1
|
Kim H, Lee HM, Kim SJ. Pinus koraiensis essential oil enhances glucose uptake and proliferation in SH-SY5Y neuroblastoma cells. Sci Rep 2024; 14:26630. [PMID: 39496824 DOI: 10.1038/s41598-024-78357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/30/2024] [Indexed: 11/06/2024] Open
Abstract
Aromatherapy using essential oils (EOs) is well known for its beneficial effects on mental health and neuroprotection. However, the significant molecular mechanisms have not yet been identified. Recent studies have identified a decrease in glucose uptake as a common feature across various neurodegenerative diseases (NDDs), leading to mitochondrial dysfunction and excessive autophagy. This suggests that glucose may serve not only as an energy source but also as a therapeutic target for NDDs. Using SH-SY5Y neuroblast-like cells and the glucose uptake inhibitor BAY-876, we demonstrated that glucose depletion promoted autophagy. To discover the potential therapeutics that modulate glucose metabolism, we obtained EO from Pinus koraiensis Siebold & Zucc. (PKSZ) using steam distillation. PKSZ-EO upregulated mRNA expression of SLC2A2, SLC2A3, and SLC2A4, leading to increased glucose uptake in SH-SY5Y cells. Furthermore, PKSZ-EO protected SH-SY5Y cells from BAY-876-induced mitochondrial dysfunction, cytostasis, autophagy, and inflammation. Using gas chromatography-mass spectrometry, we confirmed the high levels of α-pinene, an inducer of GLUT4 expression, in PKSZ-EO. These results suggest that PKSZ-EO exerts a protective effect against glucose depletion stress, highlighting its potential as a therapeutic agent for NDDs.
Collapse
Affiliation(s)
- Hyungkuen Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan, 31499, South Korea
| | - Hwan Myung Lee
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan, 31499, South Korea
| | - Sung-Jo Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan, 31499, South Korea.
| |
Collapse
|
2
|
Shnaider TA, Khabarova AA, Morozova KN, Yunusova AM, Yakovleva SA, Chvileva AS, Wolf ER, Kiseleva EV, Grigor'eva EV, Voinova VY, Lagarkova MA, Pomerantseva EA, Musatova EV, Smirnov AV, Smirnova AV, Stoklitskaya DS, Arefieva TI, Larina DA, Nikitina TV, Pristyazhnyuk IE. Ultrastructural Abnormalities in Induced Pluripotent Stem Cell-Derived Neural Stem Cells and Neurons of Two Cohen Syndrome Patients. Cells 2023; 12:2702. [PMID: 38067130 PMCID: PMC10705360 DOI: 10.3390/cells12232702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Cohen syndrome is an autosomal recessive disorder caused by VPS13B (COH1) gene mutations. This syndrome is significantly underdiagnosed and is characterized by intellectual disability, microcephaly, autistic symptoms, hypotension, myopia, retinal dystrophy, neutropenia, and obesity. VPS13B regulates intracellular membrane transport and supports the Golgi apparatus structure, which is critical for neuron formation. We generated induced pluripotent stem cells from two patients with pronounced manifestations of Cohen syndrome and differentiated them into neural stem cells and neurons. Using transmission electron microscopy, we documented multiple new ultrastructural changes associated with Cohen syndrome in the neuronal cells. We discovered considerable disturbances in the structure of some organelles: Golgi apparatus fragmentation and swelling, endoplasmic reticulum structural reorganization, mitochondrial defects, and the accumulation of large autophagosomes with undigested contents. These abnormalities underline the ultrastructural similarity of Cohen syndrome to many neurodegenerative diseases. The cell models that we developed based on patient-specific induced pluripotent stem cells can serve to uncover not only neurodegenerative processes, but the causes of intellectual disability in general.
Collapse
Affiliation(s)
- Tatiana A Shnaider
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anna A Khabarova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Ksenia N Morozova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anastasia M Yunusova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sophia A Yakovleva
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anastasia S Chvileva
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ekaterina R Wolf
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena V Kiseleva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena V Grigor'eva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Viktori Y Voinova
- Clinical Research Institute of Pediatrics Named after Acad. Y.E. Veltischev, Moscow 125412, Russia
- The Mental Health Research Center, Moscow 115522, Russia
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | | | | | - Alexander V Smirnov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anna V Smirnova
- Clinical Research Institute of Pediatrics Named after Acad. Y.E. Veltischev, Moscow 125412, Russia
| | | | - Tatiana I Arefieva
- National Medical Research Centre of Cardiology Named after Academician E. I. Chazov., Moscow 121552, Russia
| | - Daria A Larina
- Clinical Research Institute of Pediatrics Named after Acad. Y.E. Veltischev, Moscow 125412, Russia
| | - Tatiana V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk 634050, Russia
| | - Inna E Pristyazhnyuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Lo CH, Zeng J. Defective lysosomal acidification: a new prognostic marker and therapeutic target for neurodegenerative diseases. Transl Neurodegener 2023; 12:29. [PMID: 37287072 PMCID: PMC10249214 DOI: 10.1186/s40035-023-00362-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023] Open
Abstract
Lysosomal acidification dysfunction has been implicated as a key driving factor in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Multiple genetic factors have been linked to lysosomal de-acidification through impairing the vacuolar-type ATPase and ion channels on the organelle membrane. Similar lysosomal abnormalities are also present in sporadic forms of neurodegeneration, although the underlying pathogenic mechanisms are unclear and remain to be investigated. Importantly, recent studies have revealed early occurrence of lysosomal acidification impairment before the onset of neurodegeneration and late-stage pathology. However, there is a lack of methods for organelle pH monitoring in vivo and a dearth of lysosome-acidifying therapeutic agents. Here, we summarize and present evidence for the notion of defective lysosomal acidification as an early indicator of neurodegeneration and urge the critical need for technological advancement in developing tools for lysosomal pH monitoring and detection both in vivo and for clinical applications. We further discuss current preclinical pharmacological agents that modulate lysosomal acidification, including small molecules and nanomedicine, and their potential clinical translation into lysosome-targeting therapies. Both timely detection of lysosomal dysfunction and development of therapeutics that restore lysosomal function represent paradigm shifts in targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
| | - Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
| |
Collapse
|
4
|
Daniels BP, Oberst A. Outcomes of RIP Kinase Signaling During Neuroinvasive Viral Infection. Curr Top Microbiol Immunol 2023; 442:155-174. [PMID: 32253569 PMCID: PMC7781604 DOI: 10.1007/82_2020_204] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuroinvasive viral diseases are a considerable and growing burden on global public health. Despite this, these infections remain poorly understood, and the molecular mechanisms that govern protective versus pathological neuroinflammatory responses to infection are a matter of intense investigation. Recent evidence suggests that necroptosis, an immunogenic form of programmed cell death, may contribute to the pathogenesis of viral encephalitis. However, the receptor-interacting protein (RIP) kinases that coordinate necroptosis, RIPK1 and RIPK3, also appear to have unexpected, cell death-independent functions in the central nervous system (CNS) that promote beneficial neuroinflammation during neuroinvasive infection. Here, we review the emerging evidence in this field, with additional discussion of recent work examining roles for RIPK signaling and necroptosis during noninfectious pathologies of the CNS, as these studies provide important additional insight into the potential for specialized neuroimmune functions for the RIP kinases.
Collapse
Affiliation(s)
- Brian P Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
5
|
Chen H, Yu Z, Ren S, Qiu Y. Fluorescent Probes Design Strategies for Imaging Mitochondria and Lysosomes. Front Pharmacol 2022; 13:915609. [PMID: 35928260 PMCID: PMC9343947 DOI: 10.3389/fphar.2022.915609] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022] Open
Abstract
Modern cellular biology faces several major obstacles, such as the determination of the concentration of active sites corresponding to chemical substances. In recent years, the popular small-molecule fluorescent probes have completely changed the understanding of cellular biology through their high sensitivity toward specific substances in various organisms. Mitochondria and lysosomes are significant organelles in various organisms, and their interaction is closely related to the development of various diseases. The investigation of their structure and function has gathered tremendous attention from biologists. The advanced nanoscopic technologies have replaced the diffraction-limited conventional imaging techniques and have been developed to explore the unknown aspects of mitochondria and lysosomes with a sub-diffraction resolution. Recent progress in this field has yielded several excellent mitochondria- and lysosome-targeted fluorescent probes, some of which have demonstrated significant biological applications. Herein, we review studies that have been carried out to date and suggest future research directions that will harness the considerable potential of mitochondria- and lysosome-targeted fluorescent probes.
Collapse
Affiliation(s)
- Huimin Chen
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Biochemistry, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Zhenjie Yu
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shiwei Ren
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuyu Qiu
- Department of Biochemistry, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| |
Collapse
|
6
|
Rios JJ, Denton K, Yu H, Manickam K, Garner S, Russell J, Ludwig S, Rosenfeld JA, Liu P, Munch J, Sucato DJ, Beutler B, Wise CA. Saturation mutagenesis defines novel mouse models of severe spine deformity. Dis Model Mech 2021; 14:269194. [PMID: 34142127 PMCID: PMC8246263 DOI: 10.1242/dmm.048901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
Embryonic formation and patterning of the vertebrate spinal column requires coordination of many molecular cues. After birth, the integrity of the spine is impacted by developmental abnormalities of the skeletal, muscular and nervous systems, which may result in deformities, such as kyphosis and scoliosis. We sought to identify novel genetic mouse models of severe spine deformity by implementing in vivo skeletal radiography as part of a high-throughput saturation mutagenesis screen. We report selected examples of genetic mouse models following radiographic screening of 54,497 mice from 1275 pedigrees. An estimated 30.44% of autosomal genes harbored predicted damaging alleles examined twice or more in the homozygous state. Of the 1275 pedigrees screened, 7.4% presented with severe spine deformity developing in multiple mice, and of these, meiotic mapping implicated N-ethyl-N-nitrosourea alleles in 21% of pedigrees. Our study provides proof of concept that saturation mutagenesis is capable of discovering novel mouse models of human disease, including conditions with skeletal, neural and neuromuscular pathologies. Furthermore, we report a mouse model of skeletal disease, including severe spine deformity, caused by recessive mutation in Scube3. By integrating results with a human clinical exome database, we identified a patient with undiagnosed skeletal disease who harbored recessive mutations in SCUBE3, and we demonstrated that disease-associated mutations are associated with reduced transactivation of Smad signaling in vitro. All radiographic results and mouse models are made publicly available through the Mutagenetix online database with the goal of advancing understanding of spine development and discovering novel mouse models of human disease. Summary: We report selected mouse models of spine deformity following mutagenesis across 30% of autosomal genes, results of which are made publicly available to advance understanding of spine development and disease.
Collapse
Affiliation(s)
- Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA.,Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Orthopaedic Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kristin Denton
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Hao Yu
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Kandamurugu Manickam
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Shannon Garner
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Jamie Russell
- Center for the Genetics of Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jill A Rosenfeld
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Baylor Genetics, Houston, TX 77021, USA
| | - Pengfei Liu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Baylor Genetics, Houston, TX 77021, USA
| | - Jake Munch
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Daniel J Sucato
- Department of Orthopaedics, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA.,Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Orthopaedic Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Quinville BM, Deschenes NM, Ryckman AE, Walia JS. A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis. Int J Mol Sci 2021; 22:ijms22115793. [PMID: 34071409 PMCID: PMC8198874 DOI: 10.3390/ijms22115793] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids are a specialized group of lipids essential to the composition of the plasma membrane of many cell types; however, they are primarily localized within the nervous system. The amphipathic properties of sphingolipids enable their participation in a variety of intricate metabolic pathways. Sphingoid bases are the building blocks for all sphingolipid derivatives, comprising a complex class of lipids. The biosynthesis and catabolism of these lipids play an integral role in small- and large-scale body functions, including participation in membrane domains and signalling; cell proliferation, death, migration, and invasiveness; inflammation; and central nervous system development. Recently, sphingolipids have become the focus of several fields of research in the medical and biological sciences, as these bioactive lipids have been identified as potent signalling and messenger molecules. Sphingolipids are now being exploited as therapeutic targets for several pathologies. Here we present a comprehensive review of the structure and metabolism of sphingolipids and their many functional roles within the cell. In addition, we highlight the role of sphingolipids in several pathologies, including inflammatory disease, cystic fibrosis, cancer, Alzheimer’s and Parkinson’s disease, and lysosomal storage disorders.
Collapse
|
8
|
Cicardi ME, Marrone L, Azzouz M, Trotti D. Proteostatic imbalance and protein spreading in amyotrophic lateral sclerosis. EMBO J 2021; 40:e106389. [PMID: 33792056 PMCID: PMC8126909 DOI: 10.15252/embj.2020106389] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/18/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder whose exact causative mechanisms are still under intense investigation. Several lines of evidence suggest that the anatomical and temporal propagation of pathological protein species along the neural axis could be among the main driving mechanisms for the fast and irreversible progression of ALS pathology. Many ALS-associated proteins form intracellular aggregates as a result of their intrinsic prion-like properties and/or following impairment of the protein quality control systems. During the disease course, these mutated proteins and aberrant peptides are released in the extracellular milieu as soluble or aggregated forms through a variety of mechanisms. Internalization by recipient cells may seed further aggregation and amplify existing proteostatic imbalances, thus triggering a vicious cycle that propagates pathology in vulnerable cells, such as motor neurons and other susceptible neuronal subtypes. Here, we provide an in-depth review of ALS pathology with a particular focus on the disease mechanisms of seeding and transmission of the most common ALS-associated proteins, including SOD1, FUS, TDP-43, and C9orf72-linked dipeptide repeats. For each of these proteins, we report historical, biochemical, and pathological evidence of their behaviors in ALS. We further discuss the possibility to harness pathological proteins as biomarkers and reflect on the implications of these findings for future research.
Collapse
Affiliation(s)
- Maria Elena Cicardi
- Department of NeuroscienceWeinberg ALS CenterVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Lara Marrone
- Department of NeuroscienceSheffield Institute for Translational Neuroscience (SITraN)University of SheffieldSheffieldUK
| | - Mimoun Azzouz
- Department of NeuroscienceSheffield Institute for Translational Neuroscience (SITraN)University of SheffieldSheffieldUK
| | - Davide Trotti
- Department of NeuroscienceWeinberg ALS CenterVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
9
|
Bassal M, Liu J, Jankowiak W, Saftig P, Bartsch U. Rapid and Progressive Loss of Multiple Retinal Cell Types in Cathepsin D-Deficient Mice-An Animal Model of CLN10 Disease. Cells 2021; 10:696. [PMID: 33800998 PMCID: PMC8003850 DOI: 10.3390/cells10030696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Vision loss is among the characteristic symptoms of neuronal ceroid lipofuscinosis (NCL), a fatal neurodegenerative lysosomal storage disorder. Here, we performed an in-depth analysis of retinal degeneration at the molecular and cellular levels in mice lacking the lysosomal aspartyl protease cathepsin D, an animal model of congenital CLN10 disease. We observed an early-onset accumulation of storage material as indicated by elevated levels of saposin D and subunit C of the mitochondrial ATP synthase. The accumulation of storage material was accompanied by reactive astrogliosis and microgliosis, elevated expression of the autophagy marker sequestosome 1/p62 and a dysregulated expression of several lysosomal proteins. The number of cone photoreceptor cells was reduced as early as at postnatal day 5. At the end stage of the disease, the outer nuclear layer was almost atrophied, and all cones were lost. A significant loss of rod and cone bipolar cells, amacrine cells and ganglion cells was found at advanced stages of the disease. Results demonstrate that cathepsin D deficiency results in an early-onset and rapidly progressing retinal dystrophy that involves all retinal cell types. Data of the present study will serve as a reference for studies aimed at developing treatments for retinal degeneration in CLN10 disease.
Collapse
Affiliation(s)
- Mahmoud Bassal
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (J.L.); (W.J.)
| | - Junling Liu
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (J.L.); (W.J.)
| | - Wanda Jankowiak
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (J.L.); (W.J.)
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany;
| | - Udo Bartsch
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (J.L.); (W.J.)
| |
Collapse
|
10
|
Visualisation of cholesterol and ganglioside GM1 in zebrafish models of Niemann-Pick type C disease and Smith-Lemli-Opitz syndrome using light sheet microscopy. Histochem Cell Biol 2020; 154:565-578. [PMID: 33079236 PMCID: PMC7609433 DOI: 10.1007/s00418-020-01925-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/20/2022]
Abstract
Lysosomal storage diseases are the most common cause of neurodegeneration in children. They are characterised at the cellular level by the accumulation of storage material within lysosomes. There are very limited therapeutic options, and the search for novel therapies has been hampered as few good small animal models are available. Here, we describe the use of light sheet microscopy to assess lipid storage in drug and morpholino induced zebrafish models of two diseases of cholesterol homeostasis with lysosomal dysfunction: First, Niemann–Pick type C disease (NPC), caused by mutations in the lysosomal transmembrane protein NPC1, characterised by intralysosomal accumulation of cholesterol and several other lipids. Second, Smith–Lemli–Opitz syndrome (SLOS), caused by mutations in 7-dehydrocholesterol reductase, which catalyses the last step of cholesterol biosynthesis and is characterised by intralysosomal accumulation of dietary cholesterol. This is the first description of a zebrafish SLOS model. We find that zebrafish accurately model lysosomal storage and disease-specific phenotypes in both diseases. Increased cholesterol and ganglioside GM1 were observed in sections taken from NPC model fish, and decreased cholesterol in SLOS model fish, but these are of limited value as resolution is poor, and accurate anatomical comparisons difficult. Using light sheet microscopy, we were able to observe lipid changes in much greater detail and identified an unexpected accumulation of ganglioside GM1 in SLOS model fish. Our data demonstrate, for the first time in zebrafish, the immense potential that light sheet microscopy has in aiding the resolution of studies involving lysosomal and lipid disorders.
Collapse
|
11
|
Wiersma VI, Hoozemans JJM, Scheper W. Untangling the origin and function of granulovacuolar degeneration bodies in neurodegenerative proteinopathies. Acta Neuropathol Commun 2020; 8:153. [PMID: 32883341 PMCID: PMC7469111 DOI: 10.1186/s40478-020-00996-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
In the brains of tauopathy patients, tau pathology coincides with the presence of granulovacuolar degeneration bodies (GVBs) both at the regional and cellular level. Recently, it was shown that intracellular tau pathology causes GVB formation in experimental models thus explaining the strong correlation between these neuropathological hallmarks in the human brain. These novel models of GVB formation provide opportunities for future research into GVB biology, but also urge reevaluation of previous post-mortem observations. Here, we review neuropathological data on GVBs in tauopathies and other neurodegenerative proteinopathies. We discuss the possibility that intracellular aggregates composed of proteins other than tau are also able to induce GVB formation. Furthermore, the potential mechanisms of GVB formation and the downstream functional implications hereof are outlined in view of the current available data. In addition, we provide guidelines for the identification of GVBs in tissue and cell models that will help to facilitate and streamline research towards the elucidation of the role of these enigmatic and understudied structures in neurodegeneration.
Collapse
|
12
|
Haney MJ, Zhao Y, Jin YS, Batrakova EV. Extracellular Vesicles as Drug Carriers for Enzyme Replacement Therapy to Treat CLN2 Batten Disease: Optimization of Drug Administration Routes. Cells 2020; 9:cells9051273. [PMID: 32443895 PMCID: PMC7290714 DOI: 10.3390/cells9051273] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
CLN2 Batten disease (BD) is one of a broad class of lysosomal storage disorders that is characterized by the deficiency of lysosomal enzyme, TPP1, resulting in a build-up of toxic intracellular storage material in all organs and subsequent damage. A major challenge for BD therapeutics is delivery of enzymatically active TPP1 to the brain to attenuate progressive loss of neurological functions. To accomplish this daunting task, we propose the harnessing of naturally occurring nanoparticles, extracellular vesicles (EVs). Herein, we incorporated TPP1 into EVs released by immune cells, macrophages, and examined biodistribution and therapeutic efficacy of EV-TPP1 in BD mouse model, using various routes of administration. Administration through intrathecal and intranasal routes resulted in high TPP1 accumulation in the brain, decreased neurodegeneration and neuroinflammation, and reduced aggregation of lysosomal storage material in BD mouse model, CLN2 knock-out mice. Parenteral intravenous and intraperitoneal administrations led to TPP1 delivery to peripheral organs: liver, kidney, spleen, and lungs. A combination of intrathecal and intraperitoneal EV-TPP1 injections significantly prolonged lifespan in BD mice. Overall, the optimization of treatment strategies is crucial for successful applications of EVs-based therapeutics for BD.
Collapse
Affiliation(s)
- Matthew J. Haney
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.J.H.); (Y.Z.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Yuling Zhao
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.J.H.); (Y.Z.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Yeon S. Jin
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Elena V. Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.J.H.); (Y.Z.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Correspondence: ; Tel.: +919-537-3712
| |
Collapse
|
13
|
Biogenesis of the Spacious Coxiella-Containing Vacuole Depends on Host Transcription Factors TFEB and TFE3. Infect Immun 2020; 88:IAI.00534-19. [PMID: 31818957 DOI: 10.1128/iai.00534-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/13/2019] [Indexed: 01/05/2023] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterial pathogen that replicates inside the lysosome-derived Coxiella-containing vacuole (CCV). To establish this unique niche, C. burnetii requires the Dot/Icm type IV secretion system (T4SS) to translocate a cohort of effector proteins into the host cell, which modulate multiple cellular processes. To characterize the host-pathogen interactions that occur during C. burnetii infection, stable-isotope labeling by amino acids in cell culture (SILAC)-based proteomics was used to identify changes in the host proteome during infection of a human-derived macrophage cell line. These data revealed that the abundances of many proteins involved in host cell autophagy and lysosome biogenesis were increased in infected cells. Thus, the role of the host transcription factors TFEB and TFE3, which regulate the expression of a network of genes involved in autophagy and lysosomal biogenesis, were examined in the context of C. burnetii infection. During infection with C. burnetii, both TFEB and TFE3 were activated, as demonstrated by the transport of these proteins from the cytoplasm into the nucleus. The nuclear translocation of these transcription factors was shown to be dependent on the T4SS, as a Dot/Icm mutant showed reduced nuclear translocation of TFEB and TFE3. This was supported by the observation that blocking bacterial translation with chloramphenicol resulted in the movement of TFEB and TFE3 back into the cytoplasm. Silencing of the TFEB and TFE3 genes, alone or in combination, significantly reduced the size of the CCV, which indicates that these host transcription factors facilitate the expansion and maintenance of the organelle that supports C. burnetii intracellular replication.
Collapse
|
14
|
Ding L, Goossens GH, Oligschlaeger Y, Houben T, Blaak EE, Shiri-Sverdlov R. Plasma cathepsin D activity is negatively associated with hepatic insulin sensitivity in overweight and obese humans. Diabetologia 2020; 63:374-384. [PMID: 31690989 PMCID: PMC6946744 DOI: 10.1007/s00125-019-05025-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/13/2019] [Indexed: 01/19/2023]
Abstract
AIMS/HYPOTHESIS Insulin resistance in skeletal muscle and liver plays a major role in the pathophysiology of type 2 diabetes. The hyperinsulinaemic-euglycaemic clamp is considered the gold standard for assessing peripheral and hepatic insulin sensitivity, yet it is a costly and labour-intensive procedure. Therefore, easy-to-measure, cost-effective approaches to determine insulin sensitivity are needed to enable organ-specific interventions. Recently, evidence emerged that plasma cathepsin D (CTSD) is associated with insulin sensitivity and hepatic inflammation. Here, we aimed to investigate whether plasma CTSD is associated with hepatic and/or peripheral insulin sensitivity in humans. METHODS As part of two large clinical trials (one designed to investigate the effects of antibiotics, and the other to investigate polyphenol supplementation, on insulin sensitivity), 94 overweight and obese adults (BMI 25-35 kg/m2) previously underwent a two-step hyperinsulinaemic-euglycaemic clamp (using [6,6-2H2]glucose) to assess hepatic and peripheral insulin sensitivity (per cent suppression of endogenous glucose output during the low-insulin-infusion step, and the rate of glucose disappearance during high-insulin infusion [40 mU/(m2 × min)], respectively). In this secondary analysis, plasma CTSD levels, CTSD activity and plasma inflammatory cytokines were measured. RESULTS Plasma CTSD levels were positively associated with the proinflammatory cytokines IL-8 and TNF-α (IL-8: standardised β = 0.495, p < 0.001; TNF-α: standardised β = 0.264, p = 0.012). Plasma CTSD activity was negatively associated with hepatic insulin sensitivity (standardised β = -0.206, p = 0.043), independent of age, sex, BMI and waist circumference, but it was not associated with peripheral insulin sensitivity. However, plasma IL-8 and TNF-α were not significantly correlated with hepatic insulin sensitivity. CONCLUSIONS/INTERPRETATION We demonstrate that plasma CTSD activity, but not systemic inflammation, is inversely related to hepatic insulin sensitivity, suggesting that plasma CTSD activity may be used as a non-invasive marker for hepatic insulin sensitivity in humans.
Collapse
Affiliation(s)
- Lingling Ding
- Department of Molecular Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Yvonne Oligschlaeger
- Department of Molecular Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Tom Houben
- Department of Molecular Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands.
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands.
| |
Collapse
|
15
|
Kerner-Rossi M, Gulinello M, Walkley S, Dobrenis K. Pathobiology of Christianson syndrome: Linking disrupted endosomal-lysosomal function with intellectual disability and sensory impairments. Neurobiol Learn Mem 2019; 165:106867. [PMID: 29772390 PMCID: PMC6235725 DOI: 10.1016/j.nlm.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 11/18/2022]
Abstract
Christianson syndrome (CS) is a recently described rare neurogenetic disorder presenting early in life with a broad range of neurological symptoms, including severe intellectual disability with nonverbal status, hyperactivity, epilepsy, and progressive ataxia due to cerebellar atrophy. CS is due to loss-of-function mutations in SLC9A6, encoding NHE6, a sodium-hydrogen exchanger involved in the regulation of early endosomal pH. Here we review what is currently known about the neuropathogenesis of CS, based on insights from experimental models, which to date have focused on mechanisms that affect the CNS, specifically the brain. In addition, parental reports of sensory disturbances in their children with CS, including an apparent insensitivity to pain, led us to explore sensory function and related neuropathology in Slc9a6 KO mice. We present new data showing sensory deficits in Slc9a6 KO mice, which had reduced behavioral responses to noxious thermal and mechanical stimuli (Hargreaves and Von Frey assays, respectively) compared to wild type (WT) littermates. Immunohistochemical and ultrastructural analysis of the spinal cord and peripheral nervous system revealed intracellular accumulation of the glycosphingolipid GM2 ganglioside in KO but not WT mice. This cellular storage phenotype was most abundant in neurons of lamina I-II of the dorsal horn, a major relay site in the processing of painful stimuli. Spinal cords of KO mice also exhibited changes in astroglial and microglial populations throughout the gray matter suggestive of a neuroinflammatory process. Our findings establish the Slc9a6 KO mouse as a relevant tool for studying the sensory deficits in CS, and highlight selective vulnerabilities in relevant cell populations that may contribute to this phenotype. How NHE6 loss of function leads to such a multifaceted neurological syndrome is still undefined, and it is likely that NHE6 is involved with many cellular processes critical to normal nervous system development and function. In addition, the sensory issues exhibited by Slc9a6 KO mice, in combination with our neuropathological findings, are consistent with NHE6 loss of function impacting the entire nervous system. Sensory dysfunction in intellectually disabled individuals is challenging to assess and may impair patient safety and quality of life. Further mechanistic studies of the neurological impairments underlying CS and other genetic intellectual disability disorders must also take into account mechanisms affecting broader nervous system function in order to understand the full range of associated disabilities.
Collapse
Affiliation(s)
- Mallory Kerner-Rossi
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria Gulinello
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; IDDRC Behavioral Core Facility, Neuroscience Department, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven Walkley
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Kostantin Dobrenis
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
16
|
Sural-Fehr T, Singh H, Cantuti-Catelvetri L, Zhu H, Marshall MS, Rebiai R, Jastrzebski MJ, Givogri MI, Rasenick MM, Bongarzone ER. Inhibition of the IGF-1-PI3K-Akt-mTORC2 pathway in lipid rafts increases neuronal vulnerability in a genetic lysosomal glycosphingolipidosis. Dis Model Mech 2019; 12:dmm036590. [PMID: 31036560 PMCID: PMC6550048 DOI: 10.1242/dmm.036590] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 04/11/2019] [Indexed: 12/25/2022] Open
Abstract
Glycosphingolipid (GSL) accumulation is implicated in the neuropathology of several lysosomal conditions, such as Krabbe disease, and may also contribute to neuronal and glial dysfunction in adult-onset conditions such as Parkinson's disease, Alzheimer's disease and multiple sclerosis. GSLs accumulate in cellular membranes and disrupt their structure; however, how membrane disruption leads to cellular dysfunction remains unknown. Using authentic cellular and animal models for Krabbe disease, we provide a mechanism explaining the inactivation of lipid raft (LR)-associated IGF-1-PI3K-Akt-mTORC2, a pathway of crucial importance for neuronal function and survival. We show that psychosine, the GSL that accumulates in Krabbe disease, leads to a dose-dependent LR-mediated inhibition of this pathway by uncoupling IGF-1 receptor phosphorylation from downstream Akt activation. This occurs by interfering with the recruitment of PI3K and mTORC2 to LRs. Akt inhibition can be reversed by sustained IGF-1 stimulation, but only during a time window before psychosine accumulation reaches a threshold level. Our study shows a previously unknown connection between LR-dependent regulation of mTORC2 activity at the cell surface and a genetic neurodegenerative disease. Our results show that LR disruption by psychosine desensitizes cells to extracellular growth factors by inhibiting signal transmission from the plasma membrane to intracellular compartments. This mechanism serves also as a mechanistic model to understand how alterations of the membrane architecture by the progressive accumulation of lipids undermines cell function, with potential implications in other genetic sphingolipidoses and adult neurodegenerative conditions. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tuba Sural-Fehr
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Harinder Singh
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Hongling Zhu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Michael S Marshall
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rima Rebiai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Martin J Jastrzebski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Maria I Givogri
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark M Rasenick
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
17
|
Mao D, Lin G, Tepe B, Zuo Z, Tan KL, Senturk M, Zhang S, Arenkiel BR, Sardiello M, Bellen HJ. VAMP associated proteins are required for autophagic and lysosomal degradation by promoting a PtdIns4P-mediated endosomal pathway. Autophagy 2019; 15:1214-1233. [PMID: 30741620 DOI: 10.1080/15548627.2019.1580103] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in the ER-associated VAPB/ALS8 protein cause amyotrophic lateral sclerosis and spinal muscular atrophy. Previous studies have argued that ER stress may underlie the demise of neurons. We find that loss of VAP proteins (VAPs) leads to an accumulation of aberrant lysosomes and impairs lysosomal degradation. VAPs mediate ER to Golgi tethering and their loss may affect phosphatidylinositol-4-phosphate (PtdIns4P) transfer between these organelles. We found that loss of VAPs elevates PtdIns4P levels in the Golgi, leading to an expansion of the endosomal pool derived from the Golgi. Fusion of these endosomes with lysosomes leads to an increase in lysosomes with aberrant acidity, contents, and shape. Importantly, reducing PtdIns4P levels with a PtdIns4-kinase (PtdIns4K) inhibitor, or removing a single copy of Rab7, suppress macroautophagic/autophagic degradation defects as well as behavioral defects observed in Drosophila Vap33 mutant larvae. We propose that a failure to tether the ER to the Golgi when VAPs are lost leads to an increase in Golgi PtdIns4P levels, and an expansion of endosomes resulting in an accumulation of dysfunctional lysosomes and a failure in proper autophagic lysosomal degradation. Abbreviations: ALS: amyotrophic lateral sclerosis; CSF: cerebrospinal fluid; CERT: ceramide transfer protein; FFAT: two phenylalanines in an acidic tract; MSP: major sperm proteins; OSBP: oxysterol binding protein; PH: pleckstrin homology; PtdIns4P: phosphatidylinositol-4-phosphate; PtdIns4K: phosphatidylinositol 4-kinase; UPR: unfolded protein response; VAMP: vesicle-associated membrane protein; VAPA/B: mammalian VAPA and VAPB proteins; VAPs: VAMP-associated proteins (referring to Drosophila Vap33, and human VAPA and VAPB).
Collapse
Affiliation(s)
- Dongxue Mao
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Guang Lin
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Burak Tepe
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Zhongyuan Zuo
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Kai Li Tan
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Mumine Senturk
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Sheng Zhang
- c The Brown Foundation Institute of Molecular Medicine , University of Texas McGovern Medical School at Houston , Houston , TX , USA.,d Department of Neurobiology and Anatomy , University of Texas McGovern Medical School at Houston , Houston , TX , USA.,e Programs in Genetics & Epigenetics and Neuroscience , University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS) , Houston , TX , USA
| | - Benjamin R Arenkiel
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA.,b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,f Texas Children's Hospital , Jan and Dan Duncan Neurological Research Institute , Houston , TX , USA.,g Department of Neuroscience , Baylor College of Medicine , Houston , TX , USA
| | - Marco Sardiello
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,f Texas Children's Hospital , Jan and Dan Duncan Neurological Research Institute , Houston , TX , USA
| | - Hugo J Bellen
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA.,b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,f Texas Children's Hospital , Jan and Dan Duncan Neurological Research Institute , Houston , TX , USA.,g Department of Neuroscience , Baylor College of Medicine , Houston , TX , USA.,h Baylor College of Medicine , Howard Hughes Medical Institute , Houston , TX , USA
| |
Collapse
|
18
|
Marques ARA, Saftig P. Lysosomal storage disorders - challenges, concepts and avenues for therapy: beyond rare diseases. J Cell Sci 2019; 132:jcs221739. [PMID: 30651381 DOI: 10.1242/jcs.221739] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The pivotal role of lysosomes in cellular processes is increasingly appreciated. An understanding of the balanced interplay between the activity of acidic hydrolases, lysosomal membrane proteins and cytosolic proteins is required. Lysosomal storage diseases (LSDs) are characterized by disturbances in this network and by intralysosomal accumulation of substrates, often only in certain cell types. Even though our knowledge of these diseases has increased and therapies have been established, many aspects of the molecular pathology of LSDs remain obscure. This Review aims to discuss how lysosomal storage affects functions linked to lysosomes, such as membrane repair, autophagy, exocytosis, lipid homeostasis, signalling cascades and cell viability. Therapies must aim to correct lysosomal storage not only morphologically, but reverse its (patho)biochemical consequences. As different LSDs have different molecular causes, this requires custom tailoring of therapies. We will discuss the major advantages and drawbacks of current and possible future therapies for LSDs. Study of the pathological molecular mechanisms underlying these 'experiments of nature' often yields information that is relevant for other conditions found in the general population. Therefore, more common diseases may profit from a correction of impaired lysosomal function.
Collapse
Affiliation(s)
- André R A Marques
- Biochemisches Institut, Christian Albrechts-Universität Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Paul Saftig
- Biochemisches Institut, Christian Albrechts-Universität Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| |
Collapse
|
19
|
Autonomic Nervous System Dysregulation in Monozygous Twins With Nephropathic Cystinosis. Kidney Int Rep 2018; 3:1489-1496. [PMID: 30450477 PMCID: PMC6224624 DOI: 10.1016/j.ekir.2018.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Stroobants S, Wolf H, Callaerts-Vegh Z, Dierks T, Lübke T, D'Hooge R. Sensorimotor and Neurocognitive Dysfunctions Parallel Early Telencephalic Neuropathology in Fucosidosis Mice. Front Behav Neurosci 2018; 12:69. [PMID: 29706874 PMCID: PMC5906539 DOI: 10.3389/fnbeh.2018.00069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 03/27/2018] [Indexed: 11/13/2022] Open
Abstract
Fucosidosis is a lysosomal storage disorder (LSD) caused by lysosomal α-L-fucosidase deficiency. Insufficient α-L-fucosidase activity triggers accumulation of undegraded, fucosylated glycoproteins and glycolipids in various tissues. The human phenotype is heterogeneous, but progressive motor and cognitive impairments represent the most characteristic symptoms. Recently, Fuca1-deficient mice were generated by gene targeting techniques, constituting a novel animal model for human fucosidosis. These mice display widespread LSD pathology, accumulation of secondary storage material and neuroinflammation throughout the brain, as well as progressive loss of Purkinje cells. Fuca1-deficient mice and control littermates were subjected to a battery of tests detailing different aspects of motor, emotional and cognitive function. At an early stage of disease, we observed reduced exploratory activity, sensorimotor disintegration as well as impaired spatial learning and fear memory. These early markers of neurological deterioration were related to the respective stage of neuropathology using molecular genetic and immunochemical procedures. Increased expression of the lysosomal marker Lamp1 and neuroinflammation markers was observed throughout the brain, but appeared more prominent in cerebral areas in comparison to cerebellum of Fuca1-deficient mice. This is consistent with impaired behaviors putatively related to early disruptions of motor and cognitive circuits particularly involving cerebral cortex, basal ganglia, and hippocampus. Thus, Fuca1-deficient mice represent a practical and promising fucosidosis model, which can be utilized for pathogenetic and therapeutic studies.
Collapse
Affiliation(s)
- Stijn Stroobants
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,mINT Behavioral Phenotyping Facility, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Heike Wolf
- Biochemistry I, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Zsuzsanna Callaerts-Vegh
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,mINT Behavioral Phenotyping Facility, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Thomas Dierks
- Biochemistry I, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Torben Lübke
- Biochemistry I, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,mINT Behavioral Phenotyping Facility, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Deprez MA, Eskes E, Wilms T, Ludovico P, Winderickx J. pH homeostasis links the nutrient sensing PKA/TORC1/Sch9 ménage-à-trois to stress tolerance and longevity. MICROBIAL CELL 2018; 5:119-136. [PMID: 29487859 PMCID: PMC5826700 DOI: 10.15698/mic2018.03.618] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The plasma membrane H+-ATPase Pma1 and the vacuolar V-ATPase act in close harmony to tightly control pH homeostasis, which is essential for a vast number of physiological processes. As these main two regulators of pH are responsive to the nutritional status of the cell, it seems evident that pH homeostasis acts in conjunction with nutrient-induced signalling pathways. Indeed, both PKA and the TORC1-Sch9 axis influence the proton pumping activity of the V-ATPase and possibly also of Pma1. In addition, it recently became clear that the proton acts as a second messenger to signal glucose availability via the V-ATPase to PKA and TORC1-Sch9. Given the prominent role of nutrient signalling in longevity, it is not surprising that pH homeostasis has been linked to ageing and longevity as well. A first indication is provided by acetic acid, whose uptake by the cell induces toxicity and affects longevity. Secondly, vacuolar acidity has been linked to autophagic processes, including mitophagy. In agreement with this, a decline in vacuolar acidity was shown to induce mitochondrial dysfunction and shorten lifespan. In addition, the asymmetric inheritance of Pma1 has been associated with replicative ageing and this again links to repercussions on vacuolar pH. Taken together, accumulating evidence indicates that pH homeostasis plays a prominent role in the determination of ageing and longevity, thereby providing new perspectives and avenues to explore the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Elja Eskes
- Functional Biology, KU Leuven, Leuven, Belgium
| | | | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | |
Collapse
|
22
|
Rajakumar T, Munkacsi AB, Sturley SL. Exacerbating and reversing lysosomal storage diseases: from yeast to humans. MICROBIAL CELL 2017; 4:278-293. [PMID: 28913343 PMCID: PMC5597791 DOI: 10.15698/mic2017.09.588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lysosomal storage diseases (LSDs) arise from monogenic deficiencies in lysosomal proteins and pathways and are characterized by a tissue-wide accumulation of a vast variety of macromolecules, normally specific to each genetic lesion. Strategies for treatment of LSDs commonly depend on reduction of the offending metabolite(s) by substrate depletion or enzyme replacement. However, at least 44 of the ~50 LSDs are currently recalcitrant to intervention. Murine models have provided significant insights into our understanding of many LSD mechanisms; however, these systems do not readily permit phenotypic screening of compound libraries, or the establishment of genetic or gene-environment interaction networks. Many of the genes causing LSDs are evolutionarily conserved, thus facilitating the application of models system to provide additional insight into LSDs. Here, we review the utility of yeast models of 3 LSDs: Batten disease, cystinosis, and Niemann-Pick type C disease. We will focus on the translation of research from yeast models into human patients suffering from these LSDs. We will also discuss the use of yeast models to investigate the penetrance of LSDs, such as Niemann-Pick type C disease, into more prevalent syndromes including viral infection and obesity.
Collapse
Affiliation(s)
- Tamayanthi Rajakumar
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand 6012
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand 6012.,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand 6012
| | - Stephen L Sturley
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
23
|
Abstract
Eukaryotes use autophagy as a mechanism for maintaining cellular homeostasis by degrading and recycling organelles and proteins. This process assists in the proliferation and survival of advanced cancers. There is mounting preclinical evidence that targeting autophagy can enhance the efficacy of many cancer therapies. Hydroxychloroquine (HCQ) is the only clinically-approved autophagy inhibitor, and this systematic review focuses on HCQ use in cancer clinical trials. Preclinical trials have shown that HCQ alone and in combination therapy leads to enhancement of tumor shrinkage. This has provided the base for multiple ongoing clinical trials involving HCQ alone and in combination with other treatments. However, due to its potency, there is still a need for more potent and specific autophagy inhibitors. There are multiple autophagy inhibitors in the pre-clinical stage at various stages of development. Additional studies on the mechanism of HCQ and other autophagy inhibitors are still required to answer questions surrounding how these agents will eventually be used in the clinic.
Collapse
Affiliation(s)
- Cynthia I Chude
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, 852 BRB, 421 Curie Blvd, Philadelphia, PA 19104, USA.
| | - Ravi K Amaravadi
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, 852 BRB, 421 Curie Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|