1
|
da Cunha IV, da Silva Oliveira DD, Calefi GG, Silva NBS, Martins CHG, Rezende Júnior CDO, Tsubone TM. Photosensitizer associated with efflux pump inhibitors as a strategy for photodynamic therapy against bacterial resistance. Eur J Med Chem 2025; 284:117197. [PMID: 39731789 DOI: 10.1016/j.ejmech.2024.117197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/01/2024] [Accepted: 12/08/2024] [Indexed: 12/30/2024]
Abstract
Antimicrobial resistance is currently one of the biggest challenges in controlling infectious diseases and was listed among the top 10 threats to global health by the World Health Organization (WHO) in 2023. The antibiotics misuse has led to the widespread emergence of antimicrobial resistance, marking the beginning of the alarming increase in antibiotic resistance. In this context, Antimicrobial Photodynamic Therapy (aPDT) has garnered significant attention from the scientific community due to its potential to effectively eliminate multidrug-resistant pathogenic bacteria and its low propensity to induce drug resistance, which bacteria can quickly develop against traditional antibiotic treatments. However, some efflux pumps can expel diverse substrates from inside the cell, including photosensitizers used in aPDT, contributing to multidrug-resistance mechanisms. Efflux Pump Inhibitors are potential solutions to combat resistance mediated by these pumps and can play a crucial role in enhancing aPDT's effectiveness against multidrug-resistant bacteria. Therefore, combining efflux pumps inhibitors with photosensitizers can possible to eliminate the pathogen more efficiently. This review summarizes the mechanisms in which bacteria resist conventional antibiotic treatment, with a particular emphasis on efflux pump-mediated resistance, and present aPDT as a promising strategy to combat antibiotic resistance. Additionally, we highlighted several molecules of photosensitizer associated with efflux pump inhibitors as potential strategies to optimize aPDT, aiming to offer a perspective on future research directions on aPDT for overcoming the limitations of antibiotic resistance.
Collapse
Affiliation(s)
- Ieda Vieira da Cunha
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Gabriel Guimarães Calefi
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | | | | | - Tayana Mazin Tsubone
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
2
|
De A, Reddy YN, Paul S, Sharma V, Tippavajhala VK, Bhaumik J. Photosensitizable ZIF-8 BioMOF for Stimuli-Responsive Antimicrobial Phototherapy. Mol Pharm 2025. [PMID: 39836523 DOI: 10.1021/acs.molpharmaceut.4c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Resistant pathogens are increasingly posing a heightened risk to healthcare systems, leading to a growing concern due to the lack of effective antimicrobial treatments. This has prompted the adoption of antimicrobial photodynamic therapy (aPDT), which eradicates microorganisms by generating reactive oxygen species (ROS) through the utilization of a photosensitizer, photons, and molecular oxygen. However, a challenge arises from the inherent characteristics of photosensitizers, including photobleaching, aggregation, and self-quenching. Consequently, a strategy has been devised to adsorb or bind photosensitizers to diverse carriers to facilitate their delivery. Notably, metal-organic frameworks (MOFs) have emerged as a promising means of transporting photosensitizers, even though achieving uniform particle sizes through room-temperature synthesis remains a complex task. In this work, we have tackled the issue of heterogeneous particle size distribution in MOFs, achieving a particle size of 150 ± 50 nm. Subsequently, we harnessed Zeolite Imidazolate Framework 8 (ZIF-8), an excellent subclass of biocompatible MOF, to effectively load two distinct categories of photosensitizers, namely, Rose Bengal (RB) and porphyrin, using a simple, straightforward, and single-step process. Our findings indicate that the prepared RB@ZIF-8 complex generates a more substantial amount of reactive singlet oxygen species when subjected to photoirradiation (using green light-emitting diode (LED)) at low concentrations, in comparison with porphyrin@ZIF-8, as demonstrated in in vitro experiments. Additionally, we investigated the pH-responsive behavior of the complex to ascertain its implications under biological conditions. Correspondingly, the RB@ZIF-8 complex exhibited a more favorable IC50 value against Escherichia coli compared to bare photosensitizers, ZIF-8 alone, and other photosensitizer-loaded ZIF-8 complexes. This underscores the potential of BioMOF as a promising strategy for combatting multidrug-resistant bacteria across a spectrum of infection scenarios, complemented by its responsiveness to stimuli.
Collapse
Affiliation(s)
- Angana De
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Yeddula Nikhileshwar Reddy
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Shatabdi Paul
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Vaibhav Sharma
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
| |
Collapse
|
3
|
Dos Santos GV, Moura HFS, Crugeira PJL, da Silva APLT, de Castro ICV, Costa WLR, de Almeida PF, Pinheiro ALB. Photoinactivation of sulfate-reducing bacteria using 1,9-dimethyl-methylene blue - DMMB and laser light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 263:113103. [PMID: 39842072 DOI: 10.1016/j.jphotobiol.2025.113103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Annually, the oil and gas industry faces equipment losses and product quality degradation due to the presence of sulfate-reducing bacteria (SRB). Given the negative impact of SRB, this study evaluates the use of photoinactivation (PI) with zinc chloride double salt of 1,9-Dimethyl-Methylene Blue (DMMB) as a photosensitizer (PS) in varying concentrations and combined with Laser light at different exposures in an SRB consortium. For culture growth, a modified Postgate C medium (without ferrous sulfate) was used, and cell quantification was performed on 100 μL aliquots of the consortium, read on a spectrophotometer (λ600 nm) in an oxygen- and light-free environment at room temperature. Statistical analyses included two-way ANOVA and ANOVA with interaction to separately and jointly evaluate the effects of PS and light in PI. Results indicated microbial activity in all groups, with an antimicrobial inhibition rate exceeding 50 % (p < 0.05) for concentrations above 1.5 μg/mL of DMMB. PI efficacy significantly depended on DMMB concentration and light density, achieving a 70.58 % (55.73-70.58, with a mean of 66.71 %) reduction (p < 0.05) with 1.5 μg/mL of DMMB and a 70.15 % (65-70.15, with a mean of 68.21 %) reduction with 2.0 μg/mL at an intensity of 21.6 J/cm2. In conclusion, PI presents a promising alternative to biocides in the oil and gas industry, offering easy application, avoiding bacterial resistance, being environmentally safe, and compatible with other SRB population control techniques.
Collapse
Affiliation(s)
- Gustavo Vital Dos Santos
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Hesrom Fernandes Serra Moura
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | | | - Anna Paula Lima Teixeira da Silva
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Isabele Cardoso Vieira de Castro
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Wellington Luís Reis Costa
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil.
| | - Paulo Fernando de Almeida
- Laboratory of Biotechnology and Ecology of Microorganisms, Institute of Health Science, Federal University of Bahia, Reitor Miguel Calmon Ave, S/N, Salvador, BA CEP :40110-100, Brazil
| | - Antonio Luiz Barbosa Pinheiro
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil.
| |
Collapse
|
4
|
Yus C, Alejo T, Quílez C, Irusta S, Velasco D, Arruebo M, Sebastian V. Development of a hybrid CuS-ICG polymeric photosensitive vector and its application in antibacterial photodynamic therapy. Int J Pharm 2024; 667:124951. [PMID: 39547474 DOI: 10.1016/j.ijpharm.2024.124951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
At the present time, owing to the extremely high growth of microbial resistance to antibiotics and, consequently, the increased healthcare associated costs and the loss of efficacy of current treatments, the development of new therapies against bacteria is of paramount importance. For this reason, in this work, a hybrid synergetic nanovector has been developed, based on the encapsulation of a NIR (near infrared) photosensitive molecule (indocyanine green, ICG) in biodegradable polymeric nanoparticles (NPs). In addition, copper sulfide nanoparticles (CuS NPs), optically sensitive to NIR, were anchored on the polymeric nanoparticle shell in order to boost the generation of reactive oxygen species (ROS) upon NIR irradiation. As a result, the nanohybrid synthesized material is capable to generate ROS on demand when exposed to a NIR laser (808 nm) allowing for the repeated triggering of ROS production upon NIR light exposure. After each irradiation, the ROS generated were able to eliminate pathogenic bacteria, as it was demonstrated in-vitro with three bacterial strains, Staphylococcus aureus ATCC 25923 used as a reference strain (S. aureus), S. aureus USA300 (methicillin-resistantstrain, MRSA) and GFP-expressing antibiotic-sensitive S. aureus (methicillin-sensitive strain, MSSA). Finally, the effect of the hybrid NPs in the skin bed was tested on a plasma-derived in vitro skin model. Fluorescence and histological images showed the presence of CuS NPs all over the dermal layer lacking epidermis of the skin construct. Thus, the in vitro model facilitated the prediction of the nanovector's behavior in a human skin equivalent, showcasing its potential application against topical infections after wounding.
Collapse
Affiliation(s)
- Cristina Yus
- Department of Chemical Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Aragon Health Research Institute (IIS Aragon), Zaragoza 50009, Spain.
| | - Teresa Alejo
- Department of Chemical Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid 28029, Spain; Aragon Health Research Institute (IIS Aragon), Zaragoza 50009, Spain
| | - Cristina Quílez
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés 28911, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid 28040, Spain.
| | - Silvia Irusta
- Department of Chemical Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Aragon Health Research Institute (IIS Aragon), Zaragoza 50009, Spain
| | - Diego Velasco
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés 28911, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid 28040, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Aragon Health Research Institute (IIS Aragon), Zaragoza 50009, Spain
| | - Victor Sebastian
- Department of Chemical Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid 28029, Spain; Aragon Health Research Institute (IIS Aragon), Zaragoza 50009, Spain
| |
Collapse
|
5
|
Abbasianfar Z, Seraj B, Afrasiabi S, Fard MJK, Ghadimi S, Chiniforush N. The effect of antimicrobial photodynamic therapy using different concentrations of phycocyanin against Streptococcus mutans. Photodiagnosis Photodyn Ther 2024; 50:104384. [PMID: 39536510 DOI: 10.1016/j.pdpdt.2024.104384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The aim of this study is to investigate the effect of antimicrobial photodynamic therapy (aPDT) using three different concentrations of phycocyanin and two different laser powers on Streptococcus mutans. MATERIALS AND METHODS In this study, Streptococcus mutans was investigated using three different concentrations of phycocyanin (2.5, 5, and 10 mg/mL), in the presence and absence of 635 nm diode laser at two power levels (400 and 500 mW). The treatments were as follows: the control group received no treatment. The next 3 groups received only the phycocyanin at 2.5, 5, and 10 mg/mL. The remaining groups received both phycocyanin and laser treatment. Finally, bacteria were counted using the colony forming units (CFUs)/mL method. Data analysis was performed using IBM SPSS 26 software and ANOVA statistical test. RESULTS All groups except for the phycocyanin group at a concentration of 10 mg/mL showed a statistically significant difference compared to the control group (p-Value < 0.05). Additionally, the least effect was observed in the control and the phycocyanin at a concentration of 10 mg/mL groups, while the greatest effect was found in the group receiving phycocyanin at 2.5 mg/mL concentration and laser with a power of 500 mW (2.5 + DL500). CONCLUSION aPDT can be used as a complementary and non-invasive method to reduce bacterial load. The effectiveness of aPDT decreased with increasing phycocyanin concentration. Moreover, higher laser irradiation power resulted in reduced Streptococcus mutans bacterial load. Thus, the most pronounced effects were observed in the group receiving phycocyanin at 2.5 mg/mL concentration and 635 nm diode laser with a power of 500 mW (2.5 + DL500).
Collapse
Affiliation(s)
- Zahra Abbasianfar
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Seraj
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Afrasiabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sara Ghadimi
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nasim Chiniforush
- Dentofacial Deformities Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Danshjoo BLVD, Velenjak, Shahid Chamran Highway, Tehran 19839-63113, Iran.
| |
Collapse
|
6
|
Porolnik W, Ratajczak M, Mackowiak A, Murias M, Kucinska M, Piskorz J. Liposomal Formulations of Novel BODIPY Dimers as Promising Photosensitizers for Antibacterial and Anticancer Treatment. Molecules 2024; 29:5304. [PMID: 39598693 PMCID: PMC11596046 DOI: 10.3390/molecules29225304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Synthesis, photochemical properties, liposomal encapsulation, and in vitro photodynamic activity studies of novel BODIPY dimer connected at meso-meso positions and its brominated and iodinated analogs were described. UV-Vis measurements indicated that the dimeric structure of obtained BODIPYs did not significantly influence the positions of the absorption maxima. Emission properties and singlet oxygen generation studies revealed a strong heavy atom effect of brominated and iodinated BODIPY dimers, manifested by fluorescence intensity reduction and increased singlet oxygen generation ability compared to analog without halogen atoms. For the in vitro photodynamic activity studies, dimers were incorporated into two different types of liposomes: positively charged DOTAP:POPC and negatively charged POPG:POPC. The photoinactivation studies revealed high activity of brominated and iodinated dimers incorporated into DOTAP:POPC liposomes on both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Anticancer studies on human breast adenocarcinoma MDA-MB-231 and human ovarian carcinoma A2780 cells revealed that DOTAP:POPC liposomes containing brominated and iodinated dimers were active even at low nanomolar concentrations. In addition, they were more active against MDA-MB-231 cells than A2780 cells, which is particularly important since the MDA-MB-231 cell line represents triple-negative breast cancer, which has limited therapeutic options.
Collapse
Affiliation(s)
- Weronika Porolnik
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Chair and Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.M.); (M.K.)
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Magdalena Ratajczak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Aleksandra Mackowiak
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marek Murias
- Chair and Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.M.); (M.K.)
| | - Malgorzata Kucinska
- Chair and Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.M.); (M.K.)
| | - Jaroslaw Piskorz
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
7
|
Kang MJ, Kim DK. Synergistic antimicrobial action of chlorogenic acid and ultraviolet-A (365 nm) irradiation; mechanisms and effects on DNA integrity. Food Res Int 2024; 196:115132. [PMID: 39614588 DOI: 10.1016/j.foodres.2024.115132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 12/01/2024]
Abstract
Chlorogenic acid (CGA) is abundant in various plants and notably in coffee beans. This study investigated the bactericidal activity of CGA combined with ultraviolet-A light (UVA, 365 nm) (CGA + UVA) against Escherichia coli DH5α, with the aim of developing novel strategies for food preservation and healthcare. CGA + UVA treatment was superiorin reducing bacterial survival than either treatment alone. At 20 J/cm2 and pH 7, CGA (0.3%) + UVA treatment resulted in only about a 3-log reduction in bacterial survival, whereas at 15 J/cm2 and pH 3, no surviving bacteria could be detected, demostrating that the treatment was more effective at acidic pH. CGA + UVA treatment was also bactericidal in green plum juice, confirming that its low pH-dependent property could be effective in acidic food products. To elucidate the bactericidal mechanism of CGA + UVA treatment, its effects on reactive oxygen species (ROS) generation, membrane integrity, and enzyme activity were measured. ROS generated via the type-1 reaction, such as hydrogen peroxide (H2O2) and hydroxyl radicals (·OH), were mainly detected. CGA + UVA disrupted the bacterial cell membrane, causing the leakage of cellular components, particularly proteins. CGA + UVA treatment also led to deoxyribonucleic acid (DNA) degradation and reduced succinate-coenzyme Q reductase activity by approximately 72 %. Furthermore, CGA + UVA treatment decreased β-lactamase activity and plasmid transforming efficacy with maximal reductions of 68 % and 98 %, respectively, highlighting its potential for increasing antibiotic susceptibility and preventing the spread of antimicrobial resistance. The results demonstrate that CGA + UVA treatment could be used to effectively combat antibiotic-resistant bacteria and prevent the spoilage of preserved foods or food poisoning.
Collapse
Affiliation(s)
- Min-Ju Kang
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Do-Kyun Kim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Muehler D, Morini S, Geißert J, Engesser C, Hiller KA, Widbiller M, Maisch T, Buchalla W, Cieplik F. Stress response in Escherichia coli following sublethal phenalene-1-one mediated antimicrobial photodynamic therapy: an RNA-Seq study. Photochem Photobiol Sci 2024; 23:1573-1586. [PMID: 39103724 DOI: 10.1007/s43630-024-00617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/20/2024] [Indexed: 08/07/2024]
Abstract
Since the molecular mechanisms behind adaptation and the bacterial stress response toward antimicrobial photodynamic therapy (aPDT) are not entirely clear yet, the aim of the present study was to investigate the transcriptomic stress response in Escherichia coli after sublethal treatment with aPDT using RNA sequencing (RNA-Seq). Planktonic cultures of stationary phase E. coli were treated with aPDT using a sublethal dose of the photosensitizer SAPYR. After treatment, RNA was extracted, and RNA-Seq was performed on the Illumina NextSeq 500. Differentially expressed genes were analyzed and validated by qRT-PCR. Furthermore, expression of specific stress response proteins was investigated using Western blot analysis.The analysis of the differential gene expression following pathway enrichment analysis revealed a considerable number of genes and pathways significantly up- or down-regulated in E. coli after sublethal treatment with aPDT. Expression of 1018 genes was up-regulated and of 648 genes was down-regulated after sublethal treatment with aPDT as compared to irradiated controls. Analysis of differentially expressed genes and significantly de-regulated pathways showed regulation of genes involved in oxidative stress response and bacterial membrane damage. In conclusion, the results show a transcriptomic stress response in E. coli upon exposure to aPDT using SAPYR and give an insight into potential molecular mechanisms that may result in development of adaptation.
Collapse
Affiliation(s)
- Denise Muehler
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Silvia Morini
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Janina Geißert
- NGS-Competence Center Tübingen, Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
| | - Christina Engesser
- NGS-Competence Center Tübingen, Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
| | - Karl-Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Tim Maisch
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany.
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center - University of Freiburg, Medical Faculty, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| |
Collapse
|
9
|
Liu P, Luo Y, Liu R, Fan W, Fan B. Triton X-100 enhanced antibacterial effect of photodynamic therapy against Enterococcus faecalis infection: an in vitro study. Colloids Surf B Biointerfaces 2024; 240:113978. [PMID: 38810466 DOI: 10.1016/j.colsurfb.2024.113978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
Photodynamic therapy (PDT) is an effective method for bacterial infection control in root canals of teeth with a broad-spectrum antibacterial activity. However, its application in root canal treatment is limited due to its inefficiency under hypoxic conditions and dentin staining. Triton X-100 (TX) shows great potential in enhancing the efficiency of antimicrobial agents through improving bacterial membrane permeability. The present study employed a combination of toluidine blue O (TB)-mediated PDT with TX to target the Enterococcus faecalis (E. faecalis), a bacterium with strong resistance to various antibacterial agents and mostly detected in infected root canals. PDT combined with TX showed enhanced antibacterial efficiency against both planktonic cells and biofilms of E. faecalis. At the same time, TX enhanced the antibacterial effect in dentinal tubules and reduced the incubation time. Mechanism studies revealed that TX improved reactive oxygen species (ROS) production through increasing the proportion of TB monomers. Additionally, increased membrane permeability and wettability were also observed. The findings demonstrated the PDT combined with TX could be used as a highly effective method for the root canal disinfection of teeth.
Collapse
Affiliation(s)
- Pei Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Yi Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Runze Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Wei Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| | - Bing Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
10
|
Martínez SR, Caverzan M, Ibarra LE, Aiassa V, Bohl L, Porporatto C, Gómez ML, Chesta CA, Palacios RE. Light-activated conjugated polymer nanoparticles to defeat pathogens associated with bovine mastitis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112971. [PMID: 38955081 DOI: 10.1016/j.jphotobiol.2024.112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Bovine mastitis (BM) represents a significant challenge in the dairy industry. Limitations of conventional treatments have prompted the exploration of alternative approaches, such as photodynamic inactivation (PDI). In this study, we developed a PDI protocol to eliminate BM-associated pathogens using porphyrin-doped conjugated polymer nanoparticles (CPN). The PDI-CPN protocol was evaluated in four mastitis isolates of Staphylococcus and in a hyper-biofilm-forming reference strain. The results in planktonic cultures demonstrated that PDI-CPN exhibited a bactericidal profile upon relatively low light doses (∼9.6 J/cm2). Furthermore, following a seven-hour incubation period, no evidence of cellular reactivation was observed, indicating a highly efficient post-photodynamic inactivation effect. The successful elimination of bacterial suspensions encouraged us to test the PDI-CPN protocol on mature biofilms. Treatment using moderate light dose (∼64.8 J/cm2) reduced biofilm biomass and metabolic activity by up to 74% and 88%, respectively. The impact of PDI-CPN therapy on biofilms was investigated using scanning electron microscopy (SEM), which revealed nearly complete removal of the extracellular matrix and cocci. Moreover, ex vivo studies conducted on bovine udder skin demonstrated the efficacy of the therapy in eliminating bacteria from these scaffolds and its potential as a prophylactic method. Notably, the histological analysis of skin revealed no signs of cellular degeneration, suggesting that the protocol is safe and effective for BM treatment. Overall, this study demonstrates the potential of PDI-CPN in treating and preventing BM pathogens. It also provides insights into the effects of PDI-CPN on bacterial growth, metabolism, and survival over extended periods, aiding the development of effective control strategies and the optimization of future treatments.
Collapse
Affiliation(s)
- Sol R Martínez
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Matías Caverzan
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Luis E Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina
| | - Virginia Aiassa
- UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Luciana Bohl
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina. Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - Carina Porporatto
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina. Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - María L Gómez
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Carlos A Chesta
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Rodrigo E Palacios
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina.
| |
Collapse
|
11
|
Bartolomeu M, Gomes TJ, Campos F, Vieira C, Loureiro S, Neves MGPMS, Faustino MAF, Gomes ATPC, Almeida A. Wastewater disinfection with photodynamic treatment and evaluation of its ecotoxicological effects. CHEMOSPHERE 2024; 361:142421. [PMID: 38797202 DOI: 10.1016/j.chemosphere.2024.142421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Research has demonstrated the presence of viruses in wastewater (WW), which can remain viable for a long period, posing potential health risks. Conventional WW treatment methods involving UV light, chlorine and ozone efficiently reduce microbial concentrations, however, they produce hazardous byproducts and microbial resistance that are detrimental to human health and the ecosystem. Hence, there is a need for novel disinfection techniques. Antimicrobial Photodynamic Inactivation (PDI) emerges as a promising strategy, utilizing photosensitizers (PS), light, and dioxygen to inactivate viruses. This study aims to assess the efficacy of PDI by testing methylene blue (MB) and the cationic porphyrin TMPyP as PSs, along a low energy consuming white light source (LED) at an irradiance of 50 mW/cm2, for the inactivation of bacteriophage Phi6. Phi6 serves as an enveloped RNA-viruses surrogate model in WW. PDI experiments were conducted in a buffer solution (PBS) and real WW matrices (filtered and non-filtered). Considering the environmental release of the treated effluents, this research also evaluated the ecotoxicity of the resulting solution (post-PDI treatment effluent) on the model organism Daphnia magna, following the Organisation for Economic Cooperation and Development (OECD) immobilization technical 202 guideline. Daphnids were exposed to WW containing the tested PS at different concentrations and dilutions (accounting for the dilution factor during WW release into receiving waters) over 48 h. The results indicate that PDI with MB efficiently inactivated the model virus in the different aqueous matrices, achieving reductions superior to 8 log10 PFU/mL, after treatments of 5 min in PBS and of ca. 90 min in WW. Daphnids survival increased when subjected to the PDI-treated WW with MB, considering the dilution factor. Overall, the effectiveness of PDI in eliminating viruses in WW, the fading of the toxic effects on daphnids after MB' irradiation and the rapid dilution effect upon WW release in the environment highlight the possibility of using MB in WW PDI-disinfection.
Collapse
Affiliation(s)
- Maria Bartolomeu
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-19, Aveiro, Portugal; Universidade Católica Portuguesa, Faculty of Dental Medicine (FMD), Center for Interdisciplinary Research in Health (CIIS), 3504-505, Viseu, Portugal.
| | - Thierry J Gomes
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-19, Aveiro, Portugal
| | - Fábio Campos
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-19, Aveiro, Portugal
| | - Cátia Vieira
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-19, Aveiro, Portugal
| | - Susana Loureiro
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-19, Aveiro, Portugal
| | - M Graça P M S Neves
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Amparo F Faustino
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana T P C Gomes
- Universidade Católica Portuguesa, Faculty of Dental Medicine (FMD), Center for Interdisciplinary Research in Health (CIIS), 3504-505, Viseu, Portugal
| | - Adelaide Almeida
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-19, Aveiro, Portugal.
| |
Collapse
|
12
|
Joshi P, Soares JM, Martins GM, Zucolotto Cocca LH, De Boni L, de Oliveira KT, Bagnato VS, Blanco KC. Enhancing the efficacy of antimicrobial photodynamic therapy through curcumin modifications. Photochem Photobiol 2024. [PMID: 39049138 DOI: 10.1111/php.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/04/2024] [Accepted: 06/30/2024] [Indexed: 07/27/2024]
Abstract
Curcumin serves as a photosensitizer (PS) in the context of microbial inactivation when subjected to light exposure, to produce reactive oxygen species, which exhibit efficacy in eradicating microorganisms. This remarkable property underscores the growing potential of antimicrobial photodynamic therapy (aPDT) in the ongoing fight against bacterial infections. Considering this, we investigate the efficacy of various in vitro curcumin formulations within a PDT protocol designed to target Staphylococcus aureus. Specifically, we conduct a comparative analysis involving synthetic curcumin (Cur-Syn) and curcumin derivatives modified with chlorine (Cl), selenium (Se), and iodine (I) (Cur-Cl, Cur-Se, Cur-I). To assess the impact of aPDT, we subject S. aureus to incubation with curcumin, followed by irradiation at 450 nm with energy doses of 3.75, 7.5, and 15 J/cm2. Our investigation encompasses an evaluation of PS uptake and photobleaching across the various curcumin variants. Notably, all three modifications (Cur-Cl, Cur-Se, Cur-I) induce a significant reduction in bacterial viability, approximately achieving a 3-log reduction. Interestingly, the uptake kinetics of Cur-Syn and Cur-Se exhibit similarities, reaching saturation after 20 min. Our findings suggest that modifications to curcumin have a discernible impact on the photodynamic properties of the PS molecule.
Collapse
Affiliation(s)
- Priyanka Joshi
- PPGBiotec, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Jennifer M Soares
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Guilherme M Martins
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Leandro H Zucolotto Cocca
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
- Grupo de Fotônica, Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Leonardo De Boni
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Kleber T de Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Vanderlei S Bagnato
- PPGBiotec, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
- Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Kate C Blanco
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
13
|
Yao J, Luo Z, Lin J, Meng N, Guo J, Xu H, Shi R, Zhao L, Zhou J, Yan F, Wang B, Mao H. Antimicrobial and Antiviral Nanofibers Halt Co-Infection Spread via Nuclease-Mimicry and Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309590. [PMID: 38647392 PMCID: PMC11200001 DOI: 10.1002/advs.202309590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/17/2024] [Indexed: 04/25/2024]
Abstract
The escalating spread of drug-resistant bacteria and viruses is a grave concern for global health. Nucleic acids dominate the drug-resistance and transmission of pathogenic microbes. Here, imidazolium-type poly(ionic liquid)/porphyrin (PIL-P) based electrospun nanofibrous membrane and its cerium (IV) ion complex (PIL-P-Ce) are developed. The obtained PIL-P-Ce membrane exhibits high and stable efficiency in eradicating various microorganisms (bacteria, fungi, and viruses) and decomposing microbial antibiotic resistance genes and viral nucleic acids under light. The nuclease-mimetic and photocatalytic mechanisms of the PIL-P-Ce are elucidated. Co-infection wound models in mice with methicillin-resistant S. aureus and hepatitis B virus demonstrate that PIL-P-Ce integrate the triple effects of cationic polymer, photocatalysis, and nuclease-mimetic activities. As revealed by proteomic analysis, PIL-P-Ce shows minimal phototoxicity to normal tissues. Hence, PIL-P-Ce has potential as a "green" wound dressing to curb the spread of drug-resistant bacteria and viruses in clinical settings.
Collapse
Affiliation(s)
- Jieran Yao
- Department of Critical Care MedicineZhongshan HospitalFudan UniversityShanghai200032China
| | - Zhenhong Luo
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Jiaying Lin
- Department of Critical Care MedicineZhongshan HospitalFudan UniversityShanghai200032China
| | - Na Meng
- Department of Critical Care MedicineZhongshan HospitalFudan UniversityShanghai200032China
| | - Jiangna Guo
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Hui Xu
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Rongwei Shi
- School of Material and Chemical EngineeringTongren UniversityTongren554300China
| | - Linhui Zhao
- Department of Critical Care MedicineZhongshan HospitalFudan UniversityShanghai200032China
| | - Jiateng Zhou
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Feng Yan
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Bin Wang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Hailei Mao
- Department of Critical Care MedicineZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
14
|
Mussini A, Delcanale P, Berni M, Pongolini S, Jordà-Redondo M, Agut M, Steinbach PJ, Nonell S, Abbruzzetti S, Viappiani C. Concanavalin A Delivers a Photoactive Protein to the Bacterial Wall. Int J Mol Sci 2024; 25:5751. [PMID: 38891937 PMCID: PMC11172101 DOI: 10.3390/ijms25115751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Modular supramolecular complexes, where different proteins are assembled to gather targeting capability and photofunctional properties within the same structures, are of special interest for bacterial photodynamic inactivation, given their inherent biocompatibility and flexibility. We have recently proposed one such structure, exploiting the tetrameric bacterial protein streptavidin as the main building block, to target S. aureus protein A. To expand the palette of targets, we have linked biotinylated Concanavalin A, a sugar-binding protein, to a methylene blue-labelled streptavidin. By applying a combination of spectroscopy and microscopy, we demonstrate the binding of Concanavalin A to the walls of Gram-positive S. aureus and Gram-negative E. coli. Photoinactivation is observed for both bacterial strains in the low micromolar range, although the moderate affinity for the molecular targets and the low singlet oxygen yields limit the overall efficiency. Finally, we apply a maximum entropy method to the analysis of autocorrelation traces, which proves particularly useful when interpreting signals measured for diffusing systems heterogeneous in size, such as fluorescent species bound to bacteria.
Collapse
Affiliation(s)
- Andrea Mussini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Pietro Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Melissa Berni
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Strada dei Mercati, 13/A, 43126 Parma, Italy
| | - Stefano Pongolini
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Strada dei Mercati, 13/A, 43126 Parma, Italy
| | - Mireia Jordà-Redondo
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Montserrat Agut
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Peter J. Steinbach
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| |
Collapse
|
15
|
Sharma A, Verwilst P, Li M, Ma D, Singh N, Yoo J, Kim Y, Yang Y, Zhu JH, Huang H, Hu XL, He XP, Zeng L, James TD, Peng X, Sessler JL, Kim JS. Theranostic Fluorescent Probes. Chem Rev 2024; 124:2699-2804. [PMID: 38422393 PMCID: PMC11132561 DOI: 10.1021/acs.chemrev.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The ability to gain spatiotemporal information, and in some cases achieve spatiotemporal control, in the context of drug delivery makes theranostic fluorescent probes an attractive and intensely investigated research topic. This interest is reflected in the steep rise in publications on the topic that have appeared over the past decade. Theranostic fluorescent probes, in their various incarnations, generally comprise a fluorophore linked to a masked drug, in which the drug is released as the result of certain stimuli, with both intrinsic and extrinsic stimuli being reported. This release is then signaled by the emergence of a fluorescent signal. Importantly, the use of appropriate fluorophores has enabled not only this emerging fluorescence as a spatiotemporal marker for drug delivery but also has provided modalities useful in photodynamic, photothermal, and sonodynamic therapeutic applications. In this review we highlight recent work on theranostic fluorescent probes with a particular focus on probes that are activated in tumor microenvironments. We also summarize efforts to develop probes for other applications, such as neurodegenerative diseases and antibacterials. This review celebrates the diversity of designs reported to date, from discrete small-molecule systems to nanomaterials. Our aim is to provide insights into the potential clinical impact of this still-emerging research direction.
Collapse
Affiliation(s)
- Amit Sharma
- Amity
School of Chemical Sciences, Amity University
Punjab, Sector 82A, Mohali 140 306, India
| | - Peter Verwilst
- Rega
Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Mingle Li
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Dandan Ma
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nem Singh
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiyoung Yoo
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Yujin Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Ying Yang
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Jing-Hui Zhu
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haiqiao Huang
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi-Le Hu
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Peng He
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- National
Center for Liver Cancer, the International Cooperation Laboratory
on Signal Transduction, Eastern Hepatobiliary
Surgery Hospital, Shanghai 200438, China
| | - Lintao Zeng
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xiaojun Peng
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Jonathan L. Sessler
- Department
of Chemistry, The University of Texas at
Austin, Texas 78712-1224, United
States
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- TheranoChem Incorporation, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
16
|
Chakraborty S, Mohanty D, Chowdhury A, Krishna H, Taraphdar D, Chitnis S, Sodani S, Sahu K, Majumder SK. In vitro photoinactivation effectiveness of a portable LED device aimed for intranasal photodisinfection and a photosensitizer formulation comprising methylene blue and potassium iodide against bacterial, fungal, and viral respiratory pathogens. Lasers Med Sci 2024; 39:60. [PMID: 38353734 DOI: 10.1007/s10103-024-03996-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024]
Abstract
Antimicrobial photodynamic therapy (aPDT) can be a viable option for management of intranasal infections. However, there are light delivery, fluence, and photosensitizer-related challenges. We report in vitro effectiveness of an easily fabricated, low-cost, portable, LED device and a formulation comprising methylene blue (MB) and potassium iodide (KI) for photoinactivation of pathogens of the nasal cavity, namely, methicillin-resistant Staphylococcus aureus, antibiotic-resistant Klebsiella pneumoniae, multi-antibiotic-resistant Pseudomonas aeruginosa, Candida spp., and SARS-CoV-2.In a 96-well plate, microbial suspensions incubated with 0.005% MB alone or MB and KI formulation were exposed to different red light (~ 660 ± 25 nm) fluence using the LED device fitted to each well. Survival loss in bacteria and fungi was quantified using colony-forming unit assay, and SARS-CoV-2 photodamage was assessed by RT-PCR.The results suggest that KI addition to MB leads to KI concentration-dependent potentiation (up to ~ 5 log10) of photoinactivation in bacteria and fungi. aPDT in the presence of 25 or 50 mM KI shows the following photoinactivation trend; Gm + ve bacteria > Gm - ve bacteria > fungi > virus. aPDT in the presence of 100 mM KI, using 3- or 5-min red light exposure, results in complete eradication of bacteria or fungi, respectively. For SARS-CoV-2, aPDT using MB-KI leads to a ~ 6.5 increase in cycle threshold value.The results demonstrate the photoinactivation effectiveness of the device and MB-KI formulation, which may be helpful in designing of an optimized protocol for future intranasal photoinactivation studies in clinical settings.
Collapse
Affiliation(s)
- Sourabrata Chakraborty
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Madhya Pradesh, Indore, 452013, India
| | - Deepanwita Mohanty
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Madhya Pradesh, Indore, 452013, India
| | - Anupam Chowdhury
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Madhya Pradesh, Indore, 452013, India
| | - Hemant Krishna
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Madhya Pradesh, Indore, 452013, India
| | | | | | | | - Khageswar Sahu
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Madhya Pradesh, Indore, 452013, India.
- Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Shovan Kumar Majumder
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Madhya Pradesh, Indore, 452013, India
- Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India
| |
Collapse
|
17
|
Ortega IV, Şener Raman T, Schulze A, Flors C. In Situ Single-Cell Bacterial Imaging Provides Mechanistic Insight into the Photodynamic Action of Photosensitizer-Loaded Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5677-5682. [PMID: 38284232 DOI: 10.1021/acsami.3c17916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Hydrogels, three-dimensional hydrophilic polymeric networks with high water retaining capacity, have gained prominence in wound management and drug delivery due to their tunability, softness, permeability, and biocompatibility. Electron-beam polymerized poly(ethylene glycol) diacrylate (PEGDA) hydrogels are particularly useful for phototherapies such as antimicrobial photodynamic therapy (aPDT) due to their excellent optical properties. This work takes advantage of the transparency of PEGDA hydrogels to investigate bacterial responses to aPDT at the single-cell level, in real-time and in situ. The photosensitizer methylene blue (MB) was loaded in PEGDA hydrogels by using two methods: reversible loading and irreversible immobilization within the 3D polymer network. MB release kinetics and singlet oxygen generation were studied, revealing the distinct behaviors of both hydrogels. Real-time imaging of Escherichia coli was conducted during aPDT in both hydrogel types, using the Min protein system to report changes in bacterial physiology. Min oscillation patterns provided mechanistic insights into bacterial photoinactivation, revealing a dependence on the hydrogel preparation method. This difference was attributed to the mobility of MB within the hydrogel, affecting its direct interaction with bacterial membranes. These findings shed light on the complex interplay between hydrogel properties and the bacterial response during aPDT, offering valuable insights for the development of antibacterial wound dressing materials. The study demonstrates the capability of real-time, single-cell fluorescence microscopy to unravel dynamic bacterial behaviors in the intricate environment of hydrogel surfaces during aPDT.
Collapse
Affiliation(s)
- Ingrid V Ortega
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Tuğçe Şener Raman
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, Leipzig 04318, Germany
| | - Agnes Schulze
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, Leipzig 04318, Germany
| | - Cristina Flors
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
- Nanobiotechnology Unit Associated to the National Center for Biotechnology (CNB-CSIC-IMDEA), C/Faraday 9, Madrid 28049, Spain
| |
Collapse
|
18
|
Bernardi S, Gerardi D, Bartsch S, Macchiarelli G, Hellwig E, Al-Ahmad A. Antimicrobial therapy using VIS plus water-filtered infrared-A as an alternative method to treat oral diseases. Future Microbiol 2024; 19:241-254. [PMID: 38294280 DOI: 10.2217/fmb-2023-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/25/2023] [Indexed: 02/01/2024] Open
Abstract
Oral biofilm is the main cause of pathologies affecting the hard and soft oral tissues around teeth. Its main components are the periodontal pathogens and other bacteria of the supragingival and subgingival biofilm. Different alternative strategies that could be adjuvants to the usual periodontal treatments used to eliminate biofilms are available. One of these methods is antimicrobial photodynamic therapy using VIS and water-filtered infrared-A combined with a photosensitizer. In this review, different recent studies were collected to evaluate the antimicrobial effects of antimicrobial photodynamic therapy and the effectiveness of different types of photosensitizers.
Collapse
Affiliation(s)
- Sara Bernardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - Davide Gerardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
- Department of Innovative Technologies in Medicine & Dentistry, Dental School, 'G D'Annunzio' University of Chieti-Pescara, Chieti, 66100, Italy
| | - Sibylle Bartsch
- Department of Operative Dentistry & Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106666, Germany
| | - Guido Macchiarelli
- Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - Elmar Hellwig
- Department of Operative Dentistry & Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106666, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry & Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106666, Germany
| |
Collapse
|
19
|
Martínez SR, Odella E, Ibarra LE, Sosa Lochedino A, Wendel AB, Durantini AM, Chesta CA, Palacios RE. Conjugated polymer nanoparticles as sonosensitizers in sono-inactivation of a broad spectrum of pathogens. ULTRASONICS 2024; 137:107180. [PMID: 37847942 DOI: 10.1016/j.ultras.2023.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/23/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023]
Abstract
Sonodynamic inactivation (SDI) of pathogens has an important advantage when compared to optical excitation-based protocols due to the deeper penetration of ultrasound (US) excitation in biological media or animal tissue. Sonosensitizers (SS) are compounds or systems that upon US stimulation in the therapeutic window (frequency = 0.8-3 MHz and intensity < 3 W/cm2) can induce damage to vital components of pathogenic microorganisms. Herein, we report the synthesis and application of conjugated polymer nanoparticles (CPNs) as an efficient SS in SDI of methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae and Candida tropicalis. A frequent problem in the design and testing of new SS for SDI is the lack of proper sonoreactor characterization which leads to reproducibility concerns. To address this issue, we performed dosimetry experiments in our setup. This enables the validation of our results by other researchers and facilitates meaningful comparisons with different SDI systems in future studies. On a different note, it is generally accepted that the mechanisms of action underlying SS-mediated SDI involve the production of reactive oxygen species (ROS). In an attempt to establish the nature of the cytotoxic species involved in our CPNs-based SDI protocol, we demonstrated that singlet oxygen (1O2) does not play a major role in the observed sonoinduced killing effect. SDI experiments in planktonic cultures of optimally growing pathogens using CPNs result in a germicide effect on the studied pathogenic microorganisms. The implementation of SDI protocols using CPNs was further tested in mature biofilms of a MRSA resulting in ∼40 % reduction of biomass and ∼70 % reduction of cellular viability. Overall, these results highlight the unique and unexplored capacity of CPNs to act as sonosensitizers opening new possibilities in the design and application of novel inactivation protocols against morbific microbes.
Collapse
Affiliation(s)
- Sol R Martínez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Emmanuel Odella
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Luis E Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), UNRC y CONICET, Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Arianna Sosa Lochedino
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Ana B Wendel
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Física, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Andrés M Durantini
- Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina
| | - Carlos A Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Rodrigo E Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| |
Collapse
|
20
|
Kruszewska-Naczk B, Grinholc M, Waleron K, Bandow JE, Rapacka-Zdończyk A. Can antimicrobial blue light contribute to resistance development? Genome-wide analysis revealed aBL-protective genes in Escherichia coli. Microbiol Spectr 2024; 12:e0249023. [PMID: 38063383 PMCID: PMC10782963 DOI: 10.1128/spectrum.02490-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/24/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Increasing antibiotic resistance and the lack of new antibiotic-like compounds to combat bacterial resistance are significant problems of modern medicine. The development of new alternative therapeutic strategies is extremely important. Antimicrobial blue light (aBL) is an innovative approach to combat multidrug-resistant microorganisms. aBL has a multitarget mode of action; however, the full mechanism of aBL antibacterial action requires further investigation. In addition, the potential risk of resistance development to this treatment should be considered.
Collapse
Affiliation(s)
- Beata Kruszewska-Naczk
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Mariusz Grinholc
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße, Bochum, Germany
| | - Aleksandra Rapacka-Zdończyk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
21
|
Minor M, Sabillón L. Effectiveness of Ultra-High Irradiance Blue-Light-Emitting Diodes to Control Salmonella Contamination Adhered to Dry Stainless Steel Surfaces. Microorganisms 2024; 12:103. [PMID: 38257930 PMCID: PMC10819507 DOI: 10.3390/microorganisms12010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Controlling Salmonella contamination in dry food processing environments represents a significant challenge due to their tolerance to desiccation stress and enhanced thermal resistance. Blue light is emerging as a safer alternative to UV irradiation for surface decontamination. In the present study, the antimicrobial efficacy of ultra-high irradiance (UHI) blue light, generated by light-emitting diodes (LEDs) at wavelengths of 405 nm (841.6 mW/cm2) and 460 nm (614.9 mW/cm2), was evaluated against a five-serovar cocktail of Salmonella enterica dry cells on clean and soiled stainless steel (SS) surfaces. Inoculated coupons were subjected to blue light irradiation treatments at equivalent energy doses ranging from 221 to 1106 J/cm2. Wheat flour was used as a model food soil system. To determine the bactericidal mechanisms of blue light, the intracellular concentration of reactive oxygen species (ROS) in Salmonella cells and the temperature changes on SS surfaces were also measured. The treatment energy dose had a significant effect on Salmonella inactivation levels. On clean SS surfaces, the reduction in Salmonella counts ranged from 0.8 to 7.4 log CFU/cm2, while, on soiled coupons, the inactivation levels varied from 1.2 to 4.2 log CFU/cm2. Blue LED treatments triggered a significant generation of ROS within Salmonella cells, as well as a substantial temperature increase in SS surfaces. However, in the presence of organic matter, the oxidative stress in Salmonella cells declined significantly, and treatments with higher energy doses (>700 J/cm2) were required to uphold the antimicrobial effectiveness observed on clean SS. The mechanism of the bactericidal effect of UHI blue LED treatments is likely to be a combination of photothermal and photochemical effects. These results indicate that LEDs emitting UHI blue light could represent a novel cost- and time-effective alternative for controlling microbial contamination in dry food processing environments.
Collapse
Affiliation(s)
- Martha Minor
- Department of Family & Consumer Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Luis Sabillón
- Department of Family & Consumer Sciences, New Mexico State University, Las Cruces, NM 88003, USA
- Center of Excellence in Sustainable Food and Agricultural Systems, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
22
|
Maisch T, Scholz KJ, Forster EM, Wenzl V, Auer DL, Cieplik F, Hiller KA. Optimal effective concentration combinations (OPECCs) for binary application of membrane-targeting antiseptics and TMPyP-mediated antimicrobial photodynamic therapy. Photochem Photobiol Sci 2024; 23:189-196. [PMID: 38113026 DOI: 10.1007/s43630-023-00512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/12/2023] [Indexed: 12/21/2023]
Abstract
The widespread occurrence of multi-resistant bacteria is a health problem of global dimension. Infections caused by multi-resistant pathogens are difficult to treat and often associated with high mortality. Therefore, new treatment strategies are of interest, such as the use of differently acting antibacterial concepts. One of these new concepts is the use of antiseptics in combination with the antibacterial photodynamic therapy (aPDT). Currently, no method has yet been established as a standard procedure for investigating combined effects and evaluating them in a generally valid and unambiguous manner. The focus of this study was on how cationic antiseptics benzalkonium chloride (BAC) and chlorhexidine digluconate (CHX) behave in a combined application with aPDT using the photosensitizer TMPyP. For this purpose, BAC and CHX were applied in combination with the aPDT using TMPyP in non-lethal concentrations to the three bacteria Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis. The results of the combination experiments with sublethal concentrations of BAC or CHX with the aPDT showed that the binary application had a lethal effect. Irrespective of the bacteria, the reduction in concentrations in OPECC, compared to individual concentrations, was more than 50% for TMPyP, 23-40% for BAC, and 18-43% for CHX. Furthermore, the optimal effective concentration combinations (OPECCs) could be determined. The latter showed that the combined application allowed the reduction of both concentrations compared to the single application.
Collapse
Affiliation(s)
- Tim Maisch
- Department of Dermatology, University Hospital Regensburg, 93053, Regensburg, Germany.
| | - Konstantin J Scholz
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Eva-Maria Forster
- Department of Dermatology, University Hospital Regensburg, 93053, Regensburg, Germany
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Verena Wenzl
- Department of Dermatology, University Hospital Regensburg, 93053, Regensburg, Germany
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - David L Auer
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Karl-Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053, Regensburg, Germany
| |
Collapse
|
23
|
Passaglia E, Sgarbossa A. Innovative Phosphorene Nanoplatform for Light Antimicrobial Therapy. Pharmaceutics 2023; 15:2748. [PMID: 38140089 PMCID: PMC10747032 DOI: 10.3390/pharmaceutics15122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Over the past few years, antibiotic resistance has reached global dimensions as a major threat to public health. Consequently, there is a pressing need to find effective alternative therapies and therapeutic agents to combat drug-resistant pathogens. Photodynamic therapy (PDT), largely employed as a clinical treatment for several malignant pathologies, has also gained importance as a promising antimicrobial approach. Antimicrobial PDT (aPDT) relies on the application of a photosensitizer able to produce singlet oxygen (1O2) or other cytotoxic reactive oxygen species (ROS) upon exposure to appropriate light, which leads to cell death after the induced photodamage. Among different types of 2D nanomaterials with antimicrobial properties, phosphorene, the exfoliated form of black phosphorus (bP), has the unique property intrinsic photoactivity exploitable for photothermal therapy (PTT) as well as for PDT against pathogenic bacteria.
Collapse
Affiliation(s)
- Elisa Passaglia
- National Research Council-Institute of Chemistry of OrganoMetallic Compounds (CNR-ICCOM), SS Pisa, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Antonella Sgarbossa
- National Research Council-Nanoscience Institute (CNR-NANO) and NEST-Scuola Normale Superiore, Piazza S. Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
24
|
Youf R, Ghanem R, Nasir A, Lemercier G, Montier T, Le Gall T. Impact of mucus and biofilm on antimicrobial photodynamic therapy: Evaluation using Ruthenium(II) complexes. Biofilm 2023; 5:100113. [PMID: 37396462 PMCID: PMC10313506 DOI: 10.1016/j.bioflm.2023.100113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 07/04/2023] Open
Abstract
The biofilm lifestyle of bacterial pathogens is a hallmark of chronic lung infections such as in cystic fibrosis (CF) patients. Bacterial adaptation to the complex conditions in CF-affected lungs and repeated antibiotherapies lead to increasingly tolerant and hard-to-treat biofilms. In the context of growing antimicrobial resistance and restricted therapeutic options, antimicrobial photodynamic therapy (aPDT) shows great promise as an alternative to conventional antimicrobial modalities. Typically, aPDT consists in irradiating a non-toxic photosensitizer (PS) to generate reactive oxygen species (ROS), which kill pathogens in the surrounding environment. In a previous study, we reported that some ruthenium (II) complexes ([Ru(II)]) can mediate potent photodynamic inactivation (PDI) against planktonic cultures of Pseudomonas aeruginosa and Staphylococcus aureus clinical isolates. In the present work, [Ru(II)] were further assayed to evaluate their ability to photo-inactivate such bacteria under more complex experimental conditions better recapitulating the microenvironment in lung infected airways. Bacterial PDI was tentatively correlated with the properties of [Ru(II)] in biofilms, in mucus, and following diffusion across the latter. Altogether, the results obtained demonstrate the negative impacting role of mucus and biofilm components on [Ru(II)]-mediated PDT, following different possible mechanisms of action. Technical limitations were also identified that may be overcome, making this report a pilot for other similar studies. In conclusion, [Ru(II)] may be subjected to specific chemical engineering and/or drug formulation to adapt their properties to the harsh micro-environmental conditions of the infected respiratory tract.
Collapse
Affiliation(s)
- Raphaëlle Youf
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Rosy Ghanem
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
- CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, 29200, Brest, France
| | - Adeel Nasir
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Gilles Lemercier
- Université de Reims Champagne-Ardenne, UMR CNRS 7312, BP 1039, CEDEX 2, 51687, Reims, France
| | - Tristan Montier
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
- CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, 29200, Brest, France
- CHU de Brest, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200, Brest, France
| | - Tony Le Gall
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
| |
Collapse
|
25
|
Manzanelli FA, Ravetti S, Brignone SG, Garro AG, Martínez SR, Vallejo MG, Palma SD. Enhancing the Functional Properties of Tea Tree Oil: In Vitro Antimicrobial Activity and Microencapsulation Strategy. Pharmaceutics 2023; 15:2489. [PMID: 37896249 PMCID: PMC10610334 DOI: 10.3390/pharmaceutics15102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In the context of addressing antimicrobial drug resistance in periocular infections, Tea Tree Oil (TTO) has emerged as a promising therapeutic option. This study aimed to assess the efficacy of TTO against bacterial strains isolated from ocular infections, with a particular focus on its ability to inhibit biofilm formation. Additionally, we designed and analyzed microcapsules containing TTO to overcome certain unfavorable physicochemical properties and enhance its inherent biological attributes. The quality of TTO was confirmed through rigorous analysis using GC-MS and UV-Vis techniques. Our agar diffusion assay demonstrated the effectiveness of Tea Tree Oil (TTO) against ocular bacterial strains, including Corynebacterium spp., coagulase-negative Staphylococcus spp., and Staphylococcus aureus, as well as a reference strain of Staphylococcus aureus (ATCC 25923). Notably, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for all tested microorganisms were found to be 0.2% and 0.4%, respectively, with the exception of Corynebacterium spp., which exhibited resistance to TTO. Furthermore, TTO exhibited a substantial reduction in biofilm biomass, ranging from 30% to 70%, as determined by the MTT method. Through the spray-drying technique, we successfully prepared two TTO-containing formulations with high encapsulation yields (80-85%), microencapsulation efficiency (90-95%), and embedding rates (approximately 40%). These formulations yielded microcapsules with diameters of 6-12 μm, as determined by laser scattering particle size distribution analysis, and exhibited regular, spherical morphologies under scanning electron microscopy. Importantly, UV-Vis analysis post-encapsulation confirmed the presence of TTO within the capsules, with preserved antioxidant and antimicrobial activities. In summary, our findings underscore the substantial therapeutic potential of TTO and its microcapsules for treating ocular infections.
Collapse
Affiliation(s)
- Franco Antonio Manzanelli
- Centro de Investigaciones y Transferencia de Villa María (CIT VM), Villa María 5900, Argentina; (F.A.M.); (S.R.)
| | - Soledad Ravetti
- Centro de Investigaciones y Transferencia de Villa María (CIT VM), Villa María 5900, Argentina; (F.A.M.); (S.R.)
- Instituto Académico Pedagógico de Ciencias Humanas, Universidad Nacional de Villa María, Villa María 5900, Argentina;
| | - Sofia Gisella Brignone
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Córdoba 5000, Argentina; (S.G.B.); (M.G.V.)
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Ariel Gustavo Garro
- Instituto Académico Pedagógico de Ciencias Humanas, Universidad Nacional de Villa María, Villa María 5900, Argentina;
- Ministerio de Ciencia y Tecnología, Gobierno de Córdoba, Córdoba 5004, Argentina
| | - Sol Romina Martínez
- Instituto de Investigación en Tecnologías Energéticas y Materiales Avanzados (IITEMA), CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5804, Argentina;
| | - Mariana Guadalupe Vallejo
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Córdoba 5000, Argentina; (S.G.B.); (M.G.V.)
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Córdoba 5000, Argentina; (S.G.B.); (M.G.V.)
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| |
Collapse
|
26
|
Szymczak K, Szewczyk G, Rychłowski M, Sarna T, Zhang L, Grinholc M, Nakonieczna J. Photoactivated Gallium Porphyrin Reduces Staphylococcus aureus Colonization on the Skin and Suppresses Its Ability to Produce Enterotoxin C and TSST-1. Mol Pharm 2023; 20:5108-5124. [PMID: 37653709 PMCID: PMC10553792 DOI: 10.1021/acs.molpharmaceut.3c00399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Staphylococcus aureus is a key pathogen in atopic dermatitis (AD) pathogenicity. Over half of AD patients are carriers of S. aureus. Clinical isolates derived from AD patients produce various staphylococcal enterotoxins, such as staphylococcal enterotoxin C or toxic shock syndrome toxin. The production of these virulence factors is correlated with more severe AD. In this study, we propose cationic heme-mimetic gallium porphyrin (Ga3+CHP), a novel gallium metalloporphyrin, as an anti-staphylococcal agent that functions through dual mechanisms: a light-dependent mechanism (antimicrobial photodynamic inactivation, aPDI) and a light-independent mechanism (suppressing iron metabolism). Ga3+CHP has two additive quaternary ammonium groups that increase its water solubility. Furthermore, Ga3+CHP is an efficient generator of singlet oxygen and can be recognized by heme-target systems such as Isd, which improves the intracellular accumulation of this compound. Ga3+CHP activated with green light effectively reduced the survival of clinical S. aureus isolates derived from AD patients (>5 log10 CFU/mL) and affected their enterotoxin gene expression. Additionally, there was a decrease in the biological functionality of studied toxins regarding their superantigenicity. In aPDI conditions, there was no pronounced toxicity in HaCaT keratinocytes with both normal and suppressed filaggrin gene expression, which occurs in ∼50% of AD patients. Additionally, no mutagenic activity was observed. Green light-activated gallium metalloporphyrins may be a promising chemotherapeutic to reduce S. aureus colonization on the skin of AD patients.
Collapse
Affiliation(s)
- Klaudia Szymczak
- Laboratory
of Photobiology and Molecular Diagnostics, Intercollegiate Faculty
of Biotechnology, University of Gdansk and
Medical University of Gdansk, Gdansk 80-307, Poland
| | - Grzegorz Szewczyk
- Department
of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Michał Rychłowski
- Laboratory
of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk 80-307, Poland
| | - Tadeusz Sarna
- Department
of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Lei Zhang
- Department
of Biochemical Engineering, School of Chemical Engineering and Technology,
Frontier Science Center for Synthetic Biology and Key Laboratory of
Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Mariusz Grinholc
- Laboratory
of Photobiology and Molecular Diagnostics, Intercollegiate Faculty
of Biotechnology, University of Gdansk and
Medical University of Gdansk, Gdansk 80-307, Poland
| | - Joanna Nakonieczna
- Laboratory
of Photobiology and Molecular Diagnostics, Intercollegiate Faculty
of Biotechnology, University of Gdansk and
Medical University of Gdansk, Gdansk 80-307, Poland
| |
Collapse
|
27
|
Alves F, Pratavieira S, Inada NM, Barrera Patiño CP, Kurachi C. Effects on Colonization Factors and Mechanisms Involved in Antimicrobial Sonophotodynamic Inactivation Mediated by Curcumin. Pharmaceutics 2023; 15:2407. [PMID: 37896167 PMCID: PMC10610509 DOI: 10.3390/pharmaceutics15102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Photodynamic (PDI) and sonodynamic (SDI) inactivation have been successfully employed as antimicrobial treatments. Moreover, sonophotodynamic inactivation (SPDI), which is the simultaneous application of PDI and SDI, has demonstrated greater effects. This study assessed the effects of PDI (PDI group), SDI (SDI group) and SPDI (SPDI group) using curcumin as a sensitizer on the metabolism, adhesion capability, biofilm formation ability and structural effects in a Staphylococcus aureus biofilm. Moreover, the production of reactive oxygen species (ROS) and the degradation spectrum of curcumin under the irradiation sources were measured. SPDI was more effective in inactivating the biofilm than PDI and SDI. All treatments reduced the adhesion ability of the bacteria: 58 ± 2%, 58 ± 1% and 71 ± 1% of the bacterial cells adhered to the polystyrene plate after the SPDI, SDI and PDI, respectively, when compared to 79 ± 1% of the untreated cells (control group). This result is probably related to the metabolism cell reduction after treatments. The metabolism of cells from the PDI group was 89 ± 1% lower than the untreated cells, while the metabolic activity of SDI and SPDI groups were 82 ± 2% and 90 ± 1% lower, respectively. Regarding the biofilm formation ability, all treatments (SPDI, SDI and PDI) reduced the total biomass. The total biomass of the PDI, SDI and SPDI groups were 26 ± 2%, 31 ± 5% and 35 ± 6% lower than the untreated biofilm (control group), respectively. Additionally, all treatments produced ROS and caused significant structural changes, reducing cells and the extracellular matrix. The light caused a greater absorbance decay of the curcumin; however, the US did not expressively alter its spectrum. Finally, SPDI had improved antimicrobial effects, and all treatments exhibited similar effects in the colonization factors evaluated.
Collapse
Affiliation(s)
- Fernanda Alves
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil; (S.P.); (N.M.I.); (C.P.B.P.); (C.K.)
| | | | | | | | | |
Collapse
|
28
|
Shashin DM, Demina GR, Linge IA, Vostroknutova GN, Kaprelyants AS, Savitsky AP, Shleeva MO. The Effect of Antimicrobial Photodynamic Inactivation on the Protein Profile of Dormant Mycolicibacterium smegmatis Containing Endogenous Porphyrins. Int J Mol Sci 2023; 24:13968. [PMID: 37762271 PMCID: PMC10531400 DOI: 10.3390/ijms241813968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
During transition into a dormant state, Mycolicibacterium (Mycobacterium) smegmatis cells are able to accumulate free porphyrins that makes them sensitive to photodynamic inactivation (PDI). The formation of dormant cells in a liquid medium with an increased concentration of magnesium (up to 25 mM) and zinc (up to 62 µM) resulted in an increase in the total amount of endogenous porphyrins in dormant M. smegmatis cells and their photosensitivity, especially for bacteria phagocytosed by macrophages. To gain insight into possible targets for PDI in bacterial dormant mycobacterial cells, a proteomic profiling with SDS gel electrophoresis and mass spectrometry analysis were conducted. Illumination of dormant forms of M. smegmatis resulted in the disappearance of proteins in the separating SDS gel. Dormant cells obtained under an elevated concentration of metal ions were more sensitive to PDI. Differential analysis of proteins with their identification with MALDI-TOF revealed that 45.2% and 63.9% of individual proteins disappeared from the separating gel after illumination for 5 and 15 min, respectively. Light-sensitive proteins include enzymes belonging to the glycolytic pathway, TCA cycle, pentose phosphate pathway, oxidative phosphorylation and energy production. Several proteins involved in protecting against oxygen stress and protein aggregation were found to be sensitive to light. This makes dormant cells highly vulnerable to harmful factors during a long stay in a non-replicative state. PDI caused inhibition of the respiratory chain activity and destroyed enzymes involved in the synthesis of proteins and nucleic acids, the processes which are necessary for dormant cell reactivation and their transition to multiplying bacteria. Because of such multiple targeting, PDI action via endogenous porphyrins could be considered as an effective approach for killing dormant bacteria and a perspective to inactivate dormant mycobacteria and combat the latent form of mycobacteriosis, first of all, with surface localization.
Collapse
Affiliation(s)
- Denis M. Shashin
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow 119071, Russia; (D.M.S.); (G.R.D.); (G.N.V.); (A.S.K.)
| | - Galina R. Demina
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow 119071, Russia; (D.M.S.); (G.R.D.); (G.N.V.); (A.S.K.)
| | - Irina A. Linge
- Central Institute for Tuberculosis, Moscow 107564, Russia;
| | - Galina N. Vostroknutova
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow 119071, Russia; (D.M.S.); (G.R.D.); (G.N.V.); (A.S.K.)
| | - Arseny S. Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow 119071, Russia; (D.M.S.); (G.R.D.); (G.N.V.); (A.S.K.)
| | - Alexander P. Savitsky
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow 119071, Russia; (D.M.S.); (G.R.D.); (G.N.V.); (A.S.K.)
| | - Margarita O. Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow 119071, Russia; (D.M.S.); (G.R.D.); (G.N.V.); (A.S.K.)
| |
Collapse
|
29
|
Batishchev OV, Kalutskii MA, Varlamova EA, Konstantinova AN, Makrinsky KI, Ermakov YA, Meshkov IN, Sokolov VS, Gorbunova YG. Antimicrobial activity of photosensitizers: arrangement in bacterial membrane matters. Front Mol Biosci 2023; 10:1192794. [PMID: 37255538 PMCID: PMC10226669 DOI: 10.3389/fmolb.2023.1192794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Porphyrins are well-known photosensitizers (PSs) for antibacterial photodynamic therapy (aPDT), which is still an underestimated antibiotic-free method to kill bacteria, viruses, and fungi. In the present work, we developed a comprehensive tool for predicting the structure and assessment of the photodynamic efficacy of PS molecules for their application in aPDT. We checked it on a series of water-soluble phosphorus(V) porphyrin molecules with OH or ethoxy axial ligands and phenyl/pyridyl peripheral substituents. First, we used biophysical approaches to show the effect of PSs on membrane structure and their photodynamic activity in the lipid environment. Second, we developed a force field for studying phosphorus(V) porphyrins and performed all-atom molecular dynamics simulations of their interactions with bacterial lipid membranes. Finally, we obtained the structure-activity relationship for the antimicrobial activity of PSs and tested our predictions on two models of Gram-negative bacteria, Escherichia coli and Acinetobacter baumannii. Our approach allowed us to propose a new PS molecule, whose MIC50 values after an extremely low light dose of 5 J/cm2 (5.0 ± 0.4 μg/mL for E. coli and 4.9 ± 0.8 μg/mL for A. baumannii) exceeded those for common antibiotics, making it a prospective antimicrobial agent.
Collapse
Affiliation(s)
- Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maksim A. Kalutskii
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Varlamova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna N. Konstantinova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Kirill I. Makrinsky
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yury A. Ermakov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ivan N. Meshkov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Valerij S. Sokolov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yulia G. Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
30
|
Wang M, Gu K, Wan M, Gan L, Chen J, Zhao W, Shi H, Li J. Hydrogen peroxide enhanced photoinactivation of Candida albicans by a novel boron-dipyrromethene (BODIPY) derivative. Photochem Photobiol Sci 2023:10.1007/s43630-023-00408-2. [PMID: 37022583 DOI: 10.1007/s43630-023-00408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
Photodynamic inactivation (PDI) has received increasing attention as a promising approach to combat Candida albicans infections. This study aimed to evaluate the synergistic effect of a new BODIPY (4,4-difluoro-boradiazaindacene) derivative and hydrogen peroxide on C. albicans. BDP-4L in combination with H2O2 demonstrated enhanced photokilling efficacy. In suspended cultures of C. albicans, the maximum decrease was 6.20 log and 2.56 log for PDI using BDP-4L (2.5 μM) with or without H2O2, respectively. For mature C. albicans biofilms, 20 μM BDP-4L plus H2O2 eradicated C. albicans, causing an over 6.7 log count reduction in biofilm-associated cells, while only a reduction of ~ 1 log count was observed when H2O2 was omitted. Scanning electron microscopy analysis and LIVE/DEAD assays suggested that PDI using BDP-4L plus H2O2 induced more damage to the cell membrane. Correspondingly, amplification of nucleic acids release was observed in biofilms treated with the combined PDI. Additionally, we also discovered that the addition of hydrogen peroxide potentiated the generation of 1O2 in PDI using the singlet oxygen sensor green probe. Collectively, BDP-4L combined with H2O2 presents a promising approach in the treatment of C. albicans infections.
Collapse
Affiliation(s)
- Mengran Wang
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Kedan Gu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, No.150, Rd. Fucheng, Hangzhou, 310000, China
| | - Miyang Wan
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Lu Gan
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Jingtao Chen
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Weili Zhao
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China.
| | - Hang Shi
- Department of Stomatology, Huashan Hospital, Fudan University, No.12, Rd. Wulumuqi, Shanghai, 200000, China.
| | - Jiyang Li
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China.
| |
Collapse
|
31
|
Pinheiro TDR, Urquhart CG, Acunha TV, Santos RCV, Iglesias BA. Antimicrobial photodynamic in vitro inactivation of Enterococcus spp. and Staphylococcus spp. strains using tetra-cationic platinum(II) porphyrins. Photodiagnosis Photodyn Ther 2023; 42:103542. [PMID: 37003596 DOI: 10.1016/j.pdpdt.2023.103542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
This manuscript presents the first report on antimicrobial photo-inactivation in vitro using tetra-cationic porphyrins with peripheral platinum(II) bipyridyl complexes against Gram-positive bacteria. Two isomeric tetra-cationic porphyrins (3TPyP and 4TPyP) were tested against clinically important bacterial species. The antimicrobial activity assays were performed at specific photosensitizer (PS) concentrations under dark and white-light LED irradiation conditions for 120 min. The porphyrin 3-PtTPyP was the most efficient PS against the bacteria tested, inhibiting bacterial growth in just 15 min and 30 min at low concentrations (3.75 and 0.45 µM). The minimal inhibitory concentration of the porphyrin increased in the presence of reactive oxygen species scavengers, indicating that singlet oxygen and radical species likely participated in the photo-oxidation mechanism. In addition, the checkerboard assay that tests the association of compounds, showed a synergistic effect, suggesting a potentiation of the antibacterial effect when porphyrin was tested in combination with ciprofloxacin and vancomycin. Thus, tetra-cationic porphyrins containing platinum(II) complexes are promising agents for microbial photo-inactivation as an alternative therapy against infections.
Collapse
Affiliation(s)
- Ticiane da Rosa Pinheiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia - LAPEMICRO, Universidade Federal de Santa Maria, RS, Brazil
| | - Carolina Gonzalez Urquhart
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia - LAPEMICRO, Universidade Federal de Santa Maria, RS, Brazil
| | - Thiago V Acunha
- Laboratório de Bioinorgânica e Materiais Porfirínicos (LBMP), Departamento de Química, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Roberto Christ Vianna Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia - LAPEMICRO, Universidade Federal de Santa Maria, RS, Brazil.
| | - Bernardo Almeida Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos (LBMP), Departamento de Química, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
32
|
Elkihel A, Vernisse C, Ouk TS, Lucas-Roper R, Chaleix V, Sol V. Xylan-Porphyrin Hydrogels as Light-Triggered Gram-Positive Antibacterial Agents. Gels 2023; 9:gels9020124. [PMID: 36826294 PMCID: PMC9957218 DOI: 10.3390/gels9020124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
In the present work, we report on the synthesis of light-triggered antibacterial hydrogels, based on xylan chains covalently bound to meso-tetra(4-carboxyphenyl)porphyrin (TCPP). Not only does TCPP act as a photosensitizer efficient against Gram-positive bacteria, but it also serves as a cross-linking gelator, enabling the simple and easy building of xylan conjugate hydrogels. The hydrogels were characterized by infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), along with swelling and rheological tests. The antimicrobial activity of the hydrogels was tested under visible light irradiation against two Gram-positive bacterial strains, Staphylococcus aureus and Bacillus cereus. The preliminary results showed an interesting activity on these bacteria, indicating that these hydrogels could be of great potential in the treatment of skin bacterial infections with this species by photodynamic antimicrobial chemotherapy (PACT).
Collapse
Affiliation(s)
| | | | - Tan-Sothéa Ouk
- University Limoges, LABCiS, UR 22722, 87000 Limoges, France
| | | | | | - Vincent Sol
- University Limoges, LABCiS, UR 22722, 87000 Limoges, France
- Correspondence:
| |
Collapse
|
33
|
Gonzalez Lopez EJ, Martínez SR, Aiassa V, Santamarina SC, Domínguez RE, Durantini EN, Heredia DA. Tuning the Molecular Structure of Corroles to Enhance the Antibacterial Photosensitizing Activity. Pharmaceutics 2023; 15:pharmaceutics15020392. [PMID: 36839714 PMCID: PMC9959985 DOI: 10.3390/pharmaceutics15020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The increase in the antibiotic resistance of bacteria is a serious threat to public health. Photodynamic inactivation (PDI) of micro-organisms is a reliable antimicrobial therapy to treat a broad spectrum of complex infections. The development of new photosensitizers with suitable properties is a key factor to consider in the optimization of this therapy. In this sense, four corroles were designed to study how the number of cationic centers can influence the efficacy of antibacterial photodynamic treatments. First, 5,10,15-Tris(pentafluorophenyl)corrole (Co) and 5,15-bis(pentafluorophenyl)-10-(4-(trifluoromethyl)phenyl)corrole (Co-CF3) were synthesized, and then derivatized by nucleophilic aromatic substitution with 2-dimethylaminoethanol and 2-(dimethylamino)ethylamine, obtaining corroles Co-3NMe2 and Co-CF3-2NMe2, respectively. The straightforward synthetic strategy gave rise to macrocycles with different numbers of tertiary amines that can acquire positive charges in an aqueous medium by protonation at physiological pH. Spectroscopic and photodynamic studies demonstrated that their properties as chromophores and photosensitizers were unaffected, regardless of the substituent groups on the periphery. All tetrapyrrolic macrocycles were able to produce reactive oxygen species (ROS) by both photodynamic mechanisms. Uptake experiments, the level of ROS produced in vitro, and PDI treatments mediated by these compounds were assessed against clinical strains: methicillin-resistant Staphylococcus aureus and Klebsiella pneumoniae. In vitro experiments indicated that the peripheral substitution significantly affected the uptake of the photosensitizers by microbes and, consequently, the photoinactivation performance. Co-3NMe2 was the most effective in killing both Gram-positive and Gram-negative bacteria (inactivation > 99.99%). This work lays the foundations for the development of new corrole derivatives having pH-activable cationic groups and with plausible applications as effective broad-spectrum antimicrobial photosensitizers.
Collapse
Affiliation(s)
- Edwin J. Gonzalez Lopez
- IDAS-CONCIET-UNRC, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, Río Cuarto X5804BYA, Argentina
| | - Sol R. Martínez
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, Río Cuarto X5804BYA, Argentina
| | - Virginia Aiassa
- UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Sofía C. Santamarina
- IDAS-CONCIET-UNRC, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, Río Cuarto X5804BYA, Argentina
| | - Rodrigo E. Domínguez
- INFIQC-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Edgardo N. Durantini
- IDAS-CONCIET-UNRC, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, Río Cuarto X5804BYA, Argentina
| | - Daniel A. Heredia
- IDAS-CONCIET-UNRC, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, Río Cuarto X5804BYA, Argentina
- Correspondence: ; Tel.: +54-0358-4676-538
| |
Collapse
|
34
|
Zhu S, Ukwatta RH, Cai X, Zheng Y, Xue F, Li C, Wang L. The physiochemical and photodynamic inactivation properties of corn starch/erythrosine B composite film and its application on pork preservation. Int J Biol Macromol 2023; 225:112-122. [PMID: 36513176 DOI: 10.1016/j.ijbiomac.2022.12.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
This study explored the effect of erythrosine B (EB) as a photosensitizer in corn starch (CS) film and its physicochemical properties and photodynamic bacteriostatic ability against Staphylococcus aureus, Escherichia coli, and Salmonella both in vitro and inoculated on pork under the irradiation of D65 light-emitting diode (LED) (400-800 nm). The study revealed that the physiochemical properties of CS films: moisture content, water solubility, and water vapor transmission were improved with the addition of EB. In addition, the elasticity and the thermal stability of the film were enhanced. The results showed that the CS-EB films stimulated a maximum of 26.36 μg/mL hydrogen peroxide and 74.5 μg/g hydroxyl radical under irradiation. The CS composite films with a 5 % concentration of EB inhibited the bacterial growth by 4.7 Log CFU/mL in vitro after 30 min of illumination, and 2.4 Log CFU/mL on the pork samples under the same experimental condition. Moreover, the antibacterial ability was enhanced with the increase in EB concentration. Overall, the CS-EB composite films can inhibit the growth of bacteria through photodynamic inactivation and has the potential to become a new type of environmentally friendly packaging material.
Collapse
Affiliation(s)
- Shengyu Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | | | - Xingru Cai
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Yalu Zheng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Feng Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China.
| | - Luxin Wang
- Department of Food Science and Technology, University of California Davis, CA 95616, USA.
| |
Collapse
|
35
|
Pereira F, de Annunzio SR, Lopes TDA, de Oliveira KT, Cilli EM, Barbugli PA, Fontana CR. Efficacy of the combination of P5 peptide and photodynamic therapy mediated by bixin and chlorin-e6 against Cutibacterium acnes biofilm. Photodiagnosis Photodyn Ther 2022; 40:103104. [PMID: 36057364 DOI: 10.1016/j.pdpdt.2022.103104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Abstract
In this study, the action of antimicrobial peptide (AMP) P5 and antimicrobial photodynamic therapy (aPDT) mediated by bixin and chlorin-e6 (Ce6) on Cutibacterium acnes (C. acnes) in planktonic phase and biofilm were evaluated both as monotherapies and combined therapies. Microbial viability after treatments were quantified by colony-forming units per milliliter of the sample (CFU/mL) and have demonstrated that all treatments employed exerted bactericidal activity, reducing the microbial load by more than 3 log10 CFU/mL, also demonstrating for the first time in the literature the antimicrobial photodynamic effect of bixin that occurs mostly through type I mechanism which was proved by the quantification of superoxide anion production. Bacterial biofilm was completely eliminated only after its exposure to aPDT mediated by this PS, however, Ce6 proved to be a more efficient PS, considering that most of the photodynamic effect of bixin- aPDT was exerted by excitation of the endogenous C porphyrins of C. acnes with blue light. The combination of P5 with Ce6-aPDT showed a synergistic effect on the bacterial biofilm with a reduction in microbial load by more than 10 log10 CFU/mL, in which the ability of P5 to permeabilize the polymeric extracellular matrix of the biofilm explains the obtained results, with greater internalization of the PS as shown by the Confocal Laser Scanning Microscopy. One-way ANOVA (Analysis of Variance) with Tukey's post-test and two-way ANOVA with Bonferroni's post-test were used to compare the values of continuous variables between the control group and the treatment groups.
Collapse
Affiliation(s)
- Felipe Pereira
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, 14800-903, Araraquara, SP, Brazil
| | - Sarah Raquel de Annunzio
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, 14800-903, Araraquara, SP, Brazil
| | - Thais de Assis Lopes
- Federal University of São Carlos, Department of Chemistry, 13565-905, São Carlos, SP, Brazil
| | | | - Eduardo Maffud Cilli
- São Paulo State University (Unesp), Institute of Chemistry, 14800-060, Araraquara, SP, Brazil
| | - Paula Aboud Barbugli
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, 14800-903, Araraquara, SP, Brazil; São Paulo State University (Unesp), School of Dentistry, 14801-903, Araraquara, SP, Brazil
| | - Carla Raquel Fontana
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, 14800-903, Araraquara, SP, Brazil.
| |
Collapse
|
36
|
Song C, Dai F, Ning Y, Deng T, Yang Y, Zhu H, Song L. Application of antimicrobial photodynamic therapy to treat subgingival multidrug-resistant bacterial infections in ICU patients. Photodiagnosis Photodyn Ther 2022; 40:103176. [PMID: 36351563 DOI: 10.1016/j.pdpdt.2022.103176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Drug-resistant bacterial infections have received much attention in recent years. Antimicrobial photodynamic therapy (aPDT) is an effective antimicrobial strategy. This study aimed to evaluate the therapeutic effect of methylene blue (MB)-mediated aPDT against subgingival multidrug-resistant (MDR) bacterial infections in intensive care unit (ICU) patients. METHODS Eighty-three patients who were hospitalized in the ICU of the Second Affiliated Hospital of Nanchang University from July 2019 to June 2021 were selected. The intraoral partitioned control test was conducted. Teeth that met the criteria were selected from different quadrants of the same patient, randomly divided into three groups, namely, A, B, and C, and treated with aPDT, chlorhexidine gargle, or normal saline. The counts of MDR bacteria in the gingival crevicular fluid were assessed in the different groups at different time points before and after treatment. RESULTS The MDR bacterial count decreased immediately after aPDT and was significantly different from that in the chlorhexidine gargle rinse group and the normal saline rinse group (P<0.05). There was no significant difference among the three groups at 6, 12, and 24 hours after treatment (P>0.05). CONCLUSION aPDT can be used to treat subgingival MDR bacterial infections, but the long-term effects of treatment need to be further studied.
Collapse
Affiliation(s)
- Chaoru Song
- Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China; The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Fang Dai
- Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China; The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Yumei Ning
- Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China; The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Tian Deng
- Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China; The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Yuting Yang
- Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Hongbiao Zhu
- Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Li Song
- Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China; The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi Province 330006, China.
| |
Collapse
|
37
|
The antibacterial activity of photodynamic agents against multidrug resistant bacteria causing wound infection. Photodiagnosis Photodyn Ther 2022; 40:103066. [PMID: 35998880 DOI: 10.1016/j.pdpdt.2022.103066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial photodynamic inactivation (aPDI) of multidrug-resistant (MDR) wound pathogens was evaluated with cationic porphyrin derivatives (CPDs). MDR bacterial strains including Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, and Klebsiella pneumoniae were used. The CPDs named PM, PE, PN, and PL were synthesized as a photosensitizer (PS). A diode laser with a wavelength of 655 nm was used as a light source. aPDI of the combinations formed with different energy densities (50, 100, and 150 J/cm²) and PS concentrations (ranging from 3.125 to 600 µM) were evaluated on each bacterial strain. Dark toxicity, cytotoxicity, and phototoxicity were determined on fibroblast cells. In the aPDI groups, survival reductions of up to 5.80 log₁₀ for E. coli, 5.90 log₁₀ for P. aeruginosa, 6.11 log₁₀ for K. pneumoniae, and 6.78 log₁₀ for A. baumannii were obtained. The cytotoxic effect of PL and PM on fibroblast cells was very limited. PN was the type of CPD with the highest dark toxicity on fibroblast cells. In terms of providing broad-spectrum aPDI without or with very limited cytotoxic effect, the best result was observed in aPDI application with PL. The other CPDs need some modifications to show bacterial selectivity for use at 50 µM and above.
Collapse
|
38
|
Santamarina SC, Heredia DA, Durantini AM, Durantini EN. Porphyrin Polymers Bearing N, N'-Ethylene Crosslinkers as Photosensitizers against Bacteria. Polymers (Basel) 2022; 14:polym14224936. [PMID: 36433062 PMCID: PMC9696963 DOI: 10.3390/polym14224936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
The appearance of microbes resistant to antibiotics requires the development of alternative therapies for the treatment of infectious diseases. In this work two polymers, PTPPF16-EDA and PZnTPPF16-EDA, were synthesized by the nucleophilic aromatic substitution of 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin and its Zn(II) complex with ethylenediamine, respectively. In these structures, the tetrapyrrolic macrocycles were N,N'-ethylene crosslinked, which gives them greater mobility. The absorption spectra of the polymers showed a bathochromic shift of the Soret band of ~10 nm with respect to the monomers. This effect was also found in the red fluorescence emission peaks. Furthermore, both polymeric materials produced singlet molecular oxygen with high quantum yields. In addition, they were capable of generating superoxide anion radicals. Photodynamic inactivation sensitized by these polymers was tested in Staphylococcus aureus and Escherichia coli bacteria. A decrease in cell viability greater than 7 log (99.9999%) was observed in S. aureus incubated with 0.5 μM photosensitizer upon 30 min of irradiation. Under these conditions, a low inactivation of E. coli (0.5 log) was found. However, when the cells were treated with KI, the elimination of the Gram-negative bacteria was achieved. Therefore, these polymeric structures are interesting antimicrobial photosensitizing materials for the inactivation of pathogens.
Collapse
|
39
|
Wang Y, Ren M, Li Y, Liu F, Wang Y, Wang Z, Feng L. Bioactive AIEgens Tailored for Specific and Sensitive Theranostics of Gram-Positive Bacterial Infection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46340-46350. [PMID: 36194189 DOI: 10.1021/acsami.2c14550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Diseases caused by bacterial infections are increasingly threatening human health. As a major part of the microbial family, Gram-positive bacteria induce severe infections in hospitals and communities. Therefore, developing antibacterial materials that can recognize bacteria and specifically kill them is significant to cope with fatal bacterial infection. To this end, we designed and prepared a series of positively charged photosensitizers with an aggregation-induced emission feature and a type I reactive oxygen species (ROS) generation ability. Based on a molecular engineering strategy, the PS abbreviated to MTTTPy that owns a superior ROS generation ability and red emission in aggregation is obtained by adjusting bridging groups. Due to the unique molecular structure, MTTTPy can sensitively and specifically recognize and light up Gram-positive bacteria through electrostatic adsorption and void permeability. In addition, it can kill 95% of the recognized bacteria at a low concentration of 0.5 μM by generating oxygen-independent ROS under white light irradiation. Both in vitro and in vivo studies verify the sensitive and specific recognition and killing effect of MTTTPy toward Gram-positive bacteria. This work provides superior material-integrated diagnosis and treatment for Gram-positive bacteria-caused infectious diseases and shows potential for addressing bacterial resistance.
Collapse
Affiliation(s)
- Yunxia Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Min Ren
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Ying Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Zhijun Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, P.R. China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| |
Collapse
|
40
|
Ponzio RA, Ibarra LE, Achilli EE, Odella E, Chesta CA, Martínez SR, Palacios RE. Sweet light o' mine: Photothermal and photodynamic inactivation of tenacious pathogens using conjugated polymers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112510. [PMID: 36049287 DOI: 10.1016/j.jphotobiol.2022.112510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/20/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Each year a rising number of infections can not be successfully treated owing to the increasing pandemic of antibiotic resistant pathogens. The global shortage of innovative antibiotics fuels the emergence and spread of drug resistant microbes. Basic research, development, and applications of alternative therapies are urgently needed. Since the 90´s, light-mediated therapies have promised to be the next frontier combating multidrug-resistance microbes. These platforms have demonstrated to be a reliable, rapid, and efficient alternative to eliminate tenacious pathogens while avoiding the emergence of resistance mechanisms. Among the materials showing antimicrobial activity triggered by light, conjugated polymers (CPs) have risen as the most promising option to tackle this complex situation. These materials present outstanding characteristics such as high absorption coefficients, great photostability, easy processability, low cytotoxicity, among others, turning them into a powerful class of photosensitizer (PS)/photothermal agent (PTA) materials. Herein, we summarize and discuss the advances in the field of CPs with applications in photodynamic inactivation and photothermal therapy towards bacteria elimination. Additionally, a section of current challenges and needs in terms of well-defined benchmark experiments and conditions to evaluate the efficiency of phototherapies is presented.
Collapse
Affiliation(s)
- Rodrigo A Ponzio
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Física, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Luis E Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), UNRC y CONICET, Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Estefanía E Achilli
- Laboratorio de Materiales Biotecnológicos (LaMaBio), Universidad Nacional de Quilmes-IMBICE (CONICET), Bernal B1876BXD, Argentina
| | - Emmanuel Odella
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Carlos A Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Sol R Martínez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Rodrigo E Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| |
Collapse
|
41
|
Sen P, Sindelo A, Nnaji N, Mack J, Nyokong T. Diiodinated Mono‐ and Dipyridylvinyl
BODIPY
dyes: Photophysicochemical Properties,
in Vitro
Antibacterial Studies, Molecular Docking and Theoretical Calculations. Photochem Photobiol 2022; 99:947-956. [DOI: 10.1111/php.13698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Pinar Sen
- Institute for Nanotechnology Innovation, Department of Chemistry Rhodes University PO Box 94, Makhanda 6140 South Africa
| | - Azole Sindelo
- Institute for Nanotechnology Innovation, Department of Chemistry Rhodes University PO Box 94, Makhanda 6140 South Africa
| | - Nnaemeka Nnaji
- Institute for Nanotechnology Innovation, Department of Chemistry Rhodes University PO Box 94, Makhanda 6140 South Africa
| | - John Mack
- Institute for Nanotechnology Innovation, Department of Chemistry Rhodes University PO Box 94, Makhanda 6140 South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry Rhodes University PO Box 94, Makhanda 6140 South Africa
| |
Collapse
|
42
|
Sheng L, Li X, Wang L. Photodynamic inactivation in food systems: A review of its application, mechanisms, and future perspective. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
43
|
Polmickaitė-Smirnova E, Buchovec I, Bagdonas S, Sužiedėlienė E, Ramanavičius A, Anusevičius Ž. Photoinactivation of Salmonella enterica exposed to 5-aminolevulinic acid: Impact of sensitization conditions and irradiation time. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 231:112446. [PMID: 35487120 DOI: 10.1016/j.jphotobiol.2022.112446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The photodynamic inactivation (PDI) represents the potential alternative to traditional antibiotic therapy, and can be applied to treat various bacterial infections, including those caused by Gram-negative bacterial strains. One of the treatment modalities is based on the capacity of bacterial cells to synthesize the excess amounts of porphyrins after exposure to an externally applied 5-aminolevulinic acid (5-ALA), which makes them photosensitive and leads to reduced survival after irradiation with an appropriately selected light source. This study focuses on the sensitization and the photoinduced inactivation of Salmonella enterica cells in PBS containing 0.5 mM 5-ALA, incubated at 37 °C for 4 h or for 20 h and afterwards irradiated with violet LED light (11.1 mW/cm2, a peak at 400 nm). It has been found that both amounts and composition of endogenous porphyrins not only depended on the incubation duration, but also were affected by externally induced photo- and chemo-oxidation reactions. The application of different sensitization conditions has revealed that the increasing amounts of endogenously produced porphyrins do not ensure the proportional reduction of bacterial cell survival numbers. The comparative investigations also demonstrated that the presence of endogenously produced porphyrins in the medium results in secondary sensitization of bacterial cells and causes a notably stronger photoinactivation effect in comparison to their externally applied standards.
Collapse
Affiliation(s)
- Evelina Polmickaitė-Smirnova
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Irina Buchovec
- Institute of Photonics and Nanotechnology, Faculty of Physics, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
| | - Saulius Bagdonas
- Laser Research Center, Faculty of Physics, Vilnius University, Saulėtekio av. 9, LT-10222 Vilnius, Lithuania
| | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Arūnas Ramanavičius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| | - Žilvinas Anusevičius
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
44
|
The Enhancement of Antimicrobial Photodynamic Therapy of Escherichia Coli by a Functionalized Combination of Photosensitizers: In Vitro Examination of Single Cells by Quantitative Phase Imaging. Int J Mol Sci 2022; 23:ijms23116137. [PMID: 35682814 PMCID: PMC9181539 DOI: 10.3390/ijms23116137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/16/2022] Open
Abstract
The prevention of biofilm formation is crucial for the limitation of bacterial infections typically associated with postoperative infections, complications in bedridden patients, and a short-term prognosis in affected cancer patients or mechanically ventilated patients. Antimicrobial photodynamic therapy (aPDT) emerges as a promising alternative for the prevention of infections due to the inability of bacteria to become resistant to aPDT inactivation processes. The aim of this study was to demonstrate the use of a functionalized combination of Chlorin e6 and Pheophorbide as a new approach to more effective aPDT by increasing the accumulation of photosensitizers (PSs) within Escherichia coli cells. The accumulation of PSs and changes in the dry mass density of single-cell bacteria before and after aPDT treatment were investigated by digital holotomography (DHT) using the refractive index as an imaging contrast for 3D label-free live bacteria cell imaging. The results confirmed that DHT can be used in complex examination of the cell–photosensitizer interaction and characterization of the efficiency of aPDT. Furthermore, the use of Pheophorbide a as an efflux pomp inhibitor in combination with Chlorin e6 increases photosensitizers accumulation within E. coli and overcomes the limited penetration of Gram-negative cells by anionic and neutral photosensitizers.
Collapse
|
45
|
Gan N, Qin W, Zhang C, Jiao T. One-step in situ deposition of phytic acid-metal coordination complexes for combined Porphyromonas gingivalis infection prevention and osteogenic induction. J Mater Chem B 2022; 10:4293-4305. [PMID: 35535980 DOI: 10.1039/d2tb00446a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Postoperative infection and poor osteogenesis will cause the failure of dental implant surgery. Thus, the antibacterial and osteogenic activities are the core requirements for the surface modification of dental implants. Inspired by the strong chelating ability of naturally occurring phytic acid (PA), an in situ deposition method on the surface of titanium implants was developed based on the metal-phosphate coordination networks. Biologically relevant metal cations (i.e. ferric ions and divalent copper ions) were selected as metal constituents for the construction of organic-inorganic coordination network films. The stability of PA-metal coordination bonds is rationally explained by the chemical nature of transition metal elements. This PA-metal coordination complex coating exhibited an excellent antibacterial activity against Porphyromonas gingivalis, reducing the bacterial implant colonization by > 3.92 log10. The abundant phosphate groups greatly increased the surface hydrophilicity, promoted the early adhesion of proteins, improved the proliferation of bone marrow mesenchymal stem cells, and finally achieved an enhanced osteogenic activity. In addition, the phosphate groups of PA also facilitated the deposition of hydroxyapatite by providing reaction sites to chelate with calcium ions. These findings evaluate the anti-bacterial and osteogenic potentials of PA-metal coordination complexes, and clarify the feasibility for surface modification of dental implants.
Collapse
Affiliation(s)
- Ning Gan
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and, Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Wei Qin
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and, Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Chunlei Zhang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Ting Jiao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and, Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
46
|
Kustov AV, Berezin DB, Kruchin SO, Batov DV. Interaction of Macrocyclic Dicationic Photosensitizers with Tween 80. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Yu Y, Zhao Y, He Y, Pang J, Yang Z, Zheng M, Yin R. Inhibition of efflux pump encoding genes and biofilm formation by sub-lethal photodynamic therapy in methicillin susceptible and resistant Staphylococcus aureus. Photodiagnosis Photodyn Ther 2022; 39:102900. [PMID: 35525433 DOI: 10.1016/j.pdpdt.2022.102900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is an effective method to inactivate microorganisms based on reactive oxygen species (ROS) generated by photosensitizer and light at certain wavelength. Exposure to sub-lethal dose of PDT (sPDT) could activate the regulatory systems in the surviving bacteria in response to oxidative stress. This study aimed to evaluate the effect of sPDT on efflux pump and biofilm formation in Staphylococcus aureus (S. aureus), which are two important virulence related factors. METHODS Different light irradiation time and toluidine blue O (TBO) concentrations were tested to select a sPDT in methicillin-susceptible and methicillin-resistant S. aureus (MSSA and MRSA). Efflux function was evaluated with EtBr efflux experiment. Biofilm formation was evaluated by crystal violet staining. Gene expressions of norA, norB, sepA, mepA and mdeA following sPDT were analyzed with real-time PCR. RESULTS Sub-lethal PDT was set at 40 J/cm2 associated with 0.5 μM TBO. Efflux function was significantly inhibited in both strains. The average expression levels of mdeA and mepA in MSSA and MRSA were increased by (3.09, 1.77, 1.57) and (3,44, 1.59, 6.29) fold change respectively, norB and sepA were decreased by (3.77, 6.14) and (3.02, 3.47) fold change respectively. Expression level of norA was decreased by 5.44-fold change in MSSA but increased by 2.80-fold change in MRSA. Biofilm formation in both strains was impeded. CONCLUSIONS TBO-mediated sPDT could inhibit efflux pump function, alter efflux pump encoding gene expression levels and retard biofilm formation in MSSA and MRSA. Therefore, sPDT is proposed as a potential adjuvant therapy for infections.
Collapse
Affiliation(s)
- Yanlan Yu
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Yan Zhao
- Department of Microbiology,Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Yaxiong He
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Jiayin Pang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Zengjun Yang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Mengxue Zheng
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Rui Yin
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| |
Collapse
|
48
|
Wu X, Abbas K, Yang Y, Li Z, Tedesco AC, Bi H. Photodynamic Anti-Bacteria by Carbon Dots and Their Nano-Composites. Pharmaceuticals (Basel) 2022; 15:487. [PMID: 35455484 PMCID: PMC9032997 DOI: 10.3390/ph15040487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
The misuse of many types of broad-spectrum antibiotics leads to increased antimicrobial resistance. As a result, the development of a novel antibacterial agent is essential. Photodynamic antimicrobial chemotherapy (PACT) is becoming more popular due to its advantages in eliminating drug-resistant strains and providing broad-spectrum antibacterial resistance. Carbon dots (CDs), zero-dimensional nanomaterials with diameters smaller than 10 nm, offer a green and cost-effective alternative to PACT photosensitizers. This article reviewed the synthesis methods of antibacterial CDs as well as the recent progress of CDs and their nanocomposites in photodynamic sterilization, focusing on maximizing the bactericidal impact of CDs photosensitizers. This review establishes the base for future CDs development in the PACT field.
Collapse
Affiliation(s)
- Xiaoyan Wu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (X.W.); (K.A.); (Y.Y.); (A.C.T.)
| | - Khurram Abbas
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (X.W.); (K.A.); (Y.Y.); (A.C.T.)
| | - Yuxiang Yang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (X.W.); (K.A.); (Y.Y.); (A.C.T.)
| | - Zijian Li
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China;
| | - Antonio Claudio Tedesco
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (X.W.); (K.A.); (Y.Y.); (A.C.T.)
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Hong Bi
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (X.W.); (K.A.); (Y.Y.); (A.C.T.)
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China;
| |
Collapse
|
49
|
Michalska K, Rychłowski M, Krupińska M, Szewczyk G, Sarna T, Nakonieczna J. Gallium Mesoporphyrin IX-Mediated Photodestruction: A Pharmacological Trojan Horse Strategy To Eliminate Multidrug-Resistant Staphylococcus aureus. Mol Pharm 2022; 19:1434-1448. [PMID: 35416046 PMCID: PMC9066410 DOI: 10.1021/acs.molpharmaceut.1c00993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
One of the factors
determining efficient antimicrobial photodynamic
inactivation (aPDI) is the accumulation of a light-activated compound,
namely, a photosensitizer (PS). Targeted PS recognition is the approach
based on the interaction between the membrane receptor on the bacterial
surface and the PS, whereas the compound is efficiently accumulated
by the same mechanism as the natural ligand. In this study, we showed
that gallium mesoporphyrin IX (Ga3+MPIX) provided dual
functionality—iron metabolism disruption and PS properties
in aPDI. Ga3+MPIX induced efficient (>5log10 reduction in CFU/mL) bacterial photodestruction with excitation
in the area of Q band absorption with relatively low eukaryotic cytotoxicity
and phototoxicity. The Ga3+MPIX is recognized by the same
systems as haem by the iron-regulated surface determinant (Isd). However,
the impairment in the ATPase of the haem detoxification efflux pump
was the most sensitive to the Ga3+MPIX-mediated aPDI phenotype.
This indicates that changes within the metalloporphyrin structure
(vinyl vs ethyl groups) did not significantly alter the properties
of recognition of the compound but influenced its biophysical properties.
Collapse
Affiliation(s)
- Klaudia Michalska
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| | - Martyna Krupińska
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| | - Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Joanna Nakonieczna
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| |
Collapse
|
50
|
Yaqoob MD, Xu L, Li C, Leong MML, Xu DD. Targeting Mitochondria for Cancer Photodynamic Therapy. Photodiagnosis Photodyn Ther 2022; 38:102830. [PMID: 35341979 DOI: 10.1016/j.pdpdt.2022.102830] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 12/18/2022]
Abstract
Cancer remains a health-related concern globally from the ancient times till to date. The application of light to be used as therapeutic potential/agent has been used for several thousands of years. Photodynamic therapy (PDT) is a modern, non-invasive therapeutic modality for the treatment of various infections by bacteria, fungi, and viruses. Mitochondria are subcellular, double-membrane organelles that have the role in cancer and anticancer therapy. Mitochondria play a key role in regulation of apoptosis and these organelles produce most of the cell's energy which enhance its targeting objective. The role of mitochondria in anticancer approach is achieved by targeting its metabolism (glycolysis and TCA cycle) and apoptotic and ROS homeostasis. The role of mitochondria-targeted cancer therapies in photodynamic therapy have proven to be more effective than other similar non-targeting techniques. Particularly in PDT, mitochondria-targeting sensitizers are important as they have a crucial role in overcoming the hypoxia factor, resulting in high efficacy. IR-730 and IR-Pyr are the indocyine derivatives photosensitizers that play a crucial role in targeting mitochondria because of their better photostability during laser irradiation. Clinical and pre-clinical trials are going on this approach to target different solid tumors using mitochondrial targeted photodynamic therapy.
Collapse
Affiliation(s)
- Muhammad Danish Yaqoob
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China; Binzhou Medical University, Yantai, Shandong Province, PR China
| | - Long Xu
- Department of Radiology, Central Hospital of Dongying District, Dongying, Shandong, PR China
| | - Chuanfeng Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Merrin Man Long Leong
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Microbiology, Harvard Medical School, Harvard University, Boston, MA, United States.
| | - Dan Dan Xu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| |
Collapse
|