1
|
Canzler S, Schubert K, Rolle-Kampczyk UE, Wang Z, Schreiber S, Seitz H, Mockly S, Kamp H, Haake V, Huisinga M, Bergen MV, Buesen R, Hackermüller J. Evaluating the performance of multi-omics integration: a thyroid toxicity case study. Arch Toxicol 2024:10.1007/s00204-024-03876-2. [PMID: 39441382 DOI: 10.1007/s00204-024-03876-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Multi-omics data integration has been repeatedly discussed as the way forward to more comprehensively cover the molecular responses of cells or organisms to chemical exposure in systems toxicology and regulatory risk assessment. In Canzler et al. (Arch Toxicol 94(2):371-388. https://doi.org/10.1007/s00204-020-02656-y ), we reviewed the state of the art in applying multi-omics approaches in toxicological research and chemical risk assessment. We developed best practices for the experimental design of multi-omics studies, omics data acquisition, and subsequent omics data integration. We found that multi-omics data sets for toxicological research questions were generally rare, with no data sets comprising more than two omics layers adhering to these best practices. Due to these limitations, we could not fully assess the benefits of different data integration approaches or quantitatively evaluate the contribution of various omics layers for toxicological research questions. Here, we report on a multi-omics study on thyroid toxicity that we conducted in compliance with these best practices. We induced direct and indirect thyroid toxicity through Propylthiouracil (PTU) and Phenytoin, respectively, in a 28-day plus 14-day recovery oral rat toxicity study. We collected clinical and histopathological data and six omics layers, including the long and short transcriptome, proteome, phosphoproteome, and metabolome from plasma, thyroid, and liver. We demonstrate that the multi-omics approach is superior to single-omics in detecting responses at the regulatory pathway level. We also show how combining omics data with clinical and histopathological parameters facilitates the interpretation of the data. Furthermore, we illustrate how multi-omics integration can hint at the involvement of non-coding RNAs in post-transcriptional regulation. Also, we show that multi-omics facilitates grouping, and we assess how much information individual and combinations of omics layers contribute to this approach.
Collapse
Affiliation(s)
- Sebastian Canzler
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany.
| | - Kristin Schubert
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany
| | | | - Zhipeng Wang
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany
| | - Stephan Schreiber
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany
| | - Hervé Seitz
- Institut de Génétique Humaine UMR 9002 CNRS-Université de Montpellier, 34396, Montpellier Cedex 5, France
| | - Sophie Mockly
- Institut de Génétique Humaine UMR 9002 CNRS-Université de Montpellier, 34396, Montpellier Cedex 5, France
| | - Hennicke Kamp
- BASF Metabolome Solutions GmbH, 10589, Berlin, Germany
| | - Volker Haake
- BASF Metabolome Solutions GmbH, 10589, Berlin, Germany
| | - Maike Huisinga
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany
| | - Roland Buesen
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Jörg Hackermüller
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany.
| |
Collapse
|
2
|
Faulhammer F, van Ravenzwaay B, Schnatter AR, Rooseboom M, Kamp H, Flick B, Giri V, Sperber S, Higgins LG, Penman MG, Kocabas NA. The short-term toxicity and metabolome of Benzene. Toxicol Lett 2024; 400:58-70. [PMID: 39094914 DOI: 10.1016/j.toxlet.2024.07.913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
A 14-day rat study with plasma metabolomics was conducted to evaluate the toxicity of Benzene. Wistar rats were orally administered Benzene daily at doses of 0, 300 and 1000 mg/kg bw. The study identified liver and kidneys as target organs of Benzene toxicity and found reductions in total white blood cells, absolute lymphocyte and eosinophil cell counts, and increased relative monocyte counts suggesting bone marrow as a target organ. The study also confirmed liver as a target organ using metabolomics, which showed indications of a stress reaction in rats and changes in metabolites suggestive of a metabolic disorder. The metabolomics investigations did not find any other toxicologically relevant modes of action, and the observed metabolite changes were not associated with markers for mitochondrial dysfunction. The study concludes that integration of omics technologies, such as metabolomics, in regulatory toxicity studies is possible, confirms existing knowledge and adds additional information that can be used for mechanistic understanding of observed toxicity.
Collapse
Affiliation(s)
| | | | | | - Martijn Rooseboom
- Shell Global Solution International B.V., The Hague, the Netherlands
| | | | | | | | | | - Larry G Higgins
- Lower Olefins and Aromatics Consortium Services Team, Penman Consulting bvba, Brussels, Belgium.
| | - Michael G Penman
- Lower Olefins and Aromatics Consortium Services Team, Penman Consulting bvba, Brussels, Belgium
| | | |
Collapse
|
3
|
Viant MR, Amstalden E, Athersuch T, Bouhifd M, Camuzeaux S, Crizer DM, Driemert P, Ebbels T, Ekman D, Flick B, Giri V, Gómez-Romero M, Haake V, Herold M, Kende A, Lai F, Leonards PEG, Lim PP, Lloyd GR, Mosley J, Namini C, Rice JR, Romano S, Sands C, Smith MJ, Sobanski T, Southam AD, Swindale L, van Ravenzwaay B, Walk T, Weber RJM, Zickgraf FM, Kamp H. Demonstrating the reliability of in vivo metabolomics based chemical grouping: towards best practice. Arch Toxicol 2024; 98:1111-1123. [PMID: 38368582 PMCID: PMC10944399 DOI: 10.1007/s00204-024-03680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/19/2024]
Abstract
While grouping/read-across is widely used to fill data gaps, chemical registration dossiers are often rejected due to weak category justifications based on structural similarity only. Metabolomics provides a route to robust chemical categories via evidence of shared molecular effects across source and target substances. To gain international acceptance, this approach must demonstrate high reliability, and best-practice guidance is required. The MetAbolomics ring Trial for CHemical groupING (MATCHING), comprising six industrial, government and academic ring-trial partners, evaluated inter-laboratory reproducibility and worked towards best-practice. An independent team selected eight substances (WY-14643, 4-chloro-3-nitroaniline, 17α-methyl-testosterone, trenbolone, aniline, dichlorprop-p, 2-chloroaniline, fenofibrate); ring-trial partners were blinded to their identities and modes-of-action. Plasma samples were derived from 28-day rat tests (two doses per substance), aliquoted, and distributed to partners. Each partner applied their preferred liquid chromatography-mass spectrometry (LC-MS) metabolomics workflows to acquire, process, quality assess, statistically analyze and report their grouping results to the European Chemicals Agency, to ensure the blinding conditions of the ring trial. Five of six partners, whose metabolomics datasets passed quality control, correctly identified the grouping of eight test substances into three categories, for both male and female rats. Strikingly, this was achieved even though a range of metabolomics approaches were used. Through assessing intrastudy quality-control samples, the sixth partner observed high technical variation and was unable to group the substances. By comparing workflows, we conclude that some heterogeneity in metabolomics methods is not detrimental to consistent grouping, and that assessing data quality prior to grouping is essential. We recommend development of international guidance for quality-control acceptance criteria. This study demonstrates the reliability of metabolomics for chemical grouping and works towards best-practice.
Collapse
Affiliation(s)
- Mark R Viant
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - E Amstalden
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - T Athersuch
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - M Bouhifd
- European Chemicals Agency, Telakkakatu 6, FI-00121, Helsinki, Finland
| | - S Camuzeaux
- Department of Metabolism, Digestion and Reproduction, National Phenome Centre, Imperial College London, London, W12 0NN, UK
| | - D M Crizer
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - P Driemert
- BASF Metabolome Solutions GmbH, Tegeler Weg 33, 10589, Berlin, Germany
| | - T Ebbels
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - D Ekman
- Center for Environmental Measurement and Modeling, Environmental Protection Agency, Athens, GA, 30605, USA
| | - B Flick
- BASF SE, Carl-Bosch-Str 38, 67056, Ludwigshafen, Germany
- NUVISAN ICB GmbH, Toxicology, 13353, Berlin, Germany
| | - V Giri
- BASF SE, Carl-Bosch-Str 38, 67056, Ludwigshafen, Germany
| | - M Gómez-Romero
- Department of Metabolism, Digestion and Reproduction, National Phenome Centre, Imperial College London, London, W12 0NN, UK
| | - V Haake
- BASF Metabolome Solutions GmbH, Tegeler Weg 33, 10589, Berlin, Germany
| | - M Herold
- BASF Metabolome Solutions GmbH, Tegeler Weg 33, 10589, Berlin, Germany
| | - A Kende
- Syngenta, Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - F Lai
- Syngenta, Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - P E G Leonards
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - P P Lim
- Syngenta, Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - G R Lloyd
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - J Mosley
- Center for Environmental Measurement and Modeling, Environmental Protection Agency, Athens, GA, 30605, USA
| | - C Namini
- Center for Environmental Measurement and Modeling, Environmental Protection Agency, Athens, GA, 30605, USA
| | - J R Rice
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - S Romano
- Center for Environmental Measurement and Modeling, Environmental Protection Agency, Athens, GA, 30605, USA
| | - C Sands
- Department of Metabolism, Digestion and Reproduction, National Phenome Centre, Imperial College London, London, W12 0NN, UK
| | - M J Smith
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - T Sobanski
- European Chemicals Agency, Telakkakatu 6, FI-00121, Helsinki, Finland
| | - A D Southam
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - L Swindale
- Syngenta, Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - B van Ravenzwaay
- BASF SE, Carl-Bosch-Str 38, 67056, Ludwigshafen, Germany
- Environmental Sciences Consulting, 67122, Altrip, Germany
| | - T Walk
- BASF Metabolome Solutions GmbH, Tegeler Weg 33, 10589, Berlin, Germany
| | - R J M Weber
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - F M Zickgraf
- BASF SE, Carl-Bosch-Str 38, 67056, Ludwigshafen, Germany
| | - H Kamp
- BASF Metabolome Solutions GmbH, Tegeler Weg 33, 10589, Berlin, Germany
| |
Collapse
|
4
|
Kamp H, Kocabas NA, Faulhammer F, Synhaeve N, Rushton E, Flick B, Giri V, Sperber S, Higgins LG, Penman MG, van Ravenzwaay B, Rooseboom M. Utility of in vivo metabolomics to support read-across for UVCB substances under REACH. Arch Toxicol 2024; 98:755-768. [PMID: 38265474 PMCID: PMC10861390 DOI: 10.1007/s00204-023-03638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 01/25/2024]
Abstract
Structure-based grouping of chemicals for targeted testing and read-across is an efficient way to reduce resources and animal usage. For substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs), structure-based grouping is virtually impossible. Biology-based approaches such as metabolomics could provide a solution. Here, 15 steam-cracked distillates, registered in the EU through the Lower Olefins Aromatics Reach Consortium (LOA), as well as six of the major substance constituents, were tested in a 14-day rat oral gavage study, in line with the fundamental elements of the OECD 407 guideline, in combination with plasma metabolomics. Beyond signs of clinical toxicity, reduced body weight (gain), and food consumption, pathological investigations demonstrated the liver, thyroid, kidneys (males only), and hematological system to be the target organs. These targets were confirmed by metabolome pattern recognition, with no additional targets being identified. While classical toxicological parameters did not allow for a clear distinction between the substances, univariate and multivariate statistical analysis of the respective metabolomes allowed for the identification of several subclusters of biologically most similar substances. These groups were partly associated with the dominant (> 50%) constituents of these UVCBs, i.e., indene and dicyclopentadiene. Despite minor differences in clustering results based on the two statistical analyses, a proposal can be made for the grouping of these UVCBs. Both analyses correctly clustered the chemically most similar compounds, increasing the confidence that this biological approach may provide a solution for the grouping of UVCBs.
Collapse
Affiliation(s)
- H Kamp
- BASF Metabolome Solutions GmbH, Berlin, Germany
| | | | | | | | - E Rushton
- LyondellBasell, Rotterdam, The Netherlands
| | - B Flick
- BASF SE, Ludwigshafen, Germany
- NUVISAN ICB GmbH, Toxicology, 13353, Berlin, Germany
| | - V Giri
- BASF SE, Ludwigshafen, Germany
| | | | - L G Higgins
- LOA C/O Penman Consulting Ltd, Brussels, Belgium
| | - M G Penman
- LOA C/O Penman Consulting Ltd, Brussels, Belgium
| | | | - M Rooseboom
- Shell Global Solution International B.V, The Hague, The Netherlands
| |
Collapse
|
5
|
van Ravenzwaay B, Kocabas NA, Faulhammer F, Flick B, Giri V, Sperber S, Penman MG, Higgins LG, Kamp H, Rooseboom M. The short-term toxicity and metabolome of dicyclopentadiene. Toxicol Lett 2024; 393:57-68. [PMID: 38219808 DOI: 10.1016/j.toxlet.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Dicyclopentadiene (DCPD) was investigated in a 14-day oral rat toxicity study based on the OECD 407 guideline in combination with plasma metabolomics. Wistar rats received the compound daily via gavage at dose levels of 0, 50 and 150 mg/kg bw. The high dose induced transient clinical signs of toxicity and in males only reduced body weight gain. High dose liver changes were characterized by altered clinical chemistry parameters in both sexes and pathological changes in females. In high dose males an accumulation of alpha-2 u-globulin in the kidney was noted. Comparing the DCPD metabolome with previously established specific metabolome patterns in the MetaMap® Tox data base suggested that the high dose would result in liver enzyme induction leading to increased breakdown of thyroid hormones for males and females. An indication for liver toxicity in males was also noted. Metabolomics also suggested an effect on the functionality of the adrenals in high dose males, which together with published data, is suggestive of a stress related effect in this organ. The results of the present 14-day combined toxicity and metabolome investigations were qualitatively in line with literature data from subchronic oral studies in rats with DCPD. Importantly no other types of organ toxicity, or hormone dysregulation beyond the ones associated with liver enzyme induction and stress were indicated, again in line with results of published 90-day studies. It is therefore suggested that short term "smart" studies, combining classical toxicity with 'omics technologies, could be a 2 R (refine and reduce) new approach method allowing for the reduction of in vivo toxicity testing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael G Penman
- Lower Olefins and Aromatics Consortium Services Team, Penman Consulting bvba, Brussels, Belgium
| | - Larry G Higgins
- Lower Olefins and Aromatics Consortium Services Team, Penman Consulting bvba, Brussels, Belgium.
| | | | | |
Collapse
|
6
|
Ramirez-Hincapie S, Birk B, Ternes P, Giri V, Zickgraf FM, Haake V, Herold M, Kamp H, Driemert P, Landsiedel R, Richling E, Funk-Weyer D, van Ravenzwaay B. Application of high throughput in vitro metabolomics for hepatotoxicity mode of action characterization and mechanistic-anchored point of departure derivation: a case study with nitrofurantoin. Arch Toxicol 2023; 97:2903-2917. [PMID: 37665362 PMCID: PMC10504224 DOI: 10.1007/s00204-023-03572-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023]
Abstract
Omics techniques have been increasingly recognized as promising tools for Next Generation Risk Assessment. Targeted metabolomics offer the advantage of providing readily interpretable mechanistic information about perturbed biological pathways. In this study, a high-throughput LC-MS/MS-based broad targeted metabolomics system was applied to study nitrofurantoin metabolic dynamics over time and concentration and to provide a mechanistic-anchored approach for point of departure (PoD) derivation. Upon nitrofurantoin exposure at five concentrations (7.5 µM, 15 µM, 20 µM, 30 µM and 120 µM) and four time points (3, 6, 24 and 48 h), the intracellular metabolome of HepG2 cells was evaluated. In total, 256 uniquely identified metabolites were measured, annotated, and allocated in 13 different metabolite classes. Principal component analysis (PCA) and univariate statistical analysis showed clear metabolome-based time and concentration effects. Mechanistic information evidenced the differential activation of cellular pathways indicative of early adaptive and hepatotoxic response. At low concentrations, effects were seen mainly in the energy and lipid metabolism, in the mid concentration range, the activation of the antioxidant cellular response was evidenced by increased levels of glutathione (GSH) and metabolites from the de novo GSH synthesis pathway. At the highest concentrations, the depletion of GSH, together with alternations reflective of mitochondrial impairments, were indicative of a hepatotoxic response. Finally, a metabolomics-based PoD was derived by multivariate PCA using the whole set of measured metabolites. This approach allows using the entire dataset and derive PoD that can be mechanistically anchored to established key events. Our results show the suitability of high throughput targeted metabolomics to investigate mechanisms of hepatoxicity and derive point of departures that can be linked to existing adverse outcome pathways and contribute to the development of new ones.
Collapse
Affiliation(s)
| | - Barbara Birk
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | | | - Varun Giri
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | | | | | | | | | | | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany
- Pharmacy, Pharmacology and Toxicology, Free University of Berlin, Berlin, Germany
| | - Elke Richling
- Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | | | | |
Collapse
|
7
|
Wang Z, Haange SB, Haake V, Huisinga M, Kamp H, Buesen R, Schubert K, Canzler S, Hackermüller J, Rolle-Kampczyk U, Bergen MV. Assessing the Influence of Propylthiouracil and Phenytoin on the Metabolomes of the Thyroid, Liver, and Plasma in Rats. Metabolites 2023; 13:847. [PMID: 37512556 PMCID: PMC10383188 DOI: 10.3390/metabo13070847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The thyroid hormones (THs) regulate various physiological mechanisms in mammals, such as cellular metabolism, cell structure, and membrane transport. The therapeutic drugs propylthiouracil (PTU) and phenytoin are known to induce hypothyroidism and decrease blood thyroid hormone levels. To analyze the impact of these two drugs on systemic metabolism, we focused on metabolic changes after treatment. Therefore, in a rat model, the metabolome of thyroid and liver tissue as well as from the blood plasma, after 2-week and 4-week administration of the drugs and after a following 2-week recovery phase, was investigated using targeted LC-MS/MS and GC-MS. Both drugs were tested at a low dose and a high dose. We observed decreases in THs plasma levels, and higher doses of the drugs were associated with a high decrease in TH levels. PTU administration had a more pronounced effect on TH levels than phenytoin. Both drugs had little or no influence on the metabolomes at low doses. Only PTU exhibited apparent metabolome alterations at high doses, especially concerning lipids. In plasma, acylcarnitines and triglycerides were detected at decreased levels than in the controls after 2- and 4-week exposure to the drug, while sphingomyelins and phosphatidylcholines were observed at increased levels. Interestingly, in the thyroid tissue, triglycerides were observed at increased concentrations in the 2-week exposure group to PTU, which was not observed in the 4-week exposure group and in the 4-week exposure group followed by the 2-week recovery group, suggesting an adaptation by the thyroid tissue. In the liver, no metabolites were found to have significantly changed. After the recovery phase, the thyroid, liver, and plasma metabolomic profiles showed little or no differences from the controls. In conclusion, although there were significant changes observed in several plasma metabolites in PTU/Phenytoin exposure groups, this study found that only PTU exposure led to adaptation-dependent changes in thyroid metabolites but did not affect hepatic metabolites.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Volker Haake
- BASF Metabolome Solutions GmbH, 10589 Berlin, Germany
| | - Maike Huisinga
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen, Germany
| | - Hennicke Kamp
- BASF Metabolome Solutions GmbH, 10589 Berlin, Germany
| | - Roland Buesen
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Sebastian Canzler
- Department of Computational Biology, Helmholtz-Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Jörg Hackermüller
- Department of Computational Biology, Helmholtz-Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Department of Computer Science, University of Leipzig, 04109 Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research, (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Murali A, Giri V, Zickgraf FM, Ternes P, Cameron HJ, Sperber S, Haake V, Driemert P, Kamp H, Funk-Weyer D, Sturla SJ, Rietjens IMCM, van Ravenzwaay B. Connecting Gut Microbial Diversity with Plasma Metabolome and Fecal Bile Acid Changes Induced by the Antibiotics Tobramycin and Colistin Sulfate. Chem Res Toxicol 2023; 36:598-616. [PMID: 36972423 DOI: 10.1021/acs.chemrestox.2c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The diversity of microbial species in the gut has a strong influence on health and development of the host. Further, there are indications that the variation in expression of gut bacterial metabolic enzymes is less diverse than the taxonomic profile, underlying the importance of microbiome functionality, particularly from a toxicological perspective. To address these relationships, the gut bacterial composition of Wistar rats was altered by a 28 day oral treatment with the antibiotics tobramycin or colistin sulfate. On the basis of 16S marker gene sequencing data, tobramycin was found to cause a strong reduction in the diversity and relative abundance of the microbiome, whereas colistin sulfate had only a marginal impact. Associated plasma and fecal metabolomes were characterized by targeted mass spectrometry-based profiling. The fecal metabolome of tobramycin-treated animals had a high number of significant alterations in metabolite levels compared to controls, particularly in amino acids, lipids, bile acids (BAs), carbohydrates, and energy metabolites. The accumulation of primary BAs and significant reduction of secondary BAs in the feces indicated that the microbial alterations induced by tobramycin inhibit bacterial deconjugation reactions. The plasma metabolome showed less, but still many alterations in the same metabolite groups, including reductions in indole derivatives and hippuric acid, and furthermore, despite marginal effects of colistin sulfate treatment, there were nonetheless systemic alterations also in BAs. Aside from these treatment-based differences, we also uncovered interindividual differences particularly centering on the loss of Verrucomicrobiaceae in the microbiome, but with no apparent associated metabolite alterations. Finally, by comparing the data set from this study with metabolome alterations in the MetaMapTox database, key metabolite alterations were identified as plasma biomarkers indicative of altered gut microbiomes resulting from a wide activity spectrum of antibiotics.
Collapse
Affiliation(s)
| | - Varun Giri
- BASF SE, Ludwigshafen am Rhein 67056, Rheinland-Pfalz, Germany
| | | | - Philipp Ternes
- Metanomics (BASF Metabolome Solutions) GmbH, Tegeler Weg 33, Berlin 10589, Germany
| | - Hunter James Cameron
- BASF Corporation Computational Biology (RTP), Research Triangle Park, 3500 Paramount Parkway, Morrisvile, North Carolina 27560, United States
| | - Saskia Sperber
- BASF SE, Ludwigshafen am Rhein 67056, Rheinland-Pfalz, Germany
| | - Volker Haake
- Metanomics (BASF Metabolome Solutions) GmbH, Tegeler Weg 33, Berlin 10589, Germany
| | - Peter Driemert
- Metanomics (BASF Metabolome Solutions) GmbH, Tegeler Weg 33, Berlin 10589, Germany
| | - Hennicke Kamp
- Metanomics (BASF Metabolome Solutions) GmbH, Tegeler Weg 33, Berlin 10589, Germany
| | | | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, Zurich CH 8092, Switzerland
| | | | | |
Collapse
|
9
|
Murali A, Giri V, Cameron HJ, Sperber S, Zickgraf FM, Haake V, Driemert P, Walk T, Kamp H, Rietjens IMCM, van Ravenzwaay B. Investigating the gut microbiome and metabolome following treatment with artificial sweeteners acesulfame potassium and saccharin in young adult Wistar rats. Food Chem Toxicol 2022; 165:113123. [DOI: 10.1016/j.fct.2022.113123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022]
|
10
|
Sostare E, Lawson TN, Saunders LR, Colbourne JK, Weber RJM, Sobanski T, Viant MR. OUP accepted manuscript. Toxicol Sci 2022; 186:208-220. [PMID: 35094093 PMCID: PMC8963288 DOI: 10.1093/toxsci/kfac007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Elena Sostare
- Michabo Health Science, University of Birmingham Enterprise, Birmingham Research Park, Birmingham B15 2SQ, UK
| | - Thomas N Lawson
- Michabo Health Science, University of Birmingham Enterprise, Birmingham Research Park, Birmingham B15 2SQ, UK
| | - Lucy R Saunders
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - John K Colbourne
- Michabo Health Science, University of Birmingham Enterprise, Birmingham Research Park, Birmingham B15 2SQ, UK
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ralf J M Weber
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Mark R Viant
- To whom correspondence should be addressed at Michabo Health Science, University of Birmingham Enterprise, Birmingham Research Park, Vincent Drive, Birmingham B15 2SQ, UK. E-mail:
| |
Collapse
|
11
|
Safety assessment of cosmetics by read across applied to metabolomics data of in vitro skin and liver models. Arch Toxicol 2021; 95:3303-3322. [PMID: 34459931 DOI: 10.1007/s00204-021-03136-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
As a result of the cosmetics testing ban, safety evaluations of cosmetics ingredients must now be conducted using animal-free methods. A common approach is read across, which is mainly based on structural similarities but can also be conducted using biological endpoints. Here, metabolomics was used to assess biological effects to enable a read across between a candidate cosmetic ingredient, DIV665, only studied using in vitro assays, and a structurally similar reference compound, PA102, previously investigated using traditional in vivo toxicity methods. The (1) cutaneous distribution after topical application, (2) skin metabolism, (3) liver metabolism and (4) effect on the intracellular metabolomic profiles of in vitro skin and hepatic models, SkinEthic®RHE model and HepaRG® cells were investigated. The compounds exhibited similar skin penetration and skin and liver metabolism, with small differences attributed to their physicochemical properties. The effects of both compounds on the metabolome of RHE and HepaRG® cells were similarly small, both in terms of the metabolites modulated and the magnitude of changes. The patterns of metabolome changes did not fit with any known signature relating to a mode of action known to be linked to liver toxicity e.g. modification of the Krebs cycle, urea synthesis and lipid metabolism, were more reflective of transient adaptive responses. Overall, these studies indicate that PA102 is biologically similar to DIV665, allowing read across of safety endpoints, such as in vivo sub-chronic (but not reproduction toxicity) studies, for the former to be applied to DIV665. Based on this, in the absence of animal data (which is prohibited for new chemicals), it could be concluded that DIV665 applied according to the consumer topical use scenario, is similar to PA102, and is predicted to exhibit low local skin and systemic toxicity.
Collapse
|
12
|
Kralj T, Brouwer KLR, Creek DJ. Analytical and Omics-Based Advances in the Study of Drug-Induced Liver Injury. Toxicol Sci 2021; 183:1-13. [PMID: 34086958 PMCID: PMC8502468 DOI: 10.1093/toxsci/kfab069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Drug-induced liver injury (DILI) is a significant clinical issue, affecting 1-1.5 million patients annually, and remains a major challenge during drug development-toxicity and safety concerns are the second-highest reason for drug candidate failure. The future prevalence of DILI can be minimized by developing a greater understanding of the biological mechanisms behind DILI. Both qualitative and quantitative analytical techniques are vital to characterizing and investigating DILI. In vitro assays are capable of characterizing specific aspects of a drug's hepatotoxic nature and multiplexed assays are capable of characterizing and scoring a drug's association with DILI. However, an even deeper insight into the perturbations to biological pathways involved in the mechanisms of DILI can be gained through the use of omics-based analytical techniques: genomics, transcriptomics, proteomics, and metabolomics. These omics analytical techniques can offer qualitative and quantitative insight into genetic susceptibilities to DILI, the impact of drug treatment on gene expression, and the effect on protein and metabolite abundance. This review will discuss the analytical techniques that can be applied to characterize and investigate the biological mechanisms of DILI and potential predictive biomarkers.
Collapse
Affiliation(s)
- Thomas Kralj
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7569, USA
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
13
|
Kamp H, Wahrheit J, Stinchcombe S, Walk T, Stauber F, Ravenzwaay BV. Succinate dehydrogenase inhibitors: in silico flux analysis and in vivo metabolomics investigations show no severe metabolic consequences for rats and humans. Food Chem Toxicol 2021; 150:112085. [PMID: 33636213 DOI: 10.1016/j.fct.2021.112085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 12/26/2022]
Abstract
Succinate dehydrogenase complex II inhibitors (SDHIs) are widely used fungicides since the 1960s. Recently, based on published in vitro cell viability data, potential health effects via disruption of the mitochondrial respiratory chain and tricarboxylic acid cycle have been postulated in mammalian species. As primary metabolic impact of SDH inhibition, an increase in succinate, and compensatory ATP production via glycolysis resulting in excess lactate levels was hypothesized. To investigate these hypotheses, genome-scale metabolic models of Rattus norvegicus and Homo sapiens were used for an in silico analysis of mammalian metabolism. Moreover, plasma samples from 28-day studies with the SDHIs boscalid and fluxapyroxad were subjected to metabolome analyses, to assess in vivo metabolite changes induced by SDHIs. The outcome of in silico analyses indicated that mammalian metabolic networks are robust and able to compensate different types of metabolic perturbation, e.g., partial or complete SDH inhibition. Additionally, the in silico comparison of rat and human responses suggested no noticeable differences between both species, evidencing that the rat is an appropriate testing organism for toxicity of SDHIs. Since no succinate or lactate accumulation were found in rats, such an accumulation is also not expected in humans as a result of SDHI exposure.
Collapse
Affiliation(s)
- H Kamp
- BASF SE, Ludwigshafen, Germany
| | | | | | - T Walk
- BASF Metabolome Solutions GmbH, Berlin, Germany
| | | | | |
Collapse
|
14
|
Zhu Y, Shi H, Li T, Yu J, Guo Z, Cheng J, Liu Y. A Dual Functional Nanoreactor for Synergistic Starvation and Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18309-18318. [PMID: 32233414 DOI: 10.1021/acsami.0c01039] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The combination of photodynamic therapy (PDT) and enzyme therapy is a highly desirable approach in malignant tumor therapies as it takes advantage of the spatial-controlled PDT and the effective enzyme-catalyzed bioreactions. However, it is a challenge to co-encapsulate hydrophilic enzymes and hydrophobic photosensitizers, and these two agents often interfere with each other. In this work, a protocell-like nanoreactor (GOx-MSN@MnPc-LP) has been designed for synergistic starvation therapy and PDT. In this nanoreactor, the hydrophilic glucose oxidase (GOx) is loaded in the pore of mesoporous silica nanoparticles (MSNs), while the hydrophobic manganese phthaleincyanide (MnPc) is loaded in the membrane layer of liposome. This spatial separation of two payloads protects GOx and MnPc from the cellular environment and avoids interference with each other. GOx catalyzes the oxidation of glucose, which generates hydrogen peroxide and gluconic acid, leading to the starvation therapy via glucose consumption in cancer cells, as well as the disruption of cellular redox balance. MnPc produces cytotoxic singlet oxygen under 730 nm laser irradiation, achieving PDT. The antitumor effects of the nanoreactor have been verified on tumor cells and tumor-bearing mice models. GOx-MSN@MnPc-LP efficiently inhibits tumor growth in vivo with a single treatment, indicating the robust synergy of starvation therapy and PDT treatment. This work also offers a versatile strategy for delivering hydrophilic enzymes and hydrophobic photosensitizers using a protocell-like nanoreactor for effective cancer treatment.
Collapse
Affiliation(s)
- Yang Zhu
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei 230026, P.R. China
| | - Hongdong Shi
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei 230026, P.R. China
| | - Tuanwei Li
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei 230026, P.R. China
| | - Jianing Yu
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei 230026, P.R. China
| | - Zhengxi Guo
- School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004, P.R. China
| | - Junjie Cheng
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei 230026, P.R. China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei 230026, P.R. China
| |
Collapse
|
15
|
Sperber S, Wahl M, Berger F, Kamp H, Lemke O, Starck V, Walk T, Spitzer M, Ravenzwaay B. Metabolomics as read-across tool: An example with 3-aminopropanol and 2-aminoethanol. Regul Toxicol Pharmacol 2019; 108:104442. [DOI: 10.1016/j.yrtph.2019.104442] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/06/2023]
|
16
|
Viant MR, Ebbels TMD, Beger RD, Ekman DR, Epps DJT, Kamp H, Leonards PEG, Loizou GD, MacRae JI, van Ravenzwaay B, Rocca-Serra P, Salek RM, Walk T, Weber RJM. Use cases, best practice and reporting standards for metabolomics in regulatory toxicology. Nat Commun 2019; 10:3041. [PMID: 31292445 PMCID: PMC6620295 DOI: 10.1038/s41467-019-10900-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/07/2019] [Indexed: 12/23/2022] Open
Abstract
Metabolomics is a widely used technology in academic research, yet its application to regulatory science has been limited. The most commonly cited barrier to its translation is lack of performance and reporting standards. The MEtabolomics standaRds Initiative in Toxicology (MERIT) project brings together international experts from multiple sectors to address this need. Here, we identify the most relevant applications for metabolomics in regulatory toxicology and develop best practice guidelines, performance and reporting standards for acquiring and analysing untargeted metabolomics and targeted metabolite data. We recommend that these guidelines are evaluated and implemented for several regulatory use cases.
Collapse
Affiliation(s)
- Mark R Viant
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | | | | | | | - David J T Epps
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | | | | | | - Philippe Rocca-Serra
- Oxford e-Research Centre, Department of Engineering Science, University of Oxford, Oxford, OX1 3QG, UK
| | - Reza M Salek
- International Agency for Research on Cancer, Lyon, France
| | - Tilmann Walk
- BASF Metabolome Solutions, 10589, Berlin, Germany
| | - Ralf J M Weber
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
17
|
Sun Y, Saito K, Iiji R, Saito Y. Application of Ion Chromatography Coupled with Mass Spectrometry for Human Serum and Urine Metabolomics. SLAS DISCOVERY 2019; 24:778-786. [DOI: 10.1177/2472555219850082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Biomarkers that indicate the presence or severity of organ damage caused by diseases and toxicities are useful diagnostic tools. Metabolomics platforms using chromatography coupled with mass spectrometry (MS) have been widely used for biomarker screening. In this study, we aimed to establish a novel metabolomics platform using ion chromatography coupled with MS (IC-MS) for human biofluids. We found that ethylenediaminetetraacetic acid (EDTA) plasma is not suitable for IC-MS metabolomics platforms because of the desensitization of MS. IC-MS enabled detection of 131 polar metabolites in human serum and urine from healthy volunteers. Pathway analysis demonstrated that the metabolites detectable using our platform were composed of a broad spectrum of organic acids with carboxylic moieties. These metabolites were significantly associated with pathways such as the tricarboxylic acid (TCA) cycle; glyoxylate and dicarboxylate metabolism; alanine, aspartate, and glutamate metabolism; butanoate metabolism; and the pentose phosphate pathway. Moreover, comparison of serum and urine samples showed that four metabolites (4-hydroxybutyric acid, aspartic acid, lactic acid, and γ-glutamyl glutamine) were abundant in serum, whereas 62 metabolites, including phosphoric acid, vanillylmandelic acid, and N-tiglylglycine, were abundant in urine. In addition, allantoin and uric acid were abundant in male serum, whereas no gender-associated differences were found for polar metabolites in urine. Our results demonstrate that the present established IC-MS metabolomics platform can be applied for analysis of human serum and urine as well as detection of a broad spectrum of polar metabolites in human biofluids.
Collapse
Affiliation(s)
- Yuchen Sun
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, Japan
| | - Kosuke Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, Japan
| | - Ryota Iiji
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, Japan
| | - Yoshiro Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, Japan
| |
Collapse
|
18
|
Prediction of liver toxicity and mode of action using metabolomics in vitro in HepG2 cells. Arch Toxicol 2017; 92:893-906. [PMID: 28965233 PMCID: PMC5818600 DOI: 10.1007/s00204-017-2079-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/21/2017] [Indexed: 11/17/2022]
Abstract
Liver toxicity is a leading systemic toxicity of drugs and chemicals demanding more human-relevant, high throughput, cost effective in vitro solutions. In addition to contributing to animal welfare, in vitro techniques facilitate exploring and understanding the molecular mechanisms underlying toxicity. New ‘omics technologies can provide comprehensive information on the toxicological mode of action of compounds, as well as quantitative information about the multi-parametric metabolic response of cellular systems in normal and patho-physiological conditions. Here, we combined mass-spectroscopy metabolomics with an in vitro liver toxicity model. Metabolite profiles of HepG2 cells treated with 35 test substances resulted in 1114 cell supernatants and 3556 intracellular samples analyzed by metabolomics. Control samples showed relative standard deviations of about 10–15%, while the technical replicates were at 5–10%. Importantly, this procedure revealed concentration–response effects and patterns of metabolome changes that are consistent for different liver toxicity mechanisms (liver enzyme induction/inhibition, liver toxicity and peroxisome proliferation). Our findings provide evidence that identifying organ toxicity can be achieved in a robust, reliable, human-relevant system, representing a non-animal alternative for systemic toxicology.
Collapse
|
19
|
Shi Q, Yang X, Greenhaw JJ, Salminen AT, Russotti GM, Salminen WF. Drug-Induced Liver Injury in Children: Clinical Observations, Animal Models, and Regulatory Status. Int J Toxicol 2017; 36:365-379. [PMID: 28820004 DOI: 10.1177/1091581817721675] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Drug-induced liver injury in children (cDILI) accounts for about 1% of all reported adverse drug reactions throughout all age groups, less than 10% of all clinical DILI cases, and around 20% of all acute liver failure cases in children. The overall DILI susceptibility in children has been assumed to be lower than in adults. Nevertheless, controversial evidence is emerging about children's sensitivity to DILI, with children's relative susceptibility to DILI appearing to be highly drug-specific. The culprit drugs in cDILI are similar but not identical to DILI in adults (aDILI). This is demonstrated by recent findings that a drug frequently associated with aDILI (amoxicillin/clavulanate) was rarely associated with cDILI and that the drug basiliximab caused only cDILI but not aDILI. The fatality in reported cDILI studies ranged from 4% to 31%. According to the US Food and Drug Administration-approved drugs labels, valproic acid, dactinomycin, and ampicillin appear more likely to cause cDILI. In contrast, deferasirox, isoniazid, dantrolene, and levofloxacin appear more likely to cause aDILI. Animal models have been explored to mimic children's increased susceptibility to valproic acid hepatotoxicity or decreased susceptibility to acetaminophen or halothane hepatotoxicity. However, for most drugs, animal models are not readily available, and the underlying mechanisms for the differential reactions to DILI between children and adults remain highly hypothetical. Diagnosis tools for cDILI are not yet available. A critical need exists to fill the knowledge gaps in cDILI. This review article provides an overview of cDILI and specific drugs associated with cDILI.
Collapse
Affiliation(s)
- Qiang Shi
- 1 Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Xi Yang
- 1 Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - James J Greenhaw
- 1 Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | | | | | | |
Collapse
|
20
|
Behr C, Kamp H, Fabian E, Krennrich G, Mellert W, Peter E, Strauss V, Walk T, Rietjens IMCM, van Ravenzwaay B. Gut microbiome-related metabolic changes in plasma of antibiotic-treated rats. Arch Toxicol 2017; 91:3439-3454. [PMID: 28337503 DOI: 10.1007/s00204-017-1949-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/23/2017] [Indexed: 12/13/2022]
Abstract
The intestinal microbiota contributes to the metabolism of its host. Adequate identification of the microbiota's impact on the host plasma metabolites is lacking. As antibiotics have a profound effect on the microbial composition and hence on the mammalian-microbiota co-metabolism, we studied the effects of antibiotics on the "functionality of the microbiome"-defined as the production of metabolites absorbed by the host. This metabolomics study presents insights into the mammalian-microbiome co-metabolism of endogenous metabolites. To identify plasma metabolites related to microbiome changes due to antibiotic treatment, we have applied broad-spectrum antibiotics belonging to the class of aminoglycosides (neomycin, gentamicin), fluoroquinolones (moxifloxacin, levofloxacin) and tetracyclines (doxycycline, tetracycline). These were administered orally for 28 days to male rats including blood sampling for metabolic profiling after 7, 14 and 28 days. Fluoroquinolones and tetracyclines can be absorbed from the gut; whereas, aminoglycosides are poorly absorbed. Hippuric acid, indole-3-acetic acid and glycerol were identified as key metabolites affected by antibiotic treatment, beside changes mainly concerning amino acids and carbohydrates. Inter alia, effects on indole-3-propionic acid were found to be unique for aminoglycosides, and on 3-indoxylsulfate for tetracyclines. For each class of antibiotics, specific metabolome patterns could be established in the MetaMap®Tox data base, which contains metabolome data for more than 550 reference compounds. The results suggest that plasma-based metabolic profiling (metabolomics) could be a suitable tool to investigate the effect of antibiotics on the functionality of the microbiome and to obtain insight into the mammalian-microbiome co-metabolism.
Collapse
Affiliation(s)
- C Behr
- BASF SE, 67056, Ludwigshafen, Germany
| | - H Kamp
- BASF SE, 67056, Ludwigshafen, Germany
| | - E Fabian
- BASF SE, 67056, Ludwigshafen, Germany
| | | | - W Mellert
- BASF SE, 67056, Ludwigshafen, Germany
| | - E Peter
- Metanomics GmbH, 10589, Berlin, Germany
| | - V Strauss
- BASF SE, 67056, Ludwigshafen, Germany
| | - T Walk
- Metanomics GmbH, 10589, Berlin, Germany
| | - I M C M Rietjens
- Division of Toxicology, Wageningen University, 6700 EA, Wageningen, The Netherlands
| | | |
Collapse
|
21
|
Saito K, Maekawa K, Kinchen JM, Tanaka R, Kumagai Y, Saito Y. Gender- and Age-Associated Differences in Serum Metabolite Profiles among Japanese Populations. Biol Pharm Bull 2017; 39:1179-86. [PMID: 27374292 DOI: 10.1248/bpb.b16-00226] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serum metabolites can reflect the diffusion/export of biochemicals from various organs. They can serve as biomarkers related to diseases and therapeutic efficacy/toxicity. While studies in Caucasians suggested that subject gender and age can affect circulating metabolite profiles, the Japanese population has not been surveyed. Our objective was to delineate gender- and age-associated differences in serum metabolite profiles among Japanese populations. Using a mass spectrometry-based global metabolomics approach, 516 endogenous metabolites were detected in sera from Japanese individuals. The principal component analysis identified gender as the primary component, followed by age, suggesting that these two criteria were key contributors to variations in the dataset. Gender-associated differences were observed in 31 and 25% of metabolites in the young (age 25-35) and old (ages 55-65) populations, respectively, in redox homeostasis, and in steroid and purine nucleotide metabolism pathways. Age-associated differences were observed in 24 and 23% of metabolites in men and women, respectively. No pathway was commonly highlighted. Thus, gender and age impact on metabolite profiles in the Japanese population. Our results provide useful information to explore biomarkers for clinical applications in the Japanese population and to assess the applicability of known biomarkers identified in other populations to the Japanese population.
Collapse
Affiliation(s)
- Kosuke Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences
| | | | | | | | | | | |
Collapse
|
22
|
Metabolomics as read-across tool: A case study with phenoxy herbicides. Regul Toxicol Pharmacol 2016; 81:288-304. [DOI: 10.1016/j.yrtph.2016.09.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/01/2016] [Accepted: 09/12/2016] [Indexed: 01/25/2023]
|
23
|
Metabolite profiles of rats in repeated dose toxicological studies after oral and inhalative exposure. Toxicol Lett 2016; 255:11-23. [PMID: 27153797 DOI: 10.1016/j.toxlet.2016.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 11/24/2022]
Abstract
The MetaMap(®)-Tox database contains plasma-metabolome and toxicity data of rats obtained from oral administration of 550 reference compounds following a standardized adapted OECD 407 protocol. Here, metabolic profiles for aniline (A), chloroform (CL), ethylbenzene (EB), 2-methoxyethanol (ME), N,N-dimethylformamide (DMF) and tetrahydrofurane (THF), dosed inhalatively for six hours/day, five days a week for 4 weeks were compared to oral dosing performed daily for 4 weeks. To investigate if the oral and inhalative metabolome would be comparable statistical analyses were performed. Best correlations for metabolome changes via both routes of exposure were observed for toxicants that induced profound metabolome changes. e.g. CL and ME. Liver and testes were correctly identified as target organs. In contrast, route of exposure dependent differences in metabolic profiles were noted for low profile strength e.g. female rats dosed inhalatively with A or THF. Taken together, the current investigations demonstrate that plasma metabolome changes are generally comparable for systemic effects after oral and inhalation exposure. Differences may result from kinetics and first pass effects. For compounds inducing only weak changes, the differences between both routes of exposure are visible in the metabolome.
Collapse
|
24
|
A gas chromatography-mass spectrometry based study on urine metabolomics in rats chronically poisoned with hydrogen sulfide. BIOMED RESEARCH INTERNATIONAL 2015; 2015:295241. [PMID: 25954748 PMCID: PMC4411453 DOI: 10.1155/2015/295241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 11/18/2022]
Abstract
Gas chromatography-mass spectrometry (GS-MS) in combination with multivariate statistical analysis was applied to explore the metabolic variability in urine of chronically hydrogen sulfide- (H2S-) poisoned rats relative to control ones. The changes in endogenous metabolites were studied by partial least squares-discriminate analysis (PLS-DA) and independent-samples t-test. The metabolic patterns of H2S-poisoned group are separated from the control, suggesting that the metabolic profiles of H2S-poisoned rats were markedly different from the controls. Moreover, compared to the control group, the level of alanine, d-ribose, tetradecanoic acid, L-aspartic acid, pentanedioic acid, cholesterol, acetate, and oleic acid in rat urine of the poisoning group decreased, while the level of glycine, d-mannose, arabinofuranose, and propanoic acid increased. These metabolites are related to amino acid metabolism as well as energy and lipid metabolism in vivo. Studying metabolomics using GC-MS allows for a comprehensive overview of the metabolism of the living body. This technique can be employed to decipher the mechanism of chronic H2S poisoning, thus promoting the use of metabolomics in clinical toxicology.
Collapse
|
25
|
Gonzalez FJ, Fang ZZ, Ma X. Transgenic mice and metabolomics for study of hepatic xenobiotic metabolism and toxicity. Expert Opin Drug Metab Toxicol 2015; 11:869-81. [PMID: 25836352 DOI: 10.1517/17425255.2015.1032245] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The study of xenobiotic metabolism and toxicity has been greatly aided by the use of genetically modified mouse models and metabolomics. AREAS COVERED Gene knockout mice can be used to determine the enzymes responsible for the metabolism of xenobiotics in vivo and to examine the mechanisms of xenobiotic-induced toxicity. Humanized mouse models are especially important because there exist marked species differences in the xenobiotic-metabolizing enzymes and the nuclear receptors that regulate these enzymes. Humanized mice expressing CYPs and nuclear receptors including the pregnane X receptor, the major regulator of xenobiotic metabolism and transport were produced. With genetically modified mouse models, metabolomics can determine the metabolic map of many xenobiotics with a level of sensitivity that allows the discovery of even minor metabolites. This technology can be used for determining the mechanism of xenobiotic toxicity and to find early biomarkers for toxicity. EXPERT OPINION Metabolomics and genetically modified mouse models can be used for the study of xenobiotic metabolism and toxicity by: i) comparison of the metabolomics profiles between wild-type and genetically modified mice, and searching for genotype-dependent endogenous metabolites; ii) searching for and elucidating metabolites derived from xenobiotics; and iii) discovery of specific alterations of endogenous compounds induced by xenobiotics-induced toxicity.
Collapse
Affiliation(s)
- Frank J Gonzalez
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Laboratory of Metabolism , Bethesda, MD 20892 , USA +1 301 496 9067 ; +1 301 496 8419 ;
| | | | | |
Collapse
|
26
|
Kalkhof S, Dautel F, Loguercio S, Baumann S, Trump S, Jungnickel H, Otto W, Rudzok S, Potratz S, Luch A, Lehmann I, Beyer A, von Bergen M. Pathway and time-resolved benzo[a]pyrene toxicity on Hepa1c1c7 cells at toxic and subtoxic exposure. J Proteome Res 2014; 14:164-82. [PMID: 25362887 DOI: 10.1021/pr500957t] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Benzo[a]pyrene (B[a]P) is an environmental contaminant mainly studied for its toxic/carcinogenic effects. For a comprehensive and pathway orientated mechanistic understanding of the effects directly triggered by a toxic (5 μM) or a subtoxic (50 nM) concentration of B[a]P or indirectly by its metabolites, we conducted time series experiments for up to 24 h to study the effects in murine hepatocytes. These cells rapidly take up and actively metabolize B[a]P, which was followed by quantitative analysis of the concentration of intracellular B[a]P and seven representative degradation products. Exposure with 5 μM B[a]P led to a maximal intracellular concentration of 1604 pmol/5 × 10(4) cells, leveling at 55 pmol/5 × 10(4) cells by the end of the time course. Changes in the global proteome (>1000 protein profiles) and metabolome (163 metabolites) were assessed in combination with B[a]P degradation. Abundance profiles of 236 (both concentrations), 190 (only 5 μM), and 150 (only 50 nM) proteins were found to be regulated in response to B[a]P in a time-dependent manner. At the endogenous metabolite level amino acids, acylcarnitines and glycerophospholipids were particularly affected by B[a]P. The comprehensive chemical, proteome and metabolomic data enabled the identification of effects on the pathway level in a time-resolved manner. So in addition to known alterations, also protein synthesis, lipid metabolism, and membrane dysfunction were identified as B[a]P specific effects.
Collapse
Affiliation(s)
- Stefan Kalkhof
- Department of Proteomics, UFZ, Helmholtz-Centre for Environmental Research , Permoserstr. 15, 04318 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Effects of sex, age, and fasting conditions on plasma lipidomic profiles of fasted Sprague-Dawley rats. PLoS One 2014; 9:e112266. [PMID: 25375860 PMCID: PMC4223040 DOI: 10.1371/journal.pone.0112266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/02/2014] [Indexed: 12/16/2022] Open
Abstract
Circulating lipid molecules reflect biological processes in the body and, thus, are useful tools for preclinical estimation of the efficacy and safety of newly developed drugs. However, background information on profiles of circulating lipid molecules in preclinical animal models is limited. Therefore, we examined the effects of multiple factors such as sex (fasted male vs. female), age (fasted 10 vs. 30 weeks old), and feeding conditions (feeding vs. fasting, 16 vs. 22 hr fasting, 10 AM vs. 4 PM blood collection), on the global profiles of lipid molecules in plasma from Sprague-Dawley rats by using a lipidomic approach. Our assay platform determined 262 lipid molecules (68 phospholipids, 20 sphingolipids, 138 neutral lipids, and 36 polyunsaturated fatty acids and their metabolites) in rat plasma. Multivariate discriminant analysis (orthogonal partial least squares discriminant analysis) and heat maps of statistically significant lipid molecules revealed that the plasma lipid profiles in rats are predominantly influenced by feeding conditions, followed by sex and age. In addition, the fasting duration (16 vs. 22 hr fasting) or the time of blood collection (10 AM vs. 4 PM blood collection) has limited or no contribution on the profiles of lipid molecules in rat plasma. Our results provide useful, fundamental information for exploring and validating biomarkers in future preclinical studies and may help to establish regulatory standards for such studies.
Collapse
|
28
|
Buesen R, Landsiedel R, Sauer UG, Wohlleben W, Groeters S, Strauss V, Kamp H, van Ravenzwaay B. Effects of SiO₂, ZrO₂, and BaSO₄ nanomaterials with or without surface functionalization upon 28-day oral exposure to rats. Arch Toxicol 2014; 88:1881-906. [PMID: 25164825 PMCID: PMC4161931 DOI: 10.1007/s00204-014-1337-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/12/2014] [Indexed: 01/03/2023]
Abstract
The effects of seven nanomaterials (four amorphous silicon dioxides with or without surface functionalization, two surface-functionalized zirconium dioxides, and barium sulfate) upon 28-day oral exposure to male or female rats were investigated. The studies were performed as limit tests in accordance with OECD Test Guideline 407 applying 1,000 mg test substance/kg body weight/day. Additionally, the acute phase proteins haptoglobin and α2-macroglobulin as well as cardiac troponin I were determined, and metabolome analysis was performed in plasma samples. There were no test substance-related adverse effects for any of the seven nanomaterials. Moreover, metabolomics changes were below the threshold of effects. Since test substance organ burden was not analyzed, it was not possible to establish whether the lack of findings related to the absence of systemic exposure of the tested nanomaterials or if the substances are devoid of any potential for toxicity. The few published subacute oral or short-term inhalation studies investigating comparable nanomaterials (SiO₂, ZrO₂, and BaSO₄) also do not report the occurrence of pronounced treatment-related findings. Overall, the results of the present survey provide a first indication that the tested nanomaterials neither cause local nor systemic effects upon subacute oral administration under the selected experimental conditions. Further investigations should aim at elucidating the extent of gastrointestinal absorption of surface-functionalized nanomaterials.
Collapse
Affiliation(s)
- Roland Buesen
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen am Rhein, Germany
| | - Robert Landsiedel
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen am Rhein, Germany
| | - Ursula G. Sauer
- Scientific Consultancy - Animal Welfare, 85579 Neubiberg, Germany
| | - Wendel Wohlleben
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen am Rhein, Germany
- Polymer Physics, BASF SE, 67056 Ludwigshafen am Rhein, Germany
| | - Sibylle Groeters
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen am Rhein, Germany
| | - Volker Strauss
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen am Rhein, Germany
| | - Hennicke Kamp
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen am Rhein, Germany
| | | |
Collapse
|
29
|
Kwon H, Park J, An Y, Sim J, Park S. A smartphone metabolomics platform and its application to the assessment of cisplatin-induced kidney toxicity. Anal Chim Acta 2014; 845:15-22. [DOI: 10.1016/j.aca.2014.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/25/2014] [Accepted: 08/05/2014] [Indexed: 11/30/2022]
|
30
|
Detection of hepatotoxicity potential with metabolite profiling (metabolomics) of rat plasma. Toxicol Lett 2014; 230:467-78. [PMID: 25086301 DOI: 10.1016/j.toxlet.2014.07.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/14/2022]
Abstract
While conventional parameters used to detect hepatotoxicity in drug safety assessment studies are generally informative, the need remains for parameters that can detect the potential for hepatotoxicity at lower doses and/or at earlier time points. Previous work has shown that metabolite profiling (metabonomics/metabolomics) can detect signals of potential hepatotoxicity in rats treated with doxorubicin at doses that do not elicit hepatotoxicity as monitored with conventional parameters. The current study extended this observation to the question of whether such signals could be detected in rats treated with compounds that can elicit hepatotoxicity in humans (i.e., drug-induced liver injury, DILI) but have not been reported to do so in rats. Nine compounds were selected on the basis of their known DILI potential, with six other compounds chosen as negative for DILI potential. A database of rat plasma metabolite profiles, MetaMap(®)Tox (developed by metanomics GmbH and BASF SE) was used for both metabolite profiles and mode of action (MoA) metabolite signatures for a number of known toxicities. Eight of the nine compounds with DILI potential elicited metabolite profiles that matched with MoA patterns of various rat liver toxicities, including cholestasis, oxidative stress, acetaminophen-type toxicity and peroxisome proliferation. By contrast, only one of the six non-DILI compounds showed a weak match with rat liver toxicity. These results suggest that metabolite profiling may indeed have promise to detect signals of hepatotoxicity in rats treated with compounds having DILI potential.
Collapse
|
31
|
Identification of metabolites, clinical chemistry markers and transcripts associated with hepatotoxicity. PLoS One 2014; 9:e97249. [PMID: 24836604 PMCID: PMC4023975 DOI: 10.1371/journal.pone.0097249] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/16/2014] [Indexed: 01/30/2023] Open
Abstract
Early and accurate pre-clinical and clinical biomarkers of hepatotoxicity facilitate the drug development process and the safety monitoring in clinical studies. We selected eight known model compounds to be administered to male Wistar rats to identify biomarkers of drug induced liver injury (DILI) using transcriptomics, metabolite profiling (metabolomics) and conventional endpoints. We specifically explored early biomarkers in serum and liver tissue associated with histopathologically evident acute hepatotoxicity. A tailored data analysis strategy was implemented to better differentiate animals with no treatment-related findings in the liver from animals showing evident hepatotoxicity as assessed by histopathological analysis. From the large number of assessed parameters, our data analysis strategy allowed us to identify five metabolites in serum and five in liver tissue, 58 transcripts in liver tissue and seven clinical chemistry markers in serum that were significantly associated with acute hepatotoxicity. The identified markers comprised metabolites such as taurocholic acid and putrescine (measured as sum parameter together with agmatine), classical clinical chemistry markers like AST (aspartate aminotransferase), ALT (alanine aminotransferase), and bilirubin, as well as gene transcripts like Igfbp1 (insulin-like growth factor-binding protein 1) and Egr1 (early growth response protein 1). The response pattern of the identified biomarkers was concordant across all types of parameters and sample matrices. Our results suggest that a combination of several of these biomarkers could significantly improve the robustness and accuracy of an early diagnosis of hepatotoxicity.
Collapse
|
32
|
|
33
|
Sasseville VG, Mansfield KG, Brees DJ. Safety biomarkers in preclinical development: translational potential. Vet Pathol 2013; 51:281-91. [PMID: 24091814 DOI: 10.1177/0300985813505117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The identification, application, and qualification of safety biomarkers are becoming increasingly critical to successful drug discovery and development as companies are striving to develop drugs for difficult targets and for novel disease indications in a risk-adverse environment. Translational safety biomarkers that are minimally invasive and monitor drug-induced toxicity during human clinical trials are urgently needed to assess whether toxicities observed in preclinical toxicology studies are relevant to humans at therapeutic doses. The interpretation of data during the biomarker qualification phase should include careful consideration of the analytic method used, the biology, pharmacokinetic and pharmacodynamic properties of the biomarker, and the pathophysiology of the process studied. The purpose of this review is to summarize commonly employed technologies in the development of fluid- and tissue-based safety biomarkers in drug discovery and development and to highlight areas of ongoing novel assay development.
Collapse
Affiliation(s)
- V G Sasseville
- Discovery and Investigative Safety, Preclinical Safety, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
34
|
Prediction of clinically relevant safety signals of nephrotoxicity through plasma metabolite profiling. BIOMED RESEARCH INTERNATIONAL 2013; 2013:202497. [PMID: 23762827 PMCID: PMC3673329 DOI: 10.1155/2013/202497] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 11/17/2022]
Abstract
Addressing safety concerns such as drug-induced kidney injury (DIKI) early in the drug pharmaceutical development process ensures both patient safety and efficient clinical development. We describe a unique adjunct to standard safety assessment wherein the metabolite profile of treated animals is compared with the MetaMap Tox metabolomics database in order to predict the potential for a wide variety of adverse events, including DIKI. To examine this approach, a study of five compounds (phenytoin, cyclosporin A, doxorubicin, captopril, and lisinopril) was initiated by the Technology Evaluation Consortium under the auspices of the Drug Safety Executive Council (DSEC). The metabolite profiles for rats treated with these compounds matched established reference patterns in the MetaMap Tox metabolomics database indicative of each compound's well-described clinical toxicities. For example, the DIKI associated with cyclosporine A and doxorubicin was correctly predicted by metabolite profiling, while no evidence for DIKI was found for phenytoin, consistent with its clinical picture. In some cases the clinical toxicity (hepatotoxicity), not generally seen in animal studies, was detected with MetaMap Tox. Thus metabolite profiling coupled with the MetaMap Tox metabolomics database offers a unique and powerful approach for augmenting safety assessment and avoiding clinical adverse events such as DIKI.
Collapse
|
35
|
Kamp H, Strauss V, Wiemer J, Leibold E, Walk T, Mellert W, Looser R, Prokoudine A, Fabian E, Krennrich G, Herold M, van Ravenzwaay B. Reproducibility and robustness of metabolome analysis in rat plasma of 28-day repeated dose toxicity studies. Toxicol Lett 2012; 215:143-9. [DOI: 10.1016/j.toxlet.2012.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/18/2012] [Accepted: 09/24/2012] [Indexed: 11/28/2022]
|