1
|
Ortiz B, Ballesteros-Monrreal MG, Rosales-Tamashiro J, Bush M, Salmanton-García J, Fontecha G. Global Insights and Trends in Research on Dermatophytes and Dermatophytosis: A Bibliometric Analysis. Mycoses 2024; 67:e13803. [PMID: 39343727 DOI: 10.1111/myc.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Dermatophytosis, caused by dermatophytes, affects up to 25% of people globally, with higher rates observed in Africa and Asia. While these infections are usually superficial, they can become severe in immunocompromised individuals. Despite their high prevalence, scientific research on dermatophytes is limited and the epidemiological data available are insufficient. In addition, diagnostic methods are not standardised and there are challenges with resistance to antifungals. OBJECTIVES This study aimed to conduct a bibliometric analysis of scientific publications related to dermatophytes and dermatophytosis to assess research output and trends. METHODS A bibliometric analysis of publications from 2000 to 2023 in Web of Science and Scopus examined trends, citation counts, publication types, key journals, top authors and institutions and funding sources. RESULTS The analysis revealed a significant increase in dermatophyte-related publications, with 15,868 articles retrieved from the Web of Science and 23,189 from Scopus. Research articles dominated the output, constituting 76.2% in Web of Science and 80% in Scopus. Peak publication years were 2019, 2021 and 2022 in Web of Science, and 2020, 2021 and 2023 in Scopus, with lower output between 2000 and 2002. The United States and India were the leading contributors, followed by Brazil and China, though citation metrics varied. Although there has been a rise in the number of publications, the amount of research conducted on dermatophytes is still very limited in comparison with other types of fungal diseases. CONCLUSIONS Dermatophyte-related research has increased over the past 2 decades. However, research gaps remain, particularly compared with other fungal diseases. Advances in diagnostics, antifungal testing and taxonomic classification are urgently needed. The study underscores the need for continued research and global collaboration to address these issues.
Collapse
Affiliation(s)
- Bryan Ortiz
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | | | - Juan Rosales-Tamashiro
- Maestría de Enfermedades Infecciosas y Zoonóticas, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Michelle Bush
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, Indiana, USA
| | - Jon Salmanton-García
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| | - Gustavo Fontecha
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| |
Collapse
|
2
|
Ngo TMC, Santona A, Ton Nu PA, Cao LC, Tran Thi G, Do TBT, Ha TNT, Vo Minh T, Nguyen PV, Ton That DD, Nguyen Thi Tra M, Bui Van D. Detection of terbinafine-resistant Trichophyton indotineae isolates within the Trichophyton mentagrophytes species complex isolated from patients in Hue City, Vietnam: A comprehensive analysis. Med Mycol 2024; 62:myae088. [PMID: 39174488 DOI: 10.1093/mmy/myae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024] Open
Abstract
The Trichophyton mentagrophytes complex comprises a group of dermatophyte fungi responsible for various dermatological infections. The increasing drug resistance of this species complex, especially terbinafine resistance of Trichophyton indotineae, is a major concern in dermatologist practice. This study provides a comprehensive analysis of T. mentagrophytes complex strains isolated from patients in Hue City, Vietnam, focusing on their phenotypic and genetic characteristics, antifungal susceptibility profiles, and molecular epidemiology. Keratinophilic fungi from dermatophytosis culture samples were identified morphologically and phenotypically, with species and genotypes confirmed by internal transcribed spacer sequencing and phylogenetic analysis. Antifungal susceptibility testing was carried out to evaluate their susceptibility to itraconazole, voriconazole, and terbinafine. The 24% (n = 27/114) of superficial mycoses were phenotypically attributed to T. mentagrophytes complex isolates. Trichophyton interdigitale, mainly genotype II*, was predominant (44.4%), followed by T. mentagrophytes genotype III* (22.2%), T. indotineae (14.8%), T. tonsurans (11.2%), and T. mentagrophytes (7.4%). While all isolates were susceptible to itraconazole and voriconazole, half of T. indotineae isolates exhibited resistance to terbinafine, linked to the Phe397Leu mutation in the SQLE protein. This study highlighted the presence of terbinafine-resistant T. indotineae isolates in Vietnam, emphasizing the need to investigate dermatophyte drug resistance and implement effective measures in clinical practice.
Collapse
Affiliation(s)
- Thi Minh Chau Ngo
- Department of Parasitology, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen Street, 49000 Hue City, Vietnam
| | - Antonella Santona
- Department of Biomedical Sciences, University of Sassari, Viale S. Pietro 43/b, 07100 Sassari, Italy
| | - Phuong Anh Ton Nu
- Department of Parasitology, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen Street, 49000 Hue City, Vietnam
| | - Le Chi Cao
- Department of Parasitology, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen Street, 49000 Hue City, Vietnam
| | - Giang Tran Thi
- Department of Parasitology, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen Street, 49000 Hue City, Vietnam
| | - Thi Bich Thao Do
- Department of Parasitology, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen Street, 49000 Hue City, Vietnam
| | - Thi Ngoc Thuy Ha
- Department of Parasitology, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen Street, 49000 Hue City, Vietnam
| | - Tiep Vo Minh
- Department of Parasitology, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen Street, 49000 Hue City, Vietnam
| | - Phuoc Vinh Nguyen
- Department of Parasitology, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen Street, 49000 Hue City, Vietnam
| | - Dong Duong Ton That
- Department of Parasitology, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen Street, 49000 Hue City, Vietnam
| | - My Nguyen Thi Tra
- Department of Dermatology, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen Street, 49000 Hue City, Vietnam
| | - Duc Bui Van
- Institute of Biomedicine, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen Street, 49000 Hue City, Vietnam
| |
Collapse
|
3
|
Ishii M, Matsumoto Y, Yamada T, Uga H, Katada T, Ohata S. Targeting dermatophyte Cdc42 and Rac GTPase signaling to hinder hyphal elongation and virulence. iScience 2024; 27:110139. [PMID: 38952678 PMCID: PMC11215307 DOI: 10.1016/j.isci.2024.110139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
The development of antifungal drugs requires novel molecular targets due to limited treatment options and drug resistance. Through chemical screening and establishment of a novel genetic technique to repress gene expression in Trichophyton rubrum, the primary causal fungus of dermatophytosis, we demonstrated that fungal Cdc42 and Rac GTPases are promising antifungal drug targets. Chemical inhibitors of these GTPases impair hyphal formation, which is crucial for growth and virulence in T. rubrum. Conditional repression of Cdc24, a guanine nucleotide exchange factor for Cdc42 and Rac, led to hyphal growth defects, abnormal cell morphology, and cell death. EHop-016 inhibited the promotion of the guanine nucleotide exchange reaction in Cdc42 and Rac by Cdc24 as well as germination and growth on the nail fragments of T. rubrum and improved animal survival in an invertebrate infection model of T. rubrum. Our results provide a novel antifungal therapeutic target and a potential lead compound.
Collapse
Affiliation(s)
- Masaki Ishii
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, 2–522–1 Noshio, Kiyose, Tokyo 204–8588, Japan
| | - Tsuyoshi Yamada
- Teikyo University Institute of Medical Mycology, Teikyo University, Hachioji, Tokyo 192-0395, Japan
- Asia International Institute of Infectious Disease Control, Teikyo University, Tokyo 173-0003, Japan
| | - Hideko Uga
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Toshiaki Katada
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Shinya Ohata
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| |
Collapse
|
4
|
Gupta AK, Polla Ravi S, Wang T, Bakotic WL, Shemer A. Mapping the Global Spread of T. indotineae: An Update on Antifungal Resistance, Mutations, and Strategies for Effective Management. Mycopathologia 2024; 189:45. [PMID: 38734753 DOI: 10.1007/s11046-024-00856-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
INTRODUCTION The global spread of Trichophyton indotineae presents a pressing challenge in dermatophytosis management. This systematic review explores the current landscape of T. indotineae infections, emphasizing resistance patterns, susceptibility testing, mutational analysis, and management strategies. METHODS A literature search was conducted in November 2023 using Embase, PubMed, Scopus, and Web of Science databases. Inclusion criteria covered clinical trials, observational studies, case series, or case reports with T. indotineae diagnosis through molecular methods. Reports on resistance mechanisms, antifungal susceptibility testing, and management were used for data extraction. RESULTS AND DISCUSSION A total of 1148 articles were identified through the systematic search process, with 45 meeting the inclusion criteria. The global spread of T. indotineae is evident, with cases reported in numerous new countries in 2023. Tentative epidemiological cut-off values (ECOFFs) suggested by several groups provide insights into the likelihood of clinical resistance. The presence of specific mutations, particularly Phe397Leu, correlate with higher minimum inhibitory concentrations (MICs), indicating potential clinical resistance. Azole resistance has also been reported and investigated in T. indotineae, and is a growing concern. Nevertheless, itraconazole continues to be an alternative therapy. Recommendations for management include oral or combination therapies and individualized approaches based on mutational analysis and susceptibility testing. CONCLUSION Trichophyton indotineae poses a complex clinical scenario, necessitating enhanced surveillance, improved diagnostics, and cautious antifungal use. The absence of established clinical breakpoints for dermatophytes underscores the need for further research in this challenging field.
Collapse
Affiliation(s)
- Aditya K Gupta
- Division of Dermatology, Department of Medicine, University of Toronto School of Medicine, Toronto, ON, Canada.
- Mediprobe Research Inc., 645 Windermere Road, London, ON, N5X 2P1, Canada.
| | - Shruthi Polla Ravi
- Mediprobe Research Inc., 645 Windermere Road, London, ON, N5X 2P1, Canada
| | - Tong Wang
- Mediprobe Research Inc., 645 Windermere Road, London, ON, N5X 2P1, Canada
| | | | - Avner Shemer
- Department of Dermatology, Tel Hashomer, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Gupta AK, Mann A, Polla Ravi S, Wang T. Navigating fungal infections and antifungal stewardship: drug resistance, susceptibility testing, therapeutic drug monitoring and future directions. Ital J Dermatol Venerol 2024; 159:105-117. [PMID: 38088126 DOI: 10.23736/s2784-8671.23.07694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
Antifungal stewardship refers to the rational use of antifungal agents. Historically, in some instances, the misuse or overuse of antifungal agents has predisposed patients to an elevated risk of systemic side-effects and treatment resistance, as well as increased healthcare costs. Superficial mycoses, such as onychomycosis, are sometimes treated without any diagnostic testing and is associated with a high likelihood of self-diagnosis and self-treatment, potentially leading to the emergence of resistance against commonly used antifungals like terbinafine. Practitioners need to ensure that a proper clinical diagnosis is backed up by appropriate testing. This may include the traditional light microscopy and culture; additionally, molecular techniques (such as polymerase chain reaction, terbinafine gene mutational analysis) and antifungal susceptibility testing are considerations as appropriate. The choice of antifungal agent should be guided by what is the standard of care in the location where the clinician practices as well as more broadly state and national prescription patterns. Recently, reports of treatment resistance concerning both superficial and deep fungal infections have added another layer of difficulty to clinical practice. This review aims to explore the phenomenon of antifungal drug resistance, and highlights the importance of adopting antifungal stewardship programs. We provide an overview of treatment resistance and mechanisms of resistance reported thus far in dermatophytes. Challenges of performing antifungal susceptibility testing and therapeutic drug monitoring are discussed, as well as principles, recommendations and future directions of antifungal stewardship programs.
Collapse
Affiliation(s)
- Aditya K Gupta
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada -
- Mediprobe Research Inc, London, ON, Canada -
| | | | | | - Tong Wang
- Mediprobe Research Inc, London, ON, Canada
| |
Collapse
|
6
|
Schaller M, Walker B, Nabhani S, Odon A, Riel S, Jäckel A. Activity of amorolfine or ciclopirox in combination with terbinafine against pathogenic fungi in onychomycosis-Results of an in vitro investigation. Mycoses 2024; 67:e13710. [PMID: 38414346 DOI: 10.1111/myc.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Onychomycoses are difficult-to-treat fungal infections with high relapse rates. Combining oral and topical antifungal drugs is associated with higher success rates. Additive or synergistic modes of action are expected to enhance treatment success rates. OBJECTIVES Investigation of the combined effects of antifungal drugs in vitro with different modes of action and application on clinical isolates from mycotic nails. METHODS Isolates of Trichophyton rubrum, Trichophyton interdigitale and Scopulariopsis brevicaulis were collected from infected toenail specimens of patients with onychomycosis. Susceptibility testing was performed in 96-well polystyrene plates using a standard stepwise microdilution protocol. Additive or synergistic activity at varying concentrations was investigated by the checkerboard method. RESULTS Combining terbinafine with amorolfine tended to be more effective than terbinafine in conjunction with ciclopirox. In most combinations, additive effects were observed. Synergy was detected in combinations with involving amorolfine in S. brevicaulis. These additive and synergistic interactions indicate that combined therapy with topical amorolfine and oral terbinafine is justified. Sublimation of amorolfine (and terbinafine) may enhance the penetration in and through the nail plate, and support treatment efficacy. CONCLUSIONS These in vitro results support the notion that combining oral terbinafine and topical amorolfine is beneficial to patients with onychomycosis, particularly if the pathogen is a non-dermatophyte fungus such as S. brevicaulis.
Collapse
Affiliation(s)
- Martin Schaller
- Department of Dermatology, Eberhard-Karls University Hospital, Tübingen, Germany
| | - Birgit Walker
- Department of Dermatology, Eberhard-Karls University Hospital, Tübingen, Germany
| | - Schafiq Nabhani
- Medical and Regulatory Department, Galderma Laboratorium GmbH, Düsseldorf, Germany
| | - Astrid Odon
- Department of Dermatology, Eberhard-Karls University Hospital, Tübingen, Germany
| | - Simon Riel
- Department of Dermatology, Eberhard-Karls University Hospital, Tübingen, Germany
| | - Andreas Jäckel
- Medical and Regulatory Department, Galderma Laboratorium GmbH, Düsseldorf, Germany
| |
Collapse
|
7
|
Ciesielska A, Kowalczyk A, Paneth A, Stączek P. Evaluation of the antidermatophytic activity of potassium salts of N-acylhydrazinecarbodithioates and their aminotriazole-thione derivatives. Sci Rep 2024; 14:3521. [PMID: 38347115 PMCID: PMC10861498 DOI: 10.1038/s41598-024-54025-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024] Open
Abstract
Nowadays, dermatophyte infections are relatively easy to cure, especially since the introduction of orally administered antifungals such as terbinafine and itraconazole. However, these drugs may cause side effects due to liver damage or their interactions with other therapeutics. Hence, the search for new effective chemotherapeutics showing antidermatophyte activity seems to be the urge of the moment. Potassium salts of N-acylhydrazinecarbodithioates are used commonly as precursors for the synthesis of biologically active compounds. Keeping that in mind, the activity of a series of five potassium N-acylhydrazinecarbodithioates (1a-e) and their aminotriazole-thione derivatives (2a-e) was evaluated against a set of pathogenic, keratinolytic fungi, such as Trichophyton ssp., Microsporum ssp. and Chrysosporium keratinophilum, but also against some Gram-positive and Gram-negative bacteria. All tested compounds were found non-toxic for L-929 and HeLa cells, with the IC30 and IC50 values assessed in the MTT assay above 128 mg/L. The compound 5-amino-3-(naphtalene-1-yl)-4,5-dihydro-1H-1,2,4-triazole-5-thione (2d) was found active against all fungal strains tested. Scanning Electron Microscopy (SEM) revealed inhibition of mycelium development of Trichophyton rubrum cultivated on nail fragments and treated with 2d 24 h after infection with fungal spores. Transmission Electron Microscopy (TEM) observation of mycelium treated with 2d showed ultrastructural changes in the morphology of germinated spores. Finally, the RNA-seq analysis indicated that a broad spectrum of genes responded to stress induced by the 2d compound. In conclusion, the results confirm the potential of N-acylhydrazinecarbodithioate derivatives for future use as promising leads for new antidermatophyte agents development.
Collapse
Affiliation(s)
- Anita Ciesielska
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Aleksandra Kowalczyk
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Agata Paneth
- Department of Organic Chemistry, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - Paweł Stączek
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| |
Collapse
|
8
|
Siopi M, Efstathiou I, Arendrup MC, Meletiadis J. Development of an agar-based screening method for terbinafine, itraconazole, and amorolfine susceptibility testing of Trichophyton spp. J Clin Microbiol 2024; 62:e0130823. [PMID: 38117081 PMCID: PMC10793311 DOI: 10.1128/jcm.01308-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Resistance in dermatophytes is an emerging global public health issue. We, therefore, developed an agar-based method for screening Trichophyton spp. susceptibility to terbinafine (TRB), itraconazole (ITC), and amorolfine (AMF) and validated it using molecularly characterized isolates. Α total of 40 Trichophyton spp. isolates, 28 TRB wild type (WT) (13 T. rubrum, 10 T. mentagrophytes, 5 T. interdigitale) and 12 TRB non-WT (7 T. rubrum, 5 T. indotineae) with different alterations in the squalene epoxidase (SQLE) gene, were used. The optimal test conditions (inoculum and drug concentrations, incubation time, and temperature) and stability over time were evaluated. The method was then applied for 86 WT Trichophyton spp. clinical isolates (68 T. rubrum, 7 T. interdigitale, 6 T. tonsurans, 5 T. mentagrophytes) and 4 non-WT T. indotineae. Optimal growth of drug-free controls was observed using an inoculum of 20 µL 0.5 McFarland after 5-7 days of incubation at 30°C. The optimal concentrations that prevented the growth of WT isolates were 0.016 mg/L of TRB, 1 mg/L of ITC, and 0.25 mg/L of AMF, whereas 0.125 mg/L of TRB was used for the detection of Trichophyton strong SQLE mutants (MIC ≥0.25 mg/L). The agar plates were stable up to 4 months. Inter-observer and inter-experimental agreement were 100%, and the method successfully detected TRB non-WT Trichophyton spp. strains showing 100% agreement with the reference EUCAST methodology. An agar-based method was developed for screening Trichophyton spp. in order to detect TRB non-WT weak and strong mutant isolates facilitating their detection in non-expert routine diagnostic laboratories.
Collapse
Affiliation(s)
- Maria Siopi
- Clinical Microbiology Laboratory, "Attikon" University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Efstathiou
- Clinical Microbiology Laboratory, "Attikon" University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maiken C. Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, "Attikon" University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Gupta AK, Polla Ravi S, Wang T, Cooper EA, Lincoln SA, Foreman HC, Bakotic WL. Antifungal Resistance, Susceptibility Testing and Treatment of Recalcitrant Dermatophytosis Caused by Trichophyton indotineae: A North American Perspective on Management. Am J Clin Dermatol 2023; 24:927-938. [PMID: 37553539 DOI: 10.1007/s40257-023-00811-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/10/2023]
Abstract
There is an ongoing epidemic of chronic, relapsing dermatophytoses caused by Trichophyton indotineae that are unresponsive to one or multiple antifungal agents. Although this new species may have originated from the Indian subcontinent, there has been a notable increase of its reporting in other countries. Based on current literature, antifungal susceptibility testing (AFST) showed a large variation of terbinafine minimum inhibitory concentrations (MICs) (0.04 to ≥ 32 µg/ml). Elevated terbinafine MICs can be attributed to mutations in the squalene epoxidase gene (single mutations: Leu393Phe, Leu393Ser, Phe397Leu, and double mutations: Leu393Phe/Ala448Thr, Phe397Leu/Ala448Thr). Itraconazole MICs had a lower range when compared with that of terbinafine (0.008-16 µg/ml, with most MICs falling between 0.008 µg/ml and < 1 µg/ml). The interpretation of AFST results remains challenging due to protocol variations and a lack of established breakpoints. Adoption of molecular methods for resistance detection, coupled with AFST, may provide a better evaluation of the in vitro resistance status of T. indotineae. There is limited information on treatment options for patients with confirmed T. indotineae infections by molecular diagnosis; preliminary evidence generated from case reports and case series points to itraconazole as an effective treatment modality, while terbinafine and griseofulvin are generally not effective. For physicians working outside of endemic regions, there is currently an unmet need for standardized clinical trials to establish treatment guidelines; in particular, combination therapy of oral and topical agents (e.g., itraconazole and ciclopirox), as well as with other azoles (i.e., fluconazole, voriconazole, ketoconazole), warrants further investigation as multidrug resistance is a possibility for T. indotineae.
Collapse
Affiliation(s)
- Aditya K Gupta
- Division of Dermatology, Department of Medicine, University of Toronto School of Medicine, Toronto, ON, Canada.
- Mediprobe Research Inc., 645 Windermere Road, London, ON, N5X 2P1, Canada.
| | - Shruthi Polla Ravi
- Mediprobe Research Inc., 645 Windermere Road, London, ON, N5X 2P1, Canada
| | - Tong Wang
- Mediprobe Research Inc., 645 Windermere Road, London, ON, N5X 2P1, Canada
| | - Elizabeth A Cooper
- Mediprobe Research Inc., 645 Windermere Road, London, ON, N5X 2P1, Canada
| | | | | | | |
Collapse
|
10
|
Wang Q, Chen W, Wan Z, Liu W. Clonal Outbreak of Trichophyton tonsurans Causing Tinea Capitis Among a Wrestling Team in Beijing, China. Mycopathologia 2023; 188:537-544. [PMID: 36401108 DOI: 10.1007/s11046-022-00689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022]
Abstract
Trichophyton tonsurans mostly causes tinea capitis and tinea corporis and often associates with outbreaks among combat sports athletes. Here, we report an outbreak of tinea capitis caused by T. tonsurans among five juvenile athletes in a wrestling team in Beijing, China. Scrapings from the lesions of the five patients were performed by direct microscopic examination and fungal culture. The fungal pathogens were all identified as T. tonsurans by morphology and sequencing of the internal transcribed spacer (ITS) regions. Multilocus genotyping analysis was performed by sequencing of 13 gene loci. The sequences of these markers were identical among the five isolates, revealing a single genotype. Antifungal susceptibilities of terbinafine, itraconazole, fluconazole, ketoconazole, and amphotericin B against T. tonsurans was determined by broth microdilution method according to the Clinical and Laboratory Standards Institute M38-A3 document and these isolates were all susceptible to the common antifungal drugs treating tinea capitis.
Collapse
Affiliation(s)
- Qiqi Wang
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University, Beijing, China
| | - Wei Chen
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University, Beijing, China
| | - Zhe Wan
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University, Beijing, China
| | - Wei Liu
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University, Beijing, China.
| |
Collapse
|
11
|
Das A, Praveen P, Khurana A, Sardana K. Red Flaging Unscientific Prescriptions in Dermatophytosis: An Overview. Indian J Dermatol 2023; 68:520-524. [PMID: 38099126 PMCID: PMC10718234 DOI: 10.4103/ijd.ijd_831_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Dermatophytosis has acquired an epidemic-like proportion, fuelling a wide gamut of irrational, unethical and unscientific prescriptions. The menace can be attributed to poorly regulated legislative laws controlling the approval of molecules, unscientific marketing gimmicks by the pharmaceutical industry, over-the-counter availability of drugs and lack of awareness and knowledge among the prescribing physicians. In this review, we have attempted to enlist the irrational and unethical prescription patterns for dermatophytosis.
Collapse
Affiliation(s)
- Anupam Das
- From the Department of Dermatology, KPC Medical College and Hospital, Kolkata, West Bengal, India
| | - Pranjal Praveen
- Department of Dermatology, IPGMER and SSKM, Kolkata, West Bengal, India
| | - Ananta Khurana
- Department of Dermatology, Venereology and Leprosy, ABVIMS and Dr. RML Hospital, New Delhi, India
| | - Kabir Sardana
- Department of Dermatology, Venereology and Leprosy, ABVIMS and Dr. RML Hospital, New Delhi, India
| |
Collapse
|
12
|
Shah SR, Vyas HR, Shah BJ, Jangid NC, Choudhary A, Gehlawat T, Mistry D, Joshi R. A Clinical-Mycological Study of Dermatophytosis in Western India with Focus on Antifungal Drug Resistance as a Factor in Recalcitrance. Indian J Dermatol 2023; 68:234. [PMID: 37275803 PMCID: PMC10238971 DOI: 10.4103/ijd.ijd_999_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
Background Dermatophytosis have assumed epidemic proportions in India. Antifungal drug resistance solely cannot explain disease magnitude and changing epidemiology. Objectives Aim of this study was to analyse clinical-mycological aspects of dermatophytosis, and estimate contribution of drug resistance in clinical recalcitrance. Methods This single-centre observational, cross-sectional, descriptive study was done in tertiary centre of western India after ethical approval, enrolling dermatophytosis patients of all ages and sex. After history and examination, KOH mount and culture in modified SDA medium was done. Culture positive isolates were subjected to E-strip antifungal susceptibility method to test MIC for Terbinafine, Itraconazole, Fluconazole and Griseofulvin. Results Total 300 patients were included, with mean age of 33.83±27.5 years and male-to-female ratio of 1.22:1; tinea corporis et cruris being commonest, 39.33% (n=118). Only 11.67% (n=35) were treatment naïve, having classical annular morphology. History of topical steroid abuse was found in 81.67% (n=245), with pseudoimbricate lesions in 70.61% (n=173). 86.67% (n=260) had KOH positivity while 83.33% (n=250) had culture positivity: Trichophyton mentagrophytes 45.6% (n=114), followed by Trichophyton rubrum in 34.4% (n=86). A total of 265 patients fit into definition of recalcitrance, from which 12.45%, i.e., 33 isolates showed in-vitro fluconazole resistance. 14.33% (n=43) cases were chronic, 37% (n=111) persistent, 46% (n=138) recurrent while 17% (n=51) had relapse in their disease course. Steroid abuse was the commonest denominator. Conclusion Role of antifungal resistance in recalcitrant dermatophytosis remains debatable. Stopping steroid abuse, which is often the commonest culprit, with adherence to standard antifungal therapy remains the paradigm in management.
Collapse
Affiliation(s)
- Shikha R. Shah
- From the Department of Dermatology, B.J. Medical College and Civil Hospital, Ahmedabad, Gujarat, India
| | - Harshita R. Vyas
- From the Department of Dermatology, B.J. Medical College and Civil Hospital, Ahmedabad, Gujarat, India
| | - Bela J. Shah
- From the Department of Dermatology, B.J. Medical College and Civil Hospital, Ahmedabad, Gujarat, India
| | - Neha C. Jangid
- From the Department of Dermatology, B.J. Medical College and Civil Hospital, Ahmedabad, Gujarat, India
| | - Ankita Choudhary
- From the Department of Dermatology, B.J. Medical College and Civil Hospital, Ahmedabad, Gujarat, India
| | - Tarun Gehlawat
- From the Department of Dermatology, B.J. Medical College and Civil Hospital, Ahmedabad, Gujarat, India
| | - Deval Mistry
- From the Department of Dermatology, B.J. Medical College and Civil Hospital, Ahmedabad, Gujarat, India
| | - Rutu Joshi
- From the Department of Dermatology, B.J. Medical College and Civil Hospital, Ahmedabad, Gujarat, India
| |
Collapse
|
13
|
Khan SS, Hay RJ, Saunte DML. A Review of Antifungal Susceptibility Testing for Dermatophyte Fungi and It's Correlation with Previous Exposure and Clinical Responses. J Fungi (Basel) 2022; 8:1290. [PMID: 36547624 PMCID: PMC9785514 DOI: 10.3390/jof8121290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Background: An increase in the number of recurrent and recalcitrant dermatophytoses calls for a tool to guide the clinician to correlate in vitro minimum inhibitory concentration (MIC) data, antifungal treatment with clinical outcomes. This systematic review aims to explore a possible correlation between one aspect of this, previous antifungal exposure, and clinical outcomes. Methods: A systematic literature search for articles on previous antifungal treatment, treatment outcome, susceptibility methods used, organism (genus/species), and MIC values was conducted. Results: A total of 720 records were identified of which 19 articles met the inclusion criteria. Forty percent of the cases had contact with or travel to India, 28% originated from or had traveled to other countries where treatment unresponsive tinea infections had been reported. Tinea corporis was the most common clinical presentation and the species involved were Trichophyton (T.) indotineae and T. rubrum, followed by T. mentagrophyte/interdigitale complex and T. tonsurans. Nearly all patients had previously been exposed to one or more antifungals. The studies were too heterogeneous to perform a statistical analysis to test if previous antifungal exposure was related to resistance. Conclusions: Only a few studies were identified, which had both sufficient and robust data on in vitro susceptibility testing and clinical treatment failure. Further research on the value of susceptibility testing to improve clinical practice in the management of dermatophyte infections is needed.
Collapse
Affiliation(s)
- Sidra Saleem Khan
- The Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester M6 8HD, UK
| | - Roderick James Hay
- St. John’s Institute of Dermatology, King’s College London, London SE1 9RT, UK
| | - Ditte Marie Lindhardt Saunte
- Department of Dermatology, Zealand University Hospital, DK-4000 Roskilde, Denmark
- Institute of Clinical Medicine, Faculty of Health Science, University of Copenhagen, DK-1350 Copenhagen, Denmark
| |
Collapse
|
14
|
Pir M, Budak F, Metiner K. In vitro antifungal activity of heterocyclic organoboron compounds against Trichophyton mentagrophytes and Microsporum canis obtained from clinical isolates. Braz J Microbiol 2022; 53:1297-1303. [PMID: 35697970 DOI: 10.1007/s42770-022-00777-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to investigate the in vitro activity of thirty-eight heterocyclic organoboron compounds (1a-o, 2a-j, 3a-m) against clinically isolated dermatophytes Trichophyton mentagrophytes and Microsporum canis. Minimum inhibitory concentrations (MICs) of compounds (1a-o, 2a-j, 3a-m) were determined according to published protocol Clinical and Laboratory Standards Institute (CLSI) M38-A2 broth microdilution method. The minimum fungicidal concentrations (MFCs) for both T. mentagrophytes and M. canis were found by subculturing each fungal suspension on potato dextrose agar. According to the results, heterocyclic organoboron compounds (1a-o, 2a-j, 3a-m) were found to be more effective against dermatophyte M. canis (MIC = 3.12-25 µg/ml) than T. mentagrophytes (MIC = 12.5-100 µg/ml). Our findings showed that 7-membered heterocyclic organoboron compounds (3a-m) (MIC = 12.5-50 µg/ml) have stronger in vitro antifungal activity against T. mentagrophytes than 5-membered heterocyclic organoboron compounds (1a-o, 2a-j) (MIC = 25-100 µg/ml). The MFC values for all compounds ranged from 6.25 to 200 µg/ml. The limited number of systemic antifungal agents used in the treatment of dermatophyte infections and the presence of side effects have led to the search for new treatment resources in recent years. Therefore, investigation of the effect of heterocyclic organoboron compounds against dermatophytes will be promising for the discovery of new antifungal compounds that have gained great importance today.
Collapse
Affiliation(s)
- Meryem Pir
- Chemistry and Chemical Processing Technology, Kocaeli Vocational School, Kocaeli University, Kocaeli, Turkey
| | - Fatma Budak
- Department of Microbiology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey.
| | - Kemal Metiner
- Department of Microbiology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
15
|
First detection of Trichophyton indotineae causing tinea corporis in Central Vietnam. Med Mycol Case Rep 2022; 36:37-41. [PMID: 35620657 PMCID: PMC9127533 DOI: 10.1016/j.mmcr.2022.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
|
16
|
New Insights in Dermatophytes: Microsporum spp. and Nannizzia spp. CURRENT TROPICAL MEDICINE REPORTS 2022. [DOI: 10.1007/s40475-022-00252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Nannizzia incurvata in Hue city - Viet Nam: Molecular identification and antifungal susceptibility testing. J Mycol Med 2022; 32:101291. [DOI: 10.1016/j.mycmed.2022.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/10/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022]
|
18
|
Antimicrobials and Resistance Part II: Antifungals, Antivirals, and Antiparasitics. J Am Acad Dermatol 2022; 86:1207-1226. [DOI: 10.1016/j.jaad.2021.11.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022]
|
19
|
Gnat S, Łagowski D, Dyląg M, Zielinski J, Nowakiewicz A. In vitro evaluation of photodynamic activity of methylene blue against Trichophyton verrucosum azole-susceptible and -resistant strains. JOURNAL OF BIOPHOTONICS 2021; 14:e202100150. [PMID: 34185387 DOI: 10.1002/jbio.202100150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The intense search for the "Holy Grail" of antifungal therapy can be observed today. The searches are not limited only to discovery of potential antifungal drugs, but also new therapeutic strategies involving the use of chemosensitizers to achieve synergistic effect or physicochemical factors inducing stress conditions in fungal cells. In this study was examined in vitro effectiveness of photodynamic antifungal strategy with methylene blue using a light beam with a wavelength equal to 635 nm toward the Trichophyton verrucosum susceptible and itraconazole- and/or fluconazole-resistant strains. Methylene blue used at concentration equal to 5 μg/mL and in the presence of 40 J/cm2 of light energy showed fungicidal effect toward the susceptible strains. However, for azole-resistant isolates, only the energy dose equal to 60 J/cm2 at 5 μg/mL of methylene blue allowed to kill the pathogen. This study confirms that methylene blue induced by red light has a definite inhibitory effect on zoophilic dermatophytes.
Collapse
Affiliation(s)
- Sebastian Gnat
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology, University of Life Sciences, Lublin, Poland
| | - Dominik Łagowski
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology, University of Life Sciences, Lublin, Poland
| | - Mariusz Dyląg
- Faculty of Biological Sciences, Department of Mycology and Genetics, University of Wroclaw, Wroclaw, Poland
| | - Jessica Zielinski
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Aneta Nowakiewicz
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology, University of Life Sciences, Lublin, Poland
| |
Collapse
|
20
|
Koehler A, Ribeiro AC, Pagani DM, Vettorato R, Magagnin CM, Stopiglia CDO, Heidrich D, Scroferneker ML. Molecular identification and antifungal susceptibility of 75 clinical isolates of Trichophyton spp. from southern Brazil. J Mycol Med 2021; 31:101201. [PMID: 34474264 DOI: 10.1016/j.mycmed.2021.101201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/08/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Dermatophytoses affect more than 20% of the world's population and is caused by filamentous fungi, mainly of the genus Trichophyton. The species identification through microscopic direct examination and culture methods is challenging, with molecular presenting high sensitivity and specificity. Although there are several therapy options for dermatophyte infections, treatment failures and antifungal resistance are growing concerns. OBJECTIVE This study aimed to identify clinical isolates of Trichophyton spp. from southern Brazil using molecular methods and determine their in-vitro antifungal susceptibility. MATERIAL AND METHODS Seventy-five isolates were identified through sequencing of the ITS region. The exposure to seven antifungals drugs was performed according to protocol M28-A2 of the Clinical and Laboratory Standards Institute (CLSI). RESULTS Sixty-one isolates (81%) were identified as T. interdigitale, which differs from the epidemiological data present in the literature. Thirteen isolates were identified as T. rubrum and one as T. tonsurans. Terbinafine was the most effective antifungal, followed by itraconazole and voriconazole, which is in accordance with the results reported in previous studies. CONCLUSIONS The use of molecular methods to identify Trichophyton spp. clinical isolates and the performance of susceptibility tests are relevant to epidemiological data, identification of the emergence of antifungal resistance, and to help to translate the in-vitro antifungal susceptibility results into clinical practice.
Collapse
Affiliation(s)
- Alessandra Koehler
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos, 2400 - CEP, 90035-003, Porto Alegre - RS, Brasil
| | - Amanda Carvalho Ribeiro
- Graduate Program in Pharmacy Universdade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752 - CEP, 90610-000, Porto Alegre RS, Brasil
| | - Danielle Machado Pagani
- Postgraduate Program in Agricultural and Environmental Microbiology, Universidade do Rio Grande do Sul. Universidade Federal do Rio Grande do Sul. Rua Sarmento Leite, 500 - CEP 90050-170, Porto Alegre RS, Brasil
| | - Rodrigo Vettorato
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos, 2400 - CEP, 90035-003, Porto Alegre - RS, Brasil
| | - Cibele Massotti Magagnin
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos, 2400 - CEP, 90035-003, Porto Alegre - RS, Brasil
| | - Cheila Denise Ottonelli Stopiglia
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos, 2400 - CEP, 90035-003, Porto Alegre - RS, Brasil
| | - Daiane Heidrich
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos, 2400 - CEP, 90035-003, Porto Alegre - RS, Brasil
| | - Maria Lúcia Scroferneker
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos, 2400 - CEP, 90035-003, Porto Alegre - RS, Brasil; Department of Microbiology, Immunology and Parasitology, ICBS, Universidade Federal do Rio Grande do Sul. Rua Sarmento Leite, 500 - CEP 90050-170, Porto Alegre RS, Brasil.
| |
Collapse
|
21
|
Zheng Y, Shang Y, Li M, Li Y, Ouyang W. Antifungal Activities of cis- trans Citral Isomers against Trichophyton rubrum with ERG6 as a Potential Target. Molecules 2021; 26:molecules26144263. [PMID: 34299538 PMCID: PMC8304469 DOI: 10.3390/molecules26144263] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/05/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
Trichophyton rubrum causes ringworm worldwide. Citral (CIT), extracted from Pectis plants, is a monoterpene and naturally composed of geometric isomers neral (cis-citral) and geranial (trans-citral). CIT has promising antifungal activities and ergosterol biosynthesis inhibition effects against several pathogenic fungi. However, no study has focused on neral and geranial against T. rubrum, which hinders the clinical application of CIT. This study aimed to compare antifungal activities of neral and geranial and preliminarily elucidate their ergosterol biosynthesis inhibition mechanism against T. rubrum. Herein, the disc diffusion assays, cellular leakage measurement, flow cytometry, SEM/TEM observation, sterol quantification, and sterol pattern change analyses were employed. The results showed geranial exhibited larger inhibition zones (p < 0.01 or 0.05), higher cellular leakage rates (p < 0.01), increased conidia with damaged membranes (p < 0.01) within 24 h, more distinct shriveled mycelium in SEM, prominent cellular material leakage, membrane damage, and morphological changes in TEM. Furthermore, geranial possessed more promising ergosterol biosynthesis inhibition effects than neral, and both induced the synthesis of 7-Dehydrodesmosterol and Cholesta-5,7,22,24-tetraen-3β-ol, which represented marker sterols when ERG6 was affected. These results suggest geranial is more potent than neral against T. rubrum, and both inhibit ergosterol biosynthesis by affecting ERG6.
Collapse
Affiliation(s)
- Yin Zheng
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel.: +86-182-8519-3257
| | - Yanhong Shang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China;
| | - Mengyun Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China;
| | - Yunzhou Li
- College of Agriculture Science, Guizhou University, Guiyang 550025, China;
| | - Wuqing Ouyang
- College of Veterinary Science, Northwest A&F University, Yangling 712100, China;
| |
Collapse
|
22
|
Abstract
BACKGROUND AND OBJECTIVE With the widespread use of antifungals to treat superficial mycoses, reports of antifungal resistance are increasing. Antifungal resistance is becoming a public health challenge and needs to be addressed in parallel with antibacterial and antiviral resistance. METHODS We review the growing resistance of fungal pathogens such as Trichophyton species and the emergence of novel pathogens, including multidrug-resistant strains in superficial mycoses. We also discuss the importance of laboratory diagnosis and antifungal susceptibility testing (AFST) in the management of recalcitrant infections. RESULTS AND CONCLUSION Antifungal resistance can occur naturally or develop over time when fungi are exposed to antifungals. The frequency of terbinafine-resistant Trichophyton isolates is increasing. Opportunistic pathogens such as Aspergillus and Candida species have developed resistance to classic azoles such as itraconazole and fluconazole, and the newer azoles such as posaconazole and voriconazole. Although uncommon, topical antifungals such as efinaconazole and tavaborole have shown to induce resistance in Trichophyton rubrum. The emergence of multidrug-resistant Trichophyton mentagrophytes/interdigitale, Candida auris, and Aspergillus species causing severe infections is highly concerning. Routine AFST should be considered to determine the most effective treatment, especially if there is failure to therapy. Combination treatment of oral and topical antifungals may be a consideration for managing recalcitrant infections.
Collapse
Affiliation(s)
- Aditya K Gupta
- Department of Medicine, Division of Dermatology, University of Toronto School of Medicine, Toronto, ON, Canada.,Mediprobe Research Inc., London, ON, Canada
| | | |
Collapse
|
23
|
Shen JJ, Arendrup MC, Verma S, Saunte DML. The Emerging Terbinafine-Resistant Trichophyton Epidemic: What Is the Role of Antifungal Susceptibility Testing? Dermatology 2021; 238:60-79. [PMID: 34058736 DOI: 10.1159/000515290] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dermatophytosis is commonly encountered in the dermatological clinics. The main aetiological agents in dermatophytosis of skin and nails in humans are Trichophyton (T.) rubrum, T. mentagrophytes and T. interdigitale (former T. mentagrophytes-complex). Terbinafine therapy is usually effective in eradicating infections due to these species by inhibiting their squalene epoxidase (SQLE) enzyme, but increasing numbers of clinically resistant cases and mutations in the SQLE gene have been documented recently. Resistance to antimycotics is phenotypically determined by antifungal susceptibility testing (AFST). However, AFST is not routinely performed for dermatophytes and no breakpoints classifying isolates as susceptible or resistant are available, making it difficult to interpret the clinical impact of a minimal inhibitory concentration (MIC). SUMMARY PubMed was systematically searched for terbinafine susceptibility testing of dermatophytes on October 20, 2020, by two individual researchers. The inclusion criteria were in vitro terbinafine susceptibility testing of Trichophyton (T.) rubrum, T. mentagrophytes and T. interdigitale with the broth microdilution technique. The exclusion criteria were non-English written papers. Outcomes were reported as MIC range, geometric mean, modal MIC and MIC50 and MIC90 in which 50 or 90% of isolates were inhibited, respectively. The reported MICs ranged from <0.001 to >64 mg/L. The huge variation in MIC is partly explained by the heterogeneity of the Trichophyton isolates, where some originated from routine specimens (wild types) whereas others came from non-responding patients with a known SQLE gene mutation. Another reason for the great variation in MIC is the use of different AFST methods where MIC values are not directly comparable. High MICs were reported particularly in isolates with SQLE gene mutation. The following SQLE alterations were reported: F397L, L393F, L393S, H440Y, F393I, F393V, F415I, F415S, F415V, S443P, A448T, L335F/A448T, S395P/A448T, L393S/A448T, Q408L/A448T, F397L/A448T, I121M/V237I and H440Y/F484Y in terbinafine-resistant isolates.
Collapse
Affiliation(s)
- Julia J Shen
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark.,Unit of Mycology, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Maiken C Arendrup
- Unit of Mycology, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Shyam Verma
- 'Nirvan' and 'In skin' Clinics, Vadodara, India
| | - Ditte Marie L Saunte
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark.,Unit of Mycology, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Siopi M, Efstathiou I, Theodoropoulos K, Pournaras S, Meletiadis J. Molecular Epidemiology and Antifungal Susceptibility of Trichophyton Isolates in Greece: Emergence of Terbinafine-Resistant Trichophytonmentagrophytes Type VIII Locally and Globally. J Fungi (Basel) 2021; 7:jof7060419. [PMID: 34072049 PMCID: PMC8229535 DOI: 10.3390/jof7060419] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Trichophyton isolates with reduced susceptibility to antifungals are now increasingly reported worldwide. We therefore studied the molecular epidemiology and the in vitro antifungal susceptibility patterns of Greek Trichophyton isolates over the last 10 years with the newly released EUCAST reference method for dermatophytes. Literature was reviewed to assess the global burden of antifungal resistance in Trichophyton spp. The in vitro susceptibility of 112 Trichophyton spp. molecularly identified clinical isolates (70 T. rubrum, 24 T. mentagrophytes, 12 T. interdigitale and 6 T. tonsurans) was tested against terbinafine, itraconazole, voriconazole and amorolfine (EUCAST E.DEF 11.0). Isolates were genotyped based on the internal transcribed spacer (ITS) sequences and the target gene squalene epoxidase (SQLE) was sequenced for isolates with reduced susceptibility to terbinafine. All T. rubrum, T. interdigitale and T. tonsurans isolates were classified as wild-type (WT) to all antifungals, whereas 9/24 (37.5%) T. mentagrophytes strains displayed elevated terbinafine MICs (0.25–8 mg/L) but not to azoles and amorolfine. All T. interdigitale isolates belonged to ITS Type II, while T. mentagrophytes isolates belonged to ITS Type III* (n = 11), VIII (n = 9) and VII (n = 4). All non-WT T. mentagrophytes isolates belonged to Indian Genotype VIII and harbored Leu393Ser (n = 5) and Phe397Leu (n = 4) SQLE mutations. Terbinafine resistance rates ranged globally from 0–44% for T. rubrum and 0–76% for T. interdigitale/T. mentagrophytes with strong endemicity. High incidence (37.5%) of terbinafine non-WT T. mentagrophytes isolates (all belonging to ITS Type VIII) without cross-resistance to other antifungals was found for the first time in Greece. This finding must alarm for susceptibility testing of dermatophytes at a local scale particularly in non-responding dermatophytoses.
Collapse
Affiliation(s)
- Maria Siopi
- Clinical Microbiology Laboratory, Medical School, “Attikon” University General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.S.); (I.E.); (S.P.)
| | - Ioanna Efstathiou
- Clinical Microbiology Laboratory, Medical School, “Attikon” University General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.S.); (I.E.); (S.P.)
| | - Konstantinos Theodoropoulos
- Second Department of Dermatology & Venereology, Medical School, “Attikon” University General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece;
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, Medical School, “Attikon” University General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.S.); (I.E.); (S.P.)
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Medical School, “Attikon” University General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.S.); (I.E.); (S.P.)
- Correspondence: ; Tel.: +30-210-583-1909; Fax: +30-210-532-6421
| |
Collapse
|
25
|
Gupta AK, Venkataraman M, Renaud HJ, Summerbell R, Shear NH, Piguet V. The increasing problem of treatment-resistant fungal infections: a call for antifungal stewardship programs. Int J Dermatol 2021; 60:e474-e479. [PMID: 33729567 DOI: 10.1111/ijd.15495] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Antimicrobial stewardship (AMS) programs have been widely recognized among the public health community. These programs focus majorly on bacterial infections, efficient antibiotic use, and measures to curb increasing antibacterial resistance. AMS programs are successfully established around the globe; however, very few include antifungal stewardship (AFS). The increasing incidence of superficial and invasive fungal infections, combined with delayed or inaccurate diagnosis, has contributed to the overprescribing and overuse of antifungal agents. Such increased exposure to antifungal agents may be a reason for the emergence of increasing antifungal resistance among fungal pathogens. With mounting reports of treatment failures and resistant infections, the evidence to support the need for AFS programs is increasing. AFS is an emerging branch of AMS programs that requires global attention and recognition.
Collapse
Affiliation(s)
- Aditya K Gupta
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Mediprobe Research Inc., London, ON, Canada
| | | | | | - Richard Summerbell
- Sporometrics, Toronto, ON, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Neil H Shear
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Dermatology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Vincent Piguet
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Dermatology, Women's College Hospital, Toronto, ON, Canada
| |
Collapse
|
26
|
Gnat S, Łagowski D, Nowakiewicz A, Dyląg M, Osińska M. Complementary effect of mechanism of multidrug resistance in Trichophyton mentagrophytes isolated from human dermatophytoses of animal origin. Mycoses 2021; 64:537-549. [PMID: 33448025 DOI: 10.1111/myc.13242] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Dermatophytoses have gained interest worldwide due to the increased resistance to terbinafine and azoles and difficulty in management of these refractory diseases. OBJECTIVES In this study, we identified and analysed Trichophyton mentagrophytes clinical isolates obtained from humans with infections of animal origin. METHODS We used quantitative real-time PCR (qRT-PCR) to examine the transcriptional modulation of three MDR genes (PDR1, MDR2 and MDR4) and analysed squalene epoxidase (SQLE) gene sequences from multidrug-resistant Trichophyton mentagrophytes isolates. RESULTS The expression profile revealed a 2- to 12-fold increase in mRNA accumulation in the presence of any of the antifungals, compared to cells incubated without drugs. A statistically significant relationship between the isolates exposed to itraconazole and increased expression of the tested genes was revealed. Substantially lower transcription levels were noted for cells exposed to luliconazole, that is, a third-generation azole. Additionally, in the case of 50% of terbinafine-resistant strains, Leu397Phe substitution in the SQLE gene was detected. Furthermore, the reduced susceptibility to itraconazole and voriconazole was overcome by milbemycin oxime. CONCLUSIONS In conclusion, our study shed more light on the role of the ABC transporter family in T. mentagrophytes, which, if overexpressed, can confer resistance to single azole drugs and even cross-resistance. Finally, milbemycin oxime could be an interesting compound supporting treatment with azole drugs in the case of refractory dermatomycoses.
Collapse
Affiliation(s)
- Sebastian Gnat
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - Dominik Łagowski
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - Aneta Nowakiewicz
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - Mariusz Dyląg
- Faculty of Biological Sciences, Department of Mycology and Genetics, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | - Marcelina Osińska
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| |
Collapse
|
27
|
Roana J, Mandras N, Scalas D, Campagna P, Tullio V. Antifungal Activity of Melaleuca alternifolia Essential Oil (TTO) and Its Synergy with Itraconazole or Ketoconazole against Trichophyton rubrum. Molecules 2021; 26:molecules26020461. [PMID: 33477259 PMCID: PMC7830555 DOI: 10.3390/molecules26020461] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022] Open
Abstract
Over the past 20–30 years, Trichophyton rubrum represented the most widespread dermatophyte with a prevalence accounting for 70% of dermatophytosis. The treatment for cutaneous infections caused by Trichophyton spp. are imidazoles (ketoconazole (KTZ)) and triazoles (itraconazole (ITZ)). T. rubrum can develop resistance to azoles after prolonged exposure to subinhibitory concentrations resulting in therapeutic failures and chronic infections. These problems have stimulated the search for therapeutic alternatives, including essential oils, and their potential use in combination with conventional antifungals. The purpose of this study was to evaluate the antifungal activity of tea tree oil (TTO) (Melaleuca alternifolia essential oil) and the main components against T. rubrum and to assess whether TTO in association with KTZ/ITZ as reference drugs improves the antifungal activity of these drugs. We used a terpinen-4-ol chemotype (35.88%) TTO, and its antifungal properties were evaluated by minimum inhibitory and minimum fungicidal concentrations in accordance with the CLSI guidelines. The interaction between TTO and azoles was evaluated through the checkerboard and isobologram methods. The results demonstrated both the fungicide activity of TTO on T. rubrum and the synergism when it was used in combination with azoles. Therefore, this mixture may reduce the minimum effective dose of azole required and minimize the side effects of the therapy. Synergy activity offered a promise for combination topical treatment for superficial mycoses.
Collapse
Affiliation(s)
- Janira Roana
- Department of Public Health and Pediatrics, Microbiology Division, University of Turin, via Santena 9, 10126 Turin, Italy; (J.R.); (N.M.)
| | - Narcisa Mandras
- Department of Public Health and Pediatrics, Microbiology Division, University of Turin, via Santena 9, 10126 Turin, Italy; (J.R.); (N.M.)
| | - Daniela Scalas
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095 Turin, Italy;
| | - Paolo Campagna
- Società Italiana per la Ricerca Sugli Oli Essenziali, 00161 Rome, Italy;
| | - Vivian Tullio
- Department of Public Health and Pediatrics, Microbiology Division, University of Turin, via Santena 9, 10126 Turin, Italy; (J.R.); (N.M.)
- Correspondence: ; Tel.: +39-011-670-5637
| |
Collapse
|
28
|
Santos Júnior CJD, Melo ARDL, Nascimento JMDD, Silva SMTD, Araújo MADS, Souza AKP. Evaluation of susceptibility and response in the surface of agents of surface mycoses (Trichophyton mentagrophytes; T. tonsurans) to antifungal drugs of interest in a medical clinic. ABCS HEALTH SCIENCES 2021. [DOI: 10.7322/abcshs.2019162.1431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Introduction: The resistance of fungal species to drugs usually used in clinics is of great interest in the medical field. Objective: To evaluate susceptibility and in vitro response of species of Trichophyton spp. to antifungal drugs of interest in clinical medicine. Methods: 12 samples of clinical isolates from humans were used, nine of T. mentagrophytes and three of T. tonsurans. Susceptibility tests were performed according to the agar diffusion (AD) and broth microdilution (BM) methods. Results: In the AD method, the species T. tonsurans presented a percentage of sensitivity of 33% in relation to amphotericin B and 66% to itraconazole, with 100% resistance to ketoconazole and fluconazole. T. mentagrophytes also showed 100% resistance to ketoconazole in this technique, with 11% sensitivity to ketoconazole, 22% to itraconazole and 22% of samples classified as sensitive dose dependent. In the MC method, the species T. tonsurans presented a sensitivity percentage of 66%, 55% and 33% in relation to ketoconazole, fluconazole and itraconazole, respectively. The T. mentagrophytes species presented sensitivity percentages of 11%, 11%, 33% and 55% for amphotericin B, itraconazole, ketoconazole and fluconazole, respectively. Conclusion: There was resistance in vitro of the species of T. mentagrophytes and T. tonsurans against the antifungal fluconazole and relative resistance against ketoconazole in the AD method. In BM, however, important percentages of sensitivity were observed for the two species analyzed in relation to the antifungals fluconazole and ketoconazole when compared to itraconazole and amphotericin B.
Collapse
|
29
|
Zareshahrabadi Z, Totonchi A, Rezaei-Matehkolaei A, Ilkit M, Ghahartars M, Arastehfar A, Motamedi M, Nouraei H, Sharifi Lari M, Mohammadi T, Zomorodian K. Molecular identification and antifungal susceptibility among clinical isolates of dermatophytes in Shiraz, Iran (2017-2019). Mycoses 2020; 64:385-393. [PMID: 33295089 DOI: 10.1111/myc.13226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022]
Abstract
Dermatophytosis is a common superficial mycotic infection affecting individual's quality of life worldwide. The present study aimed to perform species-level identification and evaluate the antifungal susceptibility patterns of dermatophytes isolated in Shiraz, Iran. This cross-sectional study was conducted on clinical samples collected during 2017-2019 from 307 patients suspected of having dermatophytosis. The isolates were identified by direct microscopy, culture and internal transcribed spacer ribosomal DNA sequencing, and their antifungal susceptibility patterns were determined by the microdilution method. Among 307 patients, dermatophytosis was diagnosed by microscopy in 190 (61.8%) subjects and confirmed in 130 (42.3%) cases by both microscopy and culture. It was found out tinea pedis was the most common clinical manifestation, and Trichophyton mentagrophytes was the most prevalent species (28.4%), followed by T tonsurans (23.8%), Microsporum canis (11.5%), T interdigitale (10%), T verrucosum (6.9%), T rubrum (6.9%), T benhamiae (4.6%), T violaceum (3%), T simii (3%), Epidermophyton floccosum (0.7%) and M ferrugineum (0.7%). Moreover, it was revealed that luliconazole with a geometric mean (GM) minimum inhibitory concentration (MIC) of 0.03 μg ml-1 was the most effective agent against all tested isolates. Regardless of species, 30% of isolates responded to high MICs of griseofulvin (MIC90 > 2 μg ml-1 ). The increasing prevalence of nonindigenous species of T simii, T benhamiae and M ferrugineum in Shiraz, Iran, was a notable finding. In addition, infections due to zoophilic species showed an increasing trend. These epidemiological data, along with antifungal susceptibility patterns, may have implications for clinical decision-making and successful treatment.
Collapse
Affiliation(s)
- Zahra Zareshahrabadi
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Totonchi
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rezaei-Matehkolaei
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University Çukurova, Adana, Turkey
| | - Mehdi Ghahartars
- Department of Dermatology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Marjan Motamedi
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hasti Nouraei
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Sharifi Lari
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tooba Mohammadi
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
30
|
Aboul-Ella H, Hamed R, Abo-Elyazeed H. Recent trends in rapid diagnostic techniques for dermatophytosis. Int J Vet Sci Med 2020; 8:115-123. [PMID: 33426048 PMCID: PMC7751388 DOI: 10.1080/23144599.2020.1850204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/24/2020] [Accepted: 11/09/2020] [Indexed: 11/04/2022] Open
Abstract
Dermatophytosis is a common contagious disease of both humans and animals. It is caused by a group of filamentous fungi known as dermatophytes, including several genera and various species. An accurate diagnosis of dermatophytes as a causative agent of a skin lesion requires up to one month of conventional laboratory diagnostics. The conventional gold standard diagnostic method is a direct microscopic examination followed by 3 to 4 weeks of Sabouraud's dextrose agar (SDA) culturing, and it may require further post-culturing identification through biochemical tests or microculture technique application. The laborious, exhaustive, and time-consuming gold standard method was a real challenge facing all dermatologists to achieve a rapid, accurate dermatophytosis diagnosis. Various studies developed more rapid, accurate, reliable, sensitive, and specific diagnostic tools. All developed techniques showed more rapidity than the classical method but variable specificities and sensitivities. An extensive bibliography is included and discussed through this review, showing recent variable dermatophytes diagnostic categories with an illustration of weaknesses, strengths, and prospects.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, GizaEgypt
| | - Rafik Hamed
- Bacteriology Biotechnology Diagnostics Department, Institute for Evaluation of Veterinary Biologics (CLEVB), Agricultural Research Center (ARC), Cairo, Egypt
| | - Heidy Abo-Elyazeed
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, GizaEgypt
| |
Collapse
|
31
|
Regional Differences in Antifungal Susceptibility of the Prevalent Dermatophyte Trichophyton rubrum. Mycopathologia 2020; 186:53-70. [PMID: 33313977 PMCID: PMC7946697 DOI: 10.1007/s11046-020-00515-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/25/2020] [Indexed: 01/24/2023]
Abstract
In vitro susceptibility testing for Trichophyton rubrum has shown resistance to terbinafine, azoles and amorolfine, locally, but epidemiological cutoffs are not available. In order to assess the appropriateness of current first-line antifungal treatment for T. rubrum in China, we characterized antifungal susceptibility patterns of Chinese T. rubrum strains to nine antifungals and also described the upper limits of wild-type (WT) minimal inhibitory concentrations (MIC) (UL-WT) based on our study and another six studies published during the last decades. Sixty-two clinical isolates originating from seven provinces in China were identified as T. rubrum sensu stricto; all Chinese strains showed low MICs to eight out of nine antifungal drugs. Terbinafine (TBF) showed the lowest MICs of all antifungal classes tested in both the Chinese and global groups, with a 97.5% UL-WT MIC-value of 0.03 mg/L. No non-WT isolates were observed for TBF in China, but were reported in 18.5% of the global group. Our study indicated that TBF was still the most active drug for Chinese T. rubrum isolates, and all strains were within the WT-population. TBF therefore remains recommended for primary therapy to dermatophytosis caused by T. rubrum in China now, but regular surveillance of dermatophytes and antifungal susceptibility is recommended.
Collapse
|
32
|
Prevalence of dermatophytosis in animals and antifungal susceptibility testing of isolated Trichophyton and Microsporum species. Trop Anim Health Prod 2020; 53:3. [PMID: 33196912 DOI: 10.1007/s11250-020-02476-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
Dermatophytosis is a frequently encountered dermatological problem in domestic and pet animals which negatively affects animal health and production. This study investigated the prevalence of dermatophytosis in different animals and carried antifungal susceptibility testing in the northern Indian state of Uttarakhand. A total of 157 clinical samples were collected from the animals irrespective of sex and age during a time period of 3 years from December 2016 to December 2019. Direct microscopy, fungal culture, isolation, identification, and antifungal susceptibility testing were carried out. Direct microscopy and in vitro culture were equally efficient in diagnosis of dermatophytosis. The prevalence of dermatophytes ranged between 45 and 53.3% and Trichophyton mentagrophytes was the most abundant species (38%) followed by Microsporum canis (21.5%). All the species observed were isolated from goats and dogs except T. tonsurans and M. nanum, respectively. All the isolated dermatophytes were urease test positive except T. rubrum and T. verrucosum. The hair perforation test was negative for M. audouinii, along with T. rubrum and T. verrucosum, whereas only M. canis was positive for rice grain test. Only T. mentagrophytes, T. rubrum, T. verrucosum, and T. tonsurans were able to show optimum growth at 37 °C. Maximum inhibition of fungal growth was exhibited by clotrimazole and least by fluconazole.
Collapse
|
33
|
Kermani F, Javidnia J, Hedayati MT, Abastabar M, Haghani I, Didehdar M, Fami Zaghrami M, Shokohi T. In vitro activities of antifungal drugs against a large collection of Trichophyton tonsurans isolated from wrestlers. Mycoses 2020; 63:1321-1330. [PMID: 32854165 DOI: 10.1111/myc.13172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Trichophyton tonsurans is the most common agent causing tinea gladiatorum in wrestlers, and limited data on susceptibility profiles of Trichophyton tonsurans are available. OBJECTIVES We aimed to assess the in vitro activity of the common antifungal drug against a large collection of T tonsurans. MATERIALS/METHODS The in vitro activities to eight common antifungal drugs (sertaconazole, itraconazole, clotrimazole, fluconazole, butenafine, tolnaftate, terbinafine and griseofulvin) against 128 clinical isolates of T tonsurans strains, obtained from wrestlers with dermatophytosis, were performed according to CLSI M38-A2 broth microdilution document. RESULTS The geometric mean minimum inhibitory concentration was the lowest for tolnaftate (0.022 µg/mL), followed by itraconazole (0.026 µg/mL), terbinafine (0.033 µg/mL), butenafine (0.088 µg/mL), griseofulvin (0.566 µg/mL), sertaconazole (2.875 µg/mL), clotrimazole (3.419 µg/mL) and fluconazole (12.540 µg/mL). CONCLUSIONS Evaluation of antifungal susceptibility of dermatophytes showed that tolnaftate and itraconazole were the most effective drugs against T tonsurans and fluconazole had the least effect.
Collapse
Affiliation(s)
- Firoozeh Kermani
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Javidnia
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad T Hedayati
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Iman Haghani
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mojtaba Didehdar
- Department of Medical Mycology and Parasitology, Arak University of Medical Sciences, Arak, Iran
| | | | - Tahereh Shokohi
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
34
|
Gnat S, Łagowski D, Nowakiewicz A, Osińska M, Kopiński Ł. Population differentiation, antifungal susceptibility, and host range of Trichophyton mentagrophytes isolates causing recalcitrant infections in humans and animals. Eur J Clin Microbiol Infect Dis 2020; 39:2099-2113. [PMID: 32607909 PMCID: PMC7561545 DOI: 10.1007/s10096-020-03952-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/10/2020] [Indexed: 02/05/2023]
Abstract
The major problems in determining the causative factors of the high prevalence of dermatophytoses include the lack of a well-standardized antifungal susceptibility testing method, the low consistency of in vitro and clinical minimal inhibitory concentration values, the high genomic diversity of the population, and the unclear mechanism of pathogenicity. These factors are of particular importance when the disease is recalcitrant and relapses. Herein, we identified and characterized Trichophyton mentagrophytes isolates obtained from therapy-resistant cases in humans and animals. We used genomic diversity analysis of 17 human and 27 animal clinical isolates with the MP-PCR technique, determined their phenotypic enzymatic activity and host range, and performed antifungal susceptibility testing to currently available antifungal drugs from various chemical groups. Genomic diversity values of 35.3% and 33.3% were obtained for clinical isolates from humans and animals, respectively, yet without any relationship to the host species or antifungal drug to which resistance in therapy was revealed. The highest activity of keratinase enzymes was recorded for fox, guinea pig, and human hairs. These hosts can be considered as the main species in the host range of these isolates. A phenyl morpholine derivative, i.e. amorolfine, exhibited superior activity against strains obtained from both humans and animals with the lowest MIC50. Interestingly, high compliance of terbinafine in vitro resistance with clinical problems in the treatment with this substance was shown as well. The high resistance of dermatophytes to drugs is the main cause of the recalcitrance of the infection, whereas the other features of the fungus are less important.
Collapse
Affiliation(s)
- Sebastian Gnat
- Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Department of Veterinary Microbiology, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland.
| | - Dominik Łagowski
- Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Department of Veterinary Microbiology, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland.
| | - Aneta Nowakiewicz
- Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Department of Veterinary Microbiology, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| | - Marcelina Osińska
- Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Department of Veterinary Microbiology, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| | - Łukasz Kopiński
- Faculty of Agrobioengineering, Department of Management and Marketing, University of Life Sciences, Dobrzanskiego 37, 20-626, Lublin, Poland
| |
Collapse
|
35
|
Aneke CI, Rhimi W, Otranto D, Cafarchia C. Comparative evaluation of E-test and CLSI methods for Itraconazole, Fluconazole and Ketoconazole susceptibilities of Microsporum canis strains. Mycopathologia 2020; 185:495-502. [PMID: 32468154 DOI: 10.1007/s11046-020-00453-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/04/2020] [Indexed: 02/03/2023]
Abstract
The incidence of resistance to antifungal agents for dermatophytes is increasing, but most of the methods currently available to test the antifungal susceptibility of Microsporum canis still require standardization. The aims of this study were: (i) to evaluate the antifungal susceptibility of M. canis strains recovered from animals to ketoconazole (KTZ), fluconazole (FLZ) and itraconazole (ITZ) using a modified CLSI broth microdilution (CLSI M38-A2-BMD) and the E-test® protocols and (ii) to estimate the agreement between the methods. Tentative azole epidemiological cutoff values (ECVs) were also proposed in order to interpret the results of in vitro susceptibility tests and to establish the agreement between the E-test and CLSI BMD methods. A total of forty clinical M. canis strains from animals with skin lesions were tested, and the essential (EA) and categorical agreement (CA) between the two methods were determined. KTZ displayed the lowest MIC values, while ITZ and FLZ the highest. The ECV for KTZ and ITZ were 4 μg/ml, while those of FLZ was 64 μg/ml. Based on ECVs, about 88% of M. canis strains were susceptible to all azoles being a cross-resistance with ITZ-FLZ registered for one strain. A total of five M. canis strains showed MIC > ECV for FLZ using CLSI, while one strain showed MIC > ECV for ITZ using both tests. KTZ, ITZ and FLZ showed EA ranging from 92.5 to 95%, for all azoles and CA > 97% except for FLZ (87.5%). The good CA between the E-test and the CLSI BMD provides evidence of the reliability of the former method to test the antifungal susceptibility of M. canis for ITZ and KTZ and not for FLZ.
Collapse
Affiliation(s)
- Chioma Inyang Aneke
- Dipartimento Di Medicina Veterinaria, Università Degli Studi "Aldo Moro", 70010, Valenzano (Bari), Italy
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, 410001, Nigeria
| | - Wafa Rhimi
- Dipartimento Di Medicina Veterinaria, Università Degli Studi "Aldo Moro", 70010, Valenzano (Bari), Italy
| | - Domenico Otranto
- Dipartimento Di Medicina Veterinaria, Università Degli Studi "Aldo Moro", 70010, Valenzano (Bari), Italy
| | - Claudia Cafarchia
- Dipartimento Di Medicina Veterinaria, Università Degli Studi "Aldo Moro", 70010, Valenzano (Bari), Italy.
| |
Collapse
|
36
|
Ebert A, Monod M, Salamin K, Burmester A, Uhrlaß S, Wiegand C, Hipler UC, Krüger C, Koch D, Wittig F, Verma SB, Singal A, Gupta S, Vasani R, Saraswat A, Madhu R, Panda S, Das A, Kura MM, Kumar A, Poojary S, Schirm S, Gräser Y, Paasch U, Nenoff P. Alarming India-wide phenomenon of antifungal resistance in dermatophytes: A multicentre study. Mycoses 2020; 63:717-728. [PMID: 32301159 DOI: 10.1111/myc.13091] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND An alarming increase in recalcitrant dermatophytosis has been witnessed in India over the past decade. Drug resistance may play a major role in this scenario. OBJECTIVES The aim of the present study was to determine the prevalence of in vitro resistance to terbinafine, itraconazole and voriconazole in dermatophytes, and to identify underlying mutations in the fungal squalene epoxidase (SQLE) gene. PATIENTS/METHODS We analysed skin samples from 402 patients originating from eight locations in India. Fungi were identified by microbiological and molecular methods, tested for antifungal susceptibility (terbinafine, itraconazole, voriconazole), and investigated for missense mutations in SQLE. RESULTS Trichophyton (T.) mentagrophytes internal transcribed spacer (ITS) Type VIII was found in 314 (78%) samples. Eighteen (5%) samples harboured species identified up to the T interdigitale/mentagrophytes complex, and T rubrum was detected in 19 (5%) samples. 71% of isolates were resistant to terbinafine. The amino acid substitution Phe397Leu in the squalene epoxidase of resistant T mentagrophytes was highly prevalent (91%). Two novel substitutions in resistant Trichophyton strains, Ser395Pro and Ser443Pro, were discovered. The substitution Ala448Thr was found in terbinafine-sensitive and terbinafine-resistant isolates but was associated with increased MICs of itraconazole and voriconazole. CONCLUSIONS The high frequencies of terbinafine resistance in dermatophytes are worrisome and demand monitoring and further research. Squalene epoxidase substitutions between Leu393 and Ser443 could serve as markers of resistance in the future.
Collapse
Affiliation(s)
- Andreas Ebert
- Medizinische Fakultät, Universität Leipzig, Leipzig, Germany.,Labor für medizinische Mikrobiologie, Rötha, Germany
| | - Michel Monod
- Service de Dermatologie et Vénéréologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Karine Salamin
- Service de Dermatologie et Vénéréologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Anke Burmester
- Klinik für Hautkrankheiten, Universitätsklinikum Jena, Jena, Germany
| | - Silke Uhrlaß
- Labor für medizinische Mikrobiologie, Rötha, Germany
| | - Cornelia Wiegand
- Klinik für Hautkrankheiten, Universitätsklinikum Jena, Jena, Germany
| | | | | | - Daniela Koch
- Labor für medizinische Mikrobiologie, Rötha, Germany
| | | | | | - Archana Singal
- Department of Dermatology and STD, University College of Medical Sciences and GTB Hospital, Delhi, India
| | - Sanjeev Gupta
- M M Institute of Medical Sciences and Research, MM Deemed to be University, Ambala, India
| | - Resham Vasani
- Department of Dermatology, Bhojani Clinic, Mumbai, India
| | - Abir Saraswat
- Department of Dermatology, Indushree Skin Clinic, Lucknow, India
| | - Rengarajan Madhu
- Department of Dermatology (Mycology), Madras Medical College, Chennai, India
| | - Saumya Panda
- Department of Dermatology, KPC Medical College, Kolkata, India
| | - Anupam Das
- Department of Dermatology, KPC Medical College, Kolkata, India
| | - Mahendra M Kura
- Department of Dermatology, Grant Medical College & Sir J J Group of Hospitals, Mumbai, India
| | - Akshy Kumar
- Department of Dermatology, Government Medical College, Kota, India
| | - Shital Poojary
- Department of Dermatology, K J Somaiya Medical College, Mumbai, India
| | - Sibylle Schirm
- Institut für Medizinische Informatik, Statistik und Epidemiologie, Leipzig, Germany
| | - Yvonne Gräser
- Institut für Mikrobiologie und Hygiene, Nationales Konsiliarlabor für Dermatophyten, Universitätsmedizin Berlin Charité, Berlin, Germany
| | - Uwe Paasch
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Pietro Nenoff
- Labor für medizinische Mikrobiologie, Rötha, Germany
| |
Collapse
|
37
|
Gnat S, Łagowski D, Nowakiewicz A. Major challenges and perspectives in the diagnostics and treatment of dermatophyte infections. J Appl Microbiol 2020; 129:212-232. [PMID: 32048417 DOI: 10.1111/jam.14611] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022]
Abstract
Dermatophytes are the aetiological factors of a majority of superficial fungal infections. What distinguishes them from other pathogenic filamentous fungi is their unique ability to degrade keratin. The remarkable ability of this group of fungi to survive in different ecosystems results from their morphological and ecological diversity as well as high adaptability to changing environmental conditions. Paradoxically, despite the progress in medicine, the prevalence of dermatophyte infections is increasing from year to year. At the beginning of the third millennium, practical diagnostic and therapeutic options are still very limited. This review focuses on understanding the major problems in this aspect of dermatophyte infections and indicates future strategies and perspectives for novel approaches to identification and drugs for elimination of dermatophytes. Particular importance is placed on development of a strategy for a diagnostic pathway and implementation of rapid and reliable diagnostics methods designed by international teams. Furthermore, among compounds that currently arouse great interest, representatives of terpenoids, alkaloids, saponins, flavonoids and essential oils deserve attention. Many of these compounds are undergoing clinical trials as potential antifungal agents, and future research should focus on attempts at determination of the applicability of tested substances. Finally, the advantages and disadvantages in implementation of new diagnostic paths and medicinal substances for routine use are indicated.
Collapse
Affiliation(s)
- S Gnat
- Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, University of Life Sciences, Lublin, Poland
| | - D Łagowski
- Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, University of Life Sciences, Lublin, Poland
| | - A Nowakiewicz
- Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, University of Life Sciences, Lublin, Poland
| |
Collapse
|
38
|
Łagowski D, Gnat S, Nowakiewicz A, Osińska M. Comparison of in vitro activities of 11 antifungal agents against Trichophyton verrucosum isolates associated with a variety hosts and geographical origin. Mycoses 2019; 63:294-301. [PMID: 31820493 DOI: 10.1111/myc.13042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022]
Abstract
The high prevalence of dermatophytosis in animals is usually associated with extra expenditure on prevention, diagnosis and long-term treatment. Humans are usually infected from animals, also from asymptomatic carriers, through direct contact or indirectly via fungus-bearing hair, scales and fomites. Despite the medical importance of Trichophyton verrucosum infections, there are limited in vitro data on the fungal susceptibility to antifungal drugs, including new-generation triazoles, imidazoles and allyloamines. The aim of the current study was to evaluate comprehensively the in vitro activity of 11 antifungal drugs against a large collection of T. verrucosum isolates obtained in Poland, Latvia, Lithuania and Slovakia from humans and animals using a microdilution assay. In vitro susceptibility testing of 11 antifungal drugs was performed according to the Clinical and Laboratory Standards Institute (CLSI) document M38. The MICs of clotrimazole, ciclopirox, enilconazole, miconazole, naftifine and terbinafine against all T. verrucosum isolates were below 1 μg/mL, whereas those of fluconazole, griseofulvin, itraconazole, ketoconazole and voriconazole were above 1 μg/mL. Ciclopirox was demonstrated to have superior activity against all strains in comparison with the other drugs, whereas fluconazole exerted the weakest in vitro effect and exhibited the highest MIC values. Our study has shown that drugs of different chemical origin have satisfactory antifungal activity and can be promising candidates for the treatment of T. verrucosum dermatophytosis. Moreover, no significant disparity in drug sensitivity between isolates obtained from different hosts and geographical regions have been demonstrated.
Collapse
Affiliation(s)
- Dominik Łagowski
- Sub-Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, University of Life Sciences, Lublin, Poland
| | - Sebastian Gnat
- Sub-Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, University of Life Sciences, Lublin, Poland
| | - Aneta Nowakiewicz
- Sub-Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, University of Life Sciences, Lublin, Poland
| | - Marcelina Osińska
- Sub-Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, University of Life Sciences, Lublin, Poland
| |
Collapse
|
39
|
Khurana A, Sardana K, Chowdhary A, Sethia K. Clinical Implications of Antifungal Drug Susceptibility Testing of Dermatophytes. Indian Dermatol Online J 2019; 10:737-738. [PMID: 31807465 PMCID: PMC6859753 DOI: 10.4103/idoj.idoj_253_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Ananta Khurana
- Department of Dermatology, Dr. Ram ManoharLohia Hospital and PGIMER, University of Delhi, New Delhi, India
| | - Kabir Sardana
- Department of Dermatology, Dr. Ram ManoharLohia Hospital and PGIMER, University of Delhi, New Delhi, India
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | - Khushboo Sethia
- Department of Dermatology, Dr. Ram ManoharLohia Hospital and PGIMER, University of Delhi, New Delhi, India
| |
Collapse
|
40
|
Maurya VK, Kachhwaha D, Bora A, Khatri PK, Rathore L. Determination of antifungal minimum inhibitory concentration and its clinical correlation among treatment failure cases of dermatophytosis. J Family Med Prim Care 2019; 8:2577-2581. [PMID: 31548935 PMCID: PMC6753804 DOI: 10.4103/jfmpc.jfmpc_483_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/19/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction: Dermatophytes are most common infectious agents causing superficial mycosis worldwide. A number of topical as well as systemic antifungal drugs are available for treatment of dermatophytosis. Superficial mycosis caused by dermatophytes can be easily treated by topical or oral antifungal drugs, but in the course of time, an increased number of treatment failure cases are appearing. Possible cause for treatment failure could be poor patient compliance, poor drug penetration into affected lesion, and also drug resistance in dermatophytes. The aim of this study is to investigate minimum inhibitory concentration and clinical correlation in treatment failure cases of dermatophytosis. Methods: Skin, hair and nail samples were collected from treatment failure cases of dermatophytosis. A total 75 isolates were tested for MIC against four antifungal drugs in the study. Fluconazole, itraconazole, ketoconazole and terbinafine were the antifungal drugs tested using broth microdilution method. MIC50 and MIC90 values were recorded. Results: A total of 75 dermatophytic isolates were tested. Dermatophytic isolates in this study were Trichophyton mentagrophytes (n = 31), T. rubrum (n = 13), T. tonsurans (n = 12), T. verrucosum (n = 9), M. gypseum (n = 5), E. floccosum (n = 4) and T. violaceum (n = 1). MIC90 value for fluconazole and terbinafine was significantly higher. Conclusion: MIC of 17.33% isolates for fluconazole and 33.33% isolates for terbinafine were lower than cut-off value, which indicates that not all treatment failure cases are due to drug resistance.
Collapse
Affiliation(s)
- Vinod K Maurya
- Department of Microbiology, ESIC Medical College and Hospital, Faridabad, Haryana, India
| | - Dileep Kachhwaha
- Department of Skin and VD, Dr. S. N. Medical College, Jodhpur, Rajsthan, India
| | - Archana Bora
- Department of Microbiology, Dr. S. N. Medical College, Jodhpur, Rajsthan, India
| | - Prabhat K Khatri
- Department of Microbiology, Dr. S. N. Medical College, Jodhpur, Rajsthan, India
| | - Laxmi Rathore
- Department of Microbiology, Dr. S. N. Medical College, Jodhpur, Rajsthan, India
| |
Collapse
|