1
|
Suárez-Rodríguez B, Regueira-Iglesias A, Blanco-Pintos T, Sánchez-Barco A, Vila-Blanco N, Balsa-Castro C, Carreira MJ, Tomás I. Randomised-crossover clinical trial on the substantivity of a single application of a gel containing chlorhexidine and o-cymen-5-ol on the oral biofilm and saliva. BMC Oral Health 2024; 24:1247. [PMID: 39427170 PMCID: PMC11490038 DOI: 10.1186/s12903-024-05042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND No clinical trials have evaluated the antimicrobial activity and substantivity of gel formulations containing chlorhexidine (CHX) and cymenol. OBJECTIVE To compare the in situ antimicrobial effect and substantivity of a new 0.20% CHX + cymenol gel (test) with the current 0.20% CHX gel formulation (control) on salivary flora and dental plaque biofilm up to seven hours after a single application. METHODS A randomised-crossover clinical trial was conducted with 29 orally healthy volunteers participating in the development of Experiments 1 (saliva) and 2 (dental plaque biofilm). All subjects participated in both experiments and were randomly assigned to receive either the test or control gels. Samples were collected at baseline and five minutes and one, three, five, and seven hours after a single application of the products. The specimens were processed using confocal laser scanning microscopy after staining with the LIVE/DEAD® BacLight™ solution. Bacterial viability (BV) was quantified in the saliva and biofilm samples. The BV was calculated using the DenTiUS Biofilm software. RESULTS In Experiment 1, the mean baseline BV was significantly reduced five minutes after application in the test group (87.00% vs. 26.50%; p < 0.01). This effect was maintained throughout all sampling times and continued up to seven hours (40.40%, p < 0.01). The CHX control followed the same pattern. In Experiment 2, the mean baseline BV was also significantly lower five minutes after applying the test gel for: (1) the total thickness of biofilm (91.00% vs. 5.80%; p < 0.01); (2) the upper layer (91.29% vs. 3.94%; p < 0.01); and (3) the lower layer (86.29% vs. 3.83%; p < 0.01). The reduction of BV from baseline was observed for the full-thickness and by layers at all sampling moments and continued seven hours after application (21.30%, 24.13%, and 22.06%, respectively; p < 0.01). Again, the control group showed similar results. No significant differences between test and control gels were observed in either saliva or dental plaque biofilm at any sampling time. CONCLUSIONS A 0.20% CHX + cymenol gel application demonstrates potent and immediate antimicrobial activity on salivary flora and de novo biofilm. This effect is maintained seven hours after application. Similar effects are obtained with a 0.20% CHX-only gel.
Collapse
Grants
- 2021-CE161 Lacer, S. A.
- 2021-CE161 Lacer, S. A.
- 2021-CE161 Lacer, S. A.
- 2021-CE161 Lacer, S. A.
- 2021-CE161 Lacer, S. A.
- 2021-CE161 Lacer, S. A.
- ED431G-2023/04; GRC2021/48 Xunta de Galicia - Consellería de Cultura, Educación, Formación Profesional e Universidades and the European Union (European Regional Development Fund)
- ED431G-2023/04; GRC2021/48 Xunta de Galicia - Consellería de Cultura, Educación, Formación Profesional e Universidades and the European Union (European Regional Development Fund)
Collapse
Affiliation(s)
- B Suárez-Rodríguez
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical- Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Fundación Instituto de Investigación Sanitaria de Santiago (FIDIS), Santiago de Compostela, A Coruña, Spain
| | - A Regueira-Iglesias
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical- Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Fundación Instituto de Investigación Sanitaria de Santiago (FIDIS), Santiago de Compostela, A Coruña, Spain.
| | - T Blanco-Pintos
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical- Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Fundación Instituto de Investigación Sanitaria de Santiago (FIDIS), Santiago de Compostela, A Coruña, Spain
| | - A Sánchez-Barco
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical- Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Fundación Instituto de Investigación Sanitaria de Santiago (FIDIS), Santiago de Compostela, A Coruña, Spain
| | - N Vila-Blanco
- Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS) and Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, Fundación Instituto de Investigación Sanitaria de Santiago (FIDIS), Santiago de Compostela, A Coruña, Spain
| | - C Balsa-Castro
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical- Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Fundación Instituto de Investigación Sanitaria de Santiago (FIDIS), Santiago de Compostela, A Coruña, Spain
- Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS) and Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, Fundación Instituto de Investigación Sanitaria de Santiago (FIDIS), Santiago de Compostela, A Coruña, Spain
| | - M J Carreira
- Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS) and Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, Fundación Instituto de Investigación Sanitaria de Santiago (FIDIS), Santiago de Compostela, A Coruña, Spain
| | - I Tomás
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical- Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Fundación Instituto de Investigación Sanitaria de Santiago (FIDIS), Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
2
|
Rajasekaran JJ, Krishnamurthy HK, Bosco J, Jayaraman V, Krishna K, Wang T, Bei K. Oral Microbiome: A Review of Its Impact on Oral and Systemic Health. Microorganisms 2024; 12:1797. [PMID: 39338471 PMCID: PMC11434369 DOI: 10.3390/microorganisms12091797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
PURPOSE OF REVIEW This review investigates the oral microbiome's composition, functions, influencing factors, connections to oral and systemic diseases, and personalized oral care strategies. RECENT FINDINGS The oral microbiome is a complex ecosystem consisting of bacteria, fungi, archaea, and viruses that contribute to oral health. Various factors, such as diet, smoking, alcohol consumption, lifestyle choices, and medical conditions, can affect the balance of the oral microbiome and lead to dysbiosis, which can result in oral health issues like dental caries, gingivitis, periodontitis, oral candidiasis, and halitosis. Importantly, our review explores novel associations between the oral microbiome and systemic diseases including gastrointestinal, cardiovascular, endocrinal, and neurological conditions, autoimmune diseases, and cancer. We comprehensively review the efficacy of interventions like dental probiotics, xylitol, oral rinses, fluoride, essential oils, oil pulling, and peptides in promoting oral health by modulating the oral microbiome. SUMMARY This review emphasizes the critical functions of the oral microbiota in dental and overall health, providing insights into the effects of microbial imbalances on various diseases. It underlines the significant connection between the oral microbiota and general health. Furthermore, it explores the advantages of probiotics and other dental care ingredients in promoting oral health and addressing common oral issues, offering a comprehensive strategy for personalized oral care.
Collapse
Affiliation(s)
- John J. Rajasekaran
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | | | - Jophi Bosco
- Vibrant America LLC, Santa Clara, CA 95054, USA;
| | - Vasanth Jayaraman
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Karthik Krishna
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Tianhao Wang
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Kang Bei
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| |
Collapse
|
3
|
Rosner O, Livne S, Bsharat M, Dviker S, Jeffet U, Matalon S, Sterer N. Lavandula angustifolia Essential Oil Inhibits the Ability of Fusobacterium nucleatum to Produce Volatile Sulfide Compounds, a Key Components in Oral Malodor. Molecules 2024; 29:2982. [PMID: 38998934 PMCID: PMC11243465 DOI: 10.3390/molecules29132982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/16/2024] [Accepted: 06/16/2024] [Indexed: 07/14/2024] Open
Abstract
Oral malodor still constitutes a major challenge worldwide. A strong effort is invested in eliminating volatile sulfur compound-producing oral bacteria through organic natural products such as essential oils. Fusobacterium nucleatum is a known volatile sulfur compound-producing bacteria that inspires oral malodor. The aim of the present study was to test the effect of lavender essential oil on the bacterium's ability to produce volatile sulfide compounds, the principal components of oral malodor. Lavender (Lavandula angustifolia) essential oil was extracted by hydrodistillation and analyzed using GC-MS. The minimal inhibitory concentration (MIC) of lavender essential oil on Fusobacterium nucleatum was determined in a previous trial. Fusobacterium nucleatum was incubated anaerobically in the presence of sub-MIC, MIC, and above MIC concentrations of lavender essential oil, as well as saline and chlorhexidine as negative and positive controls, respectively. Following incubation, volatile sulfur compound levels were measured using GC (Oralchroma), and bacterial cell membrane damage was studied using fluorescence microscopy. Chemical analysis of lavender essential oil yielded five main components, with camphor being the most abundant, accounting for nearly one-third of the total lavender essential oil volume. The MIC (4 µL/mL) of lavender essential oil reduced volatile sulfur compound secretion at a statistically significant level compared to the control (saline). Furthermore, the level of volatile sulfur compound production attributed to 1 MIC of lavender essential oil was in the range of the positive control chlorhexidine with no significant difference. When examining bacterial membrane damage, 2 MIC of lavender essential oil (i.e., 8 µL/mL) demonstrated the same, showing antibacterial membrane damage values comparative to chlorhexidine. Since lavender essential oil was found to be highly effective in hindering volatile sulfur compound production by Fusobacterium nucleatum through the induction of bacterial cell membrane damage, the results suggest that lavender essential oil may be a suitable alternative to conventional chemical-based anti-malodor agents.
Collapse
Affiliation(s)
- Ofir Rosner
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Shiri Livne
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Maria Bsharat
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Shir Dviker
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Uziel Jeffet
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Shlomo Matalon
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Nir Sterer
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
4
|
Hleba L, Hlebová M, Charousová I. In Vitro Evaluation of Synergistic Essential Oils Combination for Enhanced Antifungal Activity against Candida spp. Life (Basel) 2024; 14:693. [PMID: 38929677 PMCID: PMC11204509 DOI: 10.3390/life14060693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, a significant number of infections have been attributed to non-albicidal Candida species (NAC), mainly due to the increasing resistance of NAC to antifungal agents. As only a few antifungal agents are available (azoles, echinocandins, polyenes, allylamines and nucleoside analogues), it is very important to look for possible alternatives to inhibit resistant fungi. One possibility could be essential oils (EOs), which have been shown to have significant antifungal and antibacterial activity. Therefore, in this study, the efficacy of 12 EOs and their combinations was evaluated against four yeasts of the genus Candida (C. albicas, C. glabrata, C. tropicalis and C. parapsilosis). GC-MS and GC-MS FID techniques were used for the chemical analysis of all EOs. VITEK-2XL was used to determine the antifungal susceptibility of the tested Candida spp. strains. The agar disc diffusion method was used for primary screening of the efficacy of the tested EOs. The broth dilution method was used to determine the minimum inhibitory concentrations (MICs) of the most potent EOs. After MIC cultivation, the minimum fungicidal concentration (MFC) was determined on Petri dishes (60 mm). The synergistic effect of combined EOs was evaluated using the checkerboard method and expressed as a fractional inhibitory concentration index (FICI). The results showed that ginger > ho-sho > absinth > dill > fennel > star anise > and cardamom were the most effective EOs. For all Candida species tested, the synergy was mainly observed in these combinations: ginger/fennel for C. albicans FICI 0.25 and C. glabrata, C. tropicalis and C. parapsilosis FICI 0.5 and absinth/fennel for C. albicans FICI 0.3125, C. tropicalis FICI 0.3125 and C. parapsilosis FICI 0.375. Our results suggest that the resistance of fungal pathogens to available antifungals could be reduced by combining appropriate EOs.
Collapse
Affiliation(s)
- Lukáš Hleba
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Miroslava Hlebová
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - Ivana Charousová
- Clinical Microbiology Laboratory, Unilabs Slovensko, s.r.o., J. Bellu 66, SK-03495 Likavka, Slovakia
| |
Collapse
|
5
|
Soutelino MEM, Silva ACDO, Rocha RDS. Natural Antimicrobials in Dairy Products: Benefits, Challenges, and Future Trends. Antibiotics (Basel) 2024; 13:415. [PMID: 38786143 PMCID: PMC11117376 DOI: 10.3390/antibiotics13050415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
This review delves into using natural antimicrobials in the dairy industry and examines various sources of these compounds, including microbial, plant, and animal sources. It discusses the mechanisms by which they inhibit microbial growth, for example, by binding to the cell wall's precursor molecule of the target microorganism, consequently inhibiting its biosynthesis, and interfering in the molecule transport mechanism, leading to cell death. In general, they prove to be effective against the main pathogens and spoilage found in food, such as Escherichia coli, Staphylococcus aureus, Bacillus spp., Salmonella spp., mold, and yeast. Moreover, this review explores encapsulation technology as a promising approach for increasing the viability of natural antimicrobials against unfavorable conditions such as pH, temperature, and oxygen exposure. Finally, this review examines the benefits and challenges of using natural antimicrobials in dairy products. While natural antimicrobials offer several advantages, including improved safety, quality, and sensory properties of dairy products, it is crucial to be aware of the challenges associated with their use, such as potential allergenicity, regulatory requirements, and consumer perception. This review concludes by emphasizing the need for further research to identify and develop effective and safe natural antimicrobials for the dairy industry to ensure the quality and safety of dairy products for consumers.
Collapse
Affiliation(s)
- Maria Eduarda Marques Soutelino
- Department of Food Technology (MTA), College of Veterinary, Fluminense Federal University (UFF), 24230-340 Niterói, Brazil; (M.E.M.S.); (A.C.d.O.S.)
| | - Adriana Cristina de Oliveira Silva
- Department of Food Technology (MTA), College of Veterinary, Fluminense Federal University (UFF), 24230-340 Niterói, Brazil; (M.E.M.S.); (A.C.d.O.S.)
| | - Ramon da Silva Rocha
- Food Engineering Department (ZEA), College of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), 13635-900 Pirassununga, Brazil
| |
Collapse
|
6
|
Dagli N, Haque M, Kumar S. Bibliometric Analysis and Visualization of Clinical Trials on the Therapeutic Potential of Essential Oils (1967-2024). Cureus 2024; 16:e57430. [PMID: 38572180 PMCID: PMC10988541 DOI: 10.7759/cureus.57430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/05/2024] Open
Abstract
Essential oils, aromatic compounds extracted from various parts of plants, have garnered significant attention in recent years due to their diverse therapeutic properties and potential applications in healthcare. This analysis delves into the publication trends, productivity patterns, most relevant contributors, coauthorship networks, most frequently used keywords, and their co-occurrence, topic trends, thematic evolution, and collaboration between various countries in clinical trials exploring the therapeutic potential of essential oils. Six hundred sixty-one clinical trials were selected from the PubMed database for analysis, authored by 2959 authors, and published across 359 sources. The analysis identified Horrobin DF as the most contributing author based on the number of published clinical trials, followed by Kasper S, McGuire JA, and Schlafke S. Lotka's law underscores the distribution of authors' productivity, revealing a small number of highly productive authors. Coauthorship analysis identifies significant collaborations among authors and institutions, with prominent contributors like Siegfried Kasper and institutions like Shiraz University of Medical Sciences. Furthermore, the analysis highlights leading journals like Complementary Therapies in Clinical Practice and the Journal of Alternative and Complementary Medicine. Using keyword clustering, connections between various subjects and their chronological presence are uncovered, offering insights into the changing research landscape. The thematic examination exposes changes in research emphasis over time, progressing from fundamental studies on essential oil components to broader utilization and focused inquiries into oils and therapeutic domains. Analysis of the countries of corresponding authors revealed that Iran has the highest number of multiple-country publications. Moreover, international collaboration trends have been unveiled. Together, these analyses furnish holistic understandings of keyword relationships, thematic shifts, and global partnerships in essential oil research, presenting valuable perspectives on trends and focal points within this domain.
Collapse
Affiliation(s)
- Namrata Dagli
- Dentistry, Karnavati Scientific Research Center, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Therapeutics, Karnavati Scientific Research Center, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Santosh Kumar
- Periodontology and Implantology, Karnavati Scientific Research Center, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
7
|
Truong S, Mudgil P. The antibacterial effectiveness of lavender essential oil against methicillin-resistant Staphylococcus aureus: a systematic review. Front Pharmacol 2023; 14:1306003. [PMID: 38130406 PMCID: PMC10733459 DOI: 10.3389/fphar.2023.1306003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
With the overuse and misuse of antibiotics, multi-drug resistant organisms have become a prominent issue in healthcare, increasing morbidity and mortality in affected patients. One such organism of concern is methicillin-resistant Staphylococcus aureus (MRSA) which is a leading cause of a variety of clinical infections. Therefore, in the interest of finding alternate substances to antibiotics, there has been increased interest in the antibacterial properties of lavender essential oil (LEO). This systematic review aims to collate information regarding the antibacterial properties of LEO against S. aureus and MRSA. A systematic search was conducted across four databases between the years 2002 and 2022, and through this, 23 studies were included in this paper. These studies used a variety of methods to ascertain the antibacterial effectiveness of LEO alone or in combination with other substances. Overall, there were mixed results regarding the antibacterial effectiveness of LEO against S. aureus and MRSA, with some studies reporting significant effectiveness, while other studies reporting a minimal to negligible effect. However, findings suggest that LEO works synergistically with other antibacterial substances, and it would be beneficial for additional research to be conducted in this area.
Collapse
Affiliation(s)
| | - Poonam Mudgil
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
8
|
Elkenawy NM, Soliman MAW, El-Behery RR. In-vitro Antimicrobial Study of Non/irradiated Ylang-ylang Essential Oil Against Multi Drug Resistant Pathogens with Reference to Microscopic Morphological Alterations. Indian J Microbiol 2023; 63:621-631. [PMID: 38034904 PMCID: PMC10682331 DOI: 10.1007/s12088-023-01122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
Essential oils have proven to possess great potential in the field of biomedicine due to their ability to effectively eradicate a diverse range of pathogenic microbes. In this study, the antimicrobial activity of ylang-ylang essential oil (YY-EO) was screened against twelve multidrug-resistant pathogens. The YY-EO was effective up to 536 μg/ml, with the highest inhibition zone in case of S. aureus MMCC21 and Escherichia coli MMCC24. The least effect on both Bacillus cereus MMCC11 and Klebsiella pneumonia MMCC16. The major components of the essential oil were identified using GC-MS analysis. Different gamma irradiation doses against the YY-EO were evaluated as a tool of natural decontamination. Moreover, the antimicrobial assay after irradiation proved no significant changes regarding the antimicrobial activity before and after irradiation of EO at the applied dose. The minimum inhibitory concentration (MIC) for the EO against the tested pathogens was detected. The possible morphological changes in some of the bacterial and yeast cells at the recognized MIC and 2MIC were detected using the scanning electron microscope (SEM). Results revealed a notable change in terms of both the microbial cell population and the morphology of the tested bacterial and yeast cells. The cytotoxicity of ylang-ylang EO was evaluated against normal skin tissue culture and showed a potential cytotoxic effect at concentrated doses. These results refer to the importance of YY-EO as a natural antimicrobial agent and the possible application of YY-EO as a surface decontaminant, but they also draw attention to the importance of the EO concentration used in different applications to avoid possible toxic effects. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01122-4.
Collapse
Affiliation(s)
- Nora Mohamed Elkenawy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Mahmoud Abdel Wahab Soliman
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Reham Rashad El-Behery
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
9
|
Xue W, Pritchard MF, Khan S, Powell LC, Stokniene J, Wu J, Claydon N, Reddell P, Thomas DW, Hill KE. Defining in vitro topical antimicrobial and antibiofilm activity of epoxy-tigliane structures against oral pathogens. J Oral Microbiol 2023; 15:2241326. [PMID: 37534218 PMCID: PMC10392292 DOI: 10.1080/20002297.2023.2241326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
Background Peri-implantitis has become an inexorable clinical challenge in implantology. Topical immunomodulatory epoxy-tiglianes (EBCs), derived from the Queensland blushwood tree, which induce remodeling and resolve dermal infection via induction of the inflammasome and biofilm disruption, may offer a novel therapeutic approach. Design In vitro antimicrobial activity of EBC structures (EBC-46, EBC-1013 and EBC-147) against Streptococcus mutans, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis in minimum inhibitory concentration, growth curve and permeabilization assays were determined. Antibiofilm activity was assessed using minimum biofilm eradication concentration (MBEC) experiments. Biofilm formation and disruption assays were analyzed using confocal laser scanning microscopy, scanning electron microscopy and direct plate counting. Results The observed antimicrobial efficacy of the tested compounds (EBC-1013 > EBC-46 > EBC-147) was directly related to significant membrane permeabilization and growth inhibition (p < 0.05) against planktonic S. mutans and P. gingivalis. Antibiofilm activity was evident in MBEC assays, with S. mutans biofilm formation assays revealing significantly lower biomass volume and increased DEAD:LIVE cell ratio observed for EBC-1013 (p < 0.05). Furthermore, biofilm disruption assays on titanium discs induced significant biofilm disruption in S. mutans and P. gingivalis (p < 0.05). Conclusions EBC-1013 is a safe, semi-synthetic, compound, demonstrating clear antimicrobial biofilm disruption potential in peri-implantitis.
Collapse
Affiliation(s)
- Wenya Xue
- Advanced Therapies Group, Cardiff School of Dentistry, Heath Park, Cardiff University, Cardiff, UK
| | - Manon F. Pritchard
- Advanced Therapies Group, Cardiff School of Dentistry, Heath Park, Cardiff University, Cardiff, UK
| | - Saira Khan
- Advanced Therapies Group, Cardiff School of Dentistry, Heath Park, Cardiff University, Cardiff, UK
| | - Lydia C. Powell
- Microbiology and Infectious Disease Group, Swansea University Medical School, Swansea, UK
| | - Joana Stokniene
- Advanced Therapies Group, Cardiff School of Dentistry, Heath Park, Cardiff University, Cardiff, UK
| | - Jingxiang Wu
- Advanced Therapies Group, Cardiff School of Dentistry, Heath Park, Cardiff University, Cardiff, UK
| | - Nicholas Claydon
- Advanced Therapies Group, Cardiff School of Dentistry, Heath Park, Cardiff University, Cardiff, UK
| | - Paul Reddell
- QBiotics Group Limited, Yungaburra, Queensland, Australia
| | - David W. Thomas
- Advanced Therapies Group, Cardiff School of Dentistry, Heath Park, Cardiff University, Cardiff, UK
| | - Katja E. Hill
- Advanced Therapies Group, Cardiff School of Dentistry, Heath Park, Cardiff University, Cardiff, UK
| |
Collapse
|
10
|
Ullah N, Amin A, Farid A, Selim S, Rashid SA, Aziz MI, Kamran SH, Khan MA, Rahim Khan N, Mashal S, Mohtasheemul Hasan M. Development and Evaluation of Essential Oil-Based Nanoemulgel Formulation for the Treatment of Oral Bacterial Infections. Gels 2023; 9:gels9030252. [PMID: 36975701 PMCID: PMC10048686 DOI: 10.3390/gels9030252] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Prevalence of oral infections in diabetic patients is a health challenge due to persistent hyperglycemia. However, despite great concerns, limited treatment options are available. We therefore aimed to develop nanoemulsion gel (NEG) for oral bacterial infections based on essential oils. Clove and cinnamon essential oils based nanoemulgel were prepared and characterized. Various physicochemical parameters of optimized formulation including viscosity (65311 mPa·S), spreadability (36 g·cm/s), and mucoadhesive strength 42.87 N/cm2) were within prescribed limits. The drug contents of the NEG were 94.38 ± 1.12% (cinnamaldehyde) and 92.96 ± 2.08% (clove oil). A significant concentration of clove (73.9%) and cinnamon essential oil (71.2 %) was released from a polymer matrix of the NEG till 24 h. The ex vivo goat buccal mucosa permeation profile revealed a significant (52.7-54.2%) permeation of major constituents which occurred after 24 h. When subjected to antimicrobial testing, significant inhibition was observed for several clinical strains, namely Staphylococcus aureus (19 mm), Staphylococcus epidermidis (19 mm), and Pseudomonas aeruginosa (4 mm), as well as against Bacillus chungangensis (2 mm), whereas no inhibition was detected for Bacillus paramycoides and Paenibacillus dendritiformis when NEG was utilized. Likewise promising antifungal (Candida albicans) and antiquorum sensing activities were observed. It was therefore concluded that cinnamon and clove oil-based NEG formulation presented significant antibacterial-, antifungal, and antiquorum sensing activities.
Collapse
Affiliation(s)
- Niamat Ullah
- Natural Products Research Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Adnan Amin
- Natural Products Research Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Arshad Farid
- Gomal Centre of Biochemistry and Biotechnology (GCBB), Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Sheikh Abdur Rashid
- Nano Carriers Research Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Muhammad Imran Aziz
- Natural Products Research Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Sairah Hafeez Kamran
- Department of Pharmacology, Faculty of Allied Health and Pharmaceutical Sciences, Lahore College for Women University, Lahore 05422, Pakistan
| | - Muzammil Ahmad Khan
- Gomal Centre of Biochemistry and Biotechnology (GCBB), Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Nauman Rahim Khan
- Department of Pharmacy, Kohat University of Science and Technology, KUST, Kohat 26000, Pakistan
| | - Saima Mashal
- Natural Products Research Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
- Gomal Centre of Biochemistry and Biotechnology (GCBB), Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Muhammad Mohtasheemul Hasan
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
11
|
Radu CM, Radu CC, Bochiș SA, Arbănași EM, Lucan AI, Murvai VR, Zaha DC. Revisiting the Therapeutic Effects of Essential Oils on the Oral Microbiome. PHARMACY 2023; 11:pharmacy11010033. [PMID: 36827671 PMCID: PMC9958697 DOI: 10.3390/pharmacy11010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The extensive use of antibiotics has resulted in the development of drug-resistant bacteria, leading to a decline in the efficacy of traditional antibiotic treatments. Essential oils (EOs) are phytopharmaceuticals, or plant-derived compounds, that possess beneficial properties such as anti-inflammatory, antibacterial, antimicrobial, antiviral, bacteriostatic, and bactericidal effects. In this review, we present scientific findings on the activity of EOs as an alternative therapy for common oral diseases. This narrative review provides a deeper understanding of the medicinal properties of EOs and their application in dentistry. It not only evaluates the effectiveness of these oils as antibacterial agents against common oral bacteria but also covers general information such as composition, methods of extraction, and potential toxicity. Further nonclinical and clinical studies must be conducted to determine their potential use and safety for treating oral diseases.
Collapse
Affiliation(s)
- Casandra-Maria Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania
| | - Carmen Corina Radu
- Department of Forensic Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Correspondence: ; Tel.: +40-735852110
| | - Sergiu-Alin Bochiș
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania
| | - Emil Marian Arbănași
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Clinic of Vascular Surgery, Mureș County Emergency Hospital, 540136 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania
| | - Alexandra Ioana Lucan
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, University of Oradea, 1 December Sq, 410028 Oradea, Romania
| | - Viorela Romina Murvai
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, University of Oradea, 1 December Sq, 410028 Oradea, Romania
| | - Dana Carmen Zaha
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, University of Oradea, 1 December Sq, 410028 Oradea, Romania
| |
Collapse
|
12
|
Sinha A, Stavrakis AK, Simić M, Kojić S, Stojanović GM. Gold Leaf-Based Microfluidic Platform for Detection of Essential Oils Using Impedance Spectroscopy. BIOSENSORS 2022; 12:1169. [PMID: 36551136 PMCID: PMC9776385 DOI: 10.3390/bios12121169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Drug delivery systems are engineered platforms for the controlled release of various therapeutic agents. This paper presents a conductive gold leaf-based microfluidic platform fabricated using xurography technique for its potential implication in controlled drug delivery operations. To demonstrate this, peppermint and eucalyptus essential oils (EOs) were selected as target fluids, which are best known for their medicinal properties in the field of dentistry. The work takes advantage of the high conductivity of the gold leaf, and thus, the response characteristics of the microfluidic chip are studied using electrochemical impedance spectroscopy (EIS) upon injecting EOs into its micro-channels. The effect of the exposure time of the chip to different concentrations (1% and 5%) of EOs was analyzed, and change in electrical resistance was measured at different time intervals of 0 h (the time of injection), 22 h, and 46 h. It was observed that our fabricated device demonstrated higher values of electrical resistance when exposed to EOs for longer times. Moreover, eucalyptus oil had stronger degradable effects on the chip, which resulted in higher electrical resistance than that of peppermint. 1% and 5% of Eucalyptus oil showed an electrical resistance of 1.79 kΩ and 1.45 kΩ at 10 kHz, while 1% and 5% of peppermint oil showed 1.26 kΩ and 1.07 kΩ of electrical resistance at 10 kHz respectively. The findings obtained in this paper are beneficial for designing suitable microfluidic devices to expand their applications for various biomedical purposes.
Collapse
Affiliation(s)
- Ankita Sinha
- Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| | | | | | | | | |
Collapse
|
13
|
Plant Nanovesicles for Essential Oil Delivery. Pharmaceutics 2022; 14:pharmaceutics14122581. [PMID: 36559075 PMCID: PMC9784947 DOI: 10.3390/pharmaceutics14122581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Essential oils' therapeutic potential is highly recognized, with many applications rising due to reported anti-inflammatory, cardioprotective, neuroprotective, anti-aging, and anti-cancer effects. Nevertheless, clinical translation still remains a challenge, mainly due to essential oils' volatility and low water solubility and stability. The present review gathers relevant information and postulates on the potential application of plant nanovesicles to effectively deliver essential oils to target organs. Indeed, plant nanovesicles are emerging as alternatives to mammalian vesicles and synthetic carriers due to their safety, stability, non-toxicity, and low immunogenicity. Moreover, they can be produced on a large scale from various plant parts, enabling an easier, more rapid, and less costly industrial application that could add value to waste products and boost the circular economy. Importantly, the use of plant nanovesicles as delivery platforms could increase essential oils' bioavailability and improve chemical stability while reducing volatility and toxicity issues. Additionally, using targeting strategies, essential oils' selectivity, drug delivery, and efficacy could be improved, ultimately leading to dose reduction and patient compliance. Bearing this in mind, information on current pharmaceutical technologies available to enable distinct routes of administration of loaded vesicles is also discussed.
Collapse
|
14
|
Gheorghita Puscaselu R, Lobiuc A, Sirbu IO, Covasa M. The Use of Biopolymers as a Natural Matrix for Incorporation of Essential Oils of Medicinal Plants. Gels 2022; 8:756. [PMID: 36421579 PMCID: PMC9690358 DOI: 10.3390/gels8110756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 09/28/2023] Open
Abstract
The benefits of using biopolymers for the development of films and coatings are well known. The enrichment of these material properties through various natural additions has led to their applicability in various fields. Essential oils, which are well-known for their beneficial properties, are widely used as encapsulating agents in films based on biopolymers. In this study, we developed biopolymer-based films and tested their properties following the addition of 7.5% and 15% (w/v) essential oils of lemon, orange, grapefruit, cinnamon, clove, chamomile, ginger, eucalyptus or mint. The samples were tested immediately after development and after one year of storage in order to examine possible long-term property changes. All films showed reductions in mass, thickness and microstructure, as well as mechanical properties. The most considerable variations in physical properties were observed in the 7.5% lemon oil sample and the 15% grapefruit oil sample, with the largest reductions in mass (23.13%), thickness (from 109.67 µm to 81.67 µm) and density (from 0.75 g/cm3 to 0.43 g/cm3). However, the microstructure of the sample was considerably improved. Although the addition of lemon essential oil prevented the reduction in mass during the storage period, it favored the degradation of the microstructure and the loss of elasticity (from 16.7% to 1.51% for the sample with 7.5% lemon EO and from 18.28% to 1.91% for the sample with 15% lemon EO). Although the addition of essential oils of mint and ginger resulted in films with a more homogeneous microstructure, the increase in concentration favored the appearance of pores and modifications of color parameters. With the exception of films with added orange, cinnamon and clove EOs, the antioxidant capacity of the films decreased during storage. The most obvious variations were identified in the samples with lemon, mint and clove EOs. The most unstable samples were those with added ginger (95.01%), lemon (92%) and mint (90.22%).
Collapse
Affiliation(s)
- Roxana Gheorghita Puscaselu
- Department of Biochemistry, Victor Babeş University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Andrei Lobiuc
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Ioan Ovidiu Sirbu
- Department of Biochemistry, Victor Babeş University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Center for Complex Network Science, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Mihai Covasa
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
15
|
Influence of the Extraction Solvent and of the Altitude on the Anticancer Activity of Lebanese Eucalyptus camaldulensis Extract Alone or in Combination with Low Dose of Cisplatin in A549 Human Lung Adenocarcinoma Cells. Processes (Basel) 2022. [DOI: 10.3390/pr10081461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background: Lung cancer is the second most common cancer worldwide. Eucalyptus plant extract has been shown to have anti-neoplastic effects. We investigated the antitumor effect of ethanolic and aqueous extracts of Eucalyptus camaldulensis collected at different altitudes on A549. In addition, we evaluated the additive effect of its combination with low-dose cisplatin (CDDP). Methods: Qualitative and quantitative analyses of secondary metabolites present in the plants were carried out. The antioxidant and cytotoxic activities of the different extracts on A549 were evaluated using the 2.2-diphenyl-1-picrylhydrazyl radical scavenging activity and neutral red assay, respectively. The cytotoxic effect of the combination of certain extract concentrations with low-dose CDDP on A549 cells was studied. Results: In the Ethanoic extract, a higher number of active substances and antioxidant activities were observed. The four E. camaldulensis extracts showed cytotoxic activity on A549 cells, with a higher cytotoxicity for the Ethanoic extract and the sea-level altitude species. Moreover, the dual exposure of cells to both E. camaldulensis extracts and a low dose of Cisplatin showed an additional cytotoxic effect on A549 cells in certain concentrations. Conclusions: This study opens novel therapeutic options in combinational therapies of Eucalyptus camaldulensis with low-dose CDDP for the treatment of adenocarcinoma cells of human lungs.
Collapse
|
16
|
Preliminary Study on Phytochemical Constituents and Biological Activities of Essential Oil from Myriactis nepalensis Less. Molecules 2022; 27:molecules27144631. [PMID: 35889501 PMCID: PMC9324352 DOI: 10.3390/molecules27144631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
In response to the need for novel therapeutic strategies to combat the development of microbial resistance, plant essential oils may represent a promising alternative source. This study set out to characterize the chemical composition and assess the antibacterial potential of Myriactis nepalensis Less. essential oil (MNEO). Essential oil isolated from M. nepalensis by hydrodistillation was analyzed using a GC–MS technique. The antibacterial properties of MNEO alone and combined with antibiotics (chloramphenicol and streptomycin) were tested via the disc diffusion, microbroth dilution, and checkerboard methods. MNEO was represented by oxygenated sesquiterpenes (60.3%) and sesquiterpene hydrocarbons (28.6%), with caryophyllene oxide, spathulenol, humulene epoxide II, β-elemene, neointermedeol, and β-caryophyllene as the main compounds. MNEO exhibited a strong antibacterial effect against Gram-positive bacteria, with MIC and MBC values of 0.039 mg/mL and 0.039–0.156 mg/mL, respectively, and synergistic effects were observed in both combinations with chloramphenicol and streptomycin. Furthermore, the antibiofilm and cytotoxic activities of MNEO were also evaluated. The crystal violet assay was used for quantification of Staphylococcus aureus biofilm formation, and an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was conducted to determine cell viability. The results revealed MNEO could dose-dependently inhibit Staphylococcus aureus biofilm formation and possessed potential cytotoxic on both normal and cancer cells (IC50 values from 13.13 ± 1.90 to 35.22 ± 8.36 μg/mL). Overall, the results indicate that MNEO may have promising applications in the field of bacterial infections.
Collapse
|
17
|
Al-Ogaidi I, Aguilar ZP, Lay JO. Development of Biodegradable/Biocompatible Nanoliposome-Encapsulated Antimicrobial Essential Oils for Topical Creams and Gels. ACS OMEGA 2022; 7:23875-23889. [PMID: 35847299 PMCID: PMC9281311 DOI: 10.1021/acsomega.2c02594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoencapsulation with safe materials improves delivery, stability, and activity of bioactive components. We report a novel safe, and effective method for the development of encapsulated antimicrobial essential oils (EO) for topical creams and gels. The method developed features three aspects that, to our knowledge, had not been previously demonstrated: (1) use of novel liposomes (LPs) to encapsulate EOs, (2) use of the EOs to replace synthetic organic solvents that are potentially toxic and/or leave harmful residues, and (3) an encapsulation process at temperatures below the boiling point of water. The LPs were made from soy lecithin, phytosterol, and α-tocopherol (vitamin E) that were synthesized using the EOs as the solvent. The liposomes were converted to nanoliposomes (NLPs) through a series of sonication, homogenization, and extrusion steps. Transmission electron microscopy indicated that the NLPs alone and nanoliposome encapsulated EOs (NLP-EOs) were spherical in shape with sizes ranging between 50 and 115 nm diameter and with negative zeta potentials ranging from -34 to -43 mV. There was no significant heavy metal contamination [As, Pb, Cd, Hg] based on inductively coupled plasma (ICP) mass spectrometry MS analyses. Nearly complete EO encapsulation (95% encapsulation efficiency) was achieved and confirmed by GC/MS. Three of the NLP-EOs made of various essential oils were used to make topical formulations (cream and gel) which exhibited antimicrobial activities against Escherichia coli (Gram negative) and Bacillus subtilis (Gram positive) bacteria. The creams with NLP-EOs were as active against the two bacteria in the antimicrobial assays as the conventional antibiotic Kanamycin that was used as positive control.
Collapse
Affiliation(s)
- Israa Al-Ogaidi
- Department
of Biotechnology, College of Science, University
of Baghdad, Baghdad 10071, Iraq
- Arkansas
Statewide Mass Spectrometry, Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | | | - Jackson O. Lay
- Arkansas
Statewide Mass Spectrometry, Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
18
|
Kajjari S, Joshi RS, Hugar SM, Gokhale N, Meharwade P, Uppin C. The Effects of Lavender Essential Oil and its Clinical Implications in Dentistry: A Review. Int J Clin Pediatr Dent 2022; 15:385-388. [PMID: 35991803 PMCID: PMC9357533 DOI: 10.5005/jp-journals-10005-2378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Shweta Kajjari
- Department of Pediatric and Preventive Dentistry, KLE Vishwanath Katti Institute of Dental Sciences & Hospital, Belagavi, Karnataka, India
| | - Riddhi S Joshi
- Department of Pediatric and Preventive Dentistry, KLE Vishwanath Katti Institute of Dental Sciences & Hospital, Belagavi, Karnataka, India
- Riddhi S Joshi, Department of Pediatric and Preventive Dentistry, KLE Vishwanath Katti Institute of Dental Sciences & Hospital, Belagavi, Karnataka, India, Phone: +91 7028145834, e-mail:
| | - Shivayogi M Hugar
- Department of Pediatric and Preventive Dentistry, KLE Vishwanath Katti Institute of Dental Sciences & Hospital, Belagavi, Karnataka, India
| | - Niraj Gokhale
- Department of Pediatric and Preventive Dentistry, KLE Vishwanath Katti Institute of Dental Sciences & Hospital, Belagavi, Karnataka, India
| | - Priya Meharwade
- Department of Pediatric and Preventive Dentistry, KLE Vishwanath Katti Institute of Dental Sciences & Hospital, Belagavi, Karnataka, India
| | - Chaitanya Uppin
- Department of Pediatric and Preventive Dentistry, KLE Vishwanath Katti Institute of Dental Sciences & Hospital, Belagavi, Karnataka, India
| |
Collapse
|
19
|
Zayed A, Sobeh M, Farag MA. Dissecting dietary and semisynthetic volatile phenylpropenes: A compile of their distribution, food properties, health effects, metabolism and toxicities. Crit Rev Food Sci Nutr 2022; 63:11105-11124. [PMID: 35708064 DOI: 10.1080/10408398.2022.2087175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenylpropenes represent a major subclass of plant volatiles, including eugenol, and (E)-anethole. They contribute to the flavor and aroma of many chief herbs and spices, to exert distinct notes in food, i.e., spicy anise- and clove-like to fruit. Asides from their culinary use, they appear to exert general health effects, whereas some effects are specific, e.g., eugenol being a natural local anesthetic. This review represents the most comprehensive overview of phenylpropenes with respect to their chemical structures, different health effects, and their food applications as flavor and food preservatives. Side effects and toxicities of these compounds represent the second main part of this review, as some were reported for certain metabolites generated inside the body. Several metabolic reactions mediating for phenylpropenes metabolism in rodents via cytochrome P450 (CYP450) and sulfotransferase (SULT) enzymes are presented being involved in their toxicities. Such effects can be lessened by influencing their pharmacokinetics through a matrix-derived combination effect via administration of herbal extracts containing SULT inhibitors, i.e., nevadensin in sweet basil. Moreover, structural modification of phenylpropanes appears to improve their effects and broaden their applications. Hence, such review capitalizing on phenylpropenes can help optimize their applications in nutraceuticals, cosmeceuticals, and food applications.
Collapse
Affiliation(s)
- Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Tanta, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
20
|
Menicucci F, Palagano E, Raio A, Cencetti G, Luchi N, Ienco A, Michelozzi M. Plant Sampling for Production of Essential Oil and Evaluation of Its Antimicrobial Activity In Vitro. Methods Mol Biol 2022; 2536:475-493. [PMID: 35819622 DOI: 10.1007/978-1-0716-2517-0_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Essential oils (EOs) and oleoresins are complex mixtures mainly made up of terpenes, synthesized by a wide variety of plants. Individual terpenes may show broad-spectrum activity against different plant pathogens, and their combination into EO and oleoresin mixtures enhances plant chemical defense. The interest in EOs has significantly increased due to the trend of using natural products as herbicides, insecticidal and antimicrobial agents. In addition, the use of plant mixtures is an emerging approach to face the problem of antimicrobial resistance in agriculture. This chapter reports guidelines about plant sample collection for the production of EOs and provides protocols to test their activity as antimicrobial agents against bacteria and fungi. It also describes a solvent-free method for the inclusion of EOs into β-cyclodextrins. This type of formulate is prepared to turn liquid EOs into easily manageable water-soluble powders, and to control the release of volatile compounds, aiming to increase EOs' applications in agriculture.
Collapse
Affiliation(s)
- Felicia Menicucci
- National Research Council, Institute of Chemistry of OrganoMetallic Compounds, (CNR-ICCOM), Sesto Fiorentino, Italy
| | - Eleonora Palagano
- National Research Council, Institute of Bioscience and Bioresources, (CNR-IBBR), Sesto Fiorentino, Italy
| | - Aida Raio
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Sesto Fiorentino, Florence, Italy
| | - Gabriele Cencetti
- National Research Council, Institute of Bioscience and Bioresources, (CNR-IBBR), Sesto Fiorentino, Italy
| | - Nicola Luchi
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Sesto Fiorentino, Florence, Italy
| | - Andrea Ienco
- National Research Council, Institute of Chemistry of OrganoMetallic Compounds, (CNR-ICCOM), Sesto Fiorentino, Italy
| | - Marco Michelozzi
- National Research Council, Institute of Bioscience and Bioresources, (CNR-IBBR), Sesto Fiorentino, Italy.
| |
Collapse
|
21
|
Soares GABE, Bhattacharya T, Chakrabarti T, Tagde P, Cavalu S. Exploring Pharmacological Mechanisms of Essential Oils on the Central Nervous System. PLANTS (BASEL, SWITZERLAND) 2021; 11:21. [PMID: 35009027 PMCID: PMC8747111 DOI: 10.3390/plants11010021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 06/01/2023]
Abstract
Essential oils (EOs) have been traditionally used as ancient remedies to treat many health disorders due to their enormous biological activities. As mainstream allopathic medication currently used for CNS disorders is associated with adverse effects, the search to obtain safer alternatives as compared to the currently marketed therapies is of tremendous significance. Research conducted suggests that concurrent utilization of allopathic medicines and EOs is synergistically beneficial. Due to their inability to show untoward effects, various scientists have tried to elucidate the pharmacological mechanisms by which these oils exert beneficial effects on the CNS. In this regard, our review aims to improve the understanding of EOs' biological activity on the CNS and to highlight the significance of the utilization of EOs in neuronal disorders, thereby improving patient acceptability of EOs as therapeutic agents. Through data compilation from library searches and electronic databases such as PubMed, Google Scholar, etc., recent preclinical and clinical data, routes of administration, and the required or maximal dosage for the observation of beneficial effects are addressed. We have also highlighted the challenges that require attention for further improving patient compliance, research gaps, and the development of EO-based nanomedicine for targeted therapy and pharmacotherapy.
Collapse
Affiliation(s)
- Giselle A. Borges e Soares
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Ave., Toledo, OH 43614, USA;
| | - Tanima Bhattacharya
- Innovation, Incubation & Industry (I-Cube) Laboratory, Techno India NJR Institute of Technology, Udaipur 313003, Rajasthan, India
- Department of Science & Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Tulika Chakrabarti
- Department of Chemistry, Sir Padampat Singhania University, Udaipur 313601, Rajasthan, India;
| | - Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University Bhopal, Bhopal 462026, Madhya Pradesh, India;
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopal 462042, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
22
|
Efficacy of Oregano Essential Oil Extract in the Inhibition of Bacterial Lipopolysaccharide (LPS)-Induced Osteoclastogenesis Using RAW 264.7 Murine Macrophage Cell Line—An In-Vitro Study. SEPARATIONS 2021. [DOI: 10.3390/separations8120240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Gram-negative, anaerobic bacterias are predominate in periapical infections. The bacterial lipopolysaccharide (LPS) initiates the process of inflammation and periapical bone resorption. Usage of various medicaments retards or inactivates the bacterial endotoxin (LPS). However, the results are not highly effective. In recent years, owing to antimicrobial resistance, the shift from conventional agents to herbal agents has been increased tremendously in research. Keeping this in mind, the present study was formulated to evaluate the efficacy of oregano essential oil in inhibiting bacterial LPS- induced osteoclastogenesis. Four different concentrations (0 ng/mL, 25 ng/mL, 50 ng/mL, and 100 ng/mL) of oregano essential oil extract were added into 96-well culture plate. Under light microscope, quantification of osteoclast cells was performed. One-way ANOVA with post-hoc Tukey test was carried out on SPSS v21. A significant reduction (p < 0.001) in the osteoclast was observed in the experimental groups compared to no oregano essential oil extract (control). A dose-dependent significant reduction (p < 0.001) in osteoclast formation was observed among the experimental groups, with lesser osteoclast seen in group IV with 100 ng/mL of oregano essential oil extract. Thus, it can be concluded that oregano essential oil extract can be utilized as a therapeutic agent that can target bacterial LPS-induced osteoclastogenesis. However, randomized controlled studies should be conducted to assess the potential use of this extract in the periapical bone resorption of endodontic origin.
Collapse
|
23
|
Panagiotou A, Rossouw PE, Michelogiannakis D, Javed F. Role of Essential Oil-Based Mouthwashes in Controlling Gingivitis in Patients Undergoing Fixed Orthodontic Treatment. A Review of Clinical Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010825. [PMID: 34682572 PMCID: PMC8535870 DOI: 10.3390/ijerph182010825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022]
Abstract
Essential oil (EO)-based mouthwashes have been used for oral health maintenance due to their antimicrobial and anti-inflammatory properties. The aim was to review clinical trials that assessed the role of EO-based mouthwashes in controlling gingivitis in patients undergoing fixed orthodontic treatment (OT). The Patients, Interventions, Control and Outcome (PICO) format was based on the following: (a) P: Patients undergoing fixed OT (b) Intervention: EO-based mouth-wash; Control: Mouthwashes that did not contain EOs or no mouthwash (d) Outcome: Control of gingivitis measured by clinical indices. Databases were searched manually and electronically up to and including May 2021 using different medical subject subheadings. Data screening and extraction were performed. The risk of bias within randomized controlled trials was assessed using the revised Cochrane Collaboration’s risk of bias tool (RoB 2). The Risk of Bias In Non-randomized Studies—of Interventions (ROBINS-I) tool was used for non-randomized controlled trials. Disagreements related to literature search and RoB evaluations were resolved via discussion. Six clinical studies were included. Four studies showed that Listerine® is effective in controlling gingivitis in patients undergoing fixed OT. One study reported that the use of 5% Fructus mume mouthwash resulted in a significant reduction in gingival bleeding. Two mouthwashes that contained 1% Matricaria chamomilla L. and 0.5% Zingiber officinale were also found to be efficient in controlling gingival bleeding. Four, one and one studies had a low, moderate and high RoB, respectively. In conclusion, EO-based mouthwashes seem to be effective for the management of gingivitis among patients undergoing fixed OT. Further well-designed and power-adjusted clinical trials are needed.
Collapse
|
24
|
Effects of Essential Oils and Selected Compounds from Lamiaceae Family as Adjutants on the Treatment of Subjects with Periodontitis and Cardiovascular Risk. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Essential oils from different plant species were found to contain different compounds exhibiting anti-inflammatory effects with the potential to be a valid alternative to conventional chemotherapy that is limited in long-term use due to its serious side effects. Generally, the first mechanism by which an organism counteracts injurious stimuli is inflammation, which is considered a part of the innate immune system. Periodontitis is an infectious and inflammatory disease caused by a dysbiosis in the subgingival microbiome that triggers an exacerbated immune response of the host. The immune–inflammatory component leads to the destruction of gingival and alveolar bone tissue. The main anti-inflammation strategies negatively modulate the inflammatory pathways and the involvement of inflammatory mediators by interfering with the gene’s expression or on the activity of some enzymes and so affecting the release of proinflammatory cytokines. These effects are a possible target from an effective and safe approach, suing plant-derived anti-inflammatory agents. The aim of the present review is to summarize the current evidence about the effects of essentials oils from derived from plants of the Lamiaceae family as complementary agents for the treatment of subjects with periodontitis and their possible effect on the cardiovascular risk of these patients.
Collapse
|
25
|
Alatawi KA, Ravishankar D, Patra PH, Bye AP, Stainer AR, Patel K, Widera D, Vaiyapuri S. 1,8-Cineole Affects Agonists-Induced Platelet Activation, Thrombus Formation and Haemostasis. Cells 2021; 10:2616. [PMID: 34685597 PMCID: PMC8533741 DOI: 10.3390/cells10102616] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
1,8-cineole, a monoterpenoid is a major component of eucalyptus oil and has been proven to possess numerous beneficial effects in humans. Notably, 1,8-cineole is the primary active ingredient of a clinically approved drug, Soledum® which is being mainly used for the maintenance of sinus and respiratory health. Due to its clinically valuable properties, 1,8-cineole has gained significant scientific interest over the recent years specifically to investigate its anti-inflammatory and antioxidant effects. However, the impact of 1,8-cineole on the modulation of platelet activation, thrombosis and haemostasis was not fully established. Therefore, in this study, we demonstrate the effects of 1,8-cineole on agonists-induced platelet activation, thrombus formation under arterial flow conditions and haemostasis in mice. 1,8-cineole largely inhibits platelet activation stimulated by glycoprotein VI (GPVI) agonists such as collagen and cross-linked collagen-related peptide (CRP-XL), while it displays minimal inhibitory effects on thrombin or ADP-induced platelet aggregation. It inhibited inside-out signalling to integrin αIIbβ3 and outside-in signalling triggered by the same integrin as well as granule secretion and intracellular calcium mobilisation in platelets. 1,8-cineole affected thrombus formation on collagen-coated surface under arterial flow conditions and displayed a minimal effect on haemostasis of mice at a lower concentration of 6.25 µM. Notably, 1,8-cineole was found to be non-toxic to platelets up to 50 µM concentration. The investigation on the molecular mechanisms through which 1,8-cineole inhibits platelet function suggests that this compound affects signalling mediated by various molecules such as AKT, Syk, LAT, and cAMP in platelets. Based on these results, we conclude that 1,8-cineole may act as a potential therapeutic agent to control unwarranted platelet reactivity under various pathophysiological settings.
Collapse
Affiliation(s)
- Kahdr A. Alatawi
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (K.A.A.); (D.R.); (P.H.P.); (D.W.)
| | - Divyashree Ravishankar
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (K.A.A.); (D.R.); (P.H.P.); (D.W.)
| | - Pabitra H. Patra
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (K.A.A.); (D.R.); (P.H.P.); (D.W.)
| | - Alexander P. Bye
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (A.P.B.); (A.R.S.); (K.P.)
| | - Alexander R. Stainer
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (A.P.B.); (A.R.S.); (K.P.)
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (A.P.B.); (A.R.S.); (K.P.)
| | - Darius Widera
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (K.A.A.); (D.R.); (P.H.P.); (D.W.)
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (K.A.A.); (D.R.); (P.H.P.); (D.W.)
| |
Collapse
|
26
|
Slathia S, Sharma YP, Hakla HR, Urfan M, Yadav NS, Pal S. Post-harvest Management of Alternaria Induced Rot in Tomato Fruits With Essential Oil of Zanthoxylum armatum DC. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.679830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alternaria fruit rot is a major disease caused by Alternaria alternata (Fr.) Keissl., a prolific fungal pathogen. Among post-harvest diseases of tomato, fruit rot induced by A. alternata is the most damaging. Antifungal agents are widely used to control post-harvest management of tomato fruits. However, negative impacts of fungicidal residues in edible fruits and vegetables on human health cannot be over ruled. Eco-friendly ways of controlling Alternaria rot in tomato fruits offer a novel way of tomato rot management. The current study proposes an alternate method in controlling tomato fruit rots through Zanthoxylum armatum DC essential oil (EO) application. Gas chromatography-mass spectrometry profiling showed eucalyptol and sabinene as major components of Z. armatum EO. Furthermore, EO applied (0.5–4.5 μl/ml) showed significant inhibition of A. alternata growth (p > 0.05) at 4.5 μl concentration tested. Lipid peroxidation assays revealed significant reduction in membrane damage in tomato fruits treated by EO compared to alone inoculated fruits with A. alternata. Elevated activities of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase coupled with enhanced antioxidants such as ascorbic acid, glutathione, proline, and total phenols in EO-treated fruits may be linked with better fruit rot management than control fruits inoculated with A. alternata-induced rot alone. Mycelia and spore production was dramatically reduced in EO applied tomato fruits over A. alternata alone in tomato fruits (p > 0.05). Interestingly, free radical scavenging activities of EO applied tomato fruits showed significant improvement compared to only pathogen-inoculated tomato fruits. Findings propose practical utility of Z. armatum EO as a plant-based antifungal for post-harvest management of Alternaria rot in tomato fruits.
Collapse
|
27
|
Kumar M, Puri S, Pundir A, Bangar SP, Changan S, Choudhary P, Parameswari E, Alhariri A, Samota MK, Damale RD, Singh S, Berwal MK, Dhumal S, Bhoite AG, Senapathy M, Sharma A, Bhushan B, Mekhemar M. Evaluation of Nutritional, Phytochemical, and Mineral Composition of Selected Medicinal Plants for Therapeutic Uses from Cold Desert of Western Himalaya. PLANTS 2021; 10:plants10071429. [PMID: 34371632 PMCID: PMC8309265 DOI: 10.3390/plants10071429] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022]
Abstract
The aim of this study was to determine the elemental and nutritive values of leaf parts of 10 selected wild medicinal plants, Acer pictum, Acer caecium, Betula utilis, Oxalis corniculata, Euphorbia pilosa, Heracleum lanatum, Urtica dioica, Berberis lycium, Berberis asiaticaand, and Quercus ilex, collected from the high hills of the Chitkul range in district Kinnaur, Western Himalaya. The nutritional characteristics of medicinal plant species were analyzed by using muffle furnace and micro-Kjeldahl methods, and the mineral content in plants was analyzed through atomic absorption spectrometry. The highest percentage of used value was reported in Betula utilis (0.42) and the lowest in Quercus ilex (0.17). In this study, it was found that new generations are not much interested in traditional knowledge of ethnomedicinal plants due to modernization in society. Therefore, there is an urgent need to document ethnomedicinal plants along with their phytochemical and minerals analysis in study sites. It was found that rural people in western Himalaya are dependent on wild medicinal plants, and certain steps must be taken to conserve these plants from extinction in the cold desert of Himalayan region. They are an alternative source of medicine because they contain saponin, alkaloid, and flavonoid etc. as well as minerals. The leaves used for analysis possesses good mineral content, such as Na, N, K, P, Zn, Fe, Cu, Mn, Ca, Mg, and S. Hence, in the current study it was observed that medicinal plants are not only used for therapeutic purposes, but they can also be used as nutritional supplements.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
- Correspondence: (R.); (M.K.); (M.M.)
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Ashok Pundir
- School of Mechanical and Civil Engineering, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR—Central Potato Research Institute, Shimla 171001, India;
| | - Poonam Choudhary
- Agricultural Structure and Environment Control, ICAR—Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141004, India;
| | - E. Parameswari
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Ahmad Alhariri
- Faculty of Agriculture, Damascus University, Damascus 30621, Syria;
| | - Mahesh Kumar Samota
- HCP Division, ICAR—Central Institute of Post-Harvest Engineering and Technology, Abohar 152116, India;
| | - Rahul D. Damale
- ICAR—National Research Centre on Pomegranate, Solapur 413255, India;
| | - Surinder Singh
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India;
| | - Mukesh K. Berwal
- Division of Crop improvement, ICAR—Central Institute for Arid Horticulture, Bikaner 334006, India;
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India;
| | - Anilkumar G. Bhoite
- Department of Agricultural Botany, RCSM College of Agriculture, Kolhapur 416004, India;
| | - M. Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, Ethiopia;
| | - Anshu Sharma
- Department of Food Science and Technology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni 173230, India;
| | - Bharat Bhushan
- ICAR—Indian Institute of Maize Research, Ludhiana 141004, India;
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht’s University, 24105 Kiel, Germany
- Correspondence: (R.); (M.K.); (M.M.)
| |
Collapse
|
28
|
Jain S, Arora P, Nainwal LM. Essential oils as Potential Source of Anti-dandruff Agents: A Review. Comb Chem High Throughput Screen 2021; 25:1411-1426. [PMID: 34254910 DOI: 10.2174/1386207324666210712094148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dandruff is a frequently occurring scalp problem that causes significant discomfort to approximately 50% population at some stage of life, especially post-puberty and pre-adult age. OBJECTIVE This review aims to summarize the recent findings regarding the anti-fungal properties of herbal essential oils against pathogens involved in dandruff prognosis. METHODS A literature search of studies published between 2000 and 2020 was conducted over databases: PubMed, Google Scholar, Scopus, and Science direct. Literature was explored using the guidelines given in Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). RESULTS Dandruff, characterized by clinical symptoms of dryness, pruritis, scaly, and flaky scalp, is considered a pri-mary manifestation of seborrheic dermatitis. Amongst various etiological and pathophysiological factors, a significant role of yeasts, primarily species of Malassezia, Candida, has been strongly correlated with dandruff. At the same time, incidences of M. furfur, M. restricta, and M. globosa are high compared to others. Due to relapse of symptoms with the withdrawal of conventional anti-dandruff products. Essential oils of herbal origin, such as tea tree oil, lime oil, rose-mary oil, have gained global importance in dermatology. These oils are rich in secondary aromatic metabolites, espe-cially terpenes and phenolic components that impart substantial antimicrobial properties and resisting biofilm production. CONCLUSION Based on the available information, we can conclude that essential oils have tremendous potential to be developed as anti-dandruff products; however, further studies are warranted to establish their efficacy in dandruff cures.
Collapse
Affiliation(s)
- Shagun Jain
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sci-ences and Research University, New Delhi, India
| | - Poonam Arora
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sci-ences and Research University, New Delhi, India
| | - Lalit Mohan Nainwal
- Department of Pharmaceutical Chemistry, HIMT College of Pharmacy, Harlal Institute of Management and Technol-ogy, Greater Noida, U.P, India
| |
Collapse
|
29
|
Development and Optimization of Cinnamon Oil Nanoemulgel for Enhancement of Solubility and Evaluation of Antibacterial, Antifungal and Analgesic Effects against Oral Microbiota. Pharmaceutics 2021; 13:pharmaceutics13071008. [PMID: 34371700 PMCID: PMC8309164 DOI: 10.3390/pharmaceutics13071008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
Oral health is a key contributor to a person’s overall health and well-being. Oral microbiota can pose a serious threat to oral health. Thus, the present study aimed to develop a cinnamon oil (CO)-loaded nanoemulsion gel (NEG1) to enhance the solubilization of oil within the oral cavity, which will enhance its antibacterial, antifungal, and analgesic actions against oral microbiota. For this purpose, the CO-loaded nanoemulsion (CO-NE) was optimized using I-optimal response surface design. A mixture of Pluracare L44 and PlurolOleique CC 497 was used as the surfactant and Capryol was used as the co-surfactant. The optimized CO-NE had a globule size of 92 ± 3 nm, stability index of 95% ± 2%, and a zone of inhibition of 23 ± 1.5 mm. This optimized CO-NE formulation was converted into NEG1 using 2.5% hydroxypropyl cellulose as the gelling agent. The rheological characterizations revealed that the NEG1 formulation exhibited pseudoplastic behavior. The in vitro release of eugenol (the marker molecule for CO) from NEG1 showed an enhanced release compared with that of pure CO. The ex vivo mucosal permeation was found to be highest for NEG1 compared to the aqueous dispersion of CO-NE and pure cinnamon oil. The latency reaction time during the hot-plate test in rats was highest (45 min) for the NEG1 sample at all-time points compared with those of the other tested formulations. The results showed that the CO-NEG formulation could be beneficial in enhancing the actions of CO against oral microbiota, as well as relieving pain and improving overall oral health.
Collapse
|
30
|
Thapa R, Sai K, Saha D, Kushwaha D, Aswal V, Ghosh Moulick R, Bose S, Bhattaharya J. Synthesis and characterization of a nanoemulsion system for solubility enhancement of poorly water soluble non-steroidal anti-inflammatory drugs. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Dagli N. Unexplored Potential of Essential Oils in Reducing SARS-CoV-2 Viral Load in Dental Clinics. J Int Soc Prev Community Dent 2021; 11:357-358. [PMID: 34430494 PMCID: PMC8352051 DOI: 10.4103/jispcd.jispcd_103_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 03/14/2021] [Accepted: 04/24/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Namrata Dagli
- Research Faculty, Dental Research Cell Department, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
32
|
Chiriac AP, Rusu AG, Nita LE, Chiriac VM, Neamtu I, Sandu A. Polymeric Carriers Designed for Encapsulation of Essential Oils with Biological Activity. Pharmaceutics 2021; 13:pharmaceutics13050631. [PMID: 33925127 PMCID: PMC8146382 DOI: 10.3390/pharmaceutics13050631] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 12/27/2022] Open
Abstract
The article reviews the possibilities of encapsulating essential oils EOs, due to their multiple benefits, controlled release, and in order to protect them from environmental conditions. Thus, we present the natural polymers and the synthetic macromolecular chains that are commonly used as networks for embedding EOs, owing to their biodegradability and biocompatibility, interdependent encapsulation methods, and potential applicability of bioactive blend structures. The possibilities of using artificial intelligence to evaluate the bioactivity of EOs—in direct correlation with their chemical constitutions and structures, in order to avoid complex laboratory analyses, to save money and time, and to enhance the final consistency of the products—are also presented.
Collapse
Affiliation(s)
- Aurica P. Chiriac
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (A.G.R.); (L.E.N.); (I.N.); (A.S.)
- Correspondence:
| | - Alina G. Rusu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (A.G.R.); (L.E.N.); (I.N.); (A.S.)
| | - Loredana E. Nita
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (A.G.R.); (L.E.N.); (I.N.); (A.S.)
| | - Vlad M. Chiriac
- Faculty of Electronics Telecommunications and Information Technology, Gh. Asachi Technical University, 700050 Iași, Romania;
| | - Iordana Neamtu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (A.G.R.); (L.E.N.); (I.N.); (A.S.)
| | - Alina Sandu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (A.G.R.); (L.E.N.); (I.N.); (A.S.)
| |
Collapse
|
33
|
Kliszcz A, Danel A, Puła J, Barabasz-Krasny B, Możdżeń K. Fleeting Beauty-The World of Plant Fragrances and Their Application. Molecules 2021; 26:molecules26092473. [PMID: 33922689 PMCID: PMC8122868 DOI: 10.3390/molecules26092473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
This article is devoted to some aspects of the fragrant substances of plant origin applied in the food industry and perfumery as well. Since antiquity many extractive techniques have been developed to obtain essential oils. Some of them are still applied, but new ones, like microwave or ultrasound-assisted extractions, are more and more popular and they save time and cost. Independently of the procedure, the resulting essential oils are the source of many so-called isolates. These can be applied as food additives, medicines, or can be used as starting materials for organic synthesis. Some substances exist in very small amounts in plant material so the extraction is not economically profitable but, after their chemical structures were established and synthetic procedures were developed, in some cases they are prepared on an industrial scale. The substances described below are only a small fraction of the 2000–3000 fragrant molecules used to make our life more enjoyable, either in food or perfumes. Additionally, a few examples of allelopathic fragrant compounds, present in their natural state, will be denoted and some of their biocidal features will be mentioned as an arising “green” knowledge in agriculture.
Collapse
Affiliation(s)
- Angelika Kliszcz
- Department of Agroecology and Crop Production, Faculty of Agriculture and Economics, University of Agriculture, Mickiewicza 21 Ave, 31-120 Krakow, Poland;
- Correspondence:
| | - Andrzej Danel
- Faculty of Materials Engineering and Physics, Krakow University of Technology, Podchorążych St. 1, 30-084 Krakow, Poland;
| | - Joanna Puła
- Department of Agroecology and Crop Production, Faculty of Agriculture and Economics, University of Agriculture, Mickiewicza 21 Ave, 31-120 Krakow, Poland;
| | - Beata Barabasz-Krasny
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2 St., 30-084 Kraków, Poland; (B.B.-K.); (K.M.)
| | - Katarzyna Możdżeń
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2 St., 30-084 Kraków, Poland; (B.B.-K.); (K.M.)
| |
Collapse
|
34
|
Shamseddine L, Chidiac JJ. Composition's effect of Origanum Syriacum essential oils in the antimicrobial activities for the treatment of denture stomatitis. Odontology 2021; 109:327-335. [PMID: 32808051 PMCID: PMC7430938 DOI: 10.1007/s10266-020-00547-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022]
Abstract
This research has several purposes: First to assess the bacterial and fungal minimum inhibitory concentration of Origanum Syriacum essential oil. Second to quantify its bactericidal and fungicidal minimal concentration against S. aureus, S. mutans, and C. albicans found in denture stomatitis. The third purpose is to look at the influence of three different soils (Annaya, Bhanin and Michrif) on the essential oils composition. Three essential oils were extracted by hydro-distillation from three different Origanum Syriacum plant origins. Bioassays were conducted using a broth microdilution methods. Gas Chromatography analysis was used to calculate the abundance of most components in each essential oil. Post hoc tests assessed antimicrobial effects between ecotypes while Pearson's test correlated the different components and their antimicrobial efficiency (α < 0.05). All tested essential oils were efficient against all microorganisms. Origanum Syriacum essential oils derived from Annaya and Bhanin soils showed a superior antimicrobial activity compared to the Michrif one. The most abundant component and most efficient among all essential oils constituents was carvacrol. It can be concluded that Origanum Syriacum essential oils have an antimicrobial activity, which depends on the ecotype, its origin and its composition. They might be used to start a clinical trial for the treatment of denture stomatitis.
Collapse
Affiliation(s)
- Loubna Shamseddine
- Faculty of Dental Medicine, Department of Prosthodontics, Lebanese University, Beirut, Hadat Lebanon
| | - Jose Johann Chidiac
- Faculty of Dental Medicine, Department of Prosthodontics, Lebanese University, Beirut, Hadat Lebanon
| |
Collapse
|
35
|
Sharma A, Bhardwaj G, Cannoo DS. Antioxidant potential, GC/MS and headspace GC/MS analysis of essential oils isolated from the roots, stems and aerial parts of Nepeta leucophylla. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Aljaafari MN, AlAli AO, Baqais L, Alqubaisy M, AlAli M, Molouki A, Ong-Abdullah J, Abushelaibi A, Lai KS, Lim SHE. An Overview of the Potential Therapeutic Applications of Essential Oils. Molecules 2021; 26:628. [PMID: 33530290 PMCID: PMC7866131 DOI: 10.3390/molecules26030628] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/27/2022] Open
Abstract
The emergence of antimicrobial resistance (AMR) has urged researchers to explore therapeutic alternatives, one of which includes the use of natural plant products such as essential oils (EO). In fact, EO obtained from clove, oregano, thymus, cinnamon bark, rosemary, eucalyptus, and lavender have been shown to present significant inhibitory effects on bacteria, fungi, and viruses; many studies have been done to measure EO efficacy against microorganisms. The strategy of combinatory effects via conventional and non-conventional methods revealed that the combined effects of EO-EO or EO-antibiotic exhibit enhanced efficacy. This paper aims to review the antimicrobial effects of EO, modes of EO action (membrane disruption, efflux inhibition, increase membrane permeability, and decrease in intracellular ATP), and their compounds' potential as effective agents against bacteria, fungi, and viruses. It is hoped that the integration of EO applications in this work can be used to consider EO for future clinical applications.
Collapse
Affiliation(s)
- Mariam Nasser Aljaafari
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Asma Obaid AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Laila Baqais
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Maream Alqubaisy
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Mudhi AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Aidin Molouki
- Department of Avian Disease Research and Diagnostic, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj 31585-854, Iran;
| | - Janna Ong-Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia;
| | | | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| |
Collapse
|
37
|
Andriotis EG, Papi RM, Paraskevopoulou A, Achilias DS. Synthesis of D-Limonene Loaded Polymeric Nanoparticles with Enhanced Antimicrobial Properties for Potential Application in Food Packaging. NANOMATERIALS 2021; 11:nano11010191. [PMID: 33451168 PMCID: PMC7828745 DOI: 10.3390/nano11010191] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/24/2022]
Abstract
Mini-emulsion polymerization was applied for the synthesis of cross-linked polymeric nanoparticles comprised of methyl methacrylate (MMA) and Triethylene Glycol Dimethacrylate (TEGDMA) copolymers, used as matrix-carriers for hosting D-limonene. D-limonene was selected as a model essential oil, well known for its pleasant odor and its enhanced antimicrobial properties. The synthesized particles were assessed for their morphology and geometric characteristics by Dynamic Light Scattering (DLS) and Scanning Electron Microscopy (SEM), which revealed the formation of particles with mean diameters at the nanoscale (D[3,2] = 0.135 μm), with a spherical shape, while the dried particles formed larger clusters of several microns (D[3,2] = 80.69 μm). The percentage of the loaded D-limonene was quantified by Thermogravimetric Analysis (TGA), complemented by Gas Chromatography-Mass Spectrometry analysis coupled with a pyrolysis unit (Py/GC-MS). The results showed that the volatiles emitted by the nanoparticles were composed mainly of D-limonene (10% w/w of dry particles). Particles subjected to higher temperatures tended to decompose. The mechanism that governs the release of D-limonene from the as-synthesized particles was studied by fitting mathematical models to the release data obtained by isothermal TGA analysis of the dry particles subjected to accelerated conditions. The analysis revealed a two-stage release of the volatiles, one governed by D-limonene release and the other governed by TEGDMA release. Finally, the antimicrobial potency of the D-limonene-loaded particles was demonstrated, indicating the successful synthesis of polymeric nanoparticles loaded with D-limonene, owing to enhanced antimicrobial properties. The overall performance of these nanoparticles renders them a promising candidate material for the formation of self-sterilized surfaces with enhanced antimicrobial activity and potential application in food packaging.
Collapse
Affiliation(s)
- Eleftherios G. Andriotis
- Laboratory of Polymer and Dyes Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Rigini M. Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Adamantini Paraskevopoulou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitris S. Achilias
- Laboratory of Polymer and Dyes Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-2310-997822
| |
Collapse
|
38
|
The Use of Essential Oils and Their Isolated Compounds for the Treatment of Oral Candidiasis: A Literature Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1059274. [PMID: 33505486 PMCID: PMC7810551 DOI: 10.1155/2021/1059274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/28/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
In this literature review, we present the main scientific findings on the antifungal activity of essential oils (EOs) applicable for a new drug formulation to treat oral candidiasis. Seven literature databases were systematically searched for eligible in vitro and clinical trials. Selected articles were screened for biological activity, botanical species, phytochemical composition, study design, and methodological quality. A total of 26 articles were included in the review, of which 21 were in vitro studies and 5 clinical trials. The most promising EOs were obtained from Allium tubeorosum, Cinnamomum cassia, Cinnamomum zeylanicum, and Coriandrum sativum L. Among the phytochemicals, citral and thymol were the most active. Clinical trials indicated that the EOs from Pelargonium graveolens and Zataria multiflora are potentially effective to treat oral candidiasis. Further nonclinical and clinical studies with these EO are warranted to determine their potential use and safety for the treatment of oral candidiasis.
Collapse
|
39
|
Sarialioglu Gungor A, Donmez N. Dentin erosion preventive effects of various plant extracts: An in vitro atomic force microscopy, scanning electron microscopy, and nanoindentation study. Microsc Res Tech 2020; 84:1042-1052. [PMID: 33264465 DOI: 10.1002/jemt.23665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/11/2020] [Accepted: 11/18/2020] [Indexed: 01/06/2023]
Abstract
The overall consumption of acidic beverages has become more common, making the prevention and treatment of dental erosion an important consideration. The aim of this in vitro study was to evaluate the effect of various plant extracts in preventing dentin erosion. Seven experimental groups (fluoride-free water, fluoride-containing mouthwash [Colgate Plax], green tea, rosehip, clove, pomegranate, and grape seed) were formed, each consisting of 20 bovine dentin samples. The specimens were exposed daily to demineralization and remineralization cycles three times per day over 5 days through a 5-min plant extract application before each erosive episode. Surface roughness, nanohardness values, and morphological changes on dentin surfaces were examined using atomic force microscopy (AFM), nanoindentation, and scanning electron microscopy (SEM). The data were subjected to Kruskal-Wallis and Friedman tests (p < .05). There were statistically significant differences between the groups in terms of nanohardness values (p < .05), except for the pomegranate and grape seed groups. The highest nanohardness value was observed in the clove group (1.24 ± 0.34 GPa), whereas the lowest nanohardness value was noted in the grape seed group (0.20 ± 0.04 GPa). The nanohardness values of positive and negative control groups after erosion cycles were statistically higher than the initial nanohardness values (p < .05).There was no statistically significant difference between the groups in surface roughness values (p > .05). Macromolecular deposits were observed both in the SEM and AFM images of the pomegranate, Colgate, and rosehip groups. It can be concluded that the clove extract group is more successful in preventing dentin erosion than the other groups. Green tea is also effective in preventing dentin erosion, similar to clove extract. The application of plant extracts may be a new treatment strategy in preventing dentin erosion. Plant extracts may also reduce the severity of existing dentin erosion. Clove and green tea extracts may present novel natural therapy potential by inhibiting dentin erosion.
Collapse
Affiliation(s)
- Ayca Sarialioglu Gungor
- Department of Restorative Dentistry, Faculty of Dentistry, Bezmialem Vakif University, Istanbul, Turkey
| | - Nazmiye Donmez
- Department of Restorative Dentistry, Faculty of Dentistry, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
40
|
Pessoa MLDS, Silva LMO, Araruna MEC, Serafim CADL, Júnior EBA, Silva AO, Pessoa MMB, Neto HD, Lima EDO, Batista LM. Antifungal activity and antidiarrheal activity via antimotility mechanisms of (-)-fenchone in experimental models. World J Gastroenterol 2020; 26:6795-6809. [PMID: 33268962 PMCID: PMC7684460 DOI: 10.3748/wjg.v26.i43.6795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/12/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND (-)-Fenchone is a bicyclic monoterpene present in essential oils of plant species, such as Foeniculum vulgare and Peumus boldus, used to treatment of gastrointestinal diseases. Pharmacological studies report its anti-inflammatory, antioxidant, and antinociceptive activity.
AIM To investigate antidiarrheal activity related to gastrointestinal motility, intestinal secretion and antimicrobial activity.
METHODS A castor oil-induced diarrhea model was used to evaluate antidiarrheal activity. Intestinal transit and gastric emptying protocols were used to assess a possible antimotility effect. Muscarinic receptors, presynaptic α2-adrenergic and tissue adrenergic receptors, KATP channels, nitric oxide were investigated to uncover antimotility mechanisms of action and castor oil-induced enteropooling to elucidate antisecretory mechanisms. The antimicrobial activity was evaluated in the minimum inhibitory concentration model, the fractional inhibitory concentration index using the (-)-fenchone association method with standard antifungal agents.
RESULTS (-)-Fenchone (75, 150 and 300 mg/kg) showed antidiarrheal activity, with a significant decrease in the evacuation index. This activity is possibly related to a percentage of reduced intestinal transit (75, 150 and 300 mg/kg). The antimotility effect of (-)-fenchone decreased in the presence of pilocarpine, yohimbine, propranolol, L-NG-nitroarginine methyl ester or glibenclamide. In the enteropooling model, no reduction in intestinal fluid weight was observed. (-)- Fenchone did not show antibacterial activity; on the other hand, inhibits the growth of strains of fungi with a minimum fungicide concentration of 32 μg/mL. However, when it was associated with amphotericin B, no synergism was observed.
CONCLUSION The antidiarrheal effect of (-)-fenchone in this study involves antimotility effect and not involve antisecretory mechanisms. (-)-Fenchone presents antifungal activity; however, it did not show antibacterial activity.
Collapse
Affiliation(s)
- Michelle Liz de Souza Pessoa
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | | | - Maria Elaine Cristina Araruna
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | | | - Edvaldo Balbino Alves Júnior
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | - Alessa Oliveira Silva
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | | | - Hermes Diniz Neto
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | - Edeltrudes de Oliveira Lima
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | - Leônia Maria Batista
- Postgraduate Program in Natural and Synthetic Bioactive Products, Universidade Federal da Paraiba, João Pessoa 58051-900, Brazil
| |
Collapse
|
41
|
Mihai AD, Chircov C, Grumezescu AM, Holban AM. Magnetite Nanoparticles and Essential Oils Systems for Advanced Antibacterial Therapies. Int J Mol Sci 2020; 21:ijms21197355. [PMID: 33027980 PMCID: PMC7582471 DOI: 10.3390/ijms21197355] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Essential oils (EOs) have attracted considerable interest in the past few years, with increasing evidence of their antibacterial, antiviral, antifungal, and insecticidal effects. However, as they are highly volatile, the administration of EOs to achieve the desired effects is challenging. Therefore, nanotechnology-based strategies for developing nanoscaled carriers for their efficient delivery might offer potential solutions. Owing to their biocompatibility, biodegradability, low toxicity, ability to target a tissue specifically, and primary structures that allow for the attachment of various therapeutics, magnetite nanoparticles (MNPs) are an example of such nanocarriers that could be used for the efficient delivery of EOs for antimicrobial therapies. The aim of this paper is to provide an overview of the use of EOs as antibacterial agents when coupled with magnetite nanoparticles (NPs), emphasizing the synthesis, properties and functionalization of such NPs to enhance their efficiency. In this manner, systems comprising EOs and MNPs could offer potential solutions that could overcome the challenges associated with biofilm formation on prosthetic devices and antibiotic-resistant bacteria by ensuring a controlled and sustained release of the antibacterial agents.
Collapse
Affiliation(s)
- Antonio David Mihai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.D.M.); (C.C.)
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.D.M.); (C.C.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.D.M.); (C.C.)
- Correspondence: or ; Tel.: +40-21-318-1000
| | - Alina Maria Holban
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 1–3 Portocalelor Lane, Sector 5, 77206 Bucharest, Romania; or
| |
Collapse
|
42
|
Lapinska B, Szram A, Zarzycka B, Grzegorczyk J, Hardan L, Sokolowski J, Lukomska-Szymanska M. An In Vitro Study on the Antimicrobial Properties of Essential Oil Modified Resin Composite against Oral Pathogens. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4383. [PMID: 33019681 PMCID: PMC7579242 DOI: 10.3390/ma13194383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S. mutans and L. acidophilus, as well as antifungal effect on C. albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S. mutans and L. acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S. mutans. All tested EOs exhibited antifungal activity against C. albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S. mutans and C. albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L. acidophilus.
Collapse
Affiliation(s)
- Barbara Lapinska
- Department of General Dentistry, Medical University of Lodz, 92-213 Lodz, Poland; (B.L.); (A.S.); (J.S.)
| | - Aleksandra Szram
- Department of General Dentistry, Medical University of Lodz, 92-213 Lodz, Poland; (B.L.); (A.S.); (J.S.)
| | - Beata Zarzycka
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland; (B.Z.); (J.G.)
| | - Janina Grzegorczyk
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland; (B.Z.); (J.G.)
| | - Louis Hardan
- Department of Restorative Dentistry, Dental School, Saint Joseph University, 11072180 Beirut, Lebanon;
| | - Jerzy Sokolowski
- Department of General Dentistry, Medical University of Lodz, 92-213 Lodz, Poland; (B.L.); (A.S.); (J.S.)
| | - Monika Lukomska-Szymanska
- Department of General Dentistry, Medical University of Lodz, 92-213 Lodz, Poland; (B.L.); (A.S.); (J.S.)
| |
Collapse
|
43
|
Ghavam M, Manca ML, Manconi M, Bacchetta G. Chemical composition and antimicrobial activity of essential oils obtained from leaves and flowers of Salvia hydrangea DC. ex Benth. Sci Rep 2020; 10:15647. [PMID: 32973295 PMCID: PMC7519093 DOI: 10.1038/s41598-020-73193-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
The majority of essential oils obtained from vascular plants have been demonstrated to be effective in treating fungal and bacterial infections. Among others, Salvia hydrangea is an endemic half-shrub belonging to the Lamiaceae family that has been widely used from ancient times in Iranian traditional medicine. The aim of this study was to compare the composition and antimicrobial properties of essential oils obtained from leaves or flowers of this plant, collected from the Daran region of Iran during June 2018. The oils were obtained using Clevenger apparatus, their composition was evaluated by means of gas chromatography/mass spectrometry (GC/MS) and the antimicrobial properties were assayed by measuring inhibition halos, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The yield of leaf oil was ~ 0.25% and that of flower oil was ~ 0.28%. Oil composition was affected by the part of the plants used: the most abundant bioactives contained in leaf essential oil were (+)-spathulenol (16.07%), 1,8-cineole (13.96%), trans-caryophyllene (9.58%), β-pinene (8.91%) and β-eudesmol (5.33%) and those in flower essential oil were caryophyllene oxide (35.47%), 1,8-cineole (9.54%), trans-caryophyllene (6.36%), β-eudesmol (4.11%), caryophyllenol-II (3.46%) and camphor (3.33%). Both the oils showed a significant inhibitory and lethal effect on the Gram-negative bacteria Pseudomonas aeruginosa (MIC ~ 16 µg/mL), Shigella dysenteriae and Klebsiella pneumoniae (MIC ~ 62 µg/mL). Therefore, the essential oils obtained from both leaves and flowers of S. hydrangea may have potential application as bactericidal agents against some bacteria.
Collapse
Affiliation(s)
- Mansureh Ghavam
- Department of Range and Watershed Management, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran.
| | - Maria Letizia Manca
- Department Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Manconi
- Department Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Gianluigi Bacchetta
- Department Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Hortus Botanicus Karalitanus (HBK), University of Cagliari, Cagliari, Italy
| |
Collapse
|
44
|
In Vitro Evaluation of the Antimicrobial and Immunomodulatory Activity of Culinary Herb Essential Oils as Potential Perioceutics. Antibiotics (Basel) 2020; 9:antibiotics9070428. [PMID: 32708120 PMCID: PMC7399839 DOI: 10.3390/antibiotics9070428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
Due to their antimicrobial, immunomodulatory, antioxidant, and regenerative activities, culinary herbs have multiple medicinal uses, among which to prevent and treat oral diseases. The whole essential oils (EOs) have multiple advantages over purified components, such as a low probability to select for antimicrobial resistance, synergic effects of different components, and multi-pharmacological activities. In this study, we aimed to evaluate essential oils from Salvia officinalis (sage), Satureja hortensis (summer savory), and Anethum graveolens (dill) using an in vitro analysis of their antimicrobial activity against Gram-positive and Gram-negative bacterial strains isolated from the oral cavity of patients with periodontitis; the assays addressed both the planktonic and biofilm growth states and used culture-based approaches. Some of the tested EOs exhibited excellent bactericidal and antibiofilm activity, being active at concentrations as low as 0.08-1.36 mg/mL. Flow cytometry was used to investigate the potential mechanisms of their antibacterial activity and confirmed that the tested EOs act by permeabilizing the bacterial membrane and by inhibiting the activity of the efflux pumps. The immunomodulatory effect of the three EOs was determined by analyzing the gene expression profiles for pro- and anti-inflammatory cytokines of the THP-1 cells. The summer savory EO induced a clear proinflammatory effect, while the others did not significantly influence the cytokines profile of the tested cells. Taken together, our results indicate that summer savory EO and, to a lesser extent, sage and dill EOs could be used to inhibit bacteria involved in oral plaque formation and to reduce the expression of genes known to contribute to the inflammatory response using cell culture assessment.
Collapse
|
45
|
Encapsulation of Essential Oils via Nanoprecipitation Process: Overview, Progress, Challenges and Prospects. Pharmaceutics 2020; 12:pharmaceutics12050431. [PMID: 32392726 PMCID: PMC7284627 DOI: 10.3390/pharmaceutics12050431] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 11/16/2022] Open
Abstract
Essential oils are of paramount importance in pharmaceutical, cosmetic, agricultural, and food areas thanks to their crucial properties. However, stability and bioactivity determine the effectiveness of essential oils. Polymeric nanoencapsulation is a well-established approach for the preservation of essential oils. It offers a plethora of benefits, including improved water solubility, effective protection against degradation, prevention of volatile components evaporation and controlled and targeted release. Among the several techniques used for the design of polymeric nanoparticles, nanoprecipitation has attracted great attention. This review focuses on the most outstanding contributions of nanotechnology in essential oils encapsulation via nanoprecipitation method. We emphasize the chemical composition of essential oils, the principle of polymeric nanoparticle preparation, the physicochemical properties of essential oils loaded nanoparticles and their current applications.
Collapse
|
46
|
Okano S, Honda Y, Kodama T, Kimura M. The Effects of Frankincense Essential Oil on Stress in Rats. J Oleo Sci 2020; 68:1003-1009. [PMID: 31582666 DOI: 10.5650/jos.ess19114] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Frankincense essential oil, obtained from Boswellia carteri, is a popular essential oil, which is widely used in many parts of the world. While some of its properties are known, its effects on stress and sleep have not been studied. The effects of frankincense essential oil and its major components, limonene and α-pinene, on plasma corticosterone and glutathione (GSH) levels, as well as on sleep and wakefulness behaviour, were studied in sleep-deprived rats. The substances were applied topically after dilution in jojoba oil (vehicle). As compared to vehicle, frankincense essential oil at a dilution of 1/1000 (1:103) significantly reduced corticosterone levels (p < 0.05). In contrast, its major constituents (α-pinene and limonene), elevated levels of this stress hormone. Frankincense, limonene and α-pinene, all led to significant reductions in plasma GSH levels. Although frankincense dose-dependently reduced plasma concentrations of antioxidant ions albeit to levels insufficient to neutralize oxidative stress; levels of products of oxidative metabolism metabolites were decreased by the frankincense. In sleep-deprived rats, frankincense 1:103 respectively increased and decreased the amount of wakefulness and non-rapid eye movement sleep. Frankincense essential oil can counter the effects of stress by effectively relieving sleep debt and maintaining antioxidant capacity without increasing oxidative stress, and, therefore, may be beneficial in the management of stress.
Collapse
Affiliation(s)
- Shukan Okano
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | | | | | - Mayumi Kimura
- Tokyo Metropolitan Institute of Medical Science.,Max Planck Institute of Psychiatry
| |
Collapse
|
47
|
Santos LS, Andrade TDA, Barbosa Gomes de Carvalho YM, Santos Oliveira AM, Barros Silva Soares de Souza EP, dos Santos CP, Frank LA, Guterres SS, Lima ÁS, Chaud MV, Alves TR, Shanmugam S, Quintans Júnior LJ, Araújo AADS, Serafini MR. Gelatin-based mucoadhesive membranes containing inclusion complex of thymol/β-cyclodextrin for treatment of oral infections. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1706509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lana Silva Santos
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | | | | | | | - Luiza Abrahão Frank
- Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sílvia Stanisçuaski Guterres
- Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Álvaro Silva Lima
- Institute of Technology and Research, Tiradentes University, Aracaju, Sergipe, Brazil
| | - Marco V. Chaud
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, Sorocaba, Brazil
| | - Thais Ribeiro Alves
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, Sorocaba, Brazil
| | - Saravanan Shanmugam
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | - Mairim Russo Serafini
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
48
|
Lim HW, Kim DH, Kim SH, Lee JM, Chon JW, Song KY, Bae D, Kim J, Kim H, Seo KH. Antimicrobial Effect of Mentha piperita (Peppermint) Oil against Bacillus cereus, Staphylococcus aureus, Cronobacter sakazakii, and Salmonella Enteritidis in Various Dairy Foods: Preliminary Study. ACTA ACUST UNITED AC 2018. [DOI: 10.22424/jmsb.2018.36.3.146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Mesquita LSSD, Luz TRSA, Mesquita JWCD, Coutinho DF, Amaral FMMD, Ribeiro MNDS, Malik S. Exploring the anticancer properties of essential oils from family Lamiaceae. FOOD REVIEWS INTERNATIONAL 2018. [DOI: 10.1080/87559129.2018.1467443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | | | - Denise Fernandes Coutinho
- Department of Pharmacy, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| | | | | | - Sonia Malik
- Graduate Program in Health Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| |
Collapse
|
50
|
Farisa Banu S, Rubini D, Shanmugavelan P, Murugan R, Gowrishankar S, Karutha Pandian S, Nithyanand P. Effects of patchouli and cinnamon essential oils on biofilm and hyphae formation by Candida species. J Mycol Med 2018; 28:332-339. [PMID: 29571979 DOI: 10.1016/j.mycmed.2018.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/24/2018] [Accepted: 02/24/2018] [Indexed: 12/01/2022]
Abstract
The prevalence and fatality rates with biofilm-associated candidal infections have remained a challenge to the medical fraternity despite major advances in the field of antifungal therapy. Traditionally, essential oils (EOs) from the aromatic plants have been found to be excellent therapeutic agents to treat fungal ailments. The present study explores the antivirulent and antibiofilm effects of under explored leaf EOs of Indian patchouli EO extracted from Pogostemon heyneanus (PH), Indian cassia from Cinnamomum tamala (CT) and camphor EO from C. camphora (CC) against Candida species. The EOs were investigated for its efficacy to disrupt the young and preformed Candida spp. biofilms and to inhibit the yeast to hyphal transition, a hallmark virulent trait of C. albicans. The ability of these EOs to inhibit metabolically active cells was assessed through XTT assay. Of these three EOs, CT EO showed enhanced biofilm inhibition than others and hence it was further selected to study its biomass inhibition potential and exopolysaccharide layer disruption ability. The CT EO reduced the biomass of the preformed biofilms of all three Candida strains, which was supported by confocal microscopy. It also disrupted the exopolysaccharide layer of the Candida strains as shown by scanning electron microscopy. The present findings validate the effectiveness of EOs against the virulence of Candida spp. and emphasize the pharmaceutical potential of several native but yet unexplored wild aromatic plants in the prospect of therapeutic application.
Collapse
Affiliation(s)
- S Farisa Banu
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, Anusandhan Kendra II, SASTRA University, 613401 Thanjavur, Tamil Nadu, India
| | - D Rubini
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, Anusandhan Kendra II, SASTRA University, 613401 Thanjavur, Tamil Nadu, India
| | - P Shanmugavelan
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, Anusandhan Kendra II, SASTRA University, 613401 Thanjavur, Tamil Nadu, India
| | - R Murugan
- School of Chemical and Biotechnology, SASTRA University, 613401 Thanjavur, Tamil Nadu, India
| | - S Gowrishankar
- Department of Biotechnology, Science Campus, Alagappa University, 630003 Karaikudi, Tamil Nadu, India
| | - S Karutha Pandian
- Department of Biotechnology, Science Campus, Alagappa University, 630003 Karaikudi, Tamil Nadu, India
| | - P Nithyanand
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, Anusandhan Kendra II, SASTRA University, 613401 Thanjavur, Tamil Nadu, India; Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA University, 613401 Thanjavur, Tamil Nadu, India.
| |
Collapse
|