1
|
Kou YY, Liu J, Chang YT, Liu LY, Sun F, Li YL, Leng JR, Lin HW, Yang F. Marine derived macrolide bryostatin 4 inhibits the TGF-β signaling pathway against acute erythroleukemia. Cell Oncol (Dordr) 2024; 47:1863-1878. [PMID: 39083211 DOI: 10.1007/s13402-024-00968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 10/11/2024] Open
Abstract
PURPOSE Acute erythroleukemia (AEL) is a rare and highly aggressive subtype of acute myeloid leukemia (AML) with an extremely poor prognosis when treated with available drugs. Therefore, new investigational agents capable of inducing remission are urgently required. METHODS Bioinformatics analysis, western blot and qRT-PCR were used to reveal the potential biological mechanism of bryostatin 4 (B4), an antineoplastic macrolide derived from the marine bryozoan Bugula neritina. Then, in vivo experiments were conducted to evaluate the role of transforming growth factor (TGF)-β signaling in the progression of AEL. RESULTS Our results revealed that the proliferation of K562 cells and TF-1 cells was significantly inhibited by B4 at IC50 values of 37 nM and 52 nM, respectively. B4 inhibited TGF-β signaling and its downstream pathway targets, particularly the phosphorylation of Smad2, Smad3, Ras, C-RAF, ERK1/2, and MEK. B4 also played an important role in cell invasion and migration in K562 cells and TF-1 cells by reducing the protein levels of the mesenchymal cell marker vimentin. Moreover, Flow cytometry and western blot analyses demonstrated that B4 induced apoptosis and initiated G0/G1 phase arrest by modulating mitochondrial dysfunction and cyclin-dependent kinase (CDK) expression. CONCLUSION These findings indicated that B4 could inhibit the proliferation, migration, invasion, and TGF-β signaling pathways of AEL cells, thus suggesting that B4 possesses therapeutic potential as a treatment for AEL.
Collapse
Affiliation(s)
- Yan-Yu Kou
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
- School of Pharmacy, Shanghai JiaoTong University, Shanghai, China
| | - Jie Liu
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
| | - Yung-Ting Chang
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
| | - Li-Yun Liu
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
| | - Fan Sun
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
| | - Yi-Lin Li
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Jia-Rong Leng
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
| | - Hou-Wen Lin
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China.
| | - Fan Yang
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China.
| |
Collapse
|
2
|
Alshammari MB, Aly AA, Ahmad A, Brown AB, Mohamed AH. Recent synthetic strategies of spiro-azetidin-2-one, -pyrrolidine, -indol(one) and -pyran derivatives-a review. RSC Adv 2023; 13:32786-32823. [PMID: 37942448 PMCID: PMC10628897 DOI: 10.1039/d3ra06054c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Spiro-heterocycles have received special attention in medicinal chemistry because of their promising biological activity. Over the years, many synthetic methodologies have been established for the construction of spirocyclic compounds. Spiro heterocycles such as spiro-azetidin-2-one, -pyrrolidine, -indol(one) and -pyran derivatives have been found to exhibit diversified biological and pharmacological activity in addition to their therapeutic properties. In view of these facts, we decided in this review to present representative synthetic approaches of the aforementioned spiro heterocycles, especially in the past 20 years.
Collapse
Affiliation(s)
- Mohammed B Alshammari
- Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University Al-Kharij Saudi Arabia
| | - Ashraf A Aly
- Chemistry Department, Faculty of Science, Minia University 61519 El-Minia Egypt
| | - Akil Ahmad
- Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University Al-Kharij Saudi Arabia
| | - Alan B Brown
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology Melbourne FL 32901 USA
| | - Asmaa H Mohamed
- Chemistry Department, Faculty of Science, Minia University 61519 El-Minia Egypt
| |
Collapse
|
3
|
Khursheed M, Ghelani H, Jan RK, Adrian TE. Anti-Inflammatory Effects of Bioactive Compounds from Seaweeds, Bryozoans, Jellyfish, Shellfish and Peanut Worms. Mar Drugs 2023; 21:524. [PMID: 37888459 PMCID: PMC10608083 DOI: 10.3390/md21100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Inflammation is a defense mechanism of the body in response to harmful stimuli such as pathogens, damaged cells, toxic compounds or radiation. However, chronic inflammation plays an important role in the pathogenesis of a variety of diseases. Multiple anti-inflammatory drugs are currently available for the treatment of inflammation, but all exhibit less efficacy. This drives the search for new anti-inflammatory compounds focusing on natural resources. Marine organisms produce a broad spectrum of bioactive compounds with anti-inflammatory activities. Several are considered as lead compounds for development into drugs. Anti-inflammatory compounds have been extracted from algae, corals, seaweeds and other marine organisms. We previously reviewed anti-inflammatory compounds, as well as crude extracts isolated from echinoderms such as sea cucumbers, sea urchins and starfish. In the present review, we evaluate the anti-inflammatory effects of compounds from other marine organisms, including macroalgae (seaweeds), marine angiosperms (seagrasses), medusozoa (jellyfish), bryozoans (moss animals), mollusks (shellfish) and peanut worms. We also present a review of the molecular mechanisms of the anti-inflammatory activity of these compounds. Our objective in this review is to provide an overview of the current state of research on anti-inflammatory compounds from marine sources and the prospects for their translation into novel anti-inflammatory drugs.
Collapse
Affiliation(s)
| | | | | | - Thomas E. Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine, and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (M.K.); (H.G.); (R.K.J.)
| |
Collapse
|
4
|
Tian X, Wang D, Jiang W, Bokesch HR, Wilson BAP, O'Keefe BR, Gustafson KR. Rare Caulamidine Hexacyclic Alkaloids from the Marine Ascidian Polyandrocarpa sp. JOURNAL OF NATURAL PRODUCTS 2023; 86:1855-1861. [PMID: 37368408 PMCID: PMC10732314 DOI: 10.1021/acs.jnatprod.3c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Two new caulamidines C (2) and D (4) and three isocaulamidines B, C, and D (1, 3, and 5) along with the known compound caulamidine B (6) were isolated from the marine ascidian Polyandrocarpa sp. Their structures were elucidated by analysis of nuclear magnetic resonance (NMR) and electronic circular dichroism (ECD) data. Isocaulamidines have an altered pattern of N-methyl substitution (N-15 vs N-13 in the caulamidines) with a concomitant double-bond rearrangement to provide a new C-14/N-13 imine functionality. Caulamidine C (2) and isocaulamidine C (3) are the first members of this alkaloid family with two chlorine substituents in the core 6H-2,6-naphthyridine ring system.
Collapse
Affiliation(s)
- Xiangrong Tian
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Dongdong Wang
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Wei Jiang
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Marine Science & Technology Institute, College of Environmental Science & Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Heidi R Bokesch
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Brice A P Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Natural Products Branch, Development Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Kirk R Gustafson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
5
|
Ghelani H, Khursheed M, Adrian TE, Jan RK. Anti-Inflammatory Effects of Compounds from Echinoderms. Mar Drugs 2022; 20:693. [PMID: 36355016 PMCID: PMC9699147 DOI: 10.3390/md20110693] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
Chronic inflammation can extensively burden a healthcare system. Several synthetic anti-inflammatory drugs are currently available in clinical practice, but each has its own side effect profile. The planet is gifted with vast and diverse oceans, which provide a treasure of bioactive compounds, the chemical structures of which may provide valuable pharmaceutical agents. Marine organisms contain a variety of bioactive compounds, some of which have anti-inflammatory activity and have received considerable attention from the scientific community for the development of anti-inflammatory drugs. This review describes such bioactive compounds, as well as crude extracts (published during 2010-2022) from echinoderms: namely, sea cucumbers, sea urchins, and starfish. Moreover, we also include their chemical structures, evaluation models, and anti-inflammatory activities, including the molecular mechanism(s) of these compounds. This paper also highlights the potential applications of those marine-derived compounds in the pharmaceutical industry to develop leads for the clinical pipeline. In conclusion, this review can serve as a well-documented reference for the research progress on the development of potential anti-inflammatory drugs from echinoderms against various chronic inflammatory conditions.
Collapse
Affiliation(s)
- Hardik Ghelani
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Md Khursheed
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Thomas Edward Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Reem Kais Jan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
6
|
Review Marine Pharmacology in 2018: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action. Pharmacol Res 2022; 183:106391. [DOI: 10.1016/j.phrs.2022.106391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
|
7
|
Khan S, Hussain A, Attar F, Bloukh SH, Edis Z, Sharifi M, Balali E, Nemati F, Derakhshankhah H, Zeinabad HA, Nabi F, Khan RH, Hao X, Lin Y, Hua L, Ten Hagen TLM, Falahati M. A review of the berberine natural polysaccharide nanostructures as potential anticancer and antibacterial agents. Biomed Pharmacother 2021; 146:112531. [PMID: 34906771 DOI: 10.1016/j.biopha.2021.112531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the promising medicinal properties, berberine (BBR), due to its relatively poor solubility in plasma, low bio-stability and limited bioavailability is not used broadly in clinical stages. Due to these drawbacks, drug delivery systems (DDSs) based on nanoscale natural polysaccharides, are applied to address these concerns. Natural polymers are biodegradable, non-immunogenic, biocompatible, and non-toxic agents that are capable of trapping large amounts of hydrophobic compounds in relatively small volumes. The use of nanoscale natural polysaccharide improves the stability and pharmacokinetics of the small molecules and, consequently, increases the therapeutic effects and reduces the side effects of the small molecules. Therefore, this paper presents an overview of the different methods used for increasing the BBR solubility and bioavailability. Afterwards, the pharmacodynamic and pharmacokinetic of BBR nanostructures were discussed followed by the introduction of natural polysaccharides of plant (cyclodextrines, glucomannan), the shells of crustaceans (chitosan), and the cell wall of brown marine algae (alginate)-based origins used to improve the dissolution rate of poorly soluble BBR and their anticancer and antibacterial properties. Finally, the anticancer and antibacterial mechanisms of free BBR and BBR nanostructures were surveyed. In conclusion, this review may pave the way for providing some useful data in the development of BBR-based platforms for clinical applications.
Collapse
Affiliation(s)
- Suliman Khan
- Advanced Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute, Karaj, Iran
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Zehra Edis
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ebrahim Balali
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fahimeh Nemati
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hojjat Alizadeh Zeinabad
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland; Institute of Pathology, Univesity of Berne, Berne, Switzerland
| | - Faisal Nabi
- Biotechnology Unit, Aligarh Muslim University, India
| | | | - Xiao Hao
- Advanced Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Yueting Lin
- High Level Talent Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Linlin Hua
- Advanced Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD Rotterdam, the Netherlands.
| | - Mojtaba Falahati
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD Rotterdam, the Netherlands.
| |
Collapse
|
8
|
Berlinck RGS, Crnkovic CM, Gubiani JR, Bernardi DI, Ióca LP, Quintana-Bulla JI. The isolation of water-soluble natural products - challenges, strategies and perspectives. Nat Prod Rep 2021; 39:596-669. [PMID: 34647117 DOI: 10.1039/d1np00037c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Covering period: up to 2019Water-soluble natural products constitute a relevant group of secondary metabolites notably known for presenting potent biological activities. Examples are aminoglycosides, β-lactam antibiotics, saponins of both terrestrial and marine origin, and marine toxins. Although extensively investigated in the past, particularly during the golden age of antibiotics, hydrophilic fractions have been less scrutinized during the last few decades. This review addresses the possible reasons on why water-soluble metabolites are now under investigated and describes approaches and strategies for the isolation of these natural compounds. It presents examples of several classes of hydrosoluble natural products and how they have been isolated. Novel stationary phases and chromatography techniques are also reviewed, providing a perspective towards a renaissance in the investigation of water-soluble natural products.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Darlon I Bernardi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Jairo I Quintana-Bulla
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
9
|
Silpa KP, Chakraborty K. Cistobislactone, an undescribed variant of 14-membered bislactonic macrodiolide, from old-lady octopus Cistopus indicus (family Octopodidae) attenuates inflammatory lipoxygenase. Nat Prod Res 2021; 36:3002-3012. [PMID: 34121546 DOI: 10.1080/14786419.2021.1938041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemical evaluation of specialised metabolites from the old-lady marine octopus Cistopus indicus (family Octopodidae) led to the isolation of an undescribed 14-membered bislactonic macrodiolide cistobislactone, which was characterized as 12-(4'-ethyl-6'-methoxy-3'-methyl-hex-1-enyl)-5,11-dihydroxy-6-methyl-1,7-dioxacyclotetradeca-3,9-diene-2,8-dione. Cistobislactone exhibited noticeably greater inhibitory potential against 5-lipoxygenase (IC50 2.06 mM) compared to standard anti-inflammatory agent ibuprofen (IC50 4.61 mM, p < 0.05). Superior antioxidant properties of cistobislactone against the oxidants (IC50 ∼1.8 mM) also reinforced its promising anti-inflammatory activity. Higher electronic properties (topological polar surface area of 102.3) and balanced hydrophobicity (logarithm of octanol-water coefficient ∼3) could recognize its higher interaction at the enzyme active site resulting in an effective attenuation of 5-lipoxygenase and efficient inter-membrane permeability. Comparatively lesser binding energy (-6.5 kcal mol-1) and docking score (-7.5 kcal mol-1) of cistobislactone with the aminoacyl residues of 5-lipoxygenase could further recognize its anti-inflammatory potential.
Collapse
Affiliation(s)
- Kunnappilly Paulose Silpa
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Cochin, India.,Department of Chemistry, Mangalore University, Konaje, India
| | - Kajal Chakraborty
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Cochin, India
| |
Collapse
|
10
|
Anti-Alzheimer's Molecules Derived from Marine Life: Understanding Molecular Mechanisms and Therapeutic Potential. Mar Drugs 2021; 19:md19050251. [PMID: 33925063 PMCID: PMC8146595 DOI: 10.3390/md19050251] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disease and the most common cause of dementia. It has been confirmed that the pathological processes that intervene in AD development are linked with oxidative damage to neurons, neuroinflammation, tau phosphorylation, amyloid beta (Aβ) aggregation, glutamate excitotoxicity, and cholinergic deficit. Still, there is no available therapy that can cure AD. Available therapies only manage some of the AD symptoms at the early stages of AD. Various studies have revealed that bioactive compounds derived from marine organisms and plants can exert neuroprotective activities with fewer adverse events, as compared with synthetic drugs. Furthermore, marine organisms have been identified as a source of novel compounds with therapeutic potential. Thus, there is a growing interest regarding bioactive compounds derived from marine sources that have anti-AD potentials. Various marine drugs including bryostatin-1, homotaurine, anabaseine and its derivative, rifampicins, anhydroexfoliamycin, undecylprodigioisin, gracilins, 13-desmethyl spirolide-C, and dictyostatin displayed excellent bioavailability and efficacy against AD. Most of these marine drugs were found to be well-tolerated in AD patients, along with no significant drug-associated adverse events. In this review, we focus on the drugs derived from marine life that can be useful in AD treatment and also summarize the therapeutic agents that are currently used to treat AD.
Collapse
|
11
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
12
|
Chu Z, Tong R, Yang Y, Song X, Hu TB, Fan Y, Zhao C, Gao L, Song Z. Diverse synthesis of the C ring fragment of bryostatins via Zn/Cu-promoted conjugate addition of α-hydroxy iodide with enone. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Kleks G, Holland DC, Kennedy EK, Avery VM, Carroll AR. Antiplasmodial Alkaloids from the Australian Bryozoan Amathia lamourouxi. JOURNAL OF NATURAL PRODUCTS 2020; 83:3435-3444. [PMID: 33105995 DOI: 10.1021/acs.jnatprod.0c00929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An extract from the bryozoan Amathia lamourouxi with antiplasmodial activity was identified through high-throughput screening of an Australian marine invertebrate extract library against Plasmodium falciparum. Chemical investigation of A. lamourouxi resulted in the isolation of six new brominated alkaloids, convolutamines K and L (1 and 2), volutamides F-H (3-5), and 2,5-dibromo-1-methyl-1H-indole-3-carbaldehyde (6). Three of the compounds (2-4) displayed moderate to potent antiplasmodial activity against both the chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) parasite strains of Plasmodium falciparum with an IC50 range of 0.57-1.7 μM and a high selectivity index against a human cell line (HEK293).
Collapse
Affiliation(s)
- Guy Kleks
- Environmental Futures Research Institute, Griffith University, Gold Coast, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Darren C Holland
- Environmental Futures Research Institute, Griffith University, Gold Coast, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Emily K Kennedy
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
- Discovery Biology, Griffith University, Brisbane, QLD 4111, Australia
| | - Vicky M Avery
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
- Discovery Biology, Griffith University, Brisbane, QLD 4111, Australia
| | - Anthony R Carroll
- Environmental Futures Research Institute, Griffith University, Gold Coast, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
14
|
Martins M, Silva R, M. M. Pinto M, Sousa E. Marine Natural Products, Multitarget Therapy and Repurposed Agents in Alzheimer's Disease. Pharmaceuticals (Basel) 2020; 13:E242. [PMID: 32933034 PMCID: PMC7558913 DOI: 10.3390/ph13090242] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial disease characterized by the presence of amyloid plaques, neurofibrillary tangles, and nerve cell death that affects, mainly, older people. After decades of investigation, the search for an efficacious treatment for AD remains and several strategies can be and are being employed in this journey. In this review, four of the most promising strategies, alongside with its most promising agents under investigation or development are highlighted. Marine natural products (MNP) are a source of unique chemical structures with useful biological activities for AD treatment. One of the most promising compounds, a marine-derived acidic oligosaccharide (GV-971) just passed phase III clinical trials with a unique mechanism of action. Combination therapy and multitargeted-directed ligand therapy (MTDL) are also two important strategies, with several examples in clinical trials, based on the belief that the best approach for AD is a therapy capable of modulating multiple target pathways. Drug repurposing, a strategy that requires a smaller investment and is less time consuming, is emerging as a strong contender with a variety of pharmacological agents resurfacing in an attempt to identify a therapeutic candidate capable of modifying the course of this disease.
Collapse
Affiliation(s)
- Márcia Martins
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (M.M.); (M.M.M.P.)
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Madalena M. M. Pinto
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (M.M.); (M.M.M.P.)
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (M.M.); (M.M.M.P.)
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
15
|
Hao N, Han L, Li Y, Li J, Tian X, Kong D, Tian X. New 8-O-4' Neolignans and Their Antibacterial Activity from the Whole Plants of Clematis lasiandra. ACS OMEGA 2020; 5:19661-19666. [PMID: 32803061 PMCID: PMC7424705 DOI: 10.1021/acsomega.0c02339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Four new 8-O-4' neolignans, characterized at methoxy or ethoxy groups substituted at C-7, namely, (±) lasiandranins A-D (1-4), and two known analogs (±) pinnatifidanin BV (5) and (±) pinnatifidanin BVI (6) were isolated from the whole plants of Clematis lasiandra Maxim. The structures of 1-6 were determined by spectroscopic methods including 1D, 2D NMR, ECD, and HRESIMS analysis. Compounds 1 and 5 were determined as erythro configuration, while 2-4 and 6 were determined as threo configuration based on the chemical shift difference of H-9a and H-9b in CD3OD. The 8-O-4' neolignans were found from the genus Clematis for the first time. Compounds 1-6 were evaluated for their antibacterial activity against three plant pathogenic bacteria Pseudomonas syringae pv. actinidiae, Ralstonia solanacearum, and Erwinia carotovora by agar and broth dilution methods. Compounds 1-6 showed potent antibacterial activity against R. solanacearum with MIC values of 25-50 μg/mL and relatively lower activity against P. syringae pv. actinidiae with MIC values of 50-100 μg/mL, while they were inactive to E. carotovora.
Collapse
Affiliation(s)
- Nan Hao
- College
of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Lirong Han
- College
of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Yantao Li
- College
of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Jiao Li
- College
of Chemistry, Nankai Universit, Tianjin 300071, China
| | - Xiaolin Tian
- College
of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Dan Kong
- College
of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xiangrong Tian
- College
of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
16
|
Ciavatta ML, Lefranc F, Vieira LM, Kiss R, Carbone M, van Otterlo WAL, Lopanik NB, Waeschenbach A. The Phylum Bryozoa: From Biology to Biomedical Potential. Mar Drugs 2020; 18:E200. [PMID: 32283669 PMCID: PMC7230173 DOI: 10.3390/md18040200] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 01/06/2023] Open
Abstract
Less than one percent of marine natural products characterized since 1963 have been obtained from the phylum Bryozoa which, therefore, still represents a huge reservoir for the discovery of bioactive metabolites with its ~6000 described species. The current review is designed to highlight how bryozoans use sophisticated chemical defenses against their numerous predators and competitors, and which can be harbored for medicinal uses. This review collates all currently available chemoecological data about bryozoans and lists potential applications/benefits for human health. The core of the current review relates to the potential of bryozoan metabolites in human diseases with particular attention to viral, brain, and parasitic diseases. It additionally weighs the pros and cons of total syntheses of some bryozoan metabolites versus the synthesis of non-natural analogues, and explores the hopes put into the development of biotechnological approaches to provide sustainable amounts of bryozoan metabolites without harming the natural environment.
Collapse
Affiliation(s)
- Maria Letizia Ciavatta
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.L.C.); (M.C.)
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Leandro M. Vieira
- Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil;
| | - Robert Kiss
- Retired – formerly at the Fonds National de la Recherche Scientifique (FRS-FNRS), 1000 Brussels, Belgium;
| | - Marianna Carbone
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.L.C.); (M.C.)
| | - Willem A. L. van Otterlo
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa;
| | - Nicole B. Lopanik
- School of Earth and Atmospheric Sciences, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | | |
Collapse
|
17
|
Pourshojaei Y, Eskandari K, Asadipour A. Highly Significant Scaffolds to Design and Synthesis Cholinesterase Inhibitors as Anti-Alzheimer Agents. Mini Rev Med Chem 2019; 19:1577-1598. [DOI: 10.2174/1389557519666190719143112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/02/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022]
Abstract
:
Alzheimer, a progressive disease, is a common term for memory loss which interferes with
daily life through severe influence on cognitive abilities. Based on the cholinergic hypothesis, and Xray
crystallographic determination of the structure of acetylcholinesterase (AChE) enzyme, the level of
acetylcholine (ACh, an important neurotransmitter associated with memory) in the hippocampus and
cortex area of the brain has a direct effect on Alzheimer. This fact encourages scientists to design and
synthesize a wide range of acetylcholinesterase inhibitors (AChEIs) to control the level of ACh in the
brain, keeping in view the crystallographic structure of AChE enzyme and drugs approved by the Food
and Drug Administration (FDA).
:
AChEIs have slightly diverse pharmacological properties, but all of them work by inhibiting the segregation
of ACh by blocking AChE. We reviewed significant scaffolds introduced as AChEIs. In some
studies, the activity against butyrylcholinesterase (BuChE) has been evaluated as well because BuChE
is a similar enzyme to neuronal acetylcholinesterase and is capable of hydrolyzing ACh. In order to
study AChEIs effectively, we divided them structurally into 12 classes and briefly explained effective
AChEIs and compared their activities against AChE enzyme.
Collapse
Affiliation(s)
- Yaghoub Pourshojaei
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khalil Eskandari
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Asadipour
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
18
|
Figuerola B, Avila C. The Phylum Bryozoa as a Promising Source of Anticancer Drugs. Mar Drugs 2019; 17:E477. [PMID: 31426556 PMCID: PMC6722838 DOI: 10.3390/md17080477] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
Recent advances in sampling and novel techniques in drug synthesis and isolation have promoted the discovery of anticancer agents from marine organisms to combat this major threat to public health worldwide. Bryozoans, which are filter-feeding, aquatic invertebrates often characterized by a calcified skeleton, are an excellent source of pharmacologically interesting compounds including well-known chemical classes such as alkaloids and polyketides. This review covers the literature for secondary metabolites isolated from marine cheilostome and ctenostome bryozoans that have shown potential as cancer drugs. Moreover, we highlight examples such as bryostatins, the most known class of marine-derived compounds from this animal phylum, which are advancing through anticancer clinical trials due to their low toxicity and antineoplastic activity. The bryozoan antitumor compounds discovered until now show a wide range of chemical diversity and biological activities. Therefore, more research focusing on the isolation of secondary metabolites with potential anticancer properties from bryozoans and other overlooked taxa covering wider geographic areas is needed for an efficient bioprospecting of natural products.
Collapse
Affiliation(s)
- Blanca Figuerola
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain.
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, and Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
19
|
Zhang TY, Wu YY, Zhang MY, Cheng J, Dube B, Yu HJ, Zhang YX. New antimicrobial compounds produced by Seltsamia galinsogisoli sp. nov., isolated from Galinsoga parviflora as potential inhibitors of FtsZ. Sci Rep 2019; 9:8319. [PMID: 31165765 PMCID: PMC6549247 DOI: 10.1038/s41598-019-44810-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/24/2019] [Indexed: 12/16/2022] Open
Abstract
A total amount of 116 fungal strains, belonging to 30 genera, were acquired from the rhizosphere soil and plant of Galinsoga parviflora. A strain SYPF 7336, isolated from the rhizospheric soil, was identified as Seltsamia galinsogisoli sp. nov., by morphological and molecular analyses, which displayed high antibacterial activity. In order to study the secondary metabolites of Seltsamia galinsogisoli sp. nov., nine compounds were successfully seperated from the strain fermentation broth, including two new compounds and seven known compounds. Their structures were elucidated based on spectral analysis including 1D and 2D NMR. All the seperated compounds were evaluated for their antimicrobial activities. Compounds 2, 5 and 1 displayed antimicrobial activities against Staphylococcus aureus with MIC values of 25, 32 and 75 μg/mL, respectively. Moreover, morphological observation showed the coccoid cells of S. aureus to be swollen to a volume of 1.4 to 1.7-fold after treatment with compounds 1, 2 and 5, respectively. Molecular docking was carried out to investigate interactions of filamentous temperature-sensitive protein Z (FtsZ) with compounds 1, 2 and 5.
Collapse
Affiliation(s)
- Tian-Yuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying-Ying Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Juan Cheng
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Blessings Dube
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hui-Jia Yu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
20
|
Andrade S, Ramalho MJ, Loureiro JA, Pereira MDC. Natural Compounds for Alzheimer's Disease Therapy: A Systematic Review of Preclinical and Clinical Studies. Int J Mol Sci 2019; 20:E2313. [PMID: 31083327 PMCID: PMC6539304 DOI: 10.3390/ijms20092313] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder related with the increase of age and it is the main cause of dementia in the world. AD affects cognitive functions, such as memory, with an intensity that leads to several functional losses. The continuous increase of AD incidence demands for an urgent development of effective therapeutic strategies. Despite the extensive research on this disease, only a few drugs able to delay the progression of the disease are currently available. In the last years, several compounds with pharmacological activities isolated from plants, animals and microorganisms, revealed to have beneficial effects for the treatment of AD, targeting different pathological mechanisms. Thus, a wide range of natural compounds may play a relevant role in the prevention of AD and have proven to be efficient in different preclinical and clinical studies. This work aims to review the natural compounds that until this date were described as having significant benefits for this neurological disease, focusing on studies that present clinical trials.
Collapse
Affiliation(s)
- Stephanie Andrade
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Maria João Ramalho
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Joana Angélica Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Maria do Carmo Pereira
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| |
Collapse
|
21
|
Michael P, Hansen E, Isaksson J, Andersen JH, Hansen KØ. Dendrobeaniamine A, a new alkaloid from the Arctic marine bryozoan Dendrobeania murrayana. Nat Prod Res 2019; 34:2059-2064. [PMID: 30784299 DOI: 10.1080/14786419.2019.1574788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The new guanidine alkaloid Dendrobeaniamine A (1) was isolated from the organic extract of the Arctic marine bryozoan Dendrobeania murrayana. The chemical structure of 1 was elucidated by spectroscopic experiments, including 1D and 2D NMR and HRESIMS analysis. Compound 1 is a lipoamino acid, consisting of a C12 fatty acid anchored to the amino acid arginine. The bioactivity of 1 was evaluated using cellular and biochemical assays, but the compound did not show cytotoxic, antimicrobial, anti-inflammatory or antioxidant activities.
Collapse
Affiliation(s)
- Priyanka Michael
- Marbio UiT-The Arctic University of Norway, Breivika, Tromsø, Norway
| | - Espen Hansen
- Marbio UiT-The Arctic University of Norway, Breivika, Tromsø, Norway
| | - Johan Isaksson
- Department of Chemistry, UiT-The Arctic University of Norway, Breivika, Tromsø, Norway
| | | | - Kine Ø Hansen
- Marbio UiT-The Arctic University of Norway, Breivika, Tromsø, Norway
| |
Collapse
|
22
|
Li H, Liao X, Sun Y, Zhou R, Long W, Li L, Gu L, Xu S. An Economical Synthesis of Caulerpin and Evaluation of Its New Anticancer Activities. ChemistrySelect 2018. [DOI: 10.1002/slct.201802876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hangbin Li
- Department of Chemistry; College of Chemistry and Materials Science 601 Huangpudadaoxi, Jinan University, Guangzhou; 510632 People's Republic of China
| | - Xiaojian Liao
- Department of Chemistry; College of Chemistry and Materials Science 601 Huangpudadaoxi, Jinan University, Guangzhou; 510632 People's Republic of China
| | - Yueguang Sun
- Department of Chemistry; College of Chemistry and Materials Science 601 Huangpudadaoxi, Jinan University, Guangzhou; 510632 People's Republic of China
| | - Rong Zhou
- Department of Chemistry; College of Chemistry and Materials Science 601 Huangpudadaoxi, Jinan University, Guangzhou; 510632 People's Republic of China
| | - Weili Long
- Department of Chemistry; College of Chemistry and Materials Science 601 Huangpudadaoxi, Jinan University, Guangzhou; 510632 People's Republic of China
| | - Le Li
- Department of Chemistry; College of Chemistry and Materials Science 601 Huangpudadaoxi, Jinan University, Guangzhou; 510632 People's Republic of China
| | - Liuqun Gu
- Department of Biomedical Engineering; Jinan University 601, Huangpudadaoxi, Guangzhou; 510632 People's Republic of China
| | - Shihai Xu
- Department of Chemistry; College of Chemistry and Materials Science 601 Huangpudadaoxi, Jinan University, Guangzhou; 510632 People's Republic of China
| |
Collapse
|