1
|
Gao S, Hou Y, Xu Y, Li J, Zhang C, Jiang S, Yu S, Liu L, Tu W, Yu B, Zhang Y, Li L. Discovery of orally bioavailable phosphonate prodrugs of potent ENPP1 inhibitors for cancer treatment. Eur J Med Chem 2024; 279:116853. [PMID: 39270452 DOI: 10.1016/j.ejmech.2024.116853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) is the dominant hydrolase of 2',3'-cyclic GMP-AMP (cGAMP). Inhibition of ENPP1 contributes to increased cGAMP concentration and stimulator of interferon gene (STING) activation, with the potential to boost immune response against cancer. ENPP1 is a promising therapeutic target in tumor immunotherapy. To date, orally bioavailable ENPP1 inhibitors with highly potent activity under physiological conditions have been rarely reported. Herein, we report our effort in the design and synthesis of two different series of ENPP1 inhibitors, and in the identification of a highly potent ENPP1 inhibitor 27 (IC50 = 1.2 nM at pH 7.5), which significantly enhanced the cGAMP-mediated STING activity in THP-1 cells. Phosphonate compound 27 has good preclinical pharmacokinetic profiles with low plasma clearance rate in mouse, rat, and dog. It has been developed as bis-POM prodrug 36 which successfully improves the oral bioavailability of 27. In the Pan02 syngeneic mouse model of pancreatic cancer, orally administered 36 showed synergistic effect in combination with radiotherapy.
Collapse
Affiliation(s)
- Shanyun Gao
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Yingjie Hou
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Yanxiao Xu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Jingjing Li
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Chaobo Zhang
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Shujuan Jiang
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Songda Yu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Lei Liu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Wangyang Tu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| | - Bing Yu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| | - Yixiang Zhang
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| | - Leping Li
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| |
Collapse
|
2
|
De Clercq E, Li G, Zhang Y, Huang J, Tan L. Unachieved antiviral strategies with acyclic nucleoside phosphonates: Dedicated to the memory of dr. Salvatore "Sam" Joseph Enna. Biochem Pharmacol 2024; 228:116448. [PMID: 39043335 DOI: 10.1016/j.bcp.2024.116448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
Many acyclic nucleoside phosphonates such as cidofovir, adefovir dipivoxil, tenofovir disoproxil fumarate, and tenofovir alafenamide have been marketed for the treatment or prophylaxis of infectious diseases. Here, this review highlights potent acyclic nucleoside phosphonates for their potential in the treatment of retrovirus (e.g., human immunodeficiency virus) and DNA virus (e.g., adeno-, papilloma-, herpes- and poxvirus) infections. If properly assessed and/or optimized, some potent acyclic nucleoside phosphonates can be possibly applied in the control of current and emerging infectious diseases.
Collapse
Affiliation(s)
- Erik De Clercq
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven 3000, Belgium
| | - Guangdi Li
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Yun Zhang
- Huaihua City Maternal and Child Health Care Hospital, Huaihua 418000, China
| | - Jie Huang
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Li Tan
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Hunan Clinical Molecular Diagnosis Center, Molecular Diagnostic Technology Hunan Engineering Research Center, Clinical Medical Research Center for Molecular Diagnosis of Infectious Diseases in Hunan Province, Changsha 410011, China.
| |
Collapse
|
3
|
Zhang Y, Fan C, Zhang J, Tian X, Zuo W, He K. Lipid-conjugated nucleoside monophosphate and monophosphonate prodrugs: A versatile drug delivery paradigm. Eur J Med Chem 2024; 275:116614. [PMID: 38925014 DOI: 10.1016/j.ejmech.2024.116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Integrating lipid conjugation strategies into the design of nucleoside monophosphate and monophosphonate prodrugs is a well-established approach for discovering potential therapeutics. The unique prodrug design endows nucleoside analogues with strong lipophilicity and structures resembling lysoglycerophospholipids, which improve cellular uptake, oral bioavailability and pharmacological activity. In addition, the metabolic stability, pharmacological activity, pharmacokinetic profiles and biodistribution of lipid prodrugs can be finely optimized by adding biostable caps, incorporating transporter-targeted groups, inserting stimulus-responsive bonds, adjusting chain lengths, and applying proper isosteric replacements. This review summarizes recent advances in the structural features and application fields of lipid-conjugated nucleoside monophosphate and monophosphonate prodrugs. This collection provides deep insights into the increasing repertoire of lipid prodrug development strategies and offers design inspirations for medicinal chemists for the development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Yanhua Zhang
- College of Science, Xichang University, Sichuan, 615000, China.
| | - Conghua Fan
- Xichang People's Hospital, Xichang, Sichuan, 615000, China
| | - Junjie Zhang
- College of Science, Xichang University, Sichuan, 615000, China
| | - Xin Tian
- College of Science, Xichang University, Sichuan, 615000, China
| | - Wen Zuo
- Xichang People's Hospital, Xichang, Sichuan, 615000, China
| | - Kehan He
- College of Science, Xichang University, Sichuan, 615000, China
| |
Collapse
|
4
|
Kosar M, Mach L, Carreira EM, Nazaré M, Pacher P, Grether U. Patent review of cannabinoid receptor type 2 (CB 2R) modulators (2016-present). Expert Opin Ther Pat 2024; 34:665-700. [PMID: 38886185 DOI: 10.1080/13543776.2024.2368745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Cannabinoid receptor type 2 (CB2R), predominantly expressed in immune tissues, is believed to play a crucial role within the body's protective mechanisms. Its modulation holds immense therapeutic promise for addressing a wide spectrum of dysbiotic conditions, including cardiovascular, gastrointestinal, liver, kidney, neurodegenerative, psychiatric, bone, skin, and autoimmune diseases, as well as lung disorders, cancer, and pain management. AREAS COVERED This review is an account of patents from 2016 up to 2023 which describes novel CB2R ligands, therapeutic applications, synthesis, as well as formulations of CB2R modulators. EXPERT OPINION The patents cover a vast, structurally diverse chemical space. The focus of CB2R ligand development has shifted from unselective dual-cannabinoid receptor type 1 (CB1R) and 2 agonists toward agonists with high selectivity over CB1R, particularly for indications associated with inflammation and tissue injury. Currently, there are at least eight CB2R agonists and one antagonist in active clinical development. A better understanding of the endocannabinoid system (ECS) and in particular of CB2R pharmacology is required to unlock the receptor's full therapeutic potential.
Collapse
Affiliation(s)
- Miroslav Kosar
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Leonard Mach
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Berlin, Germany
| | - Erick M Carreira
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Marc Nazaré
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Berlin, Germany
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Uwe Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
5
|
Singh P, Zeller M, Mezei G. Supramolecular Binding of Phosphonate Dianions by Nanojars and Nanojar Clamshells. Inorg Chem 2024; 63:14216-14230. [PMID: 39023277 PMCID: PMC11289757 DOI: 10.1021/acs.inorgchem.4c02386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Despite the widespread use of phosphonates (RPO32-) in various agricultural, industrial, and household applications and the ensuing eutrophication of polluted water bodies, the capture of phosphonate ions by molecular receptors has been scarcely studied. Herein, we describe a novel approach to phosphonate binding using chemically and thermally robust supramolecular coordination assemblies of the formula [RPO3⊂{cis-CuII(μ-OH)(μ-pz)}n]2- (Cun; n = 27-31; pz = pyrazolate ion, C3H3N2-; R = aliphatic or aromatic group). The neutral receptors, termed nanojars, strongly bind phosphonate anions by a multitude of hydrogen bonds within their highly hydrophilic cavities. These nanojars can be synthesized either directly from their constituents or by depolymerization of [trans-CuII(μ-OH)(μ-pz)]∞ induced by phosphonate anions. Electrospray-ionization mass spectrometry, UV-vis and variable-temperature, paramagnetic 1H and 31P NMR spectroscopy, single-crystal X-ray diffraction, along with chemical stability studies toward NH3 and Ba2+ ions, and thermal stability studies in solution are employed to explore the binding of various phosphonate ions by nanojars. Crystallographic studies of 12 different nanojars offer unprecedented structural characterization of host-guest complexes with doubly charged RPO32- ions and reveal a new motif in nanojar chemistry, nanojar clamshells, which consist of phosphonate anion-bridged pairs of nanojars and double the phosphonate-binding capacity of nanojars.
Collapse
Affiliation(s)
- Pooja Singh
- Department
of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Matthias Zeller
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Gellert Mezei
- Department
of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| |
Collapse
|
6
|
Huang J, Ye L, Wang J, Deng Y, Du B, Liu W, Su G. A new approach to monitoring typical organophosphorus compounds (OPs) in environmental media: From database building to suspect screening. ENVIRONMENT INTERNATIONAL 2024; 189:108802. [PMID: 38875816 DOI: 10.1016/j.envint.2024.108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Organophosphorus compounds (OPs) are widely used as flame retardants (FRs) and plasticizers, yet strategies for comprehensively screening of suspect OPs in environmental samples are still lacking. In this work, a neoteric, robust, and general suspect screening technique was developed to identify novel chemical exposures by use of ultra-high performance liquid chromatography-Q Exactive hybrid quadrupole-Orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). We firstly established a suspect chemical database which had 7,922 OPs with 4,686 molecular formulas, and then conducted suspect screening in n = 50 indoor dust samples, n = 76 sediment samples, and n = 111 water samples. By use of scoring criteria such as retention time prediction models, we successfully confirmed five compounds by comparison with their authentic standards, and prioritized three OPs candidates including a nitrogen/fluorine-containing compound, that is dimethyl {1H-indol-3-yl[3-(trifluoromethyl)anilino]methyl} phosphonate (DMITFMAMP). Given that the biodegradation half-life values in water (t1/2,w) of DMITFMAMP calculated by EPI Suite is 180 d, it is considered to be potentially persistent. This strategy shows promising potential in environmental pollution assessment, and can be expected to be widely used in future research.
Collapse
Affiliation(s)
- Jianan Huang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Langjie Ye
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jun Wang
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, China
| | - Yirong Deng
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, China
| | - Bing Du
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, No.1 Yuhuinanlu, Chaoyang District, Beijing 100029, China.
| | - Wei Liu
- State Key Laboratory for Environmental Protection of Water Ecological Health in the Middle and Lower Reaches of the Yangtze River, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
7
|
Wang J, Zhang Y, Zhu L, Xue XS, Li C. Photoinduced Remote C(sp 3)-H Phosphonylation of Amides. Angew Chem Int Ed Engl 2024; 63:e202400856. [PMID: 38570332 DOI: 10.1002/anie.202400856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
The present study reports an unprecedented protocol for the phosphonylation of unactivated C(sp3)-H bonds. By utilizing 1 mol % 4DPAIPN (1,2,3,5-tetrakis(diphenylamino)-4,6-dicyanobenzene) as the catalyst, satisfactory yields of γ-phosphonylated amides are obtained through a visible-light-induced reaction between N-((4-cyanobenzoyl)oxy)alkanamides and 9-fluorenyl o-phenylene phosphite at room temperature. This protocol demonstrates broad substrate scope and wide functional group compatibility.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yuchen Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Lin Zhu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiao-Song Xue
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Chaozhong Li
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
8
|
Bissonnette NB, Bisballe N, Tran AV, Rossi-Ashton JA, MacMillan DWC. Development of a General Organophosphorus Radical Trap: Deoxyphosphonylation of Alcohols. J Am Chem Soc 2024; 146:7942-7949. [PMID: 38470101 PMCID: PMC11474583 DOI: 10.1021/jacs.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Here we report the design of a general, redox-switchable organophosphorus alkyl radical trap that enables the synthesis of a broad range of C(sp3)-P(V) modalities. This "plug-and-play" approach relies upon in situ activation of alcohols and O═P(R2)H motifs, two broadly available and inexpensive sources of molecular complexity. The mild, photocatalytic deoxygenative strategy described herein allows for the direct conversion of sugars, nucleosides, and complex pharmaceutical architectures to their organophosphorus analogs. This includes the facile incorporation of medicinally relevant phosphonate ester prodrugs.
Collapse
Affiliation(s)
- Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Niels Bisballe
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Andrew V Tran
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - James A Rossi-Ashton
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
9
|
Tatarinov DA, Mikulenkova EA, Litvinov IA, Khayarov KR, Mironov VF. Divergent synthesis of benzoxaphospholenes and phosphacoumarins via the reaction of 2-alkenylphenols with phosphorus(III/V) chlorides. Org Biomol Chem 2024; 22:1629-1633. [PMID: 38318979 DOI: 10.1039/d3ob01718d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The divergent synthesis of benzo[e]-1,2-oxaphosphinines or benzo[d]-1,2-oxaphospholenes along with spirocyclic quasiphosphonium compounds based on 2-alkenylphenols and phosphorus(III/V) chlorides is presented. The reaction is condition-dependent and determined by the biphility of the phosphorus(III) derivative and the dual reactivity of 2-alkenylphenol. The procedures are applicable for obtaining benzo[e]-1,2-oxaphosphinines substituted at position 4 and disubstituted at positions 4 and 5 as well as 3,3-disubstituted benzo[d]-1,2-oxaphospholenes with good to high yields.
Collapse
Affiliation(s)
- Dmitry A Tatarinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan, 420088, Russian Federation.
- Institute of Chemistry, Kazan Federal University, Kremlevskaya Str. 18, Kazan, 420008, Russian Federation
| | - Elina A Mikulenkova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan, 420088, Russian Federation.
- Institute of Chemistry, Kazan Federal University, Kremlevskaya Str. 18, Kazan, 420008, Russian Federation
| | - Igor A Litvinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan, 420088, Russian Federation.
| | - Khasan R Khayarov
- Institute of Chemistry, Kazan Federal University, Kremlevskaya Str. 18, Kazan, 420008, Russian Federation
| | - Vladimir F Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan, 420088, Russian Federation.
| |
Collapse
|
10
|
Voráčová M, Zore M, Yli-Kauhaluoma J, Kiuru P. Harvesting phosphorus-containing moieties for their antibacterial effects. Bioorg Med Chem 2023; 96:117512. [PMID: 37939493 DOI: 10.1016/j.bmc.2023.117512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Clinically manifested resistance of bacteria to antibiotics has emerged as a global threat to society and there is an urgent need for the development of novel classes of antibacterial agents. Recently, the use of phosphorus in antibacterial agents has been explored in quite an unprecedent manner. In this comprehensive review, we summarize the use of phosphorus-containing moieties (phosphonates, phosphonamidates, phosphonopeptides, phosphates, phosphoramidates, phosphinates, phosphine oxides, and phosphoniums) in compounds with antibacterial effect, including their use as β-lactamase inhibitors and antibacterial disinfectants. We show that phosphorus-containing moieties can serve as novel pharmacophores, bioisosteres, and prodrugs to modify pharmacodynamic and pharmacokinetic properties. We further discuss the mechanisms of action, biological activities, clinical use and highlight possible future prospects.
Collapse
Affiliation(s)
- Manuela Voráčová
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Matej Zore
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paula Kiuru
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Shen K, Feng C, Liu Y, Yi D, Lin P, Li H, Gong Y, Wei S, Fu Q, Zhang Z. Visible light-enabled synthesis of phosphorylated indolizine and pyridoindole derivatives via HAT-mediated radical cascade cyclization. Org Biomol Chem 2023; 21:9341-9345. [PMID: 37987693 DOI: 10.1039/d3ob01675g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A visible light-enabled cascade cyclization strategy is disclosed with concomitant phosphorylation and heterocycle construction. It provides a novel and environmentally benign approach for accessing tetrahydroindolizine-containing phosphonates under metal-free conditions. Mechanistic studies revealed that phosphinoyl radicals were generated from H-phosphonates via a HAT process.
Collapse
Affiliation(s)
- Kunrong Shen
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Chuan Feng
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Yilei Liu
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Peng Lin
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Huifang Li
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Yimou Gong
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Siping Wei
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Qiang Fu
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Zhijie Zhang
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
12
|
Kraina P, Česnek M, Tloušťová E, Mertlíková-Kaiserová H, Fulton CJ, Davidson EK, Smith BP, Watts VJ, Janeba Z. Discovery of a potent and selective human AC2 inhibitor based on 7-deazapurine analogues of adefovir. Bioorg Med Chem 2023; 95:117508. [PMID: 37931521 PMCID: PMC10842932 DOI: 10.1016/j.bmc.2023.117508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023]
Abstract
Adefovir based acyclic nucleoside phosphonates were previously shown to modulate bacterial and, to a certain extent, human adenylate cyclases (mACs). In this work, a series of 24 novel 7-substituted 7-deazaadefovir analogues were synthesized in the form of prodrugs. Twelve analogues were single-digit micromolar inhibitors of Bordetella pertussis adenylate cyclase toxin with no cytotoxicity to J774A.1 macrophages. In HEK293 cell-based assays, compound 14 was identified as a potent (IC50 = 4.45 μM), non-toxic, and selective mAC2 inhibitor (vs. mAC1 and mAC5). Such a compound represents a valuable addition to a limited number of small-molecule probes to study the biological functions of individual endogenous mAC isoforms.
Collapse
Affiliation(s)
- Pavel Kraina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague 6, Czech Republic; Department of Organic Chemistry, University of Chemistry and Technology Prague, 16628 Prague 6, Czech Republic
| | - Michal Česnek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague 6, Czech Republic
| | - Eva Tloušťová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague 6, Czech Republic
| | - Camryn J Fulton
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Emily K Davidson
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Brenton P Smith
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Val J Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague 6, Czech Republic.
| |
Collapse
|
13
|
Dejmek M, Brazdova A, Otava T, Polidarova MP, Klíma M, Smola M, Vavrina Z, Buděšínský M, Dračínský M, Liboska R, Boura E, Birkuš G, Nencka R. Vinylphosphonate-based cyclic dinucleotides enhance STING-mediated cancer immunotherapy. Eur J Med Chem 2023; 259:115685. [PMID: 37567057 DOI: 10.1016/j.ejmech.2023.115685] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Cyclic dinucleotides (CDNs) trigger the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, which plays a key role in cytosolic DNA sensing and thus in immunomodulation against infections, cell damage and cancer. However, cancer immunotherapy trials with CDNs have shown immune activation, but not complete tumor regression. Nevertheless, we designed a novel class of CDNs containing vinylphosphonate based on a STING-affinity screening assay. In vitro, acyloxymethyl phosphate/phosphonate prodrugs of these vinylphosphonate CDNs were up to 1000-fold more potent than the clinical candidate ADU-S100. In vivo, the lead prodrug induced tumor-specific T cell priming and facilitated tumor regression in the 4T1 syngeneic mouse model of breast cancer. Moreover, we solved the crystal structure of this ligand bound to the STING protein. Therefore, our findings not only validate the therapeutic potential of vinylphosphonate CDNs but also open up opportunities for drug development in cancer immunotherapy bridging innate and adaptive immunity.
Collapse
Affiliation(s)
- Milan Dejmek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic
| | - Andrea Brazdova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Průmyslová 595, Vestec, 128 44, Prague, Czech Republic
| | - Tomáš Otava
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 166 28, Prague 6, Czech Republic
| | - Marketa Pimkova Polidarova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Průmyslová 595, Vestec, 128 44, Prague, Czech Republic
| | - Martin Klíma
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic
| | - Miroslav Smola
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic
| | - Zdenek Vavrina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic; Faculty of Science, Charles University, Albertov 6, Prague 2, 128 00, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic
| | - Radek Liboska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic
| | - Gabriel Birkuš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic.
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic.
| |
Collapse
|
14
|
Silkenath B, Kläge D, Altwein H, Schmidhäuser N, Mayer G, Hartig JS, Wittmann V. Phosphonate and Thiasugar Analogues of Glucosamine-6-phosphate: Activation of the glmS Riboswitch and Antibiotic Activity. ACS Chem Biol 2023; 18:2324-2334. [PMID: 37793187 PMCID: PMC10594590 DOI: 10.1021/acschembio.3c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
The glmS riboswitch is a motif found in 5'-untranslated regions of bacterial mRNA that controls the synthesis of glucosamine-6-phosphate (GlcN6P), an essential building block for the bacterial cell wall, by a feedback mechanism. Activation of the glmS riboswitch by GlcN6P mimics interferes with the ability of bacteria to synthesize its cell wall. Accordingly, GlcN6P mimics acting as glmS activators are promising candidates for future antibiotic drugs that may overcome emerging bacterial resistance against established antibiotics. We describe the synthesis of a series of phosphonate mimics of GlcN6P as well as the thiasugar analogue of GlcN6P. The phosphonate mimics differ in their pKa value to answer the question of whether derivatives with a pKa matching that of GlcN6P would be efficient glmS activators. We found that all derivatives activate the riboswitch, however, less efficiently than GlcN6P. This observation can be explained by the missing hydrogen bonds in the case of phosphonates and is valuable information for the design of future GlcN6P mimics. The thiasugar analogue of GlcN6P on the other hand turned out to be a glmS riboswitch activator with the same activity as the natural metabolite GlcN6P. The nonphosphorylated thiasugar displayed antimicrobial activity against certain bacilli. Therefore, the compound is a promising lead structure for the development of future antibiotics with a potentially novel mode of action.
Collapse
Affiliation(s)
- Bjarne Silkenath
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Dennis Kläge
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Hanna Altwein
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Nina Schmidhäuser
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Günter Mayer
- LIMES
Institute, Center for Aptamer Research & Development, University of Bonn, 53121 Bonn, Germany
| | - Jörg S. Hartig
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Valentin Wittmann
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
15
|
Chen SJ, He CQ, Kong M, Wang J, Lin S, Krska SW, Stahl SS. Accessing three-dimensional molecular diversity through benzylic C-H cross-coupling. NATURE SYNTHESIS 2023; 2:998-1008. [PMID: 38463240 PMCID: PMC10923599 DOI: 10.1038/s44160-023-00332-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 04/25/2023] [Indexed: 03/12/2024]
Abstract
Pharmaceutical and agrochemical discovery efforts rely on robust methods for chemical synthesis that rapidly access diverse molecules1,2. Cross-coupling reactions are the most widely used synthetic methods3, but these methods typically form bonds to C(sp2)-hybridized carbon atoms (e.g., amide coupling, biaryl coupling) and lead to a prevalence of "flat" molecular structures with suboptimal physicochemical and topological properties4. Benzylic C(sp3)-H cross-coupling methods offer an appealing strategy to address this limitation by directly forming bonds to C(sp3)-hybridized carbon atoms, and emerging methods exhibit synthetic versatility that rivals conventional cross-coupling methods to access products with drug-like properties. Here, we use a virtual library of >350,000 benzylic ethers and ureas derived from benzylic C-H cross-coupling to test the widely held view that coupling at C(sp3)-hybridized carbon atoms affords products with improved three-dimensionality. The results show that the conformational rigidity of the benzylic scaffold strongly influences the product dimensionality. Products derived from flexible scaffolds often exhibit little or no improvement in three-dimensionality, unless they adopt higher energy conformations. This outcome introduces an important consideration when designing routes to topologically diverse molecular libraries. The concepts elaborated herein are validated experimentally through an informatics-guided synthesis of selected targets and the use of high-throughput experimentation to prepare a library of three-dimensional products that are broadly distributed across drug-like chemical space.
Collapse
Affiliation(s)
- Si-Jie Chen
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI, USA
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Cyndi Qixin He
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - May Kong
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Jun Wang
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Shishi Lin
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Shane W. Krska
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI, USA
| |
Collapse
|
16
|
Gibadullina E, Neganova M, Aleksandrova Y, Nguyen HBT, Voloshina A, Khrizanforov M, Nguyen TT, Vinyukova E, Volcho K, Tsypyshev D, Lyubina A, Amerhanova S, Strelnik A, Voronina J, Islamov D, Zhapparbergenov R, Appazov N, Chabuka B, Christopher K, Burilov A, Salakhutdinov N, Sinyashin O, Alabugin I. Hybrids of Sterically Hindered Phenols and Diaryl Ureas: Synthesis, Switch from Antioxidant Activity to ROS Generation and Induction of Apoptosis. Int J Mol Sci 2023; 24:12637. [PMID: 37628818 PMCID: PMC10454409 DOI: 10.3390/ijms241612637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The utility of sterically hindered phenols (SHPs) in drug design is based on their chameleonic ability to switch from an antioxidant that can protect healthy tissues to highly cytotoxic species that can target tumor cells. This work explores the biological activity of a family of 45 new hybrid molecules that combine SHPs equipped with an activating phosphonate moiety at the benzylic position with additional urea/thiourea fragments. The target compounds were synthesized by reaction of iso(thio)cyanates with C-arylphosphorylated phenols containing pendant 2,6-diaminopyridine and 1,3-diaminobenzene moieties. The SHP/urea hybrids display cytotoxic activity against a number of tumor lines. Mechanistic studies confirm the paradoxical nature of these substances which combine pronounced antioxidant properties in radical trapping assays with increased reactive oxygen species generation in tumor cells. Moreover, the most cytotoxic compounds inhibited the process of glycolysis in SH-SY5Y cells and caused pronounced dissipation of the mitochondrial membrane of isolated rat liver mitochondria. Molecular docking of the most active compounds identified the activator allosteric center of pyruvate kinase M2 as one of the possible targets. For the most promising compounds, 11b and 17b, this combination of properties results in the ability to induce apoptosis in HuTu 80 cells along the intrinsic mitochondrial pathway. Cyclic voltammetry studies reveal complex redox behavior which can be simplified by addition of a large excess of acid that can protect some of the oxidizable groups by protonations. Interestingly, the re-reduction behavior of the oxidized species shows considerable variations, indicating different degrees of reversibility. Such reversibility (or quasi-reversibility) suggests that the shift of the phenol-quinone equilibrium toward the original phenol at the lower pH may be associated with lower cytotoxicity.
Collapse
Affiliation(s)
- Elmira Gibadullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Margarita Neganova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia;
| | - Yulia Aleksandrova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia;
| | - Hoang Bao Tran Nguyen
- The Department of General Organic and Petrochemical Synthesis Technology, The Kazan National Research Technological University, Karl Marx St. 68, Kazan 420015, Russia; (H.B.T.N.); (T.T.N.)
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Mikhail Khrizanforov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Thi Thu Nguyen
- The Department of General Organic and Petrochemical Synthesis Technology, The Kazan National Research Technological University, Karl Marx St. 68, Kazan 420015, Russia; (H.B.T.N.); (T.T.N.)
| | - Ekaterina Vinyukova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia;
| | - Konstantin Volcho
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Lavrentiev Av. 9, Novosibirsk 630090, Russia (D.T.); (N.S.)
| | - Dmitry Tsypyshev
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Lavrentiev Av. 9, Novosibirsk 630090, Russia (D.T.); (N.S.)
| | - Anna Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Syumbelya Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Anna Strelnik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Julia Voronina
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninskii Prospekt, 31, Moscow 119071, Russia;
| | - Daut Islamov
- Laboratory for Structural Analysis of Biomacromolecules, Kazan Scientific Center of Russian Academy of Science, 31, Kremlevskaya, Kazan 420008, Russia;
| | - Rakhmetulla Zhapparbergenov
- Laboratory of Engineering Profile, Department of Engineering Technology, Korkyt Ata Kyzylorda University, 29A, Aiteke Bi Street, Kyzylorda 120014, Kazakhstan;
| | - Nurbol Appazov
- Laboratory of Engineering Profile, Department of Engineering Technology, Korkyt Ata Kyzylorda University, 29A, Aiteke Bi Street, Kyzylorda 120014, Kazakhstan;
| | - Beauty Chabuka
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-3290, USA; (B.C.)
| | - Kimberley Christopher
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-3290, USA; (B.C.)
| | - Alexander Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Nariman Salakhutdinov
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Lavrentiev Av. 9, Novosibirsk 630090, Russia (D.T.); (N.S.)
| | - Oleg Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Igor Alabugin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-3290, USA; (B.C.)
| |
Collapse
|
17
|
Cárdenas EL, O’Rourke RL, Menon A, Meagher J, Stuckey J, Garner AL. Design of Cell-Permeable Inhibitors of Eukaryotic Translation Initiation Factor 4E (eIF4E) for Inhibiting Aberrant Cap-Dependent Translation in Cancer. J Med Chem 2023; 66:10734-10745. [PMID: 37471629 PMCID: PMC11469893 DOI: 10.1021/acs.jmedchem.3c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) is an RNA-binding protein that binds to the m7GpppX-cap at the 5' terminus of coding mRNAs to initiate cap-dependent translation. While all cells require cap-dependent translation, cancer cells become addicted to enhanced translational capacity, driving the production of oncogenic proteins involved in proliferation, evasion of apoptosis, metastasis, and angiogenesis, among other cancerous phenotypes. eIF4E is the rate-limiting translation factor, and its activation has been shown to drive cancer initiation, progression, metastasis, and drug resistance. These findings have established eIF4E as a translational oncogene and promising, albeit challenging, anti-cancer therapeutic target. Although significant effort has been put forth toward inhibiting eIF4E, the design of cell-permeable, cap-competitive inhibitors remains a challenge. Herein, we describe our work toward solving this long-standing challenge. By employing an acyclic nucleoside phosphonate prodrug strategy, we report the synthesis of cell-permeable inhibitors of eIF4E binding to capped mRNA to inhibit cap-dependent translation.
Collapse
Affiliation(s)
- Emilio L. Cárdenas
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel L. O’Rourke
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer Meagher
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeanne Stuckey
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amanda L. Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
18
|
Wang X, Edwards RL, Ball HS, Heidel KM, Brothers RC, Johnson C, Haymond A, Girma M, Dailey A, Roma JS, Boshoff HI, Osbourn DM, Meyers MJ, Couch RD, Odom John AR, Dowd CS. MEPicides: α,β-unsaturated Fosmidomycin N-Acyl Analogs as Efficient Inhibitors of Plasmodium falciparum 1-Deoxy-d-xylulose-5-phosphate reductoisomerase. ACS Infect Dis 2023; 9:1387-1395. [PMID: 37310810 PMCID: PMC10880585 DOI: 10.1021/acsinfecdis.3c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Malaria, a mosquito-borne disease caused by several parasites of the Plasmodium genus, remains a huge threat to global public health. There are an estimated 0.5 million malaria deaths each year, mostly among African children. Unlike humans, Plasmodium parasites and a number of important pathogenic bacteria employ the methyl erythritol phosphate (MEP) pathway for isoprenoid synthesis. Thus, the MEP pathway represents a promising set of drug targets for antimalarial and antibacterial compounds. Here, we present new unsaturated MEPicide inhibitors of 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), the second enzyme of the MEP pathway. A number of these compounds have demonstrated robust inhibition of Plasmodium falciparum DXR, potent antiparasitic activity, and low cytotoxicity against HepG2 cells. Parasites treated with active compounds are rescued by isopentenyl pyrophosphate, the product of the MEP pathway. With higher levels of DXR substrate, parasites acquire resistance to active compounds. These results further confirm the on-target inhibition of DXR in parasites by the inhibitors. Stability in mouse liver microsomes is high for the phosphonate salts, but remains a challenge for the prodrugs. Taken together, the potent activity and on-target mechanism of action of this series further validate DXR as an antimalarial drug target and the α,β-unsaturation moiety as an important structural component.
Collapse
Affiliation(s)
- Xu Wang
- Department of Chemistry, George Washington University, Washington, District of Columbia 20052, United States
| | - Rachel L Edwards
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Haley S Ball
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - Kenneth M Heidel
- Department of Chemistry, George Washington University, Washington, District of Columbia 20052, United States
| | - Robert C Brothers
- Department of Chemistry, George Washington University, Washington, District of Columbia 20052, United States
| | - Claire Johnson
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - Amanda Haymond
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - Misgina Girma
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - Allyson Dailey
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - Jose Santinni Roma
- Tuberculosis Research Section, LCIM, NIAID/NIH, Bethesda, Maryland 20892, United States
| | - Helena I Boshoff
- Tuberculosis Research Section, LCIM, NIAID/NIH, Bethesda, Maryland 20892, United States
| | - Damon M Osbourn
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Marvin J Meyers
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Robin D Couch
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - Audrey R Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
19
|
Cárdenas EL, O’Rourke RL, Menon A, Meagher J, Stuckey J, Garner AL. Design of Cell-Permeable Inhibitors of Eukaryotic Translation Initiation Factor 4E (eIF4E) for Inhibiting Aberrant Cap-Dependent Translation in Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541912. [PMID: 37292917 PMCID: PMC10245873 DOI: 10.1101/2023.05.23.541912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) is an RNA-binding protein that binds to the m 7 GpppX-cap at the 5' terminus of coding mRNAs to initiate cap-dependent translation. While all cells require cap-dependent translation, cancer cells become addicted to enhanced translational capacity, driving the production of oncogenic proteins involved in proliferation, evasion of apoptosis, metastasis, and angiogenesis among other cancerous phenotypes. eIF4E is the rate-limiting translation factor and its activation has been shown to drive cancer initiation, progression, metastasis, and drug resistance. These findings have established eIF4E as a translational oncogene and promising, albeit challenging, anti-cancer therapeutic target. Although significant effort has been put forth towards inhibiting eIF4E, the design of cell-permeable, cap-competitive inhibitors remains a challenge. Herein, we describe our work towards solving this long-standing challenge. By employing an acyclic nucleoside phosphonate prodrug strategy, we report the synthesis of cell-permeable inhibitors of eIF4E binding to capped mRNA to inhibit cap-dependent translation.
Collapse
Affiliation(s)
- Emilio L. Cárdenas
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel L. O’Rourke
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer Meagher
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeanne Stuckey
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amanda L. Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
20
|
Kim HB, Jeong HJ, Jung JE, Lee JK, Lee DH, Han SJ. Three-Component Coupling Reactions Involving Arynes, Phosphites, and Aldehydes toward 3-Mono-Substituted Benzoxaphosphole 1-Oxides. J Org Chem 2023. [PMID: 37224336 DOI: 10.1021/acs.joc.3c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A mild, efficient, and transition-metal-free three-component coupling reaction involving arynes, phosphites, and aldehydes was established to afford 3-mono-substituted benzoxaphosphole 1-oxides. A range of 3-mono-substituted benzoxaphosphole 1-oxides was obtained from both aryl- and aliphatic-substituted aldehydes in moderate to good yields. Moreover, the synthetic utility of the reaction was demonstrated by a Gram-scale reaction and the transformation of the products into various P-containing bicycles.
Collapse
Affiliation(s)
- Han Byeol Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Chemistry, Sogang University, 35 Baekbeom Ro, Seoul 04107, Republic of Korea
| | - Hee Jin Jeong
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jae Eun Jung
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jae Kyun Lee
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Duck-Hyung Lee
- Department of Chemistry, Sogang University, 35 Baekbeom Ro, Seoul 04107, Republic of Korea
| | - Seo-Jung Han
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
21
|
Singh US, Konreddy AK, Kothapalli Y, Liu D, Lloyd MG, Annavarapu V, White CA, Bartlett MG, Moffat JF, Chu CK. Prodrug Strategies for the Development of β-l-5-(( E)-2-Bromovinyl)-1-((2 S,4 S)-2-(hydroxymethyl)-1,3-(dioxolane-4-yl))uracil (l-BHDU) against Varicella Zoster Virus (VZV). J Med Chem 2023; 66:7038-7053. [PMID: 37140467 DOI: 10.1021/acs.jmedchem.3c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Varicella zoster virus (VZV) establishes lifelong infection after primary disease and can reactivate. Several drugs are approved to treat VZV diseases, but new antivirals with greater potency are needed. Previously, we identified β-l-5-((E)-2-bromovinyl)-1-((2S,4S)-2-(hydroxymethyl)-1,3-(dioxolane-4-yl))uracil (l-BHDU, 1), which had significant anti-VZV activity. In this communication, we report the synthesis and evaluation of numerous l-BHDU prodrugs: amino acid esters (14-26), phosphoramidates (33-34), long-chain lipids (ODE-l-BHDU-MP, 38, and HDP-l-BHDU-MP, 39), and phosphate ester prodrugs (POM-l-BHDU-MP, 41, and POC-l-BHDU-MP, 47). The amino acid ester l-BHDU prodrugs (l-phenylalanine, 16, and l-valine, 17) had a potent antiviral activity with EC50 values of 0.028 and 0.030 μM, respectively. The phosphate ester prodrugs POM-l-BHDU-MP and POC-l-BHDU-MP had a significant anti-VZV activity with EC50 values of 0.035 and 0.034 μM, respectively, and no cellular toxicity (CC50 > 100 μM) was detected. Out of these prodrugs, ODE-l-BHDU-MP (38) and POM-l-BHDU-MP (41) were selected for further evaluation in future studies.
Collapse
Affiliation(s)
- Uma S Singh
- Department of Pharmaceutical and Biomedical Science, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Ananda K Konreddy
- Department of Pharmaceutical and Biomedical Science, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Yugandhar Kothapalli
- Department of Pharmaceutical and Biomedical Science, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Dongmei Liu
- State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Megan G Lloyd
- State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Vidya Annavarapu
- Department of Pharmaceutical and Biomedical Science, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Catherine A White
- Department of Pharmaceutical and Biomedical Science, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Science, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Jennifer F Moffat
- State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Chung K Chu
- Department of Pharmaceutical and Biomedical Science, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
22
|
Sun Z, Xiao L, Chen Y, Wang J, Zeng F, Zhang H, Zhang J, Yang K, Hu YJ. Constructive On-DNA Abramov Reaction and Pudovik Reaction for DEL Synthesis. ACS Med Chem Lett 2023; 14:473-478. [PMID: 37077381 PMCID: PMC10107919 DOI: 10.1021/acsmedchemlett.3c00022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Organophosphonic compounds are distinctive among natural products in terms of stability and mimicry. Numerous synthetic organophosphonic compounds, including pamidronic acid, fosmidromycin, and zoledronic acid, are approved drugs. DNA encoded library technology (DELT) is a well-established platform for identifying small molecule recognition to target protein of interest (POI). Therefore, it is imperative to create an efficient procedure for the on-DNA synthesis of α-hydroxy phosphonates for DEL builds.
Collapse
Affiliation(s)
- Zhaomei Sun
- Pharmaron
(Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Lingqian Xiao
- Pharmaron
(Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Yahui Chen
- Pharmaron
(Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Jiangying Wang
- Pharmaron
(Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Fanming Zeng
- Pharmaron
(Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Huanqing Zhang
- Pharmaron
(Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Jie Zhang
- Pharmaron
(Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Kexin Yang
- Pharmaron
Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176 P. R. China
| | - Yun Jin Hu
- Pharmaron
(Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| |
Collapse
|
23
|
Xie Z, Meng Z, Yang X, Duan Y, Wang Q, Liao C. Factor XIa Inhibitors in Anticoagulation Therapy: Recent Advances and Perspectives. J Med Chem 2023; 66:5332-5363. [PMID: 37037122 DOI: 10.1021/acs.jmedchem.2c02130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Factor XIa (FXIa) in the intrinsic pathway of the coagulation process has been proven to be an effective and safe target for anticoagulant discovery with limited or no bleeding. Numerous small-molecule FXIa inhibitors (SMFIs) with various scaffolds have been identified in the early stages of drug discovery. They have served as the foundation for the recent discovery of additional promising SMFIs with improved potency, selectivity, and pharmacokinetic profiles, some of which have entered clinical trials for the treatment of thrombosis. After reviewing the coagulation process and structure of FXIa, this perspective discusses the rational or structure-based design, discovery, structure-activity relationships, and development of SMFIs disclosed in recent years. Strategies for identifying more selective and druggable SMFIs are provided, paving the way for the design and discovery of more useful SMFIs for anticoagulation therapy.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Zhiwei Meng
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
24
|
González-González S, Franco-Pérez M, Jardínez C, Cariño-Moreno JJ, Ramírez-Sotelo MG, Zamudio-Medina A. Synthesis, characterization, and quantum chemistry local chemical reactivity description of new phosphorylated derivatives of piperazine. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2193404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
25
|
Hassan AEA, Hegazy HA, Zaki I, Hassan MH, Ramadan M, Haikal AZ, Sheng J, Abou-Elkhair RAI. Design, synthesis, and evaluation of 4'-phosphonomethoxy pyrimidine ribonucleosides as potential anti-influenza agents. Arch Pharm (Weinheim) 2023:e2200382. [PMID: 36792964 DOI: 10.1002/ardp.202200382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Influenza viruses belong to the Orthomyxoviridae family and cause acute respiratory distress in humans. The developed drug resistance toward existing drugs and the emergence of viral mutants that can escape vaccines mandate the search for novel antiviral drugs. Herein, the synthesis of epimeric 4'-methyl-4'-phosphonomethoxy [4'-C-Me-4'-C-(O-CH2 P═O)] pyrimidine ribonucleosides, their phosphonothioate [4'-C-Me-4'-C-(O-CH2 P═S)] derivatives, and their evaluation against an RNA viral panel are described. Selective formation of the α- l-lyxo epimer, [4'-C-(α)-Me-4'-C-(β)-(O-CH2 -P(═O)(OEt)2 )] over the β- d-ribo epimer [4'-C-(β)-Me-4'-C-(α)-(O-CH2 -P(═O)(OEt)2 )] was explained by DFT equilibrium geometry optimizations studies. Pyrimidine nucleosides having the [4'-C-(α)-Me-4'-C-(β)-(O-CH2 -P(═O)(OEt)2 )] framework showed specific activity against influenza A virus. Significant anti-influenza virus A (H1N1 California/07/2009 isolate) was observed with the 4'-C-(α)-Me-4'-C-(β)-O-CH2 -P(═O)(OEt)2 -uridine derivative 1 (EC50 = 4.56 mM, SI50 > 56), 4-ethoxy-2-oxo-1(2H)-pyrimidin-1-yl derivative 3 (EC50 = 5.44 mM, SI50 > 43) and the cytidine derivative 2 (EC50 = 0.81 mM, SI50 > 13), respectively. The corresponding thiophosphonates 4'-C-(α)-Me-4'-C-(β)-(O-CH2 -P( S)(OEt)2 ) and thionopyrimidine nucleosides were devoid of any antiviral activity. This study shows that the 4'-C-(α)-Me-4'-(β)-O-CH2 -P(═O)(OEt)2 ribonucleoside can be further optimized to provide potent antiviral agents.
Collapse
Affiliation(s)
- Abdalla E A Hassan
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Hend A Hegazy
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Marwa H Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Medhat Ramadan
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Abdelfattah Z Haikal
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Jia Sheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
| | - Reham A I Abou-Elkhair
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
26
|
Ballók R, Kis Varga Á, Erdélyi P, Fischer J. Phosphonate Derivatives of Paracetamol and Valproic Acid. ChemMedChem 2023; 18:e202200526. [PMID: 36367256 DOI: 10.1002/cmdc.202200526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Paracetamol and valproic acid are standalone drugs with leading position in the world drug market. The phosphonate analogues of these drugs were synthesized and were tested in vivo. N-(4-hydroxyphenylcarbamoyl)phosphonic acid was four times more potent than paracetamol in preventing acetic acid-induced writhing. Phosphonate derivative of valproic acid, (2-propylpentanoyl)phosphonic acid, had similar in vivo activity to valproic acid in the pentylenetetrazole-induced kindling mouse model.
Collapse
Affiliation(s)
- Renáta Ballók
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521, Budapest, Hungary
| | - Ágnes Kis Varga
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest 1103, Hungary
| | - Péter Erdélyi
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest 1103, Hungary
| | - János Fischer
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest 1103, Hungary
| |
Collapse
|
27
|
Bíró L, Tóth B, Lihi N, Farkas E, Buglyó P. Interaction between [(η 6- p-cym)M(H 2O) 3] 2+ (M II = Ru, Os) or [(η 5-Cp*)M(H 2O) 3] 2+ (M III = Rh, Ir) and Phosphonate Derivatives of Iminodiacetic Acid: A Solution Equilibrium and DFT Study. Molecules 2023; 28:molecules28031477. [PMID: 36771142 PMCID: PMC9918899 DOI: 10.3390/molecules28031477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The pH-dependent binding strengths and modes of the organometallic [(η6-p-cym)M(H2O)3]2+ (MII = Ru, Os; p-cym = 1-methyl-4-isopropylbenzene) or [(η5-Cp*)M(H2O)3]2+ (MIII = Rh, Ir; Cp* = pentamethylcyclopentadienyl anion) cations towards iminodiacetic acid (H2Ida) and its biorelevant mono- and diphosphonate derivatives N-(phosphonomethyl)-glycine (H3IdaP) and iminodi(methylphosphonic acid) (H4Ida2P) was studied in an aqueous solution. The results showed that all three of the ligands form 1:1 complexes via the tridentate (O,N,O) donor set, for which the binding mode was further corroborated by the DFT method. Although with IdaP3- and Ida2P4- in mono- and bis-protonated species, where H+ might also be located at the non-coordinating N atom, the theoretical calculations revealed the protonation of the phosphonate group(s) and the tridentate coordination of the phosphonate ligands. The replacement of one carboxylate in Ida2- by a phosphonate group (IdaP3-) resulted in a significant increase in the stability of the metal complexes; however, this increase vanished with Ida2P4-, which was most likely due to some steric hindrance upon the coordination of the second large phosphonate group to form (5 + 5) joined chelates. In the phosphonate-containing systems, the neutral 1:1 complexes are the major species at pH 7.4 in the millimolar concentration range that is supported by both NMR and ESI-TOF-MS.
Collapse
|
28
|
Lipka E, Chadderdon AM, Harteg CC, Doherty MK, Simon ES, Domagala JM, Reyna DM, Hutchings KM, Gan X, White AD, Hartline CB, Harden EA, Keith KA, Prichard MN, James SH, Cardin RD, Bernstein DI, Spencer JF, Tollefson AE, Wold WSM, Toth K. NPP-669, a Novel Broad-Spectrum Antiviral Therapeutic with Excellent Cellular Uptake, Antiviral Potency, Oral Bioavailability, Preclinical Efficacy, and a Promising Safety Margin. Mol Pharm 2023; 20:370-382. [PMID: 36484496 PMCID: PMC9811456 DOI: 10.1021/acs.molpharmaceut.2c00668] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
DNA viruses are responsible for many diseases in humans. Current treatments are often limited by toxicity, as in the case of cidofovir (CDV, Vistide), a compound used against cytomegalovirus (CMV) and adenovirus (AdV) infections. CDV is a polar molecule with poor bioavailability, and its overall clinical utility is limited by the high occurrence of acute nephrotoxicity. To circumvent these disadvantages, we designed nine CDV prodrug analogues. The prodrugs modulate the polarity of CDV with a long sulfonyl alkyl chain attached to one of the phosphono oxygens. We added capping groups to the end of the alkyl chain to minimize β-oxidation and focus the metabolism on the phosphoester hydrolysis, thereby tuning the rate of this reaction by altering the alkyl chain length. With these modifications, the prodrugs have excellent aqueous solubility, optimized metabolic stability, increased cellular permeability, and rapid intracellular conversion to the pharmacologically active diphosphate form (CDV-PP). The prodrugs exhibited significantly enhanced antiviral potency against a wide range of DNA viruses in infected human foreskin fibroblasts. Single-dose intravenous and oral pharmacokinetic experiments showed that the compounds maintained plasma and target tissue levels of CDV well above the EC50 for 24 h. These experiments identified a novel lead candidate, NPP-669. NPP-669 demonstrated efficacy against CMV infections in mice and AdV infections in hamsters following oral (p.o.) dosing at a dose of 1 mg/kg BID and 0.1 mg/kg QD, respectively. We further showed that NPP-669 at 30 mg/kg QD did not exhibit histological signs of toxicity in mice or hamsters. These data suggest that NPP-669 is a promising lead candidate for a broad-spectrum antiviral compound.
Collapse
Affiliation(s)
- Elke Lipka
- TSRL,
Inc., 540 Avis Dr., Suite
A, Ann Arbor, Michigan 48108, United States
| | | | - Cheryl C. Harteg
- TSRL,
Inc., 540 Avis Dr., Suite
A, Ann Arbor, Michigan 48108, United States
| | - Matthew K. Doherty
- TSRL,
Inc., 540 Avis Dr., Suite
A, Ann Arbor, Michigan 48108, United States
| | - Eric S. Simon
- TSRL,
Inc., 540 Avis Dr., Suite
A, Ann Arbor, Michigan 48108, United States
| | - John M. Domagala
- TSRL,
Inc., 540 Avis Dr., Suite
A, Ann Arbor, Michigan 48108, United States
| | - Dawn M. Reyna
- TSRL,
Inc., 540 Avis Dr., Suite
A, Ann Arbor, Michigan 48108, United States
| | - Kim M. Hutchings
- College
of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xinmin Gan
- College
of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew D. White
- College
of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Caroll B. Hartline
- Department
of Pediatrics, University of Alabama School
of Medicine, Birmingham, Alabama 35233, United
States
| | - Emma A. Harden
- Department
of Pediatrics, University of Alabama School
of Medicine, Birmingham, Alabama 35233, United
States
| | - Kathy A. Keith
- Department
of Pediatrics, University of Alabama School
of Medicine, Birmingham, Alabama 35233, United
States
| | - Mark N. Prichard
- Department
of Pediatrics, University of Alabama School
of Medicine, Birmingham, Alabama 35233, United
States
| | - Scott H. James
- Department
of Pediatrics, University of Alabama School
of Medicine, Birmingham, Alabama 35233, United
States
| | - Rhonda D. Cardin
- School
of Veterinary Medicine, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - David I. Bernstein
- Cincinnati
Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, United States
| | | | - Ann E. Tollefson
- Saint Louis
University School of Medicine, St. Louis, Missouri 63104, United States
| | - William S. M. Wold
- Saint Louis
University School of Medicine, St. Louis, Missouri 63104, United States
| | - Karoly Toth
- Saint Louis
University School of Medicine, St. Louis, Missouri 63104, United States
| |
Collapse
|
29
|
Zhang L, Cheng Y, Liu YG, Chen X, Liu H. Anticancer Effect of Chlorambucil Enhanced by Chiral Phthalidyl Promoiety. Chem Biodivers 2023; 20:e202201025. [PMID: 36427041 DOI: 10.1002/cbdv.202201025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Phthalidyl promoiety has been used in several drugs, but they were all marketed in racemic form. The pharmaceutical effects of each enantiomer have not been clearly demonstrated. In this project, an anticancer chemotherapy drug, chlorambucil, was modified as enantiopure phthalidyl prodrugs. The enantiomers, together with phthalidyl unit and their racemic mixture, were then subject to the in vivo bioactivity tests against B16F10 melanoma cells. It was found that proper chirality within the promoiety had noticeably better in vivo pharmacological effects than the parent drug, the enantiomer and racemic mixture. This merit perhaps could be extended from the phthalidyl prodrugs to other chirality containing prodrugs.
Collapse
Affiliation(s)
- Long Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yisa Cheng
- First Affiliated Hospital of Zhengzhou University, and Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Ying-Guo Liu
- First Affiliated Hospital of Zhengzhou University, and Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xingkuan Chen
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Hongmei Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
30
|
Roy B, Navarro V, Peyrottes S. Prodrugs of Nucleoside 5'-Monophosphate Analogues: Overview of the Recent Literature Concerning their Synthesis and Applications. Curr Med Chem 2023; 30:1256-1303. [PMID: 36093825 DOI: 10.2174/0929867329666220909122820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022]
Abstract
Nucleoside analogues are widely used as anti-infectious and antitumoral agents. However, their clinical use may face limitations associated with their physicochemical properties, pharmacokinetic parameters, and/or their peculiar mechanisms of action. Indeed, once inside the cells, nucleoside analogues require to be metabolized into their corresponding (poly-)phosphorylated derivatives, mediated by cellular and/or viral kinases, in order to interfere with nucleic acid biosynthesis. Within this activation process, the first-phosphorylation step is often the limiting one and to overcome this limitation, numerous prodrug approaches have been proposed. Herein, we will focus on recent literature data (from 2015 and onwards) related to new prodrug strategies, the development of original synthetic approaches and novel applications of nucleotide prodrugs (namely pronucleotides) leading to the intracellular delivery of 5'-monophosphate nucleoside analogues.
Collapse
Affiliation(s)
- Béatrice Roy
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), University of Montpellier, Route de Mende, 34293 Montpellier, France
| | - Valentin Navarro
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), University of Montpellier, Route de Mende, 34293 Montpellier, France
| | - Suzanne Peyrottes
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), University of Montpellier, Route de Mende, 34293 Montpellier, France
| |
Collapse
|
31
|
Design of organyl phosphate-based pro-drugs: comparative analysis of the antibiotic action of alkyl protecting groups with different degree of fluorination. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.5-2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background. Molecular structures combining a phosphorus-containing counterpart and non-polar radicals are employed in design of pro-drugs as structural and functional groups necessary for transportation of drugs through cellular barriers. It is assumed that the carrier itself does not exhibit biological activity. However, the “organic phosphate – alkyl radical” complex may possess its own metabolic and pharmacological properties even in the absence of a drug moiety.The aim. To study the effect of fluorinated alkyl phosphates on the growth of bacterial test cultures in an agar medium and to identify conjugated metabolic markers using UV/visible spectroscopy.Materials and methods. The effect of six organyl phosphates on the growth of five types of bacteria under aerobic conditions was evaluated by the method of wells in an agar medium. For solutions containing cell metabolites of Pseudomonas aeruginosa, the absorption spectra were recorded at 250–280 nm. The principal component analysis (PCA) was used for multivariate comparative analysis of the spectra. Results. The studied organyl phosphates bearing the ethyl and propyl radicals are potential temporary carriers of the drug moiety, since they are capable of penetrating through cellular barriers. However, the fluorinated compounds exhibit bactericidal properties, the degree of which depends on the arrangement of fluorine atoms in the radical. The most active compounds are those exhaustively halogenated at the terminal carbon atom of the ethyl radical (-СН2-СF3), while non-fluorinated organyl phosphate is the least active. UV/visible spectra of P. aeruginosa cultivation products, according to PCA data, contain patterns reflecting the metabolic effects mediated by these structural features of the radicals.Conclusion. In terms of practical application of the studied compounds, the activity of a proantibiotic based on organyl phosphate with a non-fluorinated ethyl(propyl) radical will be determined only by the specificity of the drug moiety. Exactly the same molecule, but exhaustively fluorinated at the terminal carbon atom of the alkyl radical, is likely to be characterized by lower specificity and higher activity under the additive (or synergistic) action of metabolically active groups.
Collapse
|
32
|
Moreno S, Fickl M, Bauer I, Brunner M, Rázková A, Rieder D, Delazer I, Micura R, Lusser A. 6-Thioguanosine Monophosphate Prodrugs Display Enhanced Performance against Thiopurine-Resistant Leukemia and Breast Cancer Cells. J Med Chem 2022; 65:15165-15173. [DOI: 10.1021/acs.jmedchem.2c01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sarah Moreno
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Magdalena Fickl
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ingo Bauer
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Melanie Brunner
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Anna Rázková
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Dietmar Rieder
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Isabel Delazer
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Alexandra Lusser
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
33
|
Ford A, Mullins ND, Balzarini J, Maguire AR. Synthesis and Evaluation of Prodrugs of α-Carboxy Nucleoside Phosphonates. J Org Chem 2022; 87:14793-14808. [PMID: 36283025 PMCID: PMC9639015 DOI: 10.1021/acs.joc.2c02135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A range of lipophilic prodrugs of α-carboxy nucleoside phosphonates, potent inhibitors of HIV-1 reverse transcriptase without requiring prior phosphorylation, were synthesized to evaluate their in vivo potency against HIV in cell culture. A series of prodrug derivatives bearing a free carboxylic acid where the phosphonate was masked with bispivaloyloxymethyl, diisopropyloxycarbonyloxymethyl, bisamidate, aryloxyphosphoramidate, hexadecyloxypropyl, CycloSal, and acycloxybenzyl moieties were synthesized, adapting existing methodologies for phosphonate protection to accommodate the adjacent carboxylic acid moiety. The prodrugs were assayed for anti-HIV activity in CEM cell cultures─the bispivaloyloxymethyl free acid monophosphonate prodrug exhibited some activity (inhibitory concentration-50 (IC50) 59 ± 17 μM), while the other prodrugs were inactive at 100 μM. A racemic bispivaloyloxymethyl methyl ester monophosphonate prodrug was also prepared to assess the suitability of the methyl ester as a carboxylic acid prodrug. This compound exhibited no activity against HIV in cellular assays.
Collapse
Affiliation(s)
- Alan Ford
- School
of Chemistry, Analytical and Biological Chemistry Research Facility,
Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 K8AF, Ireland
| | - Nicholas D. Mullins
- School
of Chemistry, Analytical and Biological Chemistry Research Facility,
Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 K8AF, Ireland
| | - Jan Balzarini
- Rega
Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Anita R. Maguire
- School
of Chemistry, Analytical and Biological Chemistry Research Facility,
Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 K8AF, Ireland,School
of Pharmacy, Analytical and Biological Chemistry Research Facility,
Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 K8AF, Ireland,
| |
Collapse
|
34
|
4-oxoquinoline-3-carboxamide acyclonucleoside phosphonates hybrids: human MCF-7 breast cancer cell death induction by oxidative stress-promoting and in silico ADMET studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Li X, Yuan M, Chen F, Huang Z, Qing FL, Gutierrez O, Chu L. Three-component enantioselective alkenylation of organophosphonates via nickel metallaphotoredox catalysis. Chem 2022. [DOI: 10.1016/j.chempr.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Sabry E, Mohamed HA, Ewies EF, Kariuki BM, Darwesh OM, Bekheit MS. Microwave-assisted synthesis of novel sulfonamide-based compounds bearing α-aminophosphonate and their antimicrobial properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Ying H, Yao J, Wu F, Zhao Y, Ni F. A mild and concise synthesis of aryloxy phosphoramidate prodrug of alcohols via transesterification reaction. RSC Adv 2022; 12:13111-13115. [PMID: 35497010 PMCID: PMC9052952 DOI: 10.1039/d2ra01995g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
A synthesis of aryloxy phosphoramidate prodrug of alcohols enabled by a transesterification strategy is described here. This reaction operates under mild conditions and thus has excellent functional group tolerance. This method provides an efficient and practical solution to the rapid construction of the aryloxy phosphoramidate prodrugs library for potential SAR studies.
Collapse
Affiliation(s)
- Hanglu Ying
- Institute of Drug Discovery Technology, Ningbo University Ningbo Zhejiang 315211 P. R. China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University Ningbo Zhejiang 315211 P. R. China
| | - Jie Yao
- Institute of Drug Discovery Technology, Ningbo University Ningbo Zhejiang 315211 P. R. China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University Ningbo Zhejiang 315211 P. R. China
| | - Fan Wu
- Institute of Drug Discovery Technology, Ningbo University Ningbo Zhejiang 315211 P. R. China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University Ningbo Zhejiang 315211 P. R. China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University Ningbo Zhejiang 315211 P. R. China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University Ningbo Zhejiang 315211 P. R. China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University Ningbo Zhejiang 315211 P. R. China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University Ningbo Zhejiang 315211 P. R. China
| |
Collapse
|
38
|
García-Aranda MI, Franco-Pérez M, Bonilla-Landa I, Castrejón-Flores JL, Zamudio-Medina A. Synthesis of new aromatic phosphoramidates under a three-component reaction. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2053854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mónica I. García-Aranda
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Mexico City, Mexico
| | - Marco Franco-Pérez
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F, CP, México
| | - Israel Bonilla-Landa
- Red de Estudios Moleculares Avanzados CAMPUS III, Instituto de Ecología A.C. (INECOL), Xalapa-Enríquez, Veracruz, Mexico
| | - José Luis Castrejón-Flores
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Mexico City, Mexico
| | - Angel Zamudio-Medina
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Mexico City, Mexico
| |
Collapse
|
39
|
Ebetino FH, Sun S, Cherian P, Roshandel S, Neighbors JD, Hu E, Dunford JE, Sedghizadeh PP, McKenna CE, Srinivasan V, Boeckman RK, Russell RGG. Bisphosphonates: The role of chemistry in understanding their biological actions and structure-activity relationships, and new directions for their therapeutic use. Bone 2022; 156:116289. [PMID: 34896359 PMCID: PMC11023620 DOI: 10.1016/j.bone.2021.116289] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/16/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
The bisphosphonates ((HO)2P(O)CR1R2P(O)(OH)2, BPs) were first shown to inhibit bone resorption in the 1960s, but it was not until 30 years later that a detailed molecular understanding of the relationship between their varied chemical structures and biological activity was elucidated. In the 1990s and 2000s, several potent bisphosphonates containing nitrogen in their R2 side chains (N-BPs) were approved for clinical use including alendronate, risedronate, ibandronate, and zoledronate. These are now mostly generic drugs and remain the leading therapies for several major bone-related diseases, including osteoporosis and skeletal-related events associated with bone metastases. The early development of chemistry in this area was largely empirical and only a few common structural features related to strong binding to calcium phosphate were clear. Attempts to further develop structure-activity relationships to explain more dramatic pharmacological differences in vivo at first appeared inconclusive, and evidence for mechanisms underlying cellular effects on osteoclasts and macrophages only emerged after many years of research. The breakthrough came when the intracellular actions on the osteoclast were first shown for the simpler bisphosphonates, via the in vivo formation of P-C-P derivatives of ATP. The synthesis and biological evaluation of a large number of nitrogen-containing bisphosphonates in the 1980s and 1990s led to the key discovery that the antiresorptive effects of these more complex analogs on osteoclasts result mostly from their potency as inhibitors of the enzyme farnesyl diphosphate synthase (FDPS/FPPS). This key branch-point enzyme in the mevalonate pathway of cholesterol biosynthesis is important for the generation of isoprenoid lipids that are utilized for the post-translational modification of small GTP-binding proteins essential for osteoclast function. Since then, it has become even more clear that the overall pharmacological effects of individual bisphosphonates on bone depend upon two key properties: the affinity for bone mineral and inhibitory effects on biochemical targets within bone cells, in particular FDPS. Detailed enzyme-ligand crystal structure analysis began in the early 2000s and advances in our understanding of the structure-activity relationships, based on interactions with this target within the mevalonate pathway and related enzymes in osteoclasts and other cells have continued to be the focus of research efforts to this day. In addition, while many members of the bisphosphonate drug class share common properties, now it is more clear that chemical modifications to create variations in these properties may allow customization of BPs for different uses. Thus, as the appreciation for new potential opportunities with this drug class grows, new chemistry to allow ready access to an ever-widening variety of bisphosphonates continues to be developed. Potential new uses of the calcium phosphate binding mechanism of bisphosphonates for the targeting of other drugs to the skeleton, and effects discovered on other cellular targets, even at non-skeletal sites, continue to intrigue scientists in this research field.
Collapse
Affiliation(s)
- Frank H Ebetino
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA; Department of Chemistry, University of Rochester, Rochester, NY 14617, USA; Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK.
| | - Shuting Sun
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA.
| | - Philip Cherian
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA
| | | | | | - Eric Hu
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA
| | - James E Dunford
- Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, The Oxford University Institute of Musculoskeletal Sciences, The Botnar Research Centre, Nuffield Orthopaedic Centre, Headington, Oxford OX3 7LD, UK
| | - Parish P Sedghizadeh
- Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Venkat Srinivasan
- Department of Chemistry, University of Rochester, Rochester, NY 14617, USA
| | - Robert K Boeckman
- Department of Chemistry, University of Rochester, Rochester, NY 14617, USA
| | - R Graham G Russell
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK; Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, The Oxford University Institute of Musculoskeletal Sciences, The Botnar Research Centre, Nuffield Orthopaedic Centre, Headington, Oxford OX3 7LD, UK; Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
40
|
Abstract
Phosphoryl prodrugs are key compounds in drug development. Biologically active phosphoryl compounds often have negative charges on the phosphoryl group, and as a result, frequently have poor pharmacokinetic (PK) profiles. The use of lipophilic moieties bonded to the phosphorus (or attached oxygen atoms) masks the negative charge of the phosphoryl group, cleavage releasing the active molecule. The use of prodrugs to improve the PK of active parent molecules is an essential step in drug development. This review highlights promising trends in terminal elimination half-life, Cmax, clearance, oral bioavailability, and cLogP in phosphoryl prodrugs. We focus on specific prodrug families: esters, amidates, and ProTides. We conclude that moderating lipophilicity is a key part of prodrug success. This type of evaluation is important for drug development, regardless of clinical application. It is our hope that this analysis, and future ones like it, will play a significant role in prodrug evolution.
Collapse
Affiliation(s)
- Samuel A Kirby
- Department of Chemistry, George Washington University, Washington DC 20052
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University, Washington DC 20052
| |
Collapse
|
41
|
Česnek M, Šafránek M, Dračínský M, Tloušťová E, Mertlíková-Kaiserová H, Hayes MP, Watts VJ, Janeba Z. Halogen-Dance-Based Synthesis of Phosphonomethoxyethyl (PME) Substituted 2-Aminothiazoles as Potent Inhibitors of Bacterial Adenylate Cyclases. ChemMedChem 2022; 17:e202100568. [PMID: 34636150 PMCID: PMC8741643 DOI: 10.1002/cmdc.202100568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Indexed: 01/07/2023]
Abstract
A series of acyclic nucleoside phosphonates (ANPs) was designed as inhibitors of bacterial adenylate cyclases (ACs), where adenine was replaced with 2-amino-4-arylthiazoles. The target compounds were prepared using the halogen dance reaction. Final AC inhibitors were evaluated in cell-based assays (prodrugs) and cell-free assays (phosphono diphosphates). Novel ANPs were potent inhibitors of adenylate cyclase toxin (ACT) from Bordetella pertussis and edema factor (EF) from Bacillus anthracis, with substantial selectivity over mammalian enzymes AC1, AC2, and AC5. Six of the new ANPs were more potent or equipotent ACT inhibitors (IC50 =9-18 nM), and one of them was more potent EF inhibitor (IC50 =12 nM), compared to adefovir diphosphate (PMEApp) with IC50 =18 nM for ACT and IC50 =36 nM for EF. Thus, these compounds represent the most potent ACT/EF inhibitors based on ANPs reported to date. The potency of the phosphonodiamidates to inhibit ACT activity in J774A.1 macrophage cells was somewhat weaker, where the most potent derivative had IC50 =490 nM compared to IC50 =150 nM of the analogous adefovir phosphonodiamidate. The results suggest that more efficient type of phosphonate prodrugs would be desirable to increase concentrations of the ANP-based active species in the cells in order to proceed with the development of ANPs as potential antitoxin therapeutics.
Collapse
Affiliation(s)
- Michal Česnek
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| | - Michal Šafránek
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| | - Eva Tloušťová
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| | - Michael P. Hayes
- Department of Medicinal Chemistry and Molecular
Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West
Lafayette, IN – 47907 (USA)
| | - Val J. Watts
- Department of Medicinal Chemistry and Molecular
Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West
Lafayette, IN – 47907 (USA)
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| |
Collapse
|
42
|
Krečmerová M, Majer P, Rais R, Slusher BS. Phosphonates and Phosphonate Prodrugs in Medicinal Chemistry: Past Successes and Future Prospects. Front Chem 2022; 10:889737. [PMID: 35668826 PMCID: PMC9163707 DOI: 10.3389/fchem.2022.889737] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/26/2022] [Indexed: 12/25/2022] Open
Abstract
Compounds with a phosphonate group, i.e., -P(O)(OH)2 group attached directly to the molecule via a P-C bond serve as suitable non-hydrolyzable phosphate mimics in various biomedical applications. In principle, they often inhibit enzymes utilizing various phosphates as substrates. In this review we focus mainly on biologically active phosphonates that originated from our institute (Institute of Organic Chemistry and Biochemistry in Prague); i.e., acyclic nucleoside phosphonates (ANPs, e.g., adefovir, tenofovir, and cidofovir) and derivatives of non-nucleoside phosphonates such as 2-(phosphonomethyl) pentanedioic acid (2-PMPA). Principal strategies of their syntheses and modifications to prodrugs is reported. Besides clinically used ANP antivirals, a special attention is paid to new biologically active molecules with respect to emerging infections and arising resistance of many pathogens against standard treatments. These new structures include 2,4-diamino-6-[2-(phosphonomethoxy)ethoxy]pyrimidines or so-called "open-ring" derivatives, acyclic nucleoside phosphonates with 5-azacytosine as a base moiety, side-chain fluorinated ANPs, aza/deazapurine ANPs. When transformed into an appropriate prodrug by derivatizing their charged functionalities, all these compounds show promising potential to become drug candidates for the treatment of viral infections. ANP prodrugs with suitable pharmacokinetics include amino acid phosphoramidates, pivaloyloxymethyl (POM) and isopropoxycarbonyloxymethyl (POC) esters, alkyl and alkoxyalkyl esters, salicylic esters, (methyl-2-oxo-1,3-dioxol-4-yl) methyl (ODOL) esters and peptidomimetic prodrugs. We also focus on the story of cytostatics related to 9-[2-(phosphonomethoxy)ethyl]guanine and its prodrugs which eventually led to development of the veterinary drug rabacfosadine. Various new ANP structures are also currently investigated as antiparasitics, especially antimalarial agents e.g., guanine and hypoxanthine derivatives with 2-(phosphonoethoxy)ethyl moiety, their thia-analogues and N-branched derivatives. In addition to ANPs and their analogs, we also describe prodrugs of 2-(phosphonomethyl)pentanedioic acid (2-PMPA), a potent inhibitor of the enzyme glutamate carboxypeptidase II (GCPII), also known as prostate-specific membrane antigen (PSMA). Glutamate carboxypeptidase II inhibitors, including 2-PMPA have been found efficacious in various preclinical models of neurological disorders which are caused by glutamatergic excitotoxicity. Unfortunately its highly polar character and hence low bioavailability severely limits its potential for clinical use. To overcome this problem, various prodrug strategies have been used to mask carboxylates and/or phosphonate functionalities with pivaloyloxymethyl, POC, ODOL and alkyl esters. Chemistry and biological characterization led to identification of prodrugs with 44-80 fold greater oral bioavailability (tetra-ODOL-2-PMPA).
Collapse
Affiliation(s)
- Marcela Krečmerová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
- *Correspondence: Marcela Krečmerová,
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
| | - Rana Rais
- Departments of Neurology, Pharmacology and Molecular Sciences, Johns Hopkins Drug Discovery, Baltimore, MD, United States
| | - Barbara S. Slusher
- Departments of Neurology, Pharmacology and Molecular Sciences, Psychiatry and Behavioral Sciences, Neuroscience, Medicine, Oncology, Johns Hopkins Drug Discovery, Baltimore, MD, United States
| |
Collapse
|
43
|
Kalčic F, Zgarbová M, Hodek J, Chalupský K, Dračínský M, Dvořáková A, Strmeň T, Šebestík J, Baszczyňski O, Weber J, Mertlíková-Kaiserová H, Janeba Z. Discovery of Modified Amidate (ProTide) Prodrugs of Tenofovir with Enhanced Antiviral Properties. J Med Chem 2021; 64:16425-16449. [PMID: 34713696 DOI: 10.1021/acs.jmedchem.1c01444] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study describes the discovery of novel prodrugs bearing tyrosine derivatives instead of the phenol moiety present in FDA-approved tenofovir alafenamide fumarate (TAF). The synthesis was optimized to afford diastereomeric mixtures of novel prodrugs in one pot (yields up to 86%), and the epimers were resolved using a chiral HPLC column into fast-eluting and slow-eluting epimers. In human lymphocytes, the most efficient tyrosine-based prodrug reached a single-digit picomolar EC50 value against HIV-1 and nearly 300-fold higher selectivity index (SI) compared to TAF. In human hepatocytes, the most efficient prodrugs exhibited subnanomolar EC50 values for HBV and up to 26-fold higher SI compared to TAF. Metabolic studies demonstrated markedly higher cellular uptake of the prodrugs and substantially higher levels of released tenofovir inside the cells compared to TAF. These promising results provide a strong foundation for further evaluation of the reported prodrugs and their potential utility in the development of highly potent antivirals.
Collapse
Affiliation(s)
- Filip Kalčic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Michala Zgarbová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Karel Chalupský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Alexandra Dvořáková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Timotej Strmeň
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Jaroslav Šebestík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Ondřej Baszczyňski
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| |
Collapse
|
44
|
Nguyen VT, Pham MQ, Vu TH, Tran THH, Doan DT, Nguyen DL, Le P, Luu VC. Synthesis of pyrophosphate analogues and their cytotoxic activities. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211043439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Six pyrophosphate analogues are prepared from zerumbone, murrayafoline A, acridone, and 4-hydroxycoumarin via 1,3-dipolar cycloaddition reactions. Their in vitro cytotoxic activity is evaluated against HepG2, LU-1, and HeLa cancer cell lines. Among them, diisopropyl ((ethoxy((4-((1-methoxy-3-methyl-9 H-carbazol-9-yl)methyl)-1 H-1,2,3-triazol-1-yl)methyl)phosphoryl)methyl)phosphonate (6a) and diisopropyl ((ethoxy((4-(((3-methyl-9 H-carbazol-1-yl)oxy)methyl)-1 H-1,2,3-triazol-1-yl)methyl)phosphoryl)methyl)phosphonate (6b) are found to show activity against HepG2, LU-1, and HeLa cancer cell lines, with IC50 values ranging from 7.31 to 17.88 μM.
Collapse
Affiliation(s)
- Van-Tai Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Minh-Quan Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thi-Ha Vu
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thi-Hong-Ha Tran
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Duy-Tien Doan
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Dinh-Luyen Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Phong Le
- Institute of Forensic Sciences, Hanoi, Vietnam
| | - Van-Chinh Luu
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
45
|
Miller JJ, Shah IT, Hatten J, Barekatain Y, Mueller EA, Moustafa AM, Edwards RL, Dowd CS, Planet PJ, Muller FL, Jez JM, Odom John AR. Structure-guided microbial targeting of antistaphylococcal prodrugs. eLife 2021; 10:66657. [PMID: 34279224 PMCID: PMC8318587 DOI: 10.7554/elife.66657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/16/2021] [Indexed: 01/07/2023] Open
Abstract
Carboxy ester prodrugs are widely employed to increase oral absorption and potency of phosphonate antibiotics. Prodrugging can mask problematic chemical features that prevent cellular uptake and may enable tissue-specific compound delivery. However, many carboxy ester promoieties are rapidly hydrolyzed by serum esterases, limiting their therapeutic potential. While carboxy ester-based prodrug targeting is feasible, it has seen limited use in microbes as microbial esterase-specific promoieties have not been described. Here we identify the bacterial esterases, GloB and FrmB, that activate carboxy ester prodrugs in Staphylococcus aureus. Additionally, we determine the substrate specificities for FrmB and GloB and demonstrate the structural basis of these preferences. Finally, we establish the carboxy ester substrate specificities of human and mouse sera, ultimately identifying several promoieties likely to be serum esterase-resistant and microbially labile. These studies will enable structure-guided design of antistaphylococcal promoieties and expand the range of molecules to target staphylococcal pathogens.
Collapse
Affiliation(s)
- Justin J Miller
- Department of Pediatrics, Washington University School of Medicine, St. Louis, United States.,Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Ishaan T Shah
- Department of Pediatrics, Washington University School of Medicine, St. Louis, United States
| | - Jayda Hatten
- Department of Pediatrics, Washington University School of Medicine, St. Louis, United States
| | - Yasaman Barekatain
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Elizabeth A Mueller
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Ahmed M Moustafa
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Rachel L Edwards
- Department of Pediatrics, Washington University School of Medicine, St. Louis, United States
| | - Cynthia S Dowd
- Department of Chemistry, The George Washington University, Washington, United States
| | - Paul J Planet
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Florian L Muller
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Audrey R Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, United States.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
46
|
Zamudio-Medina A, Pérez-Hernández N, Castrejón-Flores JL, Romero-García S, Prado-García H, Bañuelos-Hernández A, Franco-Pérez M. Obtaining symmetric and asymmetric bisphosphoramidates and bisphosphoramidothioates by a single step multicomponent reaction. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1878358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Angel Zamudio-Medina
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, CDMX, México
| | - Nury Pérez-Hernández
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, CDMX, México
| | | | - Susana Romero-García
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Heriberto Prado-García
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | | | - Marco Franco-Pérez
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México
| |
Collapse
|
47
|
Harmon NM, Huang X, Hsiao CHC, Wiemer AJ, Wiemer DF. Incorporation of a FRET pair within a phosphonate diester. Bioorg Chem 2021; 114:105048. [PMID: 34126576 DOI: 10.1016/j.bioorg.2021.105048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Cell-cleavable protecting groups are an effective tactic for construction of biological probes because such compounds can improve problems with instability, solubility, and cellular uptake. Incorporation of fluorescent groups in the protecting groups may afford useful probes of cellular functions, especially for payloads containing phosphonates that would be highly charged if not protected, but little is known about the steric or electronic factors that impede release of the payload. In this report we present a strategy for the synthesis of a coumarin fluorophore and a 4-((4-(dimethylamino)phenyl)diazenyl)benzoic acid (DABCYL) ester chromophore incorporated as a FRET pair within a single phosphonate. Such compounds were designed to deliver a BTN3A1 ligand payload to its intracellular receptor. Both final products and some synthetic intermediates were evaluated for their ability to undergo metabolic activation in γδ T cell functional assays, and for their photophysical properties by spectrophotometry. One phosphonate bearing a DABCYL acyloxyester and a novel tyramine-linked coumarin fluorophore exhibited strong, rapid, and potent cellular activity for γδ T cell stimulation and also showed FRET interactions. This strategy demonstrates that bioactivatable phosphonates containing FRET pairs can be utilized to develop probes to monitor cellular uptake of otherwise charged payloads.
Collapse
Affiliation(s)
- Nyema M Harmon
- Department of Chemistry, The University of Iowa, Iowa City, IA 52245, United States
| | - Xueting Huang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States
| | | | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, United States
| | - David F Wiemer
- Department of Chemistry, The University of Iowa, Iowa City, IA 52245, United States; Department of Pharmacology, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
48
|
Chen KJ, Plaunt AJ, Leifer FG, Kang JY, Cipolla D. Recent advances in prodrug-based nanoparticle therapeutics. Eur J Pharm Biopharm 2021; 165:219-243. [PMID: 33979661 DOI: 10.1016/j.ejpb.2021.04.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
Extensive research into prodrug modification of active pharmaceutical ingredients and nanoparticle drug delivery systems has led to unprecedented levels of control over the pharmacological properties of drugs and resulted in the approval of many prodrug or nanoparticle-based therapies. In recent years, the combination of these two strategies into prodrug-based nanoparticle drug delivery systems (PNDDS) has been explored as a way to further advance nanomedicine and identify novel therapies for difficult-to-treat indications. Many of the PNDDS currently in the clinical development pipeline are expected to enter the market in the coming years, making the rapidly evolving field of PNDDS highly relevant to pharmaceutical scientists. This review paper is intended to introduce PNDDS to the novice reader while also updating those working in the field with a comprehensive summary of recent efforts. To that end, first, an overview of FDA-approved prodrugs is provided to familiarize the reader with their advantages over traditional small molecule drugs and to describe the chemistries that can be used to create them. Because this article is part of a themed issue on nanoparticles, only a brief introduction to nanoparticle-based drug delivery systems is provided summarizing their successful application and unfulfilled opportunities. Finally, the review's centerpiece is a detailed discussion of rationally designed PNDDS formulations in development that successfully leverage the strengths of prodrug and nanoparticle approaches to yield highly effective therapeutic options for the treatment of many diseases.
Collapse
|
49
|
Kaasik M, Martõnova J, Erkman K, Metsala A, Järving I, Kanger T. Enantioselective Michael addition to vinyl phosphonates via hydrogen bond-enhanced halogen bond catalysis. Chem Sci 2021; 12:7561-7568. [PMID: 34163847 PMCID: PMC8171314 DOI: 10.1039/d1sc01029h] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/24/2021] [Indexed: 02/01/2023] Open
Abstract
An asymmetric Michael addition of malononitrile to vinyl phosphonates was accomplished by hydrogen bond-enhanced bifunctional halogen bond (XB) catalysis. NMR titration experiments were used to demonstrate that halogen bonding, with the support of hydrogen-bonding, played a key role in the activation of the Michael acceptors through the phosphonate group. This is the first example of the use of XBs for the activation of organophosphorus compounds in synthesis. In addition, the iodo-perfluorophenyl group proved to be a better directing unit than different iodo- and nitro-substituted phenyl groups. The developed approach afforded products with up to excellent yields and diastereoselectivities and up to good enantioselectivities.
Collapse
Affiliation(s)
- Mikk Kaasik
- Department of Chemistry and Biotechnology, Tallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Jevgenija Martõnova
- Department of Chemistry and Biotechnology, Tallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Kristin Erkman
- Department of Chemistry and Biotechnology, Tallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Andrus Metsala
- Department of Chemistry and Biotechnology, Tallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Ivar Järving
- Department of Chemistry and Biotechnology, Tallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Tõnis Kanger
- Department of Chemistry and Biotechnology, Tallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| |
Collapse
|
50
|
Shevchuk M, Wang Q, Pajkert R, Xu J, Mei H, Röschenthaler G, Han J. Recent Advances in Synthesis of Difluoromethylene Phosphonates for Biological Applications. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001464] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Shevchuk
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Qian Wang
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Romana Pajkert
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Jingcheng Xu
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Haibo Mei
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Gerd‐Volker Röschenthaler
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Jianlin Han
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| |
Collapse
|