1
|
Darwish AB, Salama A, Younis MM. Neuroprotective efficiency of celecoxib vesicular bilosomes for the management of lipopolysaccharide-induced Alzheimer in mice employing 2 3 full factorial design. Inflammopharmacology 2024; 32:3925-3942. [PMID: 39017993 PMCID: PMC11550292 DOI: 10.1007/s10787-024-01522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
The aim of this study was to develop and evaluate bilosomes loaded with Celecoxib (CXB) for the efficient treatment of Alzheimer. The thin-film hydration approach was utilized in the formulation of CXB bilosomes (CXB-BLs). The study used a 23-factorial design to investigate the impact of several formulation variables. Three separate parameters were investigated: bile salt type (X1), medication amount (X2), and lipid-bile salt ratio (X3). The dependent responses included entrapment efficiency (Y1: EE %), particle size (Y2: PS), and zeta potential (Y3: ZP). The formulation factors were statistically optimized using the Design-Expert® program. The vesicles demonstrated remarkable CXB encapsulation efficiency, ranging from 94.16 ± 1.91 to 98.38 ± 0.85%. The vesicle sizes ranged from 241.8 ± 6.74 to 352 ± 2.34 nm. The produced formulations have high negative zeta potential values, indicating strong stability. Transmission electron microscopy (TEM) revealed that the optimized vesicles had a spherical form. CXB release from BLs was biphasic, with the release pattern following Higuchi's model. In vivo studies confirmed the efficiency of CXB-BLs in management of lipopolysaccharide-induced Alzheimer as CXB-BLs ameliorated cognitive dysfunction, decreased acetylcholinesterase (AChE), and inhibited neuro-inflammation and neuro-degeneration through reducing Toll-like receptor (TLR4), and Interleukin-1β (IL-1β) levels. The findings suggested that the created CXB-BLs could be a potential drug delivery strategy for Alzheimer's treatment.
Collapse
Affiliation(s)
- Asmaa Badawy Darwish
- Pharmaceutical Technology Department, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt.
| | - Abeer Salama
- Pharmacology Department, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Mostafa Mohammed Younis
- Pharmaceutical Technology Department, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
2
|
Kumbhar PS, Kamble V, Vishwas S, Kumbhar P, Kolekar K, Gupta G, Veiga F, Paiva-Santos AC, Goh BH, Singh SK, Dua K, Disouza J, Patravale V. Unravelling the success of transferosomes against skin cancer: Journey so far and road ahead. Drug Deliv Transl Res 2024; 14:2325-2344. [PMID: 38758498 DOI: 10.1007/s13346-024-01607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Skin cancer remains one of the most prominent types of cancer. Melanoma and non-melanoma skin cancer are commonly found together, with melanoma being the more deadly type. Skin cancer can be effectively treated with chemotherapy, which mostly uses small molecular medicines, phytoceuticals, and biomacromolecules. Topical delivery of these therapeutics is a non-invasive way that might be useful in effectively managing skin cancer. Different skin barriers, however, presented a major obstacle to topical cargo administration. Transferosomes have demonstrated significant potential in topical delivery by improving cargo penetration through the circumvention of diverse skin barriers. Additionally, the transferosome-based gel can prolong the residence of drug on the skin, lowering the frequency of doses and their associated side effects. However, the choice of appropriate transferosome compositions, such as phospholipids and edge activators, and fabrication technique are crucial for achieving improved entrapment efficiency, penetration, and regulated particle size. The present review discusses skin cancer overview, current treatment strategies for skin cancer and their drawbacks. Topical drug delivery against skin cancer is also covered, along with the difficulties associated with it and the importance of transferosomes in avoiding these difficulties. Additionally, a summary of transferosome compositions and fabrication methods is provided. Furthermore, topical delivery of small molecular drugs, phytoceuticals, and biomacromolecules using transferosomes and transferosomes-based gel in treating skin cancer is discussed. Thus, transferosomes can be a significant option in the topical delivery of drugs to manage skin cancer efficiently.
Collapse
Affiliation(s)
- Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, Warananagar, 416113, India
| | - Vikas Kamble
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, Warananagar, 416113, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pranav Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, Warananagar, 416113, India
| | - Kaustubh Kolekar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, Warananagar, 416113, India
| | - Gaurav Gupta
- Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, Warananagar, 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
3
|
Akl MA, Eldeen MA, Kassem AM. Beyond Skin Deep: Phospholipid-Based Nanovesicles as Game-Changers in Transdermal Drug Delivery. AAPS PharmSciTech 2024; 25:184. [PMID: 39138693 DOI: 10.1208/s12249-024-02896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Transdermal administration techniques have gained popularity due to their advantages over oral and parenteral methods. Noninvasive, self-administered delivery devices improve patient compliance and control drug release. Transdermal delivery devices struggle with the skin's barrier function. Molecules over 500 Dalton (Da) and ionized compounds don't permeate through the skin. Drug encapsulation in phospholipid-based vesicular systems is the most effective skin delivery technique. Vesicular carriers include bi-layered liposomes, ultra-deformable liposomes, ethanolic liposomes, transethosomes, and invasomes. These technologies enhance skin drug permeation by increasing formula solubilization, partitioning into the skin, and fluidizing the lipid barrier. Phospholipid-based delivery systems are safe and efficient, making them a promising pharmaceutical and cosmeceutical drug delivery technique. Still, making delivery systems requires knowledge about the physicochemical properties of the drug and carrier, manufacturing and process variables, skin delivery mechanisms, technological advances, constraints, and regulatory requirements. Consequently, this review covers recent research achievements addressing the mentioned concerns.
Collapse
Affiliation(s)
- Mohamed A Akl
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
- Department of Pharmaceutics, College of Pharmacy, The Islamic University, Najaf, 54001, Iraq.
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology, & Genetics Division, Zoology Department, Faculty of Science, Zagazig University, Alsharquia, 7120001, Egypt
| | - Abdulsalam M Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
4
|
Burlec AF, Hăncianu M, Ivănescu B, Macovei I, Corciovă A. Exploring the Therapeutic Potential of Natural Compounds in Psoriasis and Their Inclusion in Nanotechnological Systems. Antioxidants (Basel) 2024; 13:912. [PMID: 39199158 PMCID: PMC11352172 DOI: 10.3390/antiox13080912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Psoriasis is a chronic inflammatory disease that affects around 2-3% of the world's population. The treatment for this autoimmune disease still remains centered around conventional methods using synthetic substances, even though more recent advancements focus on biological therapies. Given the numerous side effects of such treatments, current research involves plant extracts and constituents that could prove useful in treating psoriasis. The aim of this narrative review is to highlight the most known representatives belonging to classes of natural compounds such as polyphenols (e.g., astilbin, curcumin, hesperidin, luteolin, proanthocyanidins, and resveratrol), alkaloids (e.g., berberine, capsaicin, and colchicine), coumarins (psoralen and 8-methoxypsoralen), and terpenoids (e.g., celastrol, centelloids, and ursolic acid), along with plants used in traditional medicine that could present therapeutic potential in psoriasis. The paper also provides an overview of these compounds' mechanisms of action and current inclusion in clinical studies, as well as an investigation into their potential incorporation in various nanotechnological systems, such as lipid-based nanocarriers or polymeric nanomaterials, that may optimize their efficacy during treatment.
Collapse
Affiliation(s)
- Ana Flavia Burlec
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| | - Monica Hăncianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Bianca Ivănescu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Irina Macovei
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| | - Andreia Corciovă
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| |
Collapse
|
5
|
Almutairy BK, Khafagy ES, Aldawsari MF, Alshetaili A, Alotaibi HF, Lila ASA. Spanlastic-laden nanogel as a plausible platform for dermal delivery of bimatoprost with superior cutaneous deposition and hair regrowth efficiency in androgenic alopecia. Int J Pharm X 2024; 7:100240. [PMID: 38577618 PMCID: PMC10992714 DOI: 10.1016/j.ijpx.2024.100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024] Open
Abstract
Bimatoprost (BIM) is a prostaglandin F2α analogs originally approved for the treatment of glaucoma and ocular hypertension. Recent studies have highlighted its potential to boost hair growth. The objective of this investigation is to challenge the potential of spanlastics (SLs) as a surfactant-based vesicular system for promoting the cutaneous delivery of BIM for the management of alopecia. BIM-loaded spanlastics (BIM-SLs), composed of Span as the main vesicle component and Tween as the edge activator, were fabricated by ethanol injection method. The formulated BIM-SLs were optimized by 23 full factorial design. The optimized formula (F1) was characterized for entrapment efficiency, surface charge, vesicle size, and drug release after 12 h (Q12h). The optimized formula (F1) exhibited high drug entrapment efficiency (83.1 ± 2.1%), appropriate zeta potential (-19.9 ± 2.1 mV), Q12h of 71.3 ± 5.3%, and a vesicle size of 364.2 ± 15.8 nm, which favored their cutaneous accumulation. In addition, ex-vivo skin deposition studies revealed that entrapping BIM within spanlastic-based nanogel (BIM-SLG) augmented the dermal deposition of BIM, compared to naïve BIM gel. Furthermore, in vivo studies verified the efficacy of spanlastic vesicles to boost the cutaneous accumulation of BIM compared to naive BIM gel; the AUC0-12h of BIM-SLG was 888.05 ± 72.31 μg/mL.h, which was twice as high as that of naïve BIM gel (AUC0-12h 382.86 ± 41.12 μg/mL.h). Intriguingly, BIM-SLG outperforms both naïve BIM gel and commercial minoxidil formulations in stimulating hair regrowth in an androgenetic alopecia mouse model. Collectively, spanlastic vesicles might be a potential platform for promoting the dermal delivery of BIM in managing alopecia.
Collapse
Affiliation(s)
- Bjad K. Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint AbdulRahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amr Selim Abu Lila
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| |
Collapse
|
6
|
Mangla B, Mittal P, Kumar P, Javed S, Ahsan W, Aggarwal G. Development of erlotinib-loaded nanotransferosomal gel for the topical treatment of ductal carcinoma in situ. Nanomedicine (Lond) 2024; 19:855-874. [PMID: 38440976 DOI: 10.2217/nnm-2023-0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Aims: This study was aimed to formulate erlotinib (ERL)-loaded transferosomal gel (ERL@TG) intended for topical application for the treatment of ductal carcinoma in situ. Materials & methods: The optimized process involved a thin-film hydration method to generate ERL-loaded transferosomes (ERL@TFS), which was incorporated into a carbopol gel matrix to generate ERL@TG. The optimized formulation was characterized in vitro followed by cytotoxicity evaluation on MCF-7 breast cancer cell lines and acute toxicity and skin irritation studies was performed in vivo. Results: In a comparative assessment against plain ERL, ERL@TG displayed enhanced efficacy against MCF-7 cell lines, reflected in considerably lower IC50 values with an enhanced safety profile. Conclusion: Optimized ERL@TG was identified as a promising avenue for addressing ductal carcinoma in situ breast cancer.
Collapse
Affiliation(s)
- Bharti Mangla
- Centre for Advanced Formulation & Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Priya Mittal
- Centre for Advanced Formulation & Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Pankaj Kumar
- Centre for Advanced Formulation & Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, PO box no. 114, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, PO box no. 114, Jazan, Saudi Arabia
| | - Geeta Aggarwal
- Centre for Advanced Formulation & Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| |
Collapse
|
7
|
Cheng Z, Kandekar U, Ma X, Bhabad V, Pandit A, Liu L, Luo J, Munot N, Chorage T, Patil A, Patil S, Tao L. Optimizing fluconazole-embedded transfersomal gel for enhanced antifungal activity and compatibility studies. Front Pharmacol 2024; 15:1353791. [PMID: 38606182 PMCID: PMC11007155 DOI: 10.3389/fphar.2024.1353791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
Fungal infections are of major concern all over the globe, and fluconazole is the most prevalently used drug to treat it. The goal of this research work was to formulate a fluconazole-embedded transfersomal gel for the treatment of fungal infections. A compatibility study between fluconazole and soya lecithin was performed by differential scanning calorimetry (DSC). Transfersomes were formulated by a thin-film hydration technique using soya lecithin and Span 80. A central composite design was adopted to prepare different formulations. Soya lecithin and Span 80 were chosen as independent variables, and the effect of these variables was studied on in vitro drug diffusion. Formulations were evaluated for entrapment efficiency and in vitro drug diffusion. The results of in vitro drug diffusion were analyzed using the analysis of variance (ANOVA) test. Optimized formulation was prepared based on the overlay plot and evaluated by scanning electron microscopy, DSC, vesicle size, polydispersity index (PDI), zeta potential, and in vitro drug diffusion studies. An optimized formulation was loaded into xanthan gum gel base and evaluated for pH, viscosity, in vitro and ex vivo drug diffusion, and antifungal activity. DSC studies revealed compatibility between fluconazole and soya lecithin. Entrapment efficiency and in vitro drug diffusion of various formulations ranged between 89.92% ± 0.20% to 97.28% ± 0.42% and 64% ± 1.56% to 85% ± 2.05%, respectively. A positive correlation was observed between in vitro drug diffusion and Span 80; conversely, a negative correlation was noted with soya lecithin. Entrapment efficiency, particle size, zeta potential, PDI, and drug diffusion of optimized formulation were 95.0% ± 2.2%, 397 ± 2 nm, -38 ± 5 mV, 0.43%, and 81 % ± 2%, respectively. SEM images showed well-distributed spherical-shaped transfersomes. In vitro, ex vivo drug diffusion and antifungal studies were conclusive of better diffusion and enhanced antifungal potential fluconazole in transfersomal formulation.
Collapse
Affiliation(s)
- Zhiqiang Cheng
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Department of Pathology, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ujjwala Kandekar
- Department of Pharmaceutics, JSPM’s Rajarshi Shahu College of Pharmacy and Research, Pune, Maharashtra, India
| | - Xiaoshi Ma
- Department of Pathology, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Vishal Bhabad
- Department of Pharmaceutics, JSPM’s Rajarshi Shahu College of Pharmacy and Research, Pune, Maharashtra, India
| | - Ashlesha Pandit
- Department of Pharmaceutics, JSPM’s Rajarshi Shahu College of Pharmacy and Research, Pune, Maharashtra, India
| | - Liming Liu
- Department of Pathology, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiping Luo
- Department of Pathology, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Neha Munot
- Department of Pharmaceutics, Rajmata Jijau Shikashan Prasarak Mandal College of Pharmacy, Pune, Maharashtra, India
| | - Trushal Chorage
- Department of Pharmacognosy, JSPM’s Charak College of Pharmacy and Research, Pune, Maharashtra, India
| | - Abhinandan Patil
- Department of Pharmaceutics, D. Y. Patil Education Society, Kolhapur, Maharashtra, India
| | - Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Liang Tao
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
8
|
Opatha SAT, Chutoprapat R, Khankaew P, Titapiwatanakun V, Ruksiriwanich W, Boonpisuttinant K. Asiatic acid-entrapped transfersomes for the treatment of hypertrophic scars: In vitro appraisal, bioactivity evaluation, and clinical study. Int J Pharm 2024; 651:123738. [PMID: 38158144 DOI: 10.1016/j.ijpharm.2023.123738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Non-invasive treatment options for hypertrophic scars (HTS) are limited, and treating HTS remains challenging due to their unappealing appearance and associated social stigma. In this work, a novel transfersomal system named Asiatic acid-entrapped transfersomes (AATs) was prepared. AATs were evaluated for their skin permeability, anti-inflammatory activity, and other characteristic parameters to determine the most promising formulation. Asiatic acid-entrapped transfersomal gel (AATG), which was obtained by incorporating the lead AATs in a gel base, underwent testing in an 8-week, double-blind, placebo-controlled, split-skin clinical study. The net skin elasticity (R5), melanin index (MI), and skin surface hydration were analyzed employing Cutometer®, Mexameter®, and Corneometer®, respectively, in order to evaluate the effectiveness of the developed AATG. AATs exhibited vesicular sizes and zeta potential values within the range of (27.15 ± 0.95 to 63.54 ± 2.51 nm) and (-0.010 to -0.129 mV), respectively. TW80AAT gave the highest %EE (90.84 ± 2.99%), deformability index (101.70 ± 11.59 mgs-1), permeation flux at 8 h (0.146 ± 0.005 mg/cm2/h), and anti-inflammatory activity (71.65 ± 1.83%). The clinical study results of AATG indicated no adverse skin reactions. Furthermore, product efficacy tests demonstrated a significant reduction in MI and an increase in net skin elasticity at 2, 4, and 8 weeks. These pilot study outcomes support the effectiveness of the AATG.
Collapse
Affiliation(s)
- Shakthi Apsara Thejani Opatha
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand
| | - Romchat Chutoprapat
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand.
| | - Pichanon Khankaew
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand
| | - Varin Titapiwatanakun
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Korawinwich Boonpisuttinant
- Innovative Natural Products from Thai Wisdoms (INPTW), Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathumthani, 12130, Thailand
| |
Collapse
|
9
|
Matharoo N, Mohd H, Michniak-Kohn B. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1918. [PMID: 37527953 DOI: 10.1002/wnan.1918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 08/03/2023]
Abstract
The development of innovative approaches to deliver medications has been growing now for the last few decades and generates a growing interest in the dermatopharmaceutical field. Transdermal drug delivery in particular, remains an attractive alternative route for many therapeutics. However, due to the limitations posed by the barrier properties of the stratum corneum, the delivery of many pharmaceutical dosage forms remains a challenge. Most successful therapies using the transdermal route have been ones containing smaller lipophilic molecules with molecular weights of a few hundred Daltons. To overcome these limitations of size and lipophilicity of the drugs, transferosomes have emerged as a successful tool for transdermal delivery of a variety of therapeutics including hydrophilic actives, larger molecules, peptides, proteins, and nucleic acids. Transferosomes exhibit a flexible structure and higher surface hydrophilicity which both play a critical role in the transport of drugs and other solutes using hydration gradients as a driving force to deliver the molecules into and across the skin. This results in enhanced overall permeation as well as controlled release of the drug in the skin layers. Additionally, the physical-chemical properties of the transferosomes provide increased stability by preventing degradation of the actives by oxidation, light, and temperature. Here, we present the history of transferosomes from solid lipid nanoparticles and liposomes, their physical-chemical properties, dermal kinetics, and their recent advances as marketed dosage forms. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Namrata Matharoo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Center for Dermal Research, Life Sciences Building, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Hana Mohd
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Center for Dermal Research, Life Sciences Building, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Bozena Michniak-Kohn
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Center for Dermal Research, Life Sciences Building, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
10
|
Agha OA, Girgis GN, El-Sokkary MM, Soliman OAEA. Spanlastic-laden in situ gel as a promising approach for ocular delivery of Levofloxacin: In-vitro characterization, microbiological assessment, corneal permeability and in-vivo study. Int J Pharm X 2023; 6:100201. [PMID: 37560488 PMCID: PMC10407905 DOI: 10.1016/j.ijpx.2023.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/09/2023] [Accepted: 07/23/2023] [Indexed: 08/11/2023] Open
Abstract
The objective of this study was to encapsulate the antibacterial drug levofloxacin hemihydrate (LF) into spanlastics (SLs) followed by incorporation into gelrite in situ gel to enhance its antibacterial activity and sustain ocular delivery. A combination of Span 60 as main vesicle component and Tweens as an edge activator (EA) was used to prepare SLs using the thin film hydration method. A 32 factorial design was applied to study the effect of formulation variables (ratio of Span 60: EA and type of EA) on SLs characteristics (encapsulation efficiency (EE%), particle size (PS), zeta potential (ZP) and percentage of drug released). In-vitro antimicrobial study was conducted to determine the antibacterial activity of the optimized formula. Finally confocal laser scanning microscopy (CLSM) was applied to monitor SLs corneal penetration. The optimum formulation (F5), contains 240 mg Span 60 and 60 mg Tween 60 as EA. F5 exhibited EE% = 59.7 ± 4.2%, PS = 177.6 ± 1.8 nm, PDI = 0.27 ± 0.022 and ZP = -40.6 ± 0.68 mV. Furthermore, only 39.37 ± 0.72% of LF amount was released after 4 h compared to complete release from drug solution. The apparent permeation coefficient was (14.7 × 10-3 cm/h) compared to (9.7 × 10-3 cm/h) for LF solution. Moreover, F5 exhibited 200% and 100% increase in the antibacterial efficacy against Pseudomonas aeruginosa and Staphylococcus aureus respectively.
Collapse
Affiliation(s)
- Omnia Ahmed Agha
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Daqahlia 35516, Egypt
| | - Germeen N.S. Girgis
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Daqahlia 35516, Egypt
| | - Mohamed M.A. El-Sokkary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Daqahlia 35516, Egypt
| | | |
Collapse
|
11
|
Aziz D, Mohamed S, Tayel S, Makhlouf A. Flexosomes as a promising nanoplatform for enhancing tolnaftate ocular delivery: Formulation, in vitro characterization, statistical optimization, ex vivo and microbial in vivo studies. Int J Pharm 2023; 646:123471. [PMID: 37793467 DOI: 10.1016/j.ijpharm.2023.123471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/24/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
The eye is a complex organ with a unique physiology and anatomy. Using novel nanosystems is expected to enhance ocular drug permeation and retention. Hence, this work aimed to study the potential of flexosomes as an ocular delivery system to enhance the corneal permeation and antifungal activity of Tolnaftate (TOL). Different flexosomes formulae were formulated using ethanol injection method, employing a 31.22 full factorial design. The studied formulation variables were: X1: amount of stearyl amine, X2: hydration volume and X3: type of edge activator. Encapsulation efficiency, particle size and zeta potential were selected as dependent variables. FX5 was selected as the optimal TOL flexosomes and showed encapsulation efficiency of 66.08 ± 11.38%, particle size of 154.99 ± 29.11 nm and zeta potential of 42.95 ± 0.64 mV. FX5 was subjected to further ex vivo and in vivo studies which showed that TOL flux was significantly increased through FX5 compared to TOL suspension. Draize test and histopatholoigal tests assured that FX5 is safe to be used for eye.. The in vivo fungal susceptibility testing using Aspergillus niger demonstrated the superior and more durable antifungal activity of FX5 than TOL suspension. Hence, FX5 can be considered as promising nanocarrier for safe and efficient ocular TOL delivery.
Collapse
Affiliation(s)
- Diana Aziz
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sally Mohamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Saadia Tayel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amal Makhlouf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt.
| |
Collapse
|
12
|
Hazari SA, Sheikh A, Abourehab MAS, Tulbah AS, Kesharwani P. Self-assembled Gallic acid loaded lecithin-chitosan hybrid nanostructured gel as a potential tool against imiquimod-induced psoriasis. ENVIRONMENTAL RESEARCH 2023; 234:116562. [PMID: 37419194 DOI: 10.1016/j.envres.2023.116562] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Increased thickness of the skin and hyperproliferation of keratinocyte cell is the main obstacle in the treatment of psoriasis. Gallic Acid (GA) has shown efficacious results against the hyperproliferation of keratinocytes while lipid-polymer loaded hybrid nanoparticles (LPHNs) have an edge over lipidic and polymeric nanoparticles considering drug loading, controlled release, stability, and retention. The LPHNs were optimized using Box-Behnken method and was further characterized by FTIR, DSC and Zetasizer. The optimized preparation demonstrated a size of 170.5 ± 0.087 nm and a PDI of 0.19 ± 0.0015, respectively. The confocal study has suggested that the hybrid nanosystem enhanced the drug penetration into the deeper layer with a higher drug release of 79 ± 0.001% as compared to the gallic acid-loaded gel. In addition, the formulation significantly reduced PASI score and splenomegaly without causing any serious irritation. The morphological study of the spleen suggested that the prepared formulation has well controlled the disease compared to the marketed formulation while maintaining a normal level of immune cells after treatment. Hence GALPHN could be accepted as one of the excellent vehicles for the topical conveyance of GA (gallic acid) due to enhanced penetration, and good retention, along with fewer side effects and higher efficacy of the GALPHN gel against imiquimod (IMQ) induced psoriasis.
Collapse
Affiliation(s)
- Sahim Aziz Hazari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, 61519, Egypt; Pharmaceutics Department, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| | - Alaa S Tulbah
- Pharmaceutics Department, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
13
|
Barakat EH, Akl MA, Ibrahim MF, Mohamed Dawaba H, Afouna MI. Formulation and optimization of theophylline-loaded enteric-coated spanlastic nanovesicles for colon delivery; Ameliorate acetic acid-induced ulcerative colitis. Int J Pharm 2023; 643:123253. [PMID: 37473974 DOI: 10.1016/j.ijpharm.2023.123253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Treatment of colon diseases presents one of the most significant obstacles to drug delivery due to the inability to deliver sufficient drug concentration selectively to the colon. The goal of the proposed study was to develop, optimize, and assess an effective colon target delivery system of theophylline-based nanovesicles (TP-NVs) surrounded by a biodegradable polymeric shell of chitosan (CS) and Eudragit L100 (EL100) for the treatment of ulcerative colitis (UC). TP-loaded nanovesicles were fabricated using the ethanol injection method and coated with CS and EL100, respectively. We used a 32-factorial design approach to optimize the concentration of CS and EL100 to minimize particle size (PS) and maximize the cumulative amount of theophylline released (CTR) after 24 h. The optimized formulation was described using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and in vitro release. In-vivo quantification of theophylline in the gastrointestinal tract and in-vivo targeting potential in a rat model of acetic acid-induced colitis were also thoroughly evaluated. The characteristics of the optimal formula predicted by the 32-factorial design approach corresponded exceptionally well with the measured PS of 271.3 nm, the zeta potential of -39.9 mV, and CTR of 3.95, and a 99.93% after 5 and 24 h, respectively. Notably, the in vivo results in the rat model of colitis showed that the formulation with an optimized coat significantly improved theophylline distribution to the colon and markedly decreased the expression of interleukin-6 and ulcerative lesions compared to a pure theophylline solution. These outcomes elucidated the feasibility of a 32-factorial design to detect the crucial interactions between the study's components. Our findings suggested that enteric-coated nanovesicles formulations with optimal coat compositions of 0.2693% (w/v) and 0.75% (w/v) of CS and EL100, respectively, were promising carriers for colonic delivery of theophylline, a rate-limiting step in the treatment of UC.
Collapse
Affiliation(s)
- Elsaied H Barakat
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed A Akl
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt; Department of Pharmaceutics, College of Pharmacy, The Islamic University, Najaf 54001, Iraq.
| | - Mohamed F Ibrahim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hamdy Mohamed Dawaba
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia Governorate, Egypt
| | - Mohsen I Afouna
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
14
|
Patel C, Shukla T, Thakkar H. Carboplatin-loaded ultradeformable vesicles for the management of endometrial cancer: in vitro and in vivo evaluation. Ther Deliv 2023; 14:105-119. [PMID: 37125431 DOI: 10.4155/tde-2022-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Aim: Present research work aimed to explore intravaginal route for the drug delivery for treatment of endometrial cancer (EC). Material & methods: Carboplatin (CBP)-loaded ultradeformable vesicle (CBP-UDV) was prepared and characterized for in vitro quality attributes and evaluated for its efficacy in rabbits using ultrasound imaging after intravaginal administration. Results & conclusion: The results showed that the formulation capable of carrying and localizing drug in uterus for prolonged period assisted by first uterine pass effect. Ultrasound imaging of the EC-induced rabbit model before and after treatment with CBP-UDV showed considerable regression in the EC tumor mass. The findings serve as the basis of successful utilization of the intravaginal route for management of EC by designing the formulation which can improve patient compliance.
Collapse
Affiliation(s)
- Chintankumar Patel
- The Maharaja Sayajirao University of Baroda, Centre for Relevance & Excellence in Novel Drug Delivery Systems, Shri G. H. Patel Building, Donor's Plaza, Pharmacy Department, Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Fatehgunj, Vadodara, Gujarat, 390002, India
| | - Tejas Shukla
- Veterinary Polyclinic, Opp. Jyoti Circle, Pandya Bridge, Alkapuri, Vadodara, Gujarat, 390020, India
| | - Hetal Thakkar
- The Maharaja Sayajirao University of Baroda, Centre for Relevance & Excellence in Novel Drug Delivery Systems, Shri G. H. Patel Building, Donor's Plaza, Pharmacy Department, Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Fatehgunj, Vadodara, Gujarat, 390002, India
| |
Collapse
|
15
|
Shabery AM, Widodo RT, Chik Z. Formulation and In Vivo Pain Assessment of a Novel Niosomal Lidocaine and Prilocaine in an Emulsion Gel (Emulgel) of Semisolid Palm Oil Base for Topical Drug Delivery. Gels 2023; 9:96. [PMID: 36826266 PMCID: PMC9956187 DOI: 10.3390/gels9020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
This study aimed to formulate semisolid niosomal encapsulated lidocaine and prilocaine using the patented palm oil base Hamin-C® for further characterization and in vivo pain assessment. Seven formulations were initially studied with various chemical compositions. A thin-layer film hydration method was used to produce niosome using a mixture of surfactant (Span® 40 or Span® 60) and cholesterol (CHOL) at a 1:1 ratio, with/without a charge-inducing agent (diacetyl phosphate) (DCP) and with/without labrasol®. Niosome F1 formulation had been identified as the highest %EE achieved, at 53.74 and 55.63% for prilocaine and lidocaine, respectively. Furthermore, NIO-HAMIN F1 emulgel indicated the best formulation with higher permeability of prilocaine and lidocaine compared to the rest of the formulations. The reformulation of optimization of NIO-HAMIN F1 emulgel using a cold process to NIO-HAMIN F1-C emulgel to improve the viscosity resulted in higher diffusion of prilocaine and lidocaine by 5.71 and 33.38%, respectively. In vivo pain perception studies by verbal rating score (VRS) and visual analogue score (VAS) on healthy subjects show a comparable local anesthetic effect between NIO-HAMIN F1-C emulgel and EMLA® cream.
Collapse
Affiliation(s)
- Aidawati Mohamed Shabery
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Riyanto Teguh Widodo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Zamri Chik
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Universiti Malaya Bioequivalence Testing Centre (UBAT), Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
16
|
Transethosomal Gel for the Topical Delivery of Celecoxib: Formulation and Estimation of Skin Cancer Progression. Pharmaceutics 2022; 15:pharmaceutics15010022. [PMID: 36678651 PMCID: PMC9864437 DOI: 10.3390/pharmaceutics15010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The topical delivery of therapeutics is a promising strategy for managing skin conditions. Cyclooxygenase-2 (COX-2) inhibitors showed a possible target for chemoprevention and cancer management. Celecoxib (CXB) is a selective COX-2 inhibitor that impedes cell growth and generates apoptosis in different cell tumors. Herein, an investigation proceeded to explore the usefulness of nano lipid vesicles (transethosomes) (TES) of CXB to permit penetration of considerable quantities of the drug for curing skin cancer. The prepared nanovesicles were distinguished for drug encapsulation efficiency, vesicle size, PDI, surface charge, and morphology. In addition, FT-IR and DSC analyses were also conducted to examine the influence of vesicle components. The optimized formulation was dispersed in various hydrogel bases. Furthermore, in vitro CXB release and ex vivo permeability studies were evaluated. A cytotoxicity study proceeded using A431 and BJ1 cell lines. The expression alteration of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene and DNA damage and fragmentation using qRT-PCR and comet assays were also investigated. Optimized CXB-TES formulation was spherically shaped and displayed a vesicle size of 75.9 ± 11.4 nm, a surface charge of -44.7 ± 1.52 mV, and an entrapment efficiency of 88.8 ± 7.2%. The formulated TES-based hydrogel displayed a sustained in vitro CXB release pattern for 24 h with an enhanced flux and permeation across rat skin compared with the control (free drug-loaded hydrogel). Interestingly, CXB-TES hydrogel has a lower cytotoxic effect on normal skin cells compared with TES suspension and CXB powder. Moreover, the level of expression of the CDKN2A gene was significantly (p ≤ 0.01, ANOVA/Tukey) decreased in skin tumor cell lines compared with normal skin cell lines, indicating that TES are the suitable carrier for topical delivery of CXB to the cancer cells suppressing their progression. In addition, apoptosis demonstrated by comet and DNA fragmentation assays was evident in skin cancer cells exposed to CXB-loaded TES hydrogel formulation. In conclusion, our results illustrate that CXB-TES-loaded hydrogel could be considered a promising carrier and effective chemotherapeutic agent for the management of skin carcinoma.
Collapse
|
17
|
Alruwaili NK, Zafar A, Alsaidan OA, Yasir M, Mostafa EM, Alnomasy S, Rawaf A, Alquraini A, Alomar FA. Development of surface modified bilosomes for the oral delivery of quercetin: optimization, characterization in-vitro antioxidant, antimicrobial, and cytotoxicity study. Drug Deliv 2022; 29:3035-3050. [PMID: 36120935 PMCID: PMC9848422 DOI: 10.1080/10717544.2022.2122634] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Quercetin (QT) is a flavonoid that exhibits anti-oxidant and chemo-preventive activity. This research work aimed to develop surface-modified bilosomes (BS) of QT. The BS was prepared by the solvent evaporation method and optimized by the Box-Behnken design. The optimized QT-BS (QT-BS3opt) displayed vesicle size (143.51 nm), PDI (0.256), zeta potential (-15.4 mV), and entrapment efficiency (89.52%). Further, the optimized QT-BS formulation was coated with chitosan (CS). The XRD diffractogram of CS-QT-BS3opt1 did not exhibit extensive peaks of QT, revealing that QT is properly encapsulated in the polymer matrix. The QT-BS3opt and CS-QT-BS3opt1 exhibited sustained-release (86.62 ± 3.23% and 69.32 ± 2.57%, respectively) up to 24 h with the Korsmeyer-Peppas kinetic model (R2 =0.9089). CS-QT-BS3opt1 exhibited significantly (P < .05) high flux, i.e. 4.20-fold more than pure QT dispersion and 1.27-fold higher than QT-BS3opt. CS-QT-BS3opt1 showed significantly greater bio-adhesion (76.43 ± 2.42%) than QT-BS3opt (20.82 ± 1.45%). The antioxidant activity showed that QT from CS-QT-BS3opt1 has more remarkable (P < .05) antioxidant activity at each concentration than pure QT. The CS-QT-BS3opt1 exhibited 1.61-fold higher cytotoxicity against MFC7 and 1.44-fold higher cytotoxicity against MDA-MB-231 than pure QT. The CS-QT-BS3opt1 displayed a significantly greater antimicrobial potential against E. coli than against S. aureus. From all these findings, it could be concluded that surface-modified QT-BS might be an effective approach for increasing the efficacy of QT in the treatment of certain ailments.
Collapse
Affiliation(s)
- Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia,CONTACT Ameeduzzafar Zafar Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka72341, Al-Jouf, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Mohd Yasir
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Sultan F. Alnomasy
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences in Al-Quwayiyah, Shaqra University, Shaqraa, Saudi Arabia
| | - Alenazy Rawaf
- Department of Medical Laboratory, College of Applied Medical Sciences-Shaqra, Shaqra University, Shaqraa, Saudi Arabia
| | - Ali Alquraini
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Al Baha University, Al Baha, Saudi Arabia
| | - Fadhel A. Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
18
|
Hesham H, Rady M, Hathout RM, Abdel-Halim M, Mansour S. The skin delivery of Tofacitinib citrate using transethosomes and hybridized ethosomes/nanostructured lipid carriers for vitiligo therapy: Dermatopharmacokinetics and in vivo assays. Int J Pharm 2022; 629:122387. [DOI: 10.1016/j.ijpharm.2022.122387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
19
|
Guo Y, Yang Y, Xu Y, Meng Y, Ye J, Xia X, Liu Y. Deformable Nanovesicle-Loaded Gel for Buccal Insulin Delivery. Pharmaceutics 2022; 14:pharmaceutics14112262. [PMID: 36365081 PMCID: PMC9699007 DOI: 10.3390/pharmaceutics14112262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/15/2023] Open
Abstract
Deformable nanovesicles (DNVs) have been widely used in oral mucosal delivery studies of biomolecular drugs. However, their development for oral mucosal preparations has been limited by their physical and chemical instability, the need for small oral volumes, and the complexity of the oral microenvironment. This study aimed to develop a more suitable buccal delivery system for DNVs with improved storage stability. Preliminary stability studies investigated different gel types, the effects of different hydrophilic gel matrices, and matrix temperature sensitivity using DNVs loaded with insulin-phospholipid complex (IPC-DNVs). A temperature-sensitive gel encapsulating IPC-DNVs (IPC-DNV-TSG) prepared with 2% w/v gelatin was stable at 4 °C for three months and maintained an excellent hypoglycemic effect. The delivery efficiency of IPC-DNVs and IPC-DNV-TSG was compared using a TR146 cell model, revealing that cell viability remained high. Cellular uptake was slightly lower for IPC-DNV-TSG than for IPC-DNVs, but total transport did not differ significantly between the two groups, which may have been related to the viscosity of IPC-DNV-TSG and the hydrophilicity, cell adhesion properties, and biocompatibility of gelatin. Moreover, neither IPC-DNVs nor IPC-DNV-TSG induced significant mucosal irritation in rabbit tongue tissue sections. The study findings demonstrate a promising method for possible use as oral mucosal delivery of peptide drugs.
Collapse
Affiliation(s)
- Yiyue Guo
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Wehand-Bio Pharmaceutical Co., Ltd., Beijing 102600, China
| | - Yuqi Yang
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - You Xu
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yingying Meng
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jun Ye
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xuejun Xia
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Correspondence: ; Tel.: +86-10-8316-0332; Fax: +86-10-6315-9373
| | - Yuling Liu
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
20
|
Phyto-Therapeutic and Nanomedicinal Approaches: A New Hope for Management of Alzheimer's Disease. Int J Pharm 2022; 627:122213. [PMID: 36179926 DOI: 10.1016/j.ijpharm.2022.122213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/08/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
|
21
|
Varia U, Joshi D, Jadeja M, Katariya H, Detholia K, Soni V. Development and evaluation of ultradeformable vesicles loaded transdermal film of boswellic acid. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Boswellic acid (BA), a phytoconstituent obtained from Boswellia serrata, suffers from several limitations after oral administration such as poor systemic absorption, high first-pass metabolism and high frequency of dose requirement, which creates a need to develop an alternative route for drug administration via novel drug delivery formulation. The present research work aims at developing ultradeformable vesicular carriers (transferosomes) for transdermal delivery of boswellic acid to effectively deliver the drug into deeper layers of the skin reaching the target site and thus improving its systemic bioavailability. Ultradeformable vesicles were prepared by thin-film hydration technique, and the formulation was optimized using 32 full factorial design where the amount of lecithin (mg) and concentration of surfactant (%) were considered as independent variables. The formulated boswellic acid-loaded vesicles were incorporated into transdermal film via solvent evaporation technique using the blend of polymers such as starch and HPMC K4M.
Results
The BA-loaded transferosomes were optimized based on vesicle size (nm) and drug entrapment efficiency (%EE), and the results were found to be 205.4 ± 1.215 nm and 86.39 ± 0.019%, respectively. Transmission electron microscopy (TEM) of optimized batch showed spherical shape of vesicles with identified lamellarity, surface charge of vesicles with high negative value − 15.2 mV that suggests electrostatic repulsion between vesicles, while the formulation showed good deformability index of 11.31 ± 0.032% due to use of Tween 80 as surfactant. In vitro permeation study demonstrated sustained release pattern of 96.53 ± 0.023% up to 24 h. Also, the in vitro drug diffusion study was carried out for transfersomal transdermal film which exhibited enhanced permeation and sustained retention of drug up to 94.71 ± 0.019% for 24 h.
Conclusion
Accordingly, the research work suggested that the transferosomes provided an efficient nanosized carriers for enhanced permeation of boswellic acid into deeper layers of skin and could successfully exhibit its therapeutic effect.
Collapse
|
22
|
Gadag S, Narayan R, Sabhahit JN, Hari G, Nayak Y, Pai KSR, Garg S, Nayak UY. Transpapillary iontophoretic delivery of resveratrol loaded transfersomes for localized delivery to breast cancer. BIOMATERIALS ADVANCES 2022; 140:213085. [PMID: 36037762 DOI: 10.1016/j.bioadv.2022.213085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Localized drug delivery to the breast tissues is an area of interest as a potential route to ensure site-specific drug delivery. Transpapillary delivery via the mammary papilla has advantages as most breast tumors arise from the milk ducts. The present study explored the plausibility of transpapillary delivery of a phytochemical, resveratrol (RVT), for breast cancer treatment. RVT was encapsulated within the transfersomes (RVT-TRF) to enable a sustained release of the drug using the biomaterial soya phosphatidylcholine (SPC). Iontophoresis was applied to further accelerate the penetration of the RVT-TRF across the mammary papilla to the breast tissue. The RVT-TRF development was optimized by the Design of Experiments (DoE) approach. The in vitro transpapillary iontophoresis study on porcine mammary papilla showed an enhanced penetration of RVT-TRF when compared to passive diffusion. The transpapillary delivery was further confirmed from the in vitro fluorescent microscopy study using FITC conjugated RVT-TRF. The optimized RVT-TRF delivered via transpapillary route showed a higher Cmax and AUC when compared to pure RVT given orally. A significant reduction in the tumor volume and the serum biomarker CA 15-3, when evaluated in a chemically induced breast cancer rat model, provided evidence of the effectiveness of the developed formulation when delivered locally via transpapillary route compared to the oral route. Thus the developed RVT-TRF administered via transpapillary iontophoresis technique is a promising strategy enabling a localized delivery for effective breast cancer therapy.
Collapse
Affiliation(s)
- Shivaprasad Gadag
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Reema Narayan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jayalakshmi N Sabhahit
- Department of Electrical and Electronics Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Gangadhar Hari
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Karkala Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
23
|
Eldeeb AE, Salah S, Amer MS, Elkasabgy NA. 3D nanocomposite alginate hydrogel loaded with pitavastatin nanovesicles as a functional wound dressing with controlled drug release; preparation, in-vitro and in-vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Ethanolic Fenugreek Extract: Its Molecular Mechanisms against Skin Aging and the Enhanced Functions by Nanoencapsulation. Pharmaceuticals (Basel) 2022; 15:ph15020254. [PMID: 35215366 PMCID: PMC8879298 DOI: 10.3390/ph15020254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/30/2022] Open
Abstract
Fenugreek, or Trigonella foenum-graecum L. (family Leguminosae) seeds, are typically used as food supplements to increase postnatal lactation. Fenugreek extract displays antioxidative and anti-inflammatory properties, but its mechanisms against skin aging have not been exploited. In this research, we are the first to define an in vitro collagenase inhibitory activity of fenugreek extract (IC50 = 0.57 ± 0.02 mg/mL), which is 2.6 times more potent than vitamin C (IC50 = 1.46 mg/mL). Nanoencapsulation has been applied to improve the extract stability, and subsequently enhanced its bioactivities. Liponiosome encapsulating fenugreek extract (LNF) was prepared using a high-speed homogenizer, resulting in homogeneous spherical nanoparticles with sizes in the range of 174.7 ± 49.2 nm, 0.26 ± 0.04 in PdI, and 46.6 ± 7.4% of entrapment efficiency. LNF formulation significantly facilitated a sustained release and significantly enhanced skin penetration over the extracts, suggesting a potential use of LNF for transdermal delivery. The formulated LNF was highly stable, not toxic to human fibroblast, and was able to enhance cell viability, collagen production, and inhibit MMP1, MMP9, IL-6, and IL-8 secretions compared to the extract in the co-cultured skin model. Therefore, ethanolic fenugreek extract and its developed LNF display molecular mechanisms against skin aging and could potentially be used as an innovative ingredient for the prevention of skin aging.
Collapse
|
25
|
Formulation and Evaluation of Topical Nano-Lipid-Based Delivery of Butenafine: In Vitro Characterization and Antifungal Activity. Gels 2022; 8:gels8020133. [PMID: 35200513 PMCID: PMC8872403 DOI: 10.3390/gels8020133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/31/2022] Open
Abstract
The present research work was designed to prepare butenafine (BN)-loaded bilosomes (BSs) by the thin-film hydration method. BN is a sparingly water-soluble drug having low permeability and bioavailability. BSs are lipid-based nanovesicles used to entrap water-insoluble drugs for enhanced permeation across the skin. BSs were prepared by the thin-film hydration method and optimized by the Box-Behnken design (BBD) using lipid (A), span 60 (B), and sodium deoxycholate (C) as independent variables. The selected formulation (BN-BSo) was converted into the gel using Carbopol 940 as a gelling agent. The prepared optimized gel (BN-BS-og) was further evaluated for the gel characterization, drug release, drug permeation, irritation, and anti-fungal study. The optimized bilosomes (BN-BSo) showed a mean vesicle size of 215 ± 6.5 nm and an entrapment efficiency of 89.2 ± 1.5%. The DSC study showed that BN was completely encapsulated in the BS lipid matrix. BN-BSog showed good viscosity, consistency, spreadability, and pH. A significantly (p < 0.05) high release (81.09 ± 4.01%) was achieved from BN-BSo compared to BN-BSog (65.85 ± 4.87%) and pure BN (17.54 ± 1.37 %). The permeation study results revealed that BN-BSo, BN-BSog, and pure BN exhibited 56.2 ± 2.7%, 39.2 ± 2.9%, and 16.6 ± 2.3%. The enhancement ratio of permeation flux was found to be 1.4-fold and 3.4-fold for the BN-BS-og and pure BN dispersion. The HET-CAM study showed that BN-BSog was found to be nonirritant as the score was found within the limit. The antifungal study revealed a significant (p < 0.05) enhanced antifungal activity against C. albicans and A. niger. The findings of the study revealed that BS is an important drug delivery system for transdermal delivery.
Collapse
|
26
|
Elkarray SM, Farid RM, Abd-Alhaseeb MM, Omran GA, Habib DA. Intranasal repaglinide-solid lipid nanoparticles integrated in situ gel outperform conventional oral route in hypoglycemic activity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Alqahtani A, Raut B, Khan S, Mohamed JMM, Fatease AA, Alqahtani T, Alamri A, Ahmad F, Krishnaraju V. The Unique Carboxymethyl Fenugreek Gum Gel Loaded Itraconazole Self-Emulsifying Nanovesicles for Topical Onychomycosis Treatment. Polymers (Basel) 2022; 14:polym14020325. [PMID: 35054731 PMCID: PMC8779379 DOI: 10.3390/polym14020325] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
The novel itraconazole (ITZ) nail penetration enhancing self-emulsifying nanovesicles (ITZ-nPEVs) loaded in carboxymethyl fenugreek gum (CMFG) gel circumvent the systemic onychomycosis treatment. The ITZ-nPEVs were prepared by the thin film hydration technique, and the particle size (PS), zeta potential (ZP), drug content (DC), entrapment efficiency (% EE), deformity index (DI), viscosity, morphology, and physical stability of the ITZ-nPEVs were measured. In terms of nail hydration, transungual drug absorption, and antifungal efficacy against Candida albicans, the chosen ITZ-nPEVs, nPEV-loaded CMFG (CMFG-ITZ-nPEVs) gel, and the commercialized Itrostred gel were compared. The ITZ-nPEVs showed spherical structure with high DC, % EE, low PS and PDI and positive ZP of ITZ ranging from 95.36 to 93.89 mg/5 mL and 95.36–96.94%, 196.55–252.5 nm, 0.092–0.49, and +11.1 to +22.5 mV, respectively. Compared to the Itrostred gel, the novel ITZ-nPEVs exhibited hydration enhancement factor for 24 h (HE24) of 1.53 and 1.39 drug uptake enhancement factor into nail clippings. Moreover, zone of inhibitions for ITZ-nPEVs (27.0 ± 0.25 mm) and CMFG-ITZ-nPEVs (33.2 ± 0.09 mm) against Candida albicans were significantly greater than that of Itrostred gel (22.9 ± 0.44 mm). For clinical investigation on onychomycotic patients, a nail penetration enhancer containing ITZ-nPEV-loaded CMFG gel presents a highly promising approach.
Collapse
Affiliation(s)
- Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia; (A.A.); (T.A.); (V.K.)
| | - Bhavana Raut
- Institute of Pharmaceutical Education and Research, Borgaon (Meghe) Wardha, Wardha 442001, India;
| | - Shagufta Khan
- Institute of Pharmaceutical Education and Research, Borgaon (Meghe) Wardha, Wardha 442001, India;
- Correspondence: ; Tel.: +91-75591-78862
| | | | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia; (A.A.F.); (A.A.)
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia; (A.A.); (T.A.); (V.K.)
| | - Ali Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia; (A.A.F.); (A.A.)
| | - Fazil Ahmad
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
| | - Venkatesan Krishnaraju
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia; (A.A.); (T.A.); (V.K.)
| |
Collapse
|
28
|
Ghan SY, Siow LF, Tan CP, Cheong KW, Thoo YY. Palm Olein Organogelation Using Mixtures of Soy Lecithin and Glyceryl Monostearate. Gels 2022; 8:gels8010030. [PMID: 35049565 PMCID: PMC8774482 DOI: 10.3390/gels8010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 01/01/2022] [Indexed: 12/02/2022] Open
Abstract
The present work investigated the interaction between soy lecithin (SL), glyceryl monostearate (GMS), and water in structuring palm olein (PO) to create an organogel having similar mechanical properties to commercial spread. Extreme vertices mixture design was used to optimize the composition of PO-based organogel. The resulting model showed a good fit to the predicted data with R2 ≥ 0.89. The optimum composition was 8% SL, 22% GMS, 28% water, and 42% PO (w/w) to produce a mean firmness of 1.91 N, spreadability of 15.28 N s−1, and oil binding capacity (OBC) of 83.83%. The OBC of optimized organogel was 10% higher than commercial spread product, and no significant difference was observed in the mechanical properties (p > 0.05). The microstructure, as well as the rheological and thermal properties of the optimized organogel were characterized. Fourier transform infrared analysis indicated that hydrogen bonding and van der Waals interactions were the key driving forces for organogelation. The mixture of SL and GMS favored the formation of β′ + β form crystals with a predominance of the β′ form. These results have important implications for the development of PO-based organogel as a potential fat replacer in the production of low-fat spread.
Collapse
Affiliation(s)
- Sheah Yee Ghan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (S.Y.G.); (L.F.S.)
| | - Lee Fong Siow
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (S.Y.G.); (L.F.S.)
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Kok Whye Cheong
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Yin Yin Thoo
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (S.Y.G.); (L.F.S.)
- Monash Industry Palm Oil Research and Education Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence:
| |
Collapse
|
29
|
Gyanewali S, Kesharwani P, Sheikh A, Ahmad FJ, Trivedi R, Talegaonkar S. Formulation development and in vitro-in vivo assessment of protransfersomal gel of anti-resorptive drug in osteoporosis treatment. Int J Pharm 2021; 608:121060. [PMID: 34500057 DOI: 10.1016/j.ijpharm.2021.121060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022]
Abstract
Osteoporosis is a major cause of morbidity, mortality, and economic burden worldwide. Despite being an effective in combating the bone-deteriorating disorders, bisphosphonates have several shortcomings including poor and variable bioavailability, low permeability, high toxicity, etc. In this study, we developed and optimized protransfersome formulation for the drug risedronate sodium (RIS-Na) with the goal of enhancing its bioavailability and hence patient compliance. Phase separation coacervation technique was utilized for development of optimized formulation. Optimization was achieved by using three-factor, three-level Box-Behnken design combined with Response Surface Methodology (RSM). This enabled us to decipher the effect of 3 independent variables (Phospholipid, Tween-80 and Sodium Deoxycholate) on three dependent parameters (entrapment efficiency, vesicle size and transdermal flux). Optimized formulation was further evaluated for pharmacokinetic and pharmacodynamic parameters. Smooth, spherical protransfersomes with a size of 260 ± 18 nm, having entrapment efficiency and flux of 80.4 ± 4.90% and 8.41 ± 0.148 μg/cm2/h, respectively were prepared. Ex vivo studies revealed a shorter lag time of 1.21 ± 0.18 h and higher flux associated with transdermal formulation. CLSM analysis further revealed better drug penetration (220 μm) through the skin in case of protransfersomes as compared to drug solution (72 μm). Additionally, biomechanical, biochemical, and histo-pathological studies further validated the results. Thus, it was concluded that protransfersome formulation has a great potential in providing better therapeutic efficacy of risedronate than its conventional counterpart.
Collapse
Affiliation(s)
- Suman Gyanewali
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India.
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Ritu Trivedi
- Department of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India.
| |
Collapse
|
30
|
Patel D, Chatterjee B. Identifying Underlying Issues Related to the Inactive Excipients of Transfersomes based Drug Delivery System. Curr Pharm Des 2021; 27:971-980. [PMID: 33069192 DOI: 10.2174/1381612826666201016144354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/02/2020] [Indexed: 11/22/2022]
Abstract
Transfersomes are bilayer vesicles composed of phospholipid and edge activators, which are mostly surfactant. Transfersomes based drug delivery system has gained a lot of interest of the pharmaceutical researchers for their ability to improve drug penetration and permeation through the skin. Transdermal drug delivery via transfersomes has the potential to overcome the challenge of low systemic availability. However, this complex vesicular system has different issues to consider for developing a successful transdermal delivery system. One of the major ingredients, phospholipid, has versatile sources and variable effect on the vesicle size and drug entrapment in transfersomes. The other one, termed as edge activators or surfactant, has some crucial consideration of skin damage and toxicity depending upon its type and concentration. A complex interaction between type and concentration of phospholipid and surfactant was observed, which affect the physicochemical properties of transfersomes. This review focuses on the practical factors related to these two major ingredients, such as phospholipid and surfactant. The origin, purity, desired concentration, the susceptibility of degradation, etc. are the important factors for selecting phospholipid. Regarding surfactants, the major aspects are type and desired concentration. A successful development of transfersomes based drug delivery system depends on the proper considerations of these factors and practical aspects.
Collapse
Affiliation(s)
- Drashti Patel
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
31
|
Peram MR, Patil SR, Kumbar VM, Kugaji MS, Bhat KG, Diwan PV, Jalalpure S. An RP-HPLC Method for Quantitative Analysis of Linagliptin Entrapped in Nanotransfersomes and its Application to Skin Permeation Studies. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666191116103615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Linagliptin (LNG) is an oral hypoglycemic agent that acts by inhibiting
the enzyme dipeptidyl peptidase - 4 (DPP-4) and reduces blood sugar levels in type-II diabetic patients.
To date, the literature presents few analytical methods for the determination of LNG. However,
no reversed phase-high performance liquid chromatography (RP-HPLC) method has been reported
for the determination of LNG in nanotransfersomes and in vitro skin permeation samples.
Objective:
The present study involves the development and validation of RP-HPLC method to
quantify LNG in both nanotransfersomes and in vitro skin permeation and deposition samples.
Methods:
The chromatographic analysis was performed on Luna C18 (2) column (250 x 4.6 mm,
5μm particle size) with a mobile phase consisting of a mixture of methanol: 0.2% orthophosphoric
acid (50:50, v/v) at a flow rate of 1.0 mL/min, detection wavelength of 227 nm, and column temperature
of 40 °C.
Results:
The method was found to be specific, linear (r2 ≥ 0.999; 2-12 μg/mL), precise at both
intra and inter-day levels (percentage relative standard deviation; % RSD < 2.00), accurate (percentage
recovery 100.21-103.83%), and robust. The detection and quantification limits were 0.27
and 0.82 μg/mL, respectively. The mean % entrapment efficiency and the cumulative amount of
LNG permeated across the rat skin from different transfersomal formulations ranged between
40.78 ± 2.54 % to 52.26 ± 2.15 % and 79.54 ± 16.67 to 200.74 ± 35.13 μg/cm2 respectively.
Conclusion:
The method was successfully applied to determine the entThe method was successfully applied to determine the entrapment efficiency, in vitro
skin permeation and deposition behavior of LNG-nanotransfersomes.rapment efficiency, in vitro skin permeation and deposition behavior of LNG-nanotransfersomes.
Collapse
Affiliation(s)
- Malleswara Rao Peram
- Central Research Laboratory, Maratha Mandal’s NGH Institute of Dental Sciences and Research Centre, Belagavi, Karnataka 590010, India
| | - Sachin R. Patil
- Department of Pharmaceutics, College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka 590010, India
| | - Vijay M. Kumbar
- Central Research Laboratory, Maratha Mandal’s NGH Institute of Dental Sciences and Research Centre, Belagavi, Karnataka 590010, India
| | - Manohar S. Kugaji
- Central Research Laboratory, Maratha Mandal’s NGH Institute of Dental Sciences and Research Centre, Belagavi, Karnataka 590010, India
| | - Kishore G. Bhat
- Central Research Laboratory, Maratha Mandal’s NGH Institute of Dental Sciences and Research Centre, Belagavi, Karnataka 590010, India
| | - Prakash V. Diwan
- Central Research Laboratory, Maratha Mandal’s NGH Institute of Dental Sciences and Research Centre, Belagavi, Karnataka 590010, Indonesia
| | - Sunil Jalalpure
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| |
Collapse
|
32
|
Yang Y, Guo Y, Xu Y, Meng Y, Zhang X, Xia X, Liu Y. Factors affecting the buccal delivery of deformable nanovesicles based on insulin-phospholipid complex: an in vivo investigation. Drug Deliv 2020; 27:900-908. [PMID: 32597266 PMCID: PMC8216447 DOI: 10.1080/10717544.2020.1778814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 11/18/2022] Open
Abstract
Deformable nanovesicles (DNVs) have been used in the buccal delivery of biomacromolecules due to their ability to enhance drug penetration. However, no breakthroughs have been made until now due to limited understanding of the factors affecting in vivo buccal delivery. In this study, we designed a series of DNVs, based on an insulin-phospholipid complex (IPC-DNVs), to investigate the influence of drug dose, buccal administration methods, and key quality characteristics of IPC-DNVs for buccal delivery. IPC-DNVs showed a non-linear dose-response relationship between 8 and 12 IU. There was no significant effect of drug delivery site (sublingual mucosa/buccal mucosa) or ligation time (15 or 30 min) on buccal absorption of IPC-DNVs. However, the area above the curve of reduction in blood glucose level overtime (AAC0-6h) for oral mucosa administration was significantly higher than that for buccal mucosa administration. Increasing the drug concentration in IPC-DNVs led to a decrease in AAC0-6h. This might be due to local leakage of DNVs, while squeezing through biological barriers with high concentration of insulin, thus hindering the subsequent delivery of DNVs. IPC-DNVs, measuring 80-220 nm in size, did not significantly affect AAC0-6h. However, when the size was increased to approximately 400 nm, AAC0-6h decreased, thus suggesting that IPC-DNVs with reasonable size were more effective. Additionally, increased deformability of IPC-DNVs might cause drugs to leak easily, thus reducing the promoting effect of buccal absorption. Our results clarified the effect of characteristics of IPC-DNVs on buccal delivery in vivo and provided meaningful support for the design of dosage form of DNVs.
Collapse
Affiliation(s)
- Yuqi Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Yiyue Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - You Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Yingying Meng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Xing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Xuejun Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - YuLing Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| |
Collapse
|
33
|
Balata GF, Faisal MM, Elghamry HA, Sabry SA. Preparation and Characterization of Ivabradine HCl Transfersomes for Enhanced Transdermal Delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101921] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Shah J, Nair AB, Shah H, Jacob S, Shehata TM, Morsy MA. Enhancement in antinociceptive and anti-inflammatory effects of tramadol by transdermal proniosome gel. Asian J Pharm Sci 2020; 15:786-796. [PMID: 33363633 PMCID: PMC7750831 DOI: 10.1016/j.ajps.2019.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/29/2019] [Accepted: 05/20/2019] [Indexed: 10/31/2022] Open
Abstract
Oral therapy of tramadol, an opiate analgesic, undergoes extensive hepatic metabolism and requires frequent administration. Transdermal therapy by virtue can overcome these issues and can improve the efficacy and reduce abuse liability of tramadol. The aim of this research was to investigate the possibility of transdermal delivery of tramadol by formulating proniosome gel and evaluate its therapeutic potential in vivo. The effect of formulation composition as well as amount of drug on physicochemical characteristics of prepared proniosomes were examined. Best proniosome gel (F4) was selected and evaluated for drug release, stability and transdermal efficacy by ex vivo and in vivo experiments. The vesicles demonstrated optimal properties including spherical shape, nanosize with good entrapment efficiency, adequate zeta potential, higher stability and greater transdermal flux. The amorphization and dispersion of tramadol in the aqueous core of proniosome vesicles was confirmed by differential scanning calorimeter. Release profile of F4 was distinct (P < 0.001) from control and displayed steady and prolonged tramadol release by Fickian diffusion. Transdermal therapy of F4 showed prominent reduction of induced twitches (P < 0.005) in mice and edema (P < 0.05) in rats, as compared to oral tramadol. The improvement in clinical efficacy of tramadol in transdermal therapy is correlated with the pharmacokinetic data observed. In conclusion, the observed improvement in antinociceptive and anti-inflammatory effects from proniosome carriers signifies its potential to be a suitable alternative to oral therapy of tramadol with greater efficacy.
Collapse
Affiliation(s)
- Jigar Shah
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Anroop B. Nair
- College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Corresponding author. College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia. Tel: +966 536 219868.
| | - Hiral Shah
- Arihant School of Pharmacy & BRI, Gandhinagar 382421, India
| | - Shery Jacob
- College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Tamer M. Shehata
- College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Faculty of Pharmacy, University of Zagazig, Zagazig 44519, Egypt
| | - Mohamed Aly Morsy
- College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
35
|
Surini S, Leonyza A, Suh CW. Formulation and In Vitro Penetration Study of Recombinant Human Epidermal Growth Factor-Loaded Transfersomal Emulgel. Adv Pharm Bull 2020; 10:586-594. [PMID: 33072536 PMCID: PMC7539322 DOI: 10.34172/apb.2020.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/15/2019] [Accepted: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose: Recombinant human epidermal growth factor (rhEGF) is a 6045-Da peptide that promotes the cell growth process, and it is also used for cosmetic purposes as an anti-aging compound. However, its penetration into skin is limited by its large molecular size. This study aimed to prepare rhEGF-loaded transfersomal emulgel with enhanced skin penetration compared with that of non-transfersomal rhEGF emulgel. Methods: Three transfersome formulations were prepared with different ratios between the lipid vesicle (phospholipid and surfactant) and rhEGF (200:1, 133:1, and 100:1) using a thin-film hydration-extrusion method. The physicochemical properties of these transfersomes and the percutaneous delivery of the transfersomal emulgel were evaluated. Long-term and accelerated stability studies were also conducted. Results: The 200:1 ratio of lipid to drug was optimal for rhEGF-loaded transfersomes, which had a particle size of 128.1 ± 0.66 nm, polydispersity index of 0.109 ± 0.004, zeta potential of -43.1 ± 1.07 mV, deformability index of 1.254 ± 0.02, and entrapment efficiency of 97.77% ± 0.09%. Transmission electron microscopy revealed that the transfersomes had spherical and unilamellar vesicles. The skin penetration of rhEGF was enhanced by as much as 5.56 fold by transfersomal emulgel compared with that of non-transfersomal emulgel. The stability study illustrated that the rhEGF levels after 3 months were 84.96-105.73 and 54.45%-66.13% at storage conditions of 2°C-8°C and 25°C ± 2°C/RH 60% ± 5%, respectively. Conclusion: The emulgel preparation containing transfersomes enhanced rhEGF penetration into the skin, and skin penetration was improved by increasing the lipid content.
Collapse
Affiliation(s)
- Silvia Surini
- Laboratory of Pharmaceutics and Pharmaceutical Technology Development, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, 16424, Indonesia
| | - Astried Leonyza
- Laboratory of Pharmaceutics and Pharmaceutical Technology Development, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, 16424, Indonesia
| | - Chang Woo Suh
- PT Daewoong Pharmaceutical Company Indonesia, Jakarta 10230, Indonesia
| |
Collapse
|
36
|
Opatha SAT, Titapiwatanakun V, Chutoprapat R. Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery. Pharmaceutics 2020; 12:E855. [PMID: 32916782 PMCID: PMC7559928 DOI: 10.3390/pharmaceutics12090855] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/11/2022] Open
Abstract
Transdermal delivery systems have gained much interest in recent years owing to their advantages compared to conventional oral and parenteral delivery systems. They are noninvasive and self-administered delivery systems that can improve patient compliance and provide a controlled release of the therapeutic agents. The greatest challenge of transdermal delivery systems is the barrier function of the skin's outermost layer. Molecules with molecular weights greater than 500 Da and ionized compounds generally do not pass through the skin. Therefore, only a limited number of drugs are capable of being administered by this route. Encapsulating the drugs in transfersomes are one of the potential approaches to overcome this problem. They have a bilayered structure that facilitates the encapsulation of lipophilic and hydrophilic, as well as amphiphilic, drug with higher permeation efficiencies compared to conventional liposomes. Transfersomes are elastic in nature, which can deform and squeeze themselves as an intact vesicle through narrow pores that are significantly smaller than its size. This review aims to describe the concept of transfersomes, the mechanism of action, different methods of preparation and characterization and factors affecting the properties of transfersomes, along with their recent applications in the transdermal administration of drugs.
Collapse
Affiliation(s)
| | | | - Romchat Chutoprapat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.A.T.O.); (V.T.)
| |
Collapse
|
37
|
Sundralingam U, Muniyandy S, Radhakrishnan AK, Palanisamy UD. Ratite oils for local transdermal therapy of 4-OH tamoxifen: development, characterization, and ex vivo evaluation. J Liposome Res 2020; 31:217-229. [PMID: 32648792 DOI: 10.1080/08982104.2020.1777155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The anti-inflammatory property of ratite oils as well as its ability to act as a penetration enhancer makes it an ideal agent to be used in transdermal formulations. The present study aims to develop an effective transfersomal delivery of 4-hydroxytamoxifen (4-OHT), an anti-cancer drug, using ratite oil as a carrier agent for the treatment of breast cancer (BC). The 4-OHT transfersomes were prepared with and without ratite oils using soy phosphatidylcholine and three different edge activators (EAs) in five different molar ratios using the rotary evaporation-ultrasonication method. Optimal transfersome formulations were selected using physical-chemical characterization and ex vivo studies. Results from physical-chemical characterization of the developed formulations found sodium taurocholate to be the most suitable EA, which recorded highest entrapment efficiency of 95.1 ± 2.70% with 85:15, (w/w) and lowest vesicle size of 82.3 ± 0.02 nm with 75:25, (w/w) molar ratios. TEM and DSC studies showed that the vesicles were readily identified and present in a nearly perfect spherical shape. In addition, formulations with emu oil had better stability than formulations with ostrich oil. Physical stability studies at 4 °C showed that ratite oil transfersomes were stable up to 4 weeks, while transfersomes without ratite oils were stable for 8 weeks. Ex vivo permeability studies using porcine skin concluded that 4-OHT transfersomal formulations with (85:15, w/w) without emu oil have the potential to be used in transdermal delivery approach to enhance permeation of 4-OHT, which may be beneficial in the treatment of BC.
Collapse
Affiliation(s)
- Usha Sundralingam
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Subang Jaya, Malaysia
| | | | - Ammu K Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Subang Jaya, Malaysia
| | - Uma D Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Subang Jaya, Malaysia
| |
Collapse
|
38
|
Murthy A, Ravi PR, Kathuria H, Vats R. Self-assembled lecithin-chitosan nanoparticles improve the oral bioavailability and alter the pharmacokinetics of raloxifene. Int J Pharm 2020; 588:119731. [PMID: 32763388 DOI: 10.1016/j.ijpharm.2020.119731] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022]
Abstract
In this study, we report the development and evaluation of soy lecithin-chitosan hybrid nanoparticles to improve the oral bioavailability of raloxifene hydrochloride. The nanoparticles were formed by interaction of negatively charged soy lecithin with positively charged chitosan. The ratio of soy lecithin to chitosan was critical for the charge, and hence the size of the nanoparticles. The optimal soy lecithin to chitosan ratio was 20:1 to obtain nanoparticles with particle size of 208 ± 3 nm, a ζ-potential of 36 ± 2 mV and an entrapment efficiency of 73 ± 3%. The nanoparticles were also characterized by differential scanning calorimetry and FT-IR spectrophotometer. In-vitro drug release was assessed using dialysis bag method in pH 7.4 buffer. The drug loaded nanoparticles did not cause significant reduction in the cell viability at low doses. Pharmacokinetic studies in female Wistar rats showed significant improvement (~4.2 folds) in the oral bioavailability of the drug when loaded into nanoparticles. Further, the modified everted gut sac study showed that these nanoparticles are taken up by active endocytic processes in the intestine. The ex-vivo mucoadhesion studies proved that the nanoparticles get bound to the mucus layer of the intestine, which in turn correlates with reduced excretion of the drug in faeces. In conclusion, the proposed nanoparticles appear promising for effective oral delivery of poorly bioavailable drugs like raloxifene hydrochloride.
Collapse
Affiliation(s)
- Aditya Murthy
- BITS-Pilani Hyderabad Campus, Jawahar Nagar, Ranga Reddy (Dist.), Andhra Pradesh, India
| | - Punna Rao Ravi
- BITS-Pilani Hyderabad Campus, Jawahar Nagar, Ranga Reddy (Dist.), Andhra Pradesh, India.
| | - Himanshu Kathuria
- BITS-Pilani Hyderabad Campus, Jawahar Nagar, Ranga Reddy (Dist.), Andhra Pradesh, India; Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Rahul Vats
- BITS-Pilani Hyderabad Campus, Jawahar Nagar, Ranga Reddy (Dist.), Andhra Pradesh, India
| |
Collapse
|
39
|
El-Gizawy SA, Nouh A, Saber S, Kira AY. Deferoxamine-loaded transfersomes accelerates healing of pressure ulcers in streptozotocin-induced diabetic rats. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Phospholipid Vesicles for Dermal/Transdermal and Nasal Administration of Active Molecules: The Effect of Surfactants and Alcohols on the Fluidity of Their Lipid Bilayers and Penetration Enhancement Properties. Molecules 2020; 25:molecules25132959. [PMID: 32605117 PMCID: PMC7412180 DOI: 10.3390/molecules25132959] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022] Open
Abstract
This is a comprehensive review on the use of phospholipid nanovesicles for dermal/transdermal and nasal drug administration. Phospholipid-based vesicular carriers have been widely investigated for enhanced drug delivery via dermal/transdermal routes. Classic phospholipid vesicles, liposomes, do not penetrate the deep layers of the skin, but remain confined to the upper stratum corneum. The literature describes several approaches with the aim of altering the properties of these vesicles to improve their penetration properties. Transfersomes and ethosomes are the most investigated penetration-enhancing phospholipid nanovesicles, obtained by the incorporation of surfactant edge activators and high concentrations of ethanol, respectively. These two types of vesicles differ in terms of their structure, characteristics, mechanism of action and mode of application on the skin. Edge activators contribute to the deformability and elasticity of transfersomes, enabling them to penetrate through pores much smaller than their own size. The ethanol high concentration in ethosomes generates a soft vesicle by fluidizing the phospholipid bilayers, allowing the vesicle to penetrate deeper into the skin. Glycerosomes and transethosomes, phospholipid vesicles containing glycerol or a mixture of ethanol and edge activators, respectively, are also covered. This review discusses the effects of edge activators, ethanol and glycerol on the phospholipid vesicle, emphasizing the differences between a soft and an elastic nanovesicle, and presents their different preparation methods. To date, these differences have not been comparatively discussed. The review presents a large number of active molecules incorporated in these carriers and investigated in vitro, in vivo or in clinical human tests.
Collapse
|
41
|
Fabrication of Transgelosomes for Enhancing the Ocular Delivery of Acetazolamide: Statistical Optimization, In Vitro Characterization, and In Vivo Study. Pharmaceutics 2020; 12:pharmaceutics12050465. [PMID: 32443679 PMCID: PMC7284610 DOI: 10.3390/pharmaceutics12050465] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
Acetazolamide (ACZ) is a potent carbonic anhydrase inhibitor that is used for the treatment of glaucoma. Its oral administration causes various undesirable side effects. This study aimed to formulate transgelosomes (TGS) for enhancing the ocular delivery of ACZ. ACZ-loaded transfersomes were formulated by the ethanol injection method, using phosphatidylcholine (PC) and different edge activators, including Tween 80, Span 60, and Cremophor RH 40. The effects of the ratio of lipid to surfactant and type of surfactant on % drug released after 8 h (Q8h) and entrapment efficiency (EE%) were investigated by using Design-Expert software. The optimized formula was formulated as TGS, using poloxamers as gelling agents. In vitro and in vivo characterization of ACZ-loaded TGS was performed. According to optimization study, F8 had the highest desirability value and was chosen as the optimized formula for preparing TGS. F8 appeared as spherical elastic nanovesicles with Q8h of 93.01 ± 3.76% and EE% of 84.44 ± 2.82. Compared to a free drug, TGS exhibited more prolonged drug release of 71.28 ± 0.46% after 8 h, higher ex vivo permeation of 66.82 ± 1.11% after 8 h and a significant lowering of intraocular pressure (IOP) for 24 h. Therefore, TGS provided a promising technique for improving the corneal delivery of ACZ.
Collapse
|
42
|
Vasanth S, Dubey A, G S R, Lewis SA, Ghate VM, El-Zahaby SA, Hebbar S. Development and Investigation of Vitamin C-Enriched Adapalene-Loaded Transfersome Gel: a Collegial Approach for the Treatment of Acne Vulgaris. AAPS PharmSciTech 2020; 21:61. [PMID: 31915948 DOI: 10.1208/s12249-019-1518-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Adapalene-loaded transfersome gel containing vitamin C as a combination therapy for the management of acne vulgaris was developed in the present study. The transfersome was prepared by reverse-phase evaporation, and the effect of various process parameters were investigated by the Design of Experiment (DOE) approach and optimized based on the particle size (PS), polydispersity index (PDI), zeta potential (ZP), and entrapment efficiency (EE). The selected tranfersomes were further evaluated for their thermal behavior and morphology by transmission electron microscopy and turbidity measurements and incorporated into a gel with/without vitamin C. The gel was evaluated and compared with the marketed product (Adiff gel) for various physicochemical parameters, and in vivo studies in testosterone-induced rat models of acne. The prepared transfersomes had PS in the range of 280 to 400 nm, PDI values of 0.416 to 0.8, ZP of - 38 to - 20 mV, and % EE of 32 to 70%. DSC studies confirmed a positive interaction of the components in the transfersome. Surface morphology confirmed that the vesicles were spherical, unilamellar, and discrete. A relative deformability study showed higher elasticity of the transfersomes compared with Adiff aqs gel. Ascorbyl-6-palmitate in adapalene-loaded transfersome gel containing vitamin C (ADVTG) was found to have a good antioxidant free radical-scavenging activity. An in vitro drug release study showed that the sustained release of the transfersomal formulations was attributed to the flexibility of the vesicles by which penetration was increased. ADVTG was found to be promising in treating acne compared with the marketed product. Graphical Abstract.
Collapse
Affiliation(s)
- Sandhya Vasanth
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Akhilesh Dubey
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, 575018, India.
| | - Ravi G S
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576104, Manipal, Karnataka, India
| | - Vivek M Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576104, Manipal, Karnataka, India
| | - Sally A El-Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy and Drug manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Srinivas Hebbar
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, 575018, India
| |
Collapse
|
43
|
Vasanth S, Dubey A, G.S. R, Lewis SA, Ghate VM, El-Zahaby SA, Hebbar S. Development and Investigation of Vitamin C-Enriched Adapalene-Loaded Transfersome Gel: a Collegial Approach for the Treatment of Acne Vulgaris. AAPS PharmSciTech 2020. [DOI: https://doi.org/10.1208/s12249-019-1518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
44
|
Agarwal S, Murthy RSR, Harikumar SL, Garg R. Quality by Design Approach for Development and Characterisation of Solid Lipid Nanoparticles of Quetiapine Fumarate. Curr Comput Aided Drug Des 2020; 16:73-91. [PMID: 31429691 PMCID: PMC6967136 DOI: 10.2174/1573409915666190722122827] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/19/2019] [Accepted: 07/04/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Quetiapine fumarate, a 2nd generation anti-psychotic drug has oral bioavailability of 9% because of hepatic first pass metabolism. Reports suggest that co-administration of drugs with lipids affects their absorption pathways, enhances lymphatic transport thus bypassing hepatic first-pass metabolism resulting in enhanced bioavailability. OBJECTIVE The present work aimed at developing, and characterising potentially lymphatic absorbable Solid Lipid Nanoparticles (SLN) of quetiapine fumarate by Quality by Design approach. METHODS Hot emulsification followed by ultrasonication was used as a method of preparation. Precirol ATO5, Phospholipon 90G and Poloxamer 188 were used as a lipid, stabilizer and surfactant respectively. A32 Central Composite design optimised the 2 independent variables, lipid concentration and stabilizer concentration and assessed their effect on percent Entrapment Efficiency (%EE: Y1). The lyophilized SLNs were studied for stability at 5 ±3οC and 25 ± 2οC/60 ± 5% RH for 3 months. RESULTS The optimised formula derived for SLN had 270mg Precirol ATO5 and 107mg of Phospholipon 90G giving %EE of 76.53%. Mean particle size was 159.8nm with polydispersity index 0.273 and zeta potential -6.6mV. In-vitro drug release followed Korsmeyer-Peppas kinetics (R2=0.917) with release exponent n=0.722 indicating non-Fickian diffusion. Transmission electron microscopy images exhibited particles to be spherical and smooth. Fourier-transform infrared spectroscopy, differential scanning calorimetry and X-ray diffraction studies ascertained drug-excipient compatibility. Stability studies suggested 5οC as appropriate temperature for storage and preserving important characteristics within acceptable limits. CONCLUSION Development and optimisation by Quality by Design were justified as it yielded SLN having acceptable characteristics and potential application for intestinal lymphatic transport.
Collapse
Affiliation(s)
- Shweta Agarwal
- Address correspondence to this author at the IKG Punjab Technical University, Jalandhar-kapurthala highway Kapurthala-144603 Punjab, India; Tel: 9882032426; E-mail:
| | | | | | | |
Collapse
|
45
|
Omar MM, Eleraky NE, El Sisi AM, Ali Hasan O. Development and Evaluation of in-situ Nasal Gel Formulations of Nanosized Transferosomal Sumatriptan: Design, Optimization, in vitro and in vivo Evaluation. Drug Des Devel Ther 2019; 13:4413-4430. [PMID: 31920290 PMCID: PMC6938197 DOI: 10.2147/dddt.s235004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/05/2019] [Indexed: 11/23/2022] Open
Abstract
Background Sumatriptan succinate (SUT) is a potent drug used for relieving or ending migraine and cluster headaches. SUT bioavailability is low (15%) when it is taken orally owing to its gastric breakdown and bloodstream before reaching the target arteries. Aim The aim of the study was to enhance SUT bioavailability through developing an intranasal transferosomal mucoadhesive gel. Methods SUT-loaded nanotransferosomes were prepared by thin film hydration method and characterized for various parameters such as vesicle diameter, percent entrapment efficiency (%EE), in vitro release and ex vivo permeation studies. The in-situ gels were prepared using various ratios of poloxamer 407, poloxamer 188, and carrageenan and characterized for gelation temperature, mucoadhesive strength, and rheological properties. Results The prepared transferosomes exhibited percent entrapment efficiencies (%EE) of 40.41±3.02 to 77.47±2.85%, mean diameters of 97.25 to 245.01 nm, sustained drug release over 6 hours, and acceptable ex vivo permeation findings. The optimum formulae were incorporated into poloxamer 407 and poloxamer 188-based thermosensitive in-situ gel using carrageenan as a mucoadhesive polymer. Pharmacokinetic evaluation showed that the prepared in-situ gel of SUT-loaded nano-transferosomes gave enhanced bioavailability, 4.09-fold, as compared to oral drug solution. Conclusion Based on enhancing the bioavailability and sustaining the drug release, it can be concluded that the in-situ gel of SUT-loaded nano-transferosomes were developed as a promising non-invasive drug delivery system for treating migraine.
Collapse
Affiliation(s)
- Mahmoud M Omar
- Department of Pharmaceutics and Industrial Pharmacy, Deraya University, El-Minia, Egypt.,Department of Pharmaceutics, Sohag University, Sohag, Egypt
| | - Nermin E Eleraky
- Faculty of Pharmacy, Assiut University, Assiut, Arab Republic of Egypt
| | - Amani M El Sisi
- Department of Pharmaceutics and Industrial Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Omiya Ali Hasan
- Department of Pharmaceutics and Industrial Pharmacy, Deraya University, El-Minia, Egypt.,Department of Pharmaceutics, Sohag University, Sohag, Egypt
| |
Collapse
|
46
|
Khalil RM, Abdelbary A, Arini SKE, Basha M, El-Hashemy HA, Farouk F. Development of tizanidine loaded aspasomes as transdermal delivery system: ex-vivo and in-vivo evaluation. J Liposome Res 2019; 31:19-29. [PMID: 31646921 DOI: 10.1080/08982104.2019.1684940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
New generation of amphiphilic vesicles known as aspasomes were investigated as potential carriers for transdermal delivery of tizanidine (TZN). Using full factorial design, an optimal formulation was developed by evaluating the effects of selected variables on the properties of the vesicles with regards to entrapment efficiency, vesicle size and cumulative percentage released. The optimal formula (TZN-AS 6) consisting of 20 mg TZN, 50 mg ascorbyl palmitate (AP), 50 mg cholesterol (CH) and 50 mg Span 60, represented well dispersed spherical vesicles in the nanorange sizes and exhibited excellent stability under different storage conditions. Ex-vivo permeation studies using excised rat skin showed a 4.4-fold increase of the steady state flux in comparison to the unformulated drug (p < 0.05). The pharmacokinetic parameters obtained from the in-vivo study using Wistar rats, showed that the bioavailability of TZN was enhanced significantly (p < 0.05) when compared to the oral market product of TZN, Sirdalud®. Moreover, skin irritancy tests confirmed that the vesicles were non-invasive and safe for the skin. Based on the results obtained, the optimised aspasomes formula represents a promising Nano platform for TZN to be administered transdermally, thus improving the therapeutic efficacy of this important muscle relaxant.
Collapse
Affiliation(s)
- Rawia M Khalil
- Department of Pharmaceutical Technology, National Research Centre, Cairo, Egypt
| | - Ahmed Abdelbary
- Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Mona Basha
- Department of Pharmaceutical Technology, National Research Centre, Cairo, Egypt
| | - Hadeer A El-Hashemy
- Department of Pharmaceutical Technology, National Research Centre, Cairo, Egypt
| | - Faten Farouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alahlram Canadian University, Cairo, Egypt
| |
Collapse
|
47
|
Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int J Pharm 2019; 573:118817. [PMID: 31678520 DOI: 10.1016/j.ijpharm.2019.118817] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 11/20/2022]
Abstract
Transferosomes, also known as transfersomes, are ultradeformable vesicles for transdermal applications consisting of a lipid bilayer with phospholipids and an edge activator and an ethanol/aqueous core. Depending on the lipophilicity of the active substance, it can be encapsulated within the core or amongst the lipid bilayer. Compared to liposomes, transferosomes are able to reach intact deeper regions of the skin after topical administration delivering higher concentrations of active substances making them a successful drug delivery carrier for transdermal applications. Most transferosomes contain phosphatidylcholine (C18) as it is the most abundant lipid component of the cell membrane, and hence, it is highly tolerated for the skin, decreasing the risk of undesirable effects, such as hypersensitive reactions. The most common edge activators are surfactants such as sodium deoxycholate, Tween® 80 and Span® 80. Their chain length is optimal for intercalation within the C18 phospholipid bilayer. A wide variety of drugs has been successfully encapsulated within transferosomes such as phytocompounds like sinomenine or apigenin for rheumatoid arthritis and leukaemia respectively, small hydrophobic drugs but also macromolecules like insulin. The main factors to develop optimal transferosomal formulations (with high drug loading and nanometric size) are the optimal ratio between the main components as well as the critical process parameters for their manufacture. Application of quality by design (QbD), specifically design of experiments (DoE), is crucial to understand the interplay among all these factors not only during the preparation at lab scale but also in the scale-up process. Clinical trials of a licensed topical ketoprofen transferosomal gel have shown promising results in the alleviation of symptons in orthreothritis with non-severe skin and subcutaneous tissue disorders. However, the product was withdrawn from the market which probably was related to the higher cost of the medicine linked to the expensive manufacturing process required in the production of transferosomes compared to other conventional gel formulations. This example brings out the need for a careful formulation design to exploit the best properties of this drug delivery system as well as the development of manufacturing processes easily scalable at industrial level.
Collapse
|
48
|
Stabilization of Deformable Nanovesicles Based on Insulin-Phospholipid Complex by Freeze-Drying. Pharmaceutics 2019; 11:pharmaceutics11100539. [PMID: 31623287 PMCID: PMC6835673 DOI: 10.3390/pharmaceutics11100539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/02/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022] Open
Abstract
Deformable nanovesicles have been extensively investigated due to their excellent ability to penetrate biological barriers. However, suffering from serious physical and chemical instabilities, the wide use of deformable nanovesicles in medical applications is still limited. Moreover, far less work has been done to pursue the lyophilization of deformable nanovesicles. Here, we aimed to obtain stable deformable nanovesicles via freeze-drying technology and to uncover the underlying protection mechanisms. Firstly, the density of nanovesicles before freeze-drying, the effect of different kinds of cryoprotectants, and the types of different reconstituted solvents after lyophilization were investigated in detail to obtain stable deformable nanovesicles based on insulin-phospholipid complex (IPC-DNVs). To further investigate the underlying protection mechanisms, we performed a variety of analyses. We found that deformable nanovesicles at a low density containing 8% lactose and trehalose in a ratio of 1:4 (8%-L-T) have a spherical shape, smooth surface morphology in the lyophilized state, a whorl-like structure, high entrapment efficiency, and deformability after reconstitution. Importantly, the integrity of IPC, as well as the secondary structure of insulin, were well protected. Accelerated stability studies demonstrated that 8%-L-T remained highly stable during storage for 6 months at 25 °C. Based on in vivo results, lyophilized IPC-DNVs retained their bioactivity and had good efficacy. Given the convenience of preparation and long term stability, the use of combined cryoprotectants in a proper ratio to protect stable nanovesicles indicates strong potential for industrial production.
Collapse
|
49
|
Phospholipid based ultra-deformable nanovesicular gel for transcutaneous application: QbD based optimization, characterization and pharmacodynamic profiling. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Wu PS, Li YS, Kuo YC, Tsai SJJ, Lin CC. Preparation and Evaluation of Novel Transfersomes Combined with the Natural Antioxidant Resveratrol. Molecules 2019; 24:molecules24030600. [PMID: 30743989 PMCID: PMC6384602 DOI: 10.3390/molecules24030600] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
Resveratrol (tran-3,5,4′-trihydroxystibene, RSV) is a kind of polyphenol which has anti-inflammatory, antioxidant, anti-allergy, and anti-cancer properties, as well as being a scavenger of free radicals and preventing cardiovascular diseases. However, it is quite unstable in light, heat, and other conditions, and decays easily due to environmental factors. For these reasons, this study used a new type of carrier, transfersome, to encapsulate RSV. Transfersome consists of phosphatidyl choline (PC) from a liposomal system and non-ionic edge activators (EA). EA are an important ingredient in the formulation of transfersome; they can enhance the flexibility of the lipid bimolecular membrane of transfersome. Due to its ultradeformability, it also allows drugs to penetrate the skin, even through the stratum corneum. We hope that this new encapsulation technique will improve the stability and enhance the permeability of RSV. Concluding all the tested parameters, the best production condition was 5% PC/EA (3:1) and 5% ethanol in distilled water, with an ultrasonic bath and stirring at 500 rpm, followed by high pressure homogenization. The optimal particle size was 40.13 ± 0.51 nm and the entrapment efficiency (EE) was 59.93 ± 0.99%. The results of antioxidant activity analysis showed that transfersomes were comparable to the RSV group (unencapsulated). During in vitro transdermal delivery analysis, after 6 h, D1-20(W) increased 27.59% by accumulation. Cell viability assay showed that the cytotoxicity of D3-80(W) was reduced by 34.45% compared with the same concentration of RSV. Therefore, we successfully prepared RSV transfersomes and also improved the stability, solubility, and safety of RSV.
Collapse
Affiliation(s)
- Pey-Shiuan Wu
- Department of Cosmetic Science, Providence University, Taichung 43301, Taiwan.
| | - Yu-Syuan Li
- Department of Cosmetic Science, Providence University, Taichung 43301, Taiwan.
| | - Yi-Ching Kuo
- Department of Cosmetic Science, Providence University, Taichung 43301, Taiwan.
| | - Suh-Jen Jane Tsai
- Department of Applied Chemistry, Providence University, Taichung 43301, Taiwan.
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, Taichung 43301, Taiwan.
| |
Collapse
|