ, Thorn EL, Christie TD, Flores-Almazan V, Afzal R, De Sanctis C, Maldonado-Díaz C, Hiya S, Canbeldek L, Kulumani Mahadevan LS, Slocum C, Samanamud J, Clare K, Scibetta N, Yokoda RT, Koenigsberg D, Marx GA, Kauffman J, Goldstein A, Selmanovic E, Drummond E, Wisniewski T, White CL, Goate AM, Crary JF, Farrell K, Alosco ML, Mez J, McKee AC, Stein TD, Bieniek KF, Kautz TF, Daoud EV, Walker JM. Spatial proteomic differences in chronic traumatic encephalopathy, Alzheimer's disease, and primary age-related tauopathy hippocampi. Alzheimers Dement 2024. [PMID: 39737785 DOI: 10.1002/alz.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD), primary age-related tauopathy (PART), and chronic traumatic encephalopathy (CTE) all feature hyperphosphorylated tau (p-tau)-immunoreactive neurofibrillary degeneration, but differ in neuroanatomical distribution and progression of neurofibrillary degeneration and amyloid beta (Aβ) deposition. METHODS We used Nanostring GeoMx Digital Spatial Profiling to compare the expression of 70 proteins in neurofibrillary tangle (NFT)-bearing and non-NFT-bearing neurons in hippocampal CA1, CA2, and CA4 subregions and entorhinal cortex of cases with autopsy-confirmed AD (n = 8), PART (n = 7), and CTE (n = 5). RESULTS There were numerous subregion-specific differences related to Aβ processing, autophagy/proteostasis, inflammation, gliosis, oxidative stress, neuronal/synaptic integrity, and p-tau epitopes among these different disorders. DISCUSSION These results suggest that there are subregion-specific proteomic differences among the neurons of these disorders, which appear to be influenced to a large degree by the presence of hippocampal Aβ. These proteomic differences may play a role in the differing hippocampal p-tau distribution and pathogenesis of these disorders. HIGHLIGHTS Alzheimer's disease neuropathologic change (ADNC), possible primary age-related tauopathy (PART), definite PART, and chronic traumatic encephalopathy (CTE) can be differentiated based on the proteomic composition of their neurofibrillary tangle (NFT)- and non-NFT-bearing neurons. The proteome of these NFT- and non-NFT-bearing neurons is largely correlated with the presence or absence of amyloid beta (Aβ). Neurons in CTE and definite PART (Aβ-independent pathologies) share numerous proteomic similarities that distinguish them from ADNC and possible PART (Aβ-positive pathologies).
Collapse
Affiliation(s)
- Timothy E Richardson
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miranda E Orr
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- St. Louis VA Medical Center, St. Louis, Missouri, USA
| | - Timothy C Orr
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Susan K Rohde
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Alexander J Ehrenberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Emma L Thorn
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas D Christie
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Victoria Flores-Almazan
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robina Afzal
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Claudia De Sanctis
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carolina Maldonado-Díaz
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Satomi Hiya
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Leyla Canbeldek
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Cheyanne Slocum
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jorge Samanamud
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kevin Clare
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nicholas Scibetta
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Raquel T Yokoda
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Daniel Koenigsberg
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gabriel A Marx
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Justin Kauffman
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adam Goldstein
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Enna Selmanovic
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eleanor Drummond
- Brain & Mind Center and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Thomas Wisniewski
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, New York, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alison M Goate
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John F Crary
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kurt Farrell
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael L Alosco
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Jesse Mez
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Ann C McKee
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| | - Thor D Stein
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| | - Kevin F Bieniek
- Department of Pathology & Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Tiffany F Kautz
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Elena V Daoud
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jamie M Walker
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
2
|
Hao Y, Shen X, Liu J, Cai Z, Wang X, Yang Z, Chen F, Dong B, Wang R, Du X, Qi Z, Ge Y. A Supramolecular Protein Assembly Intrinsically Rescues Memory Deficits in an Alzheimer's Disease Mouse Model. NANO LETTERS 2024; 24:15565-15574. [PMID: 39592140 PMCID: PMC11640758 DOI: 10.1021/acs.nanolett.4c03672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024]
Abstract
Supramolecular protein assemblies have been used as intelligent drug delivery systems that can encapsulate drugs and transport them to specific tissues or cells. However, the known methods for designing supramolecular protein assemblies for transportation across the blood-brain barrier (BBB) remain challenging and inefficient. Herein, we report that the supramolecular recombinant-protein-based strategy enables the biosynthesis and production of a supramolecular protein assembly that is intrinsically capable of crossing the BBB. The recombinant protein constituting the essential part of apolipoprotein A1 can self-assemble into a supramolecular protein assembly known as a nanodisc. The nanodisc could efficiently enter the brain of an Alzheimer's disease mouse model, recognize Aβ1-42, eliminate amyloid plaques, promote neurogenesis, and ameliorate cognitive impairment. This work opens a new field for supramolecular protein assemblies and offers a new avenue for designing versatile and intelligent supramolecular biomaterials.
Collapse
Affiliation(s)
- Yuchong Hao
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Xin Shen
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Jiantao Liu
- Guangdong
Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences
and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Zhongqi Cai
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Xinquan Wang
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Zerui Yang
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Fuqing Chen
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Baorui Dong
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Ruibing Wang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences & MoE Frontiers Science Center for
Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Xiubo Du
- Guangdong
Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences
and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Zhenhui Qi
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Yan Ge
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| |
Collapse
|
3
|
Gross S, Danielyan L, Buechler C, Kubitza M, Klein K, Schwab M, Melter M, Weiss TS. Hepatic Amyloid Beta-42-Metabolizing Proteins in Liver Steatosis and Metabolic Dysfunction-Associated Steatohepatitis. Int J Mol Sci 2024; 25:8768. [PMID: 39201455 PMCID: PMC11354580 DOI: 10.3390/ijms25168768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Amyloid beta (Aβ) plays a major role in the pathogenesis of Alzheimer's disease and, more recently, has been shown to protect against liver fibrosis. Therefore, we studied Aβ-42 levels and the expression of genes involved in the generation, degradation, and transport of Aβ proteins in liver samples from patients at different stages of metabolic dysfunction-associated liver disease (MASLD) and under steatotic conditions in vitro/in vivo. Amyloid precursor protein (APP), key Aβ-metabolizing proteins, and Aβ-42 were analyzed using RT-PCR, Western blotting, Luminex analysis in steatotic in vitro and fatty liver mouse models, and TaqMan qRT-PCR analysis in hepatic samples from patients with MASLD. Hepatocytes loaded with palmitic acid induced APP, presenilin, and neprilysin (NEP) expression, which was reversed by oleic acid. Increased APP and NEP, decreased BACE1, and unchanged Aβ-42 protein levels were found in the steatotic mouse liver compared to the normal liver. Aβ-42 concentrations were low in MASLD samples of patients with moderate to severe fibrosis compared to the livers of patients with mild or no MASLD. Consistent with the reduced Aβ-42 levels, the mRNA expression of proteins involved in APP degradation (ADAM9/10/17, BACE2) and Aβ-42 cleavage (MMP2/7/9, ACE) was increased. In the steatotic liver, the expression of APP- and Aβ-metabolizing proteins is increased, most likely related to oxidative stress, but does not affect hepatic Aβ-42 levels. Consistent with our previous findings, low Aβ-42 levels in patients with liver fibrosis appear to be caused by the reduced production and enhanced non-amyloidogenic processing of APP.
Collapse
Affiliation(s)
- Simon Gross
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Christa Buechler
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Marion Kubitza
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, 72076 Tuebingen, Germany
| | - Matthias Schwab
- Department of Clinical Pharmacology, University Hospital Tuebingen, 72076 Tuebingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, 72076 Tuebingen, Germany
- Department of Biochemistry and Pharmacy, University Tuebingen, 72076 Tuebingen, Germany
| | - Michael Melter
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Thomas S. Weiss
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
- Center for Liver Cell Research, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Bonanni R, Cariati I, Cifelli P, Frank C, Annino G, Tancredi V, D'Arcangelo G. Exercise to Counteract Alzheimer's Disease: What Do Fluid Biomarkers Say? Int J Mol Sci 2024; 25:6951. [PMID: 39000060 PMCID: PMC11241657 DOI: 10.3390/ijms25136951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Neurodegenerative diseases (NDs) represent an unsolved problem to date with an ever-increasing population incidence. Particularly, Alzheimer's disease (AD) is the most widespread ND characterized by an accumulation of amyloid aggregates of beta-amyloid (Aβ) and Tau proteins that lead to neuronal death and subsequent cognitive decline. Although neuroimaging techniques are needed to diagnose AD, the investigation of biomarkers within body fluids could provide important information on neurodegeneration. Indeed, as there is no definitive solution for AD, the monitoring of these biomarkers is of strategic importance as they are useful for both diagnosing AD and assessing the progression of the neurodegenerative state. In this context, exercise is known to be an effective non-pharmacological management strategy for AD that can counteract cognitive decline and neurodegeneration. However, investigation of the concentration of fluid biomarkers in AD patients undergoing exercise protocols has led to unclear and often conflicting results, suggesting the need to clarify the role of exercise in modulating fluid biomarkers in AD. Therefore, this critical literature review aims to gather evidence on the main fluid biomarkers of AD and the modulatory effects of exercise to clarify the efficacy and usefulness of this non-pharmacological strategy in counteracting neurodegeneration in AD.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Ida Cariati
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Pierangelo Cifelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Giuseppe Annino
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Sports Engineering Laboratory, Department of Industrial Engineering, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Giovanna D'Arcangelo
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
| |
Collapse
|
5
|
Huang L, Sun Y, Luo C, Wang W, Shi S, Sun G, Ju P, Chen J. Characterizing defective lipid metabolism in the lateral septum of mice treated with olanzapine: implications for its side effects. Front Pharmacol 2024; 15:1419098. [PMID: 38948475 PMCID: PMC11211371 DOI: 10.3389/fphar.2024.1419098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Schizophrenia significantly impacts cognitive and behavioral functions and is primarily treated with second-generation antipsychotics (SGAs) such as olanzapine. Despite their efficacy, these drugs are linked to serious metabolic side effects which can diminish patient compliance, worsen psychiatric symptoms and increase cardiovascular disease risk. This study explores the hypothesis that SGAs affect the molecular determinants of synaptic plasticity and brain activity, particularly focusing on the lateral septum (LS) and its interactions within hypothalamic circuits that regulate feeding and energy expenditure. Utilizing functional ultrasound imaging, RNA sequencing, and weighted gene co-expression network analysis, we identified significant alterations in the functional connection between the hypothalamus and LS, along with changes in gene expression in the LS of mice following prolonged olanzapine exposure. Our analysis revealed a module closely linked to increases in body weight and adiposity, featuring genes primarily involved in lipid metabolism pathways, notably Apoa1, Apoc3, and Apoh. These findings suggest that olanzapine may influence body weight and adiposity through its impact on lipid metabolism-related genes in the LS. Therefore, the neural circuits connecting the LS and LH, along with the accompanying alterations in lipid metabolism, are likely crucial factors contributing to the weight gain and metabolic side effects associated with olanzapine treatment.
Collapse
Affiliation(s)
- Lixuan Huang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| | - Chao Luo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| | - Si Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Genmin Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peijun Ju
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai, China
| | - Jianhua Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai, China
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
6
|
Sang M, Liu S, Yan H, Zhang B, Chen S, Wu B, Ma T, Jiang H, Zhao P, Sun G, Gao X, Zang H, Cheng Y, Li C. Synergistic detoxification efficiency and mechanism of triclocarban degradation by a bacterial consortium in the liver-gut-microbiota axis of zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134178. [PMID: 38608581 DOI: 10.1016/j.jhazmat.2024.134178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Triclocarban (TCC), an emerging organic contaminant, poses a potential threat to human health with long-term exposure. Here, Rhodococcus rhodochrous BX2 and Pseudomonas sp. LY-1 were utilized to degrade TCC at environmental related concentrations for enhancing TCC biodegradation and investigating whether the toxicity of intermediate metabolites is lower than that of the parent compound. The results demonstrated that the bacterial consortium could degrade TCC by 82.0% within 7 days. The calculated 96 h LC50 for TCC, as well as its main degradation product 3,4-Dichloroaniline (DCA) were 0.134 mg/L and 1.318 mg/L respectively. Biodegradation also alleviated histopathological lesions induced by TCC in zebrafish liver and gut tissues. Liver transcriptome analysis revealed that biodegradation weakened differential expression of genes involved in disrupted immune regulation and lipid metabolism caused by TCC, verified through RT-qPCR analysis and measurement of related enzyme activities and protein contents. 16 S rRNA sequencing indicated that exposure to TCC led to gut microbial dysbiosis, which was efficiently improved through TCC biodegradation, resulting in decreased relative abundances of major pathogens. Overall, this study evaluated potential environmental risks associated with biodegradation of TCC and explored possible biodetoxification mechanisms, providing a theoretical foundation for efficient and harmless bioremediation of environmental pollutants.
Collapse
Affiliation(s)
- Mingyu Sang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuyu Liu
- Heilongjiang Provincial Natural Resources Rights and Interests Investigation and Monitoring Institute, Harbin 150030, China
| | - Haohao Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bing Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Siyuan Chen
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bowen Wu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tian Ma
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Hanyi Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Peichao Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Guanjun Sun
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Gao
- Heilongjiang Boneng Green Energy Technology Co., Ltd, Harbin 150030, China
| | - Hailian Zang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Yi Cheng
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China.
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China.
| |
Collapse
|
7
|
He M, Lian T, Liu Z, Li J, Qi J, Li J, Guo P, Zhang Y, Luo D, Guan H, Zhang W, Zheng Z, Yue H, Zhang W, Wang R, Zhang F, Zhang W. An investigation into the potential association between nutrition and Alzheimer's disease. Front Nutr 2024; 11:1306226. [PMID: 38515521 PMCID: PMC10955128 DOI: 10.3389/fnut.2024.1306226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Background Malnutrition is the most common nutritional issue in Alzheimer's disease (AD) patients, but there is still a lack of a comprehensive evaluation of the nutritional status in AD patients. This study aimed to determine the potential association of various nutritional indices with AD at different stages. Methods Subjects, including individuals with normal cognition (NC) and patients diagnosed with AD, were consecutively enrolled in this cross-sectional study. Demographics, body composition, dietary patterns, nutritional assessment scales and nutrition-related laboratory variables were collected. Binary logistics regression analyses and receiver operating characteristic (ROC) curves were used to indicate the association between nutrition-related variables and AD at different stages. Results Totals of 266 subjects, including 73 subjects with NC, 72 subjects with mild cognitive impairment due to AD (AD-MCI) and 121 subjects with dementia due to AD (AD-D) were included. There was no significant difference in dietary patterns, including Mediterranean diet and Mediterranean-DASH diet intervention for neurodegenerative delay (MIND) diet between the three groups. Lower BMI value, smaller hip and calf circumferences, lower Mini Nutritional Assessment (MNA) and Geriatric Nutritional Risk Index (GNRI) scores, and lower levels of total protein, albumin, globulin, and apolipoprotein A1 were associated with AD (all p < 0.05). Total protein and albumin levels had the greatest ability to distinguish AD from non-AD (AUC 0.80, 95% CI 0.74-0.84, p < 0.001), increased by combining calf circumference, MNA score and albumin level (AUC 0.83, 95% CI 0.77-0.88, p < 0.001). Albumin level had the greatest ability to distinguish NC from AD-MCI (AUC 0.75, 95% CI 0.67-0.82, p < 0.001), and MNA score greatest ability to distinguish AD-MCI from AD-D (AUC 0.72, 95% CI 0.65-0.78, p < 0.001). Conclusion Nutritional status of AD patients is significantly compromised compared with normal controls, and tends to be worsened with AD progresses. Early identification and intervention of individuals with nutritional risk or malnutrition may be significantly beneficial for reducing the risk, development, and progression of AD.
Collapse
Affiliation(s)
- Mingyue He
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tenghong Lian
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhan Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinghui Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Qi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Guo
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanan Zhang
- Department of Blood Transfusion, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dongmei Luo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huiying Guan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weijia Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zijing Zheng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Yue
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenjing Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruidan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Parkinson’s Disease Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory on Parkinson Disease, Beijing, China
| |
Collapse
|
8
|
Wang J, Xu L, Chen X, Wu J, Chen Y, Feng Z, Dong L, Yao D, Cai Q, Jian W, Li H, Duan M, Wang Z. Correlation Analysis of ApoB, ApoA1, and ApoB/ApoA1 with Cortical Morphology in Patients with Memory Complaints. J Alzheimers Dis 2024; 101:1137-1150. [PMID: 39302359 DOI: 10.3233/jad-230863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Apolipoproteins and cortical morphology are closely associated with memory complaints, and both may contribute to the development of Alzheimer's disease. Objective To examine whether apolipoprotein B (ApoB), apolipoprotein A-1 (ApoA1), and their ratio (ApoB/ApoA1) are associated with cortical morphology in patients with memory complaints. Methods Ninety-seven patients underwent neuropsychological testing, measurements of ApoB, ApoA1, ApoB/ApoA1, plasma Alzheimer's biomarker, apolipoprotein E (ApoE) genotyping, and 3T structural magnetic resonance imaging (sMRI) scans. Based on sMRI scanning locations, patients were categorized into the University of Electronic Science and Technology (UESTC) and the Fourth People's Hospital of Chengdu (FPHC). The Computational Anatomy Toolbox within Statistical Parametric Mapping was used to calculate each patient's cortical morphology index based on sMRI data. The cortical morphology index and apolipoproteins were also analyzed. Results Significant positive correlations were found between ApoB and sulcal depth in the lateral occipital cortex among the UESTC, the FPHC, and the total sample groups, and negative correlations were observed between sulcal depth in the lateral occipital cortex and the scores of the Shape Trails Test Part A and B. In the FPHC group, the scores of the Montreal Cognitive Assessment Basic, delayed recall of the Auditory Verbal Learning Test, Animal Fluency Test and Boston Naming Test were positively correlated with the sulcal depth. Conclusions ApoB is associated with the sulcal depth in the lateral occipital cortex, potentially relating to speed/executive function in individuals with memory complaints.
Collapse
Affiliation(s)
- Jiayu Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, the Fourth People's Hospital of Chengdu, Chengdu, China
- Nursing School of Zunyi Medical University, Zunyi, China
| | - Lisi Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - Xuemei Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - Jiajing Wu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, the Fourth People's Hospital of Chengdu, Chengdu, China
- Nursing School of Zunyi Medical University, Zunyi, China
| | - Yu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - Ziqian Feng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, the Fourth People's Hospital of Chengdu, Chengdu, China
- Nursing School of Zunyi Medical University, Zunyi, China
| | - Li Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, China
- Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, China
- Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu, China
| | - Qingyan Cai
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - Wei Jian
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - Hongyi Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - MingJun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - Ziqi Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, the Fourth People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
9
|
Lee CH, Murrell CE, Chu A, Pan X. Circadian Regulation of Apolipoproteins in the Brain: Implications in Lipid Metabolism and Disease. Int J Mol Sci 2023; 24:17415. [PMID: 38139244 PMCID: PMC10743770 DOI: 10.3390/ijms242417415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
The circadian rhythm is a 24 h internal clock within the body that regulates various factors, including sleep, body temperature, and hormone secretion. Circadian rhythm disruption is an important risk factor for many diseases including neurodegenerative illnesses. The central and peripheral oscillators' circadian clock network controls the circadian rhythm in mammals. The clock genes govern the central clock in the suprachiasmatic nucleus (SCN) of the brain. One function of the circadian clock is regulating lipid metabolism. However, investigations of the circadian regulation of lipid metabolism-associated apolipoprotein genes in the brain are lacking. This review summarizes the rhythmic expression of clock genes and lipid metabolism-associated apolipoprotein genes within the SCN in Mus musculus. Nine of the twenty apolipoprotein genes identified from searching the published database (SCNseq and CircaDB) are highly expressed in the SCN. Most apolipoprotein genes (ApoE, ApoC1, apoA1, ApoH, ApoM, and Cln) show rhythmic expression in the brain in mice and thus might be regulated by the master clock. Therefore, this review summarizes studies on lipid-associated apolipoprotein genes in the SCN and other brain locations, to understand how apolipoproteins associated with perturbed cerebral lipid metabolism cause multiple brain diseases and disorders. This review describes recent advancements in research, explores current questions, and identifies directions for future research.
Collapse
Affiliation(s)
- Chaeeun Hannah Lee
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Charlotte Ellzabeth Murrell
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Alexander Chu
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| |
Collapse
|
10
|
Chen K, Wang M, Long D, Zou D, Li X, Wang R, Wang Y, Yang L. Cerebrospinal Fluid Proteomic Profiles in Patients with Postherpetic Neuralgia. J Proteome Res 2023; 22:3879-3892. [PMID: 37966014 PMCID: PMC10696610 DOI: 10.1021/acs.jproteome.3c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023]
Abstract
The intrinsic mechanism of postherpetic neuralgia (PHN) remains unclear. Herein, we aimed to seek the hub proteins in the cerebrospinal fluid (CSF), which display significant changes between the PHN and nonpainful patients (Control). First, the proteomic results showed that compared with the Control-CSF, there were 100 upregulated and 50 downregulated differentially expressed proteins (DEPs) in the PHN-CSF. Besides, functional analyses including gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) revealed that biological processes and pathways including complement activation, infection, coagulation, and lipid metabolism were activated, while synaptic organization was suppressed. Next, the protein-protein interaction (PPI) analysis indicated that increased PLG, F2, APOA1, APOA2, SERPINC1, and KNG1 and reduced APOE, which were all enriched in the top pathways according to the KEGG analysis, were defined as hub proteins. Finally, three of the hub proteins, such as PLG, APOA1, and APOE, were reconfirmed in a larger cohort using both enzyme-linked immunosorbent assay (ELISA) and Western blotting methods. Above all, the results indicated that PLG, APOA1, and APOE and their involved processes such as infection, inflammation, cholesterol metabolism, and coagulation shall be potential therapeutic approaches. (The raw mass spectrometry proteome data and search results have been deposited to the iProx-integrated Proteome Resources (http://www.iprox.cn) with the data set identifier IPX0007372000.).
Collapse
Affiliation(s)
- Kai Chen
- Department
of Pain Management, The Second Xiangya Hospital,
Central South University, Changsha 410011, China
- Department
of Anesthesiology, The Second Xiangya Hospital,
Central South University, Changsha, Hunan 410011, China
- Clinical
Research Center for Pain Medicine in Hunan Province, Changsha, Hunan 410011, China
- Hunan
Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, Hunan 410083, China
| | - Meng Wang
- Department
of Pain Management, The Second Xiangya Hospital,
Central South University, Changsha 410011, China
- Department
of Anesthesiology, The Second Xiangya Hospital,
Central South University, Changsha, Hunan 410011, China
- Clinical
Research Center for Pain Medicine in Hunan Province, Changsha, Hunan 410011, China
- Hunan
Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, Hunan 410083, China
| | - Dongju Long
- Department
of Pain Management, The Second Xiangya Hospital,
Central South University, Changsha 410011, China
- Department
of Anesthesiology, The Second Xiangya Hospital,
Central South University, Changsha, Hunan 410011, China
- Clinical
Research Center for Pain Medicine in Hunan Province, Changsha, Hunan 410011, China
- Hunan
Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, Hunan 410083, China
| | - Dingquan Zou
- Department
of Pain Management, The Second Xiangya Hospital,
Central South University, Changsha 410011, China
- Department
of Anesthesiology, The Second Xiangya Hospital,
Central South University, Changsha, Hunan 410011, China
- Clinical
Research Center for Pain Medicine in Hunan Province, Changsha, Hunan 410011, China
- Hunan
Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, Hunan 410083, China
| | - Xin Li
- Department
of Pain Management, The Second Xiangya Hospital,
Central South University, Changsha 410011, China
- Department
of Anesthesiology, The Second Xiangya Hospital,
Central South University, Changsha, Hunan 410011, China
- Clinical
Research Center for Pain Medicine in Hunan Province, Changsha, Hunan 410011, China
- Hunan
Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, Hunan 410083, China
| | - Ruixuan Wang
- Bourns
Engineering, The University of California, Riverside, California 92521, United States
| | - Yaping Wang
- Department
of Pain Management, The Second Xiangya Hospital,
Central South University, Changsha 410011, China
- Department
of Anesthesiology, The Second Xiangya Hospital,
Central South University, Changsha, Hunan 410011, China
- Clinical
Research Center for Pain Medicine in Hunan Province, Changsha, Hunan 410011, China
- Hunan
Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, Hunan 410083, China
| | - Lin Yang
- Department
of Pain Management, The Second Xiangya Hospital,
Central South University, Changsha 410011, China
- Department
of Anesthesiology, The Second Xiangya Hospital,
Central South University, Changsha, Hunan 410011, China
- Clinical
Research Center for Pain Medicine in Hunan Province, Changsha, Hunan 410011, China
- Hunan
Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
11
|
Mehta N, Dangas K, Ditmarsch M, Rensen PCN, Dicklin MR, Kastelein JJP. The evolving role of cholesteryl ester transfer protein inhibition beyond cardiovascular disease. Pharmacol Res 2023; 197:106972. [PMID: 37898443 DOI: 10.1016/j.phrs.2023.106972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/21/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The main role of cholesteryl ester transfer protein (CETP) is the transfer of cholesteryl esters and triglycerides between high-density lipoprotein (HDL) particles and triglyceride-rich lipoprotein and low-density lipoprotein (LDL) particles. There is a long history of investigations regarding the inhibition of CETP as a target for reducing major adverse cardiovascular events. Initially, the potential effect on cardiovascular events of CETP inhibitors was hypothesized to be mediated by their ability to increase HDL cholesterol, but, based on evidence from anacetrapib and the newest CETP inhibitor, obicetrapib, it is now understood to be primarily due to reducing LDL cholesterol and apolipoprotein B. Nevertheless, evidence is also mounting that other roles of HDL, including its promotion of cholesterol efflux, as well as its apolipoprotein composition and anti-inflammatory, anti-oxidative, and anti-diabetic properties, may play important roles in several diseases beyond cardiovascular disease, including, but not limited to, Alzheimer's disease, diabetes, and sepsis. Furthermore, although Mendelian randomization analyses suggested that higher HDL cholesterol is associated with increased risk of age-related macular degeneration (AMD), excess risk of AMD was absent in all CETP inhibitor randomized controlled trial data comprising over 70,000 patients. In fact, certain HDL subclasses may, in contrast, be beneficial for treating the retinal cholesterol accumulation that occurs with AMD. This review describes the latest biological evidence regarding the relationship between HDL and CETP inhibition for Alzheimer's disease, type 2 diabetes mellitus, sepsis, and AMD.
Collapse
Affiliation(s)
- Nehal Mehta
- Mobius Scientific, Inc., JLABS @ Washington, DC, Washington, DC, USA
| | | | | | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory of Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | | | - John J P Kastelein
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Plaschke K, Kopitz J, Gebert J, Wolf ND, Wolf RC. Proteomic Analysis Reveals Potential Exosomal Biomarkers in Patients With Sporadic Alzheimer Disease. Alzheimer Dis Assoc Disord 2023; 37:315-321. [PMID: 38015424 DOI: 10.1097/wad.0000000000000589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/18/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Despite substantial progress made in the past decades, the pathogenesis of sporadic Alzheimer disease (sAD) and related biological markers of the disease are still controversially discussed. Cerebrospinal fluid and functional brain imaging markers have been established to support the clinical diagnosis of sAD. Yet, due to the invasiveness of such diagnostics, less burdensome markers have been increasingly investigated in the past years. Among such markers, extracellular vesicles may yield promise in (early) diagnostics and treatment monitoring in sAD. MATERIALS AND METHODS In this pilot study, we collected the blood plasma of 18 patients with sAD and compared the proteome of extracted extracellular vesicles with the proteome of 11 age-matched healthy controls. The resulting proteomes were characterized by Gene Ontology terms and between-group statistics. RESULTS Ten distinct proteins were found to significantly differ between sAD patients and controls (P<0.05, False Discovery Rate, corrected). These proteins included distinct immunoglobulins, fibronectin, and apolipoproteins. CONCLUSIONS These findings lend further support for exosomal changes in neurodegenerative disorders, and particularly in sAD. Further proteomic research could decisively advance our knowledge of sAD pathophysiology as much as it could foster the development of clinically meaningful biomarkers.
Collapse
Affiliation(s)
| | | | | | - Nadine D Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University Hospital Heidelberg, Heidelberg, Germany
| | - Robert Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Pillai JA, Bena J, Bekris L, Kodur N, Kasumov T, Leverenz JB, Kashyap SR. Metabolic syndrome biomarkers relate to rate of cognitive decline in MCI and dementia stages of Alzheimer's disease. Alzheimers Res Ther 2023; 15:54. [PMID: 36927447 PMCID: PMC10018847 DOI: 10.1186/s13195-023-01203-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND The relationship between biomarkers of metabolic syndrome and insulin resistance, plasma triglyceride/HDL cholesterol (TG/HDL-C) ratio, on the rate of cognitive decline in mild cognitive impairment (MCI) and dementia stages of Alzheimer's disease (AD) is unknown. The role of peripheral and cerebrospinal fluid (CSF) levels of Apolipoprotein A1 (ApoA1), a key functional component of HDL, on cognitive decline also remains unclear among them. Here we evaluate baseline plasma TG/HDL-C ratio and CSF and plasma ApoA1 levels and their relation with cognitive decline in the MCI and Dementia stages of AD. PATIENTS AND METHODS A retrospective longitudinal study (156 participants; 106 MCI, 50 AD dementia) from the Alzheimer's Disease Neuroimaging Initiative, with an average of 4.0 (SD 2.8) years follow-up. Baseline plasma TG/HDL-C, plasma, and CSF ApoA1 and their relationship to inflammation and blood-brain barrier (BBB) biomarkers and longitudinal cognitive outcomes were evaluated. Multivariable linear mixed effect models were used to assess the effect of baseline analytes with longitudinal changes in Mini-Mental State Exam (MMSE), Clinical Dementia Rating-Sum of Boxes (CDR-SB), and Logical Memory delayed recall (LM) score after controlling for well-known covariates. RESULTS A total of 156 participants included 98 women, 63%; mean age was 74.9 (SD 7.3) years. At baseline, MCI and dementia groups did not differ significantly in TG/HDL-C (Wilcoxon W statistic = 0.39, p = 0.39) and CSF ApoA1 levels (W = 3642, p = 0.29), but the dementia group had higher plasma ApoA1 than the MCI group (W = 4615, p = 0.01). Higher TG/HDL-C ratio was associated with faster decline in CDR-SB among MCI and dementia groups. Higher plasma ApoA1 was associated with faster decline in MMSE and LM among MCI, while in contrast higher CSF ApoA1 levels related to slower cognitive decline in MMSE among MCI. CSF and plasma ApoA1 also show opposite directional correlations with biomarkers of BBB integrity. CSF but not plasma levels of ApoA1 positively correlated to inflammation analytes in the AGE-RAGE signaling pathway in diabetic complications (KEGG ID:KO04933). CONCLUSIONS Biomarkers of metabolic syndrome relate to rate of cognitive decline among MCI and dementia individuals. Elevated plasma TG/HDL-C ratio and plasma ApoA1 are associated with worse cognitive outcomes in MCI and dementia participants. CSF ApoA1 and plasma ApoA1 likely have different roles in AD progression in MCI stage.
Collapse
Affiliation(s)
- Jagan A Pillai
- Lou Ruvo Center for Brain Health, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Ave/U10, Cleveland, OH, 44195, USA. .,Neurological Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA. .,Department of Neurology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA. .,Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA.
| | - James Bena
- Quantitative Health Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA
| | - Lynn Bekris
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA.,Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA
| | - Nandan Kodur
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA
| | - Takhar Kasumov
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Ave/U10, Cleveland, OH, 44195, USA.,Neurological Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA.,Department of Neurology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA.,Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA
| | - Sangeeta R Kashyap
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA.,Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine New York Presbyterian, New York, NY, 10021, USA
| | | |
Collapse
|
14
|
Sensi SL, Russo M, Tiraboschi P. Biomarkers of diagnosis, prognosis, pathogenesis, response to therapy: Convergence or divergence? Lessons from Alzheimer's disease and synucleinopathies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:187-218. [PMID: 36796942 DOI: 10.1016/b978-0-323-85538-9.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Alzheimer's disease (AD) is the most common disorder associated with cognitive impairment. Recent observations emphasize the pathogenic role of multiple factors inside and outside the central nervous system, supporting the notion that AD is a syndrome of many etiologies rather than a "heterogeneous" but ultimately unifying disease entity. Moreover, the defining pathology of amyloid and tau coexists with many others, such as α-synuclein, TDP-43, and others, as a rule, not an exception. Thus, an effort to shift our AD paradigm as an amyloidopathy must be reconsidered. Along with amyloid accumulation in its insoluble state, β-amyloid is becoming depleted in its soluble, normal states, as a result of biological, toxic, and infectious triggers, requiring a shift from convergence to divergence in our approach to neurodegeneration. These aspects are reflected-in vivo-by biomarkers, which have become increasingly strategic in dementia. Similarly, synucleinopathies are primarily characterized by abnormal deposition of misfolded α-synuclein in neurons and glial cells and, in the process, depleting the levels of the normal, soluble α-synuclein that the brain needs for many physiological functions. The soluble to insoluble conversion also affects other normal brain proteins, such as TDP-43 and tau, accumulating in their insoluble states in both AD and dementia with Lewy bodies (DLB). The two diseases have been distinguished by the differential burden and distribution of insoluble proteins, with neocortical phosphorylated tau deposition more typical of AD and neocortical α-synuclein deposition peculiar to DLB. We propose a reappraisal of the diagnostic approach to cognitive impairment from convergence (based on clinicopathologic criteria) to divergence (based on what differs across individuals affected) as a necessary step for the launch of precision medicine.
Collapse
Affiliation(s)
- Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Mirella Russo
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Pietro Tiraboschi
- Division of Neurology V-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
15
|
Lipolysis-Stimulated Lipoprotein Receptor Acts as Sensor to Regulate ApoE Release in Astrocytes. Int J Mol Sci 2022; 23:ijms23158630. [PMID: 35955777 PMCID: PMC9368974 DOI: 10.3390/ijms23158630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
Astroglia play an important role, providing de novo synthesized cholesterol to neurons in the form of ApoE-lipidated particles; disruption of this process can increase the risk of Alzheimer’s disease. We recently reported that glia-specific suppression of the lipolysis-stimulated lipoprotein receptor (LSR) gene leads to Alzheimer’s disease-like memory deficits. Since LSR is an Apo-E lipoprotein receptor, our objective of this study was to determine the effect of LSR expression modulation on cholesterol and ApoE output in mouse astrocytes expressing human ApoE3. qPCR analysis showed that siRNA-mediated lsr knockdown significantly increased expression of the genes involved in cholesterol synthesis, secretion, and metabolism. Analysis of media and lipoprotein fractions showed increased cholesterol and lipidated ApoE output in HDL-like particles. Further, lsr expression could be upregulated when astrocytes were incubated 5 days in media containing high levels (two-fold) of lipoprotein, or after 8 h treatment with 1 µM LXR agonist T0901317 in lipoprotein-deficient media. In both conditions of increased lsr expression, the ApoE output was repressed or unchanged despite increased abca1 mRNA levels and cholesterol production. We conclude that LSR acts as a sensor of lipoprotein content in the medium and repressor of ApoE release, while ABCA1 drives cholesterol efflux, thereby potentially affecting cholesterol load, ApoE lipidation, and limiting cholesterol trafficking towards the neuron.
Collapse
|
16
|
Wen YF, Xiao XW, Zhou L, Jiang YL, Zhu Y, Guo LN, Wang X, Liu H, Zhou YF, Wang JL, Liao XX, Shen L, Jiao B. Mutations in GBA, SNCA, and VPS35 are not associated with Alzheimer's disease in a Chinese population: a case-control study. Neural Regen Res 2022; 17:682-689. [PMID: 34380910 PMCID: PMC8504399 DOI: 10.4103/1673-5374.321000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
SNCA, GBA, and VPS35 are three common genes associated with Parkinson’s disease. Previous studies have shown that these three genes may be associated with Alzheimer’s disease (AD). However, it is unclear whether these genes increase the risk of AD in Chinese populations. In this study, we used a targeted gene sequencing panel to screen all the exon regions and the nearby sequences of GBA, SNCA, and VPS35 in a cohort including 721 AD patients and 365 healthy controls from China. The results revealed that neither common variants nor rare variants of these three genes were associated with AD in a Chinese population. These findings suggest that the mutations in GBA, SNCA, and VPS35 are not likely to play an important role in the genetic susceptibility to AD in Chinese populations. The study was approved by the Ethics Committee of Xiangya Hospital, Central South University, China on March 9, 2016 (approval No. 201603198).
Collapse
Affiliation(s)
- Ya-Fei Wen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xue-Wen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Ya-Ling Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Li-Na Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Ya-Fang Zhou
- Department of Geriatrics Neurology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan Province, China
| | - Jun-Ling Wang
- Department of Neurology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan Province, China
| | - Xin-Xin Liao
- Department of Geriatrics Neurology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan Province, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan Province, China
| |
Collapse
|