1
|
Kazi AA, Manjuladevi N, Kumar SS, Sharma A, Singh LR. A quick access to CF 3-containing functionalized benzofuranyl, benzothiophene and indolyl heterocycles under catalyst-free conditions. Chem Commun (Camb) 2024; 60:9376-9379. [PMID: 39129527 DOI: 10.1039/d4cc02395a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A catalyst-free one-pot synthetic protocol is presented for the preparation of CF3-containing benzofuran, indolin, and benzothiophene derivatives using readily available aromatic aldehydes and ketones. 2-Bromo-3,3,3-trifluoropropene was employed as a non-corrosive and environmentally benign trifluoromethylacetylene synthon for incorporation of the CF3 group. The reaction proceeds via the formation of a suitably substituted 4,4,4-trifluoro-1-phenylbut-2-yn-1-ol intermediate, which undergoes 5-exo-dig cyclization, resulting in an exocyclic double bond with Z-configuration. The synthetic utility, substrate scope, tolerance to broader substrates are also presented.
Collapse
Affiliation(s)
- Ayazoddin Aunoddin Kazi
- Fluoro-Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India.
- Chemical Sciences Division, Academy of Scientific and Innovative Research, Ghaziabad-201 002, India
| | - Nadimpalli Manjuladevi
- Fluoro-Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India.
| | - Salla Suresh Kumar
- Fluoro-Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India.
- Chemical Sciences Division, Academy of Scientific and Innovative Research, Ghaziabad-201 002, India
| | - Anamika Sharma
- Chemical Sciences Division, Academy of Scientific and Innovative Research, Ghaziabad-201 002, India
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India.
| | - L Ravithej Singh
- Fluoro-Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India.
- Chemical Sciences Division, Academy of Scientific and Innovative Research, Ghaziabad-201 002, India
| |
Collapse
|
2
|
Li Z, Li S, Qian G, Ke Z, Chen Z. Copper-Catalyzed Synthesis of Difluoromethylated/C-4- and C-5-Functionalized Polycyclic Coumarin Derivatives. J Org Chem 2024; 89:8084-8098. [PMID: 38810000 DOI: 10.1021/acs.joc.4c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A facile and novel synthetic method for the synthesis of functionalized polycyclic coumarins at the C-4 and C-5 positions is proposed for the first time, which employs copper-catalyzed addition reactions of undiscovered alkenes with difluoromethyl radicals to construct polycyclic coumarins. This strategy is characterized by high regioselectivity, easy availability of raw materials, and simple operation. Additionally, such undiscovered coumarin alkenes can be reacted with a variety of difluoromethyl precursors to obtain a wide range of valuable C-4 and C-5 position functionalized/difluoromethylated polycyclic coumarins. More importantly, some of the products showed significant inhibition of proliferation in vitro against melanoma B16-F10 and lung cancer A549 cell lines with optimal IC50 values of 8.57 and 16.04 μM, respectively.
Collapse
Affiliation(s)
- Ziwei Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shuo Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Guosong Qian
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhiwei Ke
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhiwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
3
|
Pormohammad A, Moradi M, Hommes JW, Pujol E, Naesens L, Vázquez S, Surewaard BGJ, Zarei M, Vazquez-Carrera M, Turner RJ. Novel pentafluorosulfanyl-containing triclocarban analogs selectively kill Gram-positive bacteria. Microbiol Spectr 2024; 12:e0007124. [PMID: 38700321 PMCID: PMC11237694 DOI: 10.1128/spectrum.00071-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
Novel antimicrobial agents are needed to combat antimicrobial resistance. This study tested novel pentafluorosulfanyl-containing triclocarban analogs for their potential antibacterial efficacy. Standard procedures were used to produce pentafluorosulfanyl-containing triclocarban analogs. Twenty new compounds were tested against seven Gram-positive and Gram-negative indicator strains as well as 10 clinical isolates for their antibacterial and antibiofilm activity. Mechanistic investigations focused on damage to cell membrane, oxidizing reduced thiols, iron-sulfur clusters, and oxidative stress to explain the compounds' activity. Safety profiles were assessed using cytotoxicity experiments in eukaryotic cell lines. Following screening, selected components had significantly better antibacterial and antibiofilm activity against Gram-positive bacteria in lower concentrations in comparison to ciprofloxacin and gentamycin. For instance, one compound had a minimum inhibitory concentration of <0.0003 mM, but ciprofloxacin had 0.08 mM. Mechanistic studies show that these novel compounds do not affect reduced thiol content, iron-sulfur clusters, or hydrogen peroxide pathways. Their impact comes from Gram-positive bacterial cell membrane damage. Tests on cell culture toxicity and host component safety showed promise. Novel diarylurea compounds show promise as Gram-positive antimicrobials. These compounds offer prospects for study and optimization. IMPORTANCE The rise of antibiotic resistance among bacterial pathogens poses a significant threat to global health, underscoring the urgent need for novel antimicrobial agents. This study presents research on a promising class of novel compounds with potent antibacterial properties against Gram-positive bacteria, notably Staphylococcus aureus and MRSA. What sets these novel analogs apart is their superior efficacy at substantially lower concentrations compared with commonly used antibiotics like ciprofloxacin and gentamycin. Importantly, these compounds act by disrupting the bacterial cell membrane, offering a unique mechanism that could potentially circumvent existing resistance mechanisms. Preliminary safety assessments also highlight their potential for therapeutic use. This study not only opens new avenues for combating antibiotic-resistant infections but also underscores the importance of innovative chemical approaches in addressing the global antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Ali Pormohammad
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- MHCombiotic Inc., Calgary, Alberta, Canada
| | - Melika Moradi
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Josefien W. Hommes
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eugènia Pujol
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Bas G. J. Surewaard
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mohammad Zarei
- Renal Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Manuel Vazquez-Carrera
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- Pharmacology Unit, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Huang M, Zhang C. Fluorotrifluoromethylation of Alkenes Mediated by a Hypervalent Trifluoromethyl-Iodine(III) Reagent. Org Lett 2024; 26:4158-4162. [PMID: 38695913 DOI: 10.1021/acs.orglett.4c01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Herein, we present a novel strategy for synthesizing polyfluorinated compounds by the fluorotrifluoromethylation of olefins, which was achieved through a new trifluoromethyl-iodine(III) reagent TFNI-1. TFNI-1 was readily synthesized via a three-step process, and its structure was characterized by NMR spectroscopy and X-ray crystallography. It is shown by radical trapping and radical clock experiments that the reaction involves the CF3 radical intermediate.
Collapse
Affiliation(s)
- Mingqin Huang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Chi Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
5
|
Umadevan I, Rajasekaran R, Anto Bennet M, Rajmohan V, Vetrivelan V, Sankar K, Raja M. Synthesis, spectroscopic, chemical reactivity, topology analysis and molecular docking study of ethyl 5-hydroxy-2-thioxo-4-(p-tolyl)-6-(trifluoromethyl)hexahydropyrimidine-5-carboxylate. Heliyon 2024; 10:e24588. [PMID: 38322968 PMCID: PMC10844023 DOI: 10.1016/j.heliyon.2024.e24588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
The organofluorine hexahydropyrimidine derivatives are used in the drug discovery due to its steric nature to hydrogen and its extreme electronegativity. The Ethyl 5-hydroxy-2-thioxo-4-(p-tolyl)-6-(trifluoromethyl)hexahydropyrimidine-5-carboxylate (ETP5C) compound was synthesized and characterized by NMR (13C and 1H), FT-IR and UV-Vis spectroscopic techniques for experimentally and theoretically and elemental analyses, mass spectra also investigated. The most stable structure of synthesized molecule was studied by PES analysis in gas and liquid medium. The structural parameters such as bond length and bond angle of the title molecule have been obtained by DFT/B3LYP/6-311++G (d,p) set and compared with the structurally related experimental data of the compounds. The π-to-π* transition of the ETP5C molecule is identified using UV-Vis absorption spectral analysis. In addition, the chemical stability and reactivity are investigated using HOMO-LUMO analysis. The minimal HOMO-LUMO energy gap (4.6255 eV) clearly explains that the ETP5C molecule is more reactive for receptors. The nucleophilic and electrophilic regions such as active sites have been shown by MEP, ELF, LOL and Fukui functions. The second order optical effect has been explained by NLO analysis. The docking was performed with antineoplastic proteins that exhibit against the development of tumor cells.
Collapse
Affiliation(s)
- I. Umadevan
- Research and Development Centre, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - R. Rajasekaran
- Research and Development Centre, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
- Department of Physics, Thiru Kolanjiappar Govt. Arts College, Virdhachalam, 606001, Tamilnadu, India
| | - M. Anto Bennet
- Department of Electronics and Communications Engineering, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Chennai, 600062, Tamilnadu, India
| | - V. Rajmohan
- Department of Electronics and Communications Engineering, Saveetha School of Engineering(SIMATS), Thandalam, Chennai, 602105, Tamilnadu, India
| | - V. Vetrivelan
- Department of Physics, Government College of Engineering, Srirangam, Tiruchirappalli 620012, Tamilnadu, India
| | - K. Sankar
- Research and Development Centre, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - M. Raja
- Department of Physics, Govt. Thirumagal Mills College, Gudiyattam, 632602, Vellore, Tamilnadu, India
| |
Collapse
|
6
|
Gallego-Gamo A, Granados A, Pleixats R, Gimbert-Suriñach C, Vallribera A. Difluoroalkylation of Anilines via Photoinduced Methods. J Org Chem 2023; 88:12585-12596. [PMID: 37585266 PMCID: PMC10476199 DOI: 10.1021/acs.joc.3c01298] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 08/18/2023]
Abstract
The development of sustainable and mild protocols for the fluoroalkylation of organic backbones is of current interest in chemical organic synthesis. Herein, we present operationally simple and practical transition-metal-free methods for the preparation of difluoroalkyl anilines. First, a visible-light organophotocatalytic system working via oxidative quenching is described, providing access to a wide range of difluoroalkyl anilines under mild conditions. In addition, the formation of an unprecedented electron donor-acceptor (EDA) complex between anilines and ethyl difluoroiodoacetate is reported and exploited as an alternative, efficient, and straightforward strategy to prepare difluoroalkyl derivatives.
Collapse
Affiliation(s)
- Albert Gallego-Gamo
- Department of Chemistry and
Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Albert Granados
- Department of Chemistry and
Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Roser Pleixats
- Department of Chemistry and
Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Carolina Gimbert-Suriñach
- Department of Chemistry and
Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Adelina Vallribera
- Department of Chemistry and
Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| |
Collapse
|
7
|
Feng Z, Riemann L, Guo Z, Herrero D, Simon M, Golz C, Mata RA, Alcarazo M. Pentafluorocyclopropanation of (Hetero)arenes Using Sulfonium Salts: Applications in Late-Stage Functionalization. Angew Chem Int Ed Engl 2023; 62:e202306764. [PMID: 37402213 DOI: 10.1002/anie.202306764] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
The evaluation of the pentafluorocyclopropyl group as a chemotype in crop protection and medicinal chemistry has been hampered in the past by the lack of suitable methodologies that enable the practical incorporation of this moiety into advanced synthetic intermediates. Herein, we report the gram-scale synthesis of an unprecedented sulfonium salt, 5-(pentafluorocyclopropyl)dibenzothiophenium triflate, and its use as a versatile reagent for the photoinduced C-H pentafluorocyclopropylation of a broad series of non-previously functionalized (hetero)arenes through a radical mediated mechanism. The scope and potential benefits of the protocol developed are further demonstrated by the late-stage introduction of the pentafluorocyclopropyl unit into biologically relevant molecules and widely used pharmaceuticals.
Collapse
Affiliation(s)
- Zeyu Feng
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Lucas Riemann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Zichen Guo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - David Herrero
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Martin Simon
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Ricardo A Mata
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstr 6, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| |
Collapse
|
8
|
Castro TG, Melle-Franco M, Sousa CEA, Cavaco-Paulo A, Marcos JC. Non-Canonical Amino Acids as Building Blocks for Peptidomimetics: Structure, Function, and Applications. Biomolecules 2023; 13:981. [PMID: 37371561 PMCID: PMC10296201 DOI: 10.3390/biom13060981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
This review provides a fresh overview of non-canonical amino acids and their applications in the design of peptidomimetics. Non-canonical amino acids appear widely distributed in nature and are known to enhance the stability of specific secondary structures and/or biological function. Contrary to the ubiquitous DNA-encoded amino acids, the structure and function of these residues are not fully understood. Here, results from experimental and molecular modelling approaches are gathered to classify several classes of non-canonical amino acids according to their ability to induce specific secondary structures yielding different biological functions and improved stability. Regarding side-chain modifications, symmetrical and asymmetrical α,α-dialkyl glycines, Cα to Cα cyclized amino acids, proline analogues, β-substituted amino acids, and α,β-dehydro amino acids are some of the non-canonical representatives addressed. Backbone modifications were also examined, especially those that result in retro-inverso peptidomimetics and depsipeptides. All this knowledge has an important application in the field of peptidomimetics, which is in continuous progress and promises to deliver new biologically active molecules and new materials in the near future.
Collapse
Affiliation(s)
- Tarsila G. Castro
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (T.G.C.); (A.C.-P.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuel Melle-Franco
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Cristina E. A. Sousa
- BioMark Sensor Research—School of Engineering of the Polytechnic Institute of Porto, 4249-015 Porto, Portugal;
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (T.G.C.); (A.C.-P.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - João C. Marcos
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
9
|
Li J, Wang Z, Zeng G, Zhang Z, Wan J, Fu M, Huang C. Cu(II)-Catalyzed Cascade of N-Phenyl- o-phenylenediamine with Benzaldehyde: One-Step Direct Construction of 2-(1-Phenyl-1 H-benzo[ d]imidazol-2-yl)phenols. J Org Chem 2023. [PMID: 37262308 DOI: 10.1021/acs.joc.3c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A practical protocol for the construction of hydroxylated 2-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenols (PBIs) from N-phenyl-o-phenylenediamine with benzaldehydes was developed. The cascade reaction was enabled by heating a mixture of the two substrates in the presence of air as an oxidant and anhydrous Cu(OAc)2 as a catalyst in dimethyl sulfoxide, and a diverse series of PBIs were synthesized in moderate to good yields (69-81%). Furthermore, the synthesis of the PBIs was enabled via a one-pot cascade reaction that proceeded through subsequent dehydration condensation, intramolecular cyclization, and aromatic C-H hydroxylation. This protocol can be used for the synthesis of hydroxylated PBI via a one-pot annulation C-H hydroxylation reaction rather than through a series of multistep reactions, which provides the possibility of further modification.
Collapse
Affiliation(s)
- Jingpeng Li
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Zhuoyu Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Guiyun Zeng
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Zhou Zhang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Juan Wan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Meitian Fu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Chao Huang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| |
Collapse
|
10
|
Pankov RO, Prima DO, Kostyukovich AY, Minyaev ME, Ananikov VP. Synthesis and a combined experimental/theoretical structural study of a comprehensive set of Pd/NHC complexes with o-, m-, and p-halogen-substituted aryl groups (X = F, Cl, Br, CF 3). Dalton Trans 2023; 52:4122-4135. [PMID: 36883531 DOI: 10.1039/d2dt03665g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Pd/NHC complexes (NHCs - N-heterocyclic carbenes) with electron-withdrawing halogen groups were prepared by developing an optimized synthetic procedure to access imidazolium salts and the corresponding metal complexes. Structural X-ray analysis and computational studies have been carried out to evaluate the effect of halogen and CF3 substituents on the Pd-NHC bond and have provided insight into the possible electronic effects on the molecular structure. The introduction of electron-withdrawing substituents changes the ratio of σ-/π-contributions to the Pd-NHC bond but does not affect the Pd-NHC bond energy. Here, we report the first optimized synthetic approach to access a comprehensive range of o-, m-, and p-XC6H4-substituted NHC ligands, including incorporation into Pd complexes (X = F, Cl, Br, CF3). The catalytic activity of the obtained Pd/NHC complexes was compared in the Mizoroki-Heck reaction. For substitution with halogen atoms, the following relative trend was observed: X = Br > F > Cl, and for all halogen atoms, the catalytic activity changed in the following order: m-X, p-X > o-X. Evaluation of the relative catalytic activity showed a significant increase in the catalyst performance in the case of Br and CF3 substituents compared to the unsubstituted Pd/NHC complex.
Collapse
Affiliation(s)
- Roman O Pankov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Darya O Prima
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Alexander Yu Kostyukovich
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Mikhail E Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| |
Collapse
|
11
|
Fotooh Abadi L, Kumar P, Paknikar K, Gajbhiye V, Kulkarni S. Tenofovir-tethered gold nanoparticles as a novel multifunctional long-acting anti-HIV therapy to overcome deficient drug delivery-: an in vivo proof of concept. J Nanobiotechnology 2023; 21:19. [PMID: 36658575 PMCID: PMC9850711 DOI: 10.1186/s12951-022-01750-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The adoption of Antiretroviral Therapy (ART) substantially extends the life expectancy and quality of HIV-infected patients. Yet, eliminating the latent reservoirs of HIV to achieve a cure remains an unmet need. The advent of nanomedicine has revolutionized the treatment of HIV/AIDS. The present study explores a unique combination of Tenofovir (TNF) with gold nanoparticles (AuNPs) as a potential therapeutic approach to overcome several limitations of the current ART. RESULTS TNF-tethered AuNPs were successfully synthesized. Cell viability, genotoxicity, haemolysis, and histopathological studies confirmed the complete safety of the preparation. Most importantly, its anti-HIV1 reverse transcriptase activity was ~ 15 folds higher than the native TNF. In addition, it exhibited potent anti-HIV1 protease activity, a much sought-after target in anti-HIV1 therapeutics. Finally, the in vivo biodistribution studies validated that the AuNPs could reach many tissues/organs, serving as a secure nest for HIV and overcoming the problem of deficient drug delivery to HIV reservoirs. CONCLUSIONS We show that the combination of TNF and AuNPs exhibits multifunctional activity, viz. anti-HIV1 and anti-HIV1 protease. These findings are being reported for the first time and highlight the prospects of developing AuNP-TNF as a novel next-generation platform to treat HIV/AIDS.
Collapse
Affiliation(s)
- Leila Fotooh Abadi
- grid.419119.50000 0004 1803 003XDivision of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, 411 026 India
| | - Pramod Kumar
- grid.417727.00000 0001 0730 5817Nanobioscience Group, Agharkar Research Institute, Pune, 411 004 India
| | - Kishore Paknikar
- grid.417727.00000 0001 0730 5817Nanobioscience Group, Agharkar Research Institute, Pune, 411 004 India ,grid.417971.d0000 0001 2198 7527Department of Chemistry, Indian Institute of Technology, Mumbai, 400 076 India
| | - Virendra Gajbhiye
- grid.417727.00000 0001 0730 5817Nanobioscience Group, Agharkar Research Institute, Pune, 411 004 India
| | - Smita Kulkarni
- grid.419119.50000 0004 1803 003XDivision of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, 411 026 India
| |
Collapse
|
12
|
Versatile Fluorine-Containing Building Blocks: β-CF 3-1,3-enynes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249020. [PMID: 36558151 PMCID: PMC9786819 DOI: 10.3390/molecules27249020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The development of diversity-oriented synthesis based on fluorine-containing building blocks has been one of the hot research fields in fluorine chemistry. β-CF3-1,3-enynes, as one type of fluorine-containing building blocks, have attracted more attention in the last few years due to their distinct reactivity. Numerous value-added trifluoromethylated or non-fluorinated compounds which have biologically relevant structural motifs, such as O-, N-, and S-heterocycles, carboncycles, fused polycycles, and multifunctionalized allenes were synthesized from these fluorine-containing building blocks. This review summarizes the most significant developments in the area of synthesis of organofluorine compounds based on β-CF3-1,3-enynes, providing a detailed overview of the current state of the art.
Collapse
|
13
|
Fang Z, Gong Y, Liu B, Zhang J, Han X, Liu Z, Ning Y. Rh-Catalyzed Coupling Reactions of Fluoroalkyl N-Sulfonylhydrazones with Azides Leading to α-Trifluoroethylated Imines. Org Lett 2022; 24:8920-8924. [DOI: 10.1021/acs.orglett.2c03773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhongxue Fang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu 224007, People’s Republic of China
| | - Yanmei Gong
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu 224007, People’s Republic of China
| | - Binbin Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jin Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xinyue Han
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zhaohong Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
14
|
Mu B, Gao Y, Yang F, Wu W, Zhang Y, Wang X, Yu J, Zhou J. The Bifunctional Silyl Reagent Me
2
(CH
2
Cl)SiCF
3
Enables Highly Enantioselective Ketone Trifluoromethylation and Related Tandem Processes. Angew Chem Int Ed Engl 2022; 61:e202208861. [DOI: 10.1002/anie.202208861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Bo‐Shuai Mu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Yang Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Fu‐Ming Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Wen‐Biao Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Ying Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Xin Wang
- College of Chemistry Sichuan University Chengdu 610064 China
| | - Jin‐Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry CAS Shanghai 200032 China
| |
Collapse
|
15
|
Mori S, Tsuemoto N, Kawachi E, Takubo C, Tanatani A, Kagechika H. Development of retinoic acid receptor antagonists bearing trans-SF4-alkynyl structure as a linear linker. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Zhang X, Liu G, Peng Y, li H, Zhou Y. Trifluoromethylated Indolopyranones through Regioselective Annulation of Indole Carboxylic Acids with Unsymmetric Internal Trifluoromethylated Alkynes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xingxing Zhang
- Huazhong University of Science and Technology Tongji Medical College School of Pharmacy CHINA
| | - Guangyuan Liu
- Huazhong University of Science and Technology Tongji Medical College School of Pharmacy CHINA
| | - Yiyuan Peng
- Jiangxi Normal University College of Chemistry and Chemical Engineering CHINA
| | - Hua li
- Huazhong University of Science and Technology Tongji Medical College School of Pharmacy CHINA
| | - Yirong Zhou
- Huazhong University of Science and Technology school of pharmacy No. 13 Hangkong Road 430030 wuhan CHINA
| |
Collapse
|
17
|
Mu BS, Gao Y, Yang FM, Wu WB, Zhang Y, Wang X, Yu JS, Zhou J. The Bifunctional Silyl Reagent Me2(CH2Cl)SiCF3 Enabled Highly Enantioselective Ketone Trifluoromethylation and Related Tandem Processes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bo-Shuai Mu
- East China Normal University Department of chemistry CHINA
| | - Yang Gao
- East China Normal University Department of chemistry CHINA
| | - Fu-Ming Yang
- East China Normal University Department of chemistry CHINA
| | - Wen-Biao Wu
- East China Normal University Department of chemistry CHINA
| | - Ying Zhang
- East China Normal University Department of chemistry CHINA
| | - Xin Wang
- Sichuan University College of Chemistry CHINA
| | - Jin-Sheng Yu
- East China Normal University Department of chemistry CHINA
| | - Jian Zhou
- East China Normal University Department of Chemistry 3663 N. Zhongshan Road, , 200062 Shanghai CHINA
| |
Collapse
|
18
|
Granados A, Dhungana RK, Sharique M, Majhi J, Molander GA. From Styrenes to Fluorinated Benzyl Bromides: A Photoinduced Difunctionalization via Atom Transfer Radical Addition. Org Lett 2022; 24:4750-4755. [PMID: 35766376 PMCID: PMC10412001 DOI: 10.1021/acs.orglett.2c01699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An operationally simple and practical method is disclosed to achieve the difunctionalization of styrenes, generating fluorinated benzyl bromides via a photoinduced atom transfer radical addition process. The developed method is mild, atom-economical, cost-effective, employs very low photocatalyst loading (1000 ppm), and is highly compatible with a broad range of functional groups on styrene. The versatility of the fluorinated benzyl bromides is demonstrated through their derivatization to a variety of valuable compounds.
Collapse
Affiliation(s)
| | | | | | - Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
19
|
GCase Enhancers: A Potential Therapeutic Option for Gaucher Disease and Other Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15070823. [PMID: 35890122 PMCID: PMC9325019 DOI: 10.3390/ph15070823] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/07/2022] Open
Abstract
Pharmaceutical chaperones (PCs) are small compounds able to bind and stabilize misfolded proteins, allowing them to recover their native folding and thus their biological activity. In particular, lysosomal storage disorders (LSDs), a class of metabolic disorders due to genetic mutations that result in misfolded lysosomal enzymes, can strongly benefit from the use of PCs able to facilitate their translocation to the lysosomes. This results in a recovery of their catalytic activity. No PC for the GCase enzyme (lysosomal acid-β-glucosidase, or glucocerebrosidase) has reached the market yet, despite the importance of this enzyme not only for Gaucher disease, the most common LSD, but also for neurological disorders, such as Parkinson’s disease. This review aims to describe the efforts made by the scientific community in the last 7 years (since 2015) in order to identify new PCs for the GCase enzyme, which have been mainly identified among glycomimetic-based compounds.
Collapse
|
20
|
Andrade‐Sampedro P, Matxain JM, Correa A. Ru‐Catalyzed C−H Hydroxylation of Tyrosine‐Containing Di‐ and Tripeptides toward the Assembly of L‐DOPA Derivatives. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Paula Andrade‐Sampedro
- University of the Basque Country (UPV/EHU) Department of Organic Chemistry I Joxe Mari Korta R&D Center, Avda. Tolosa 72 20018 Donostia-San Sebastián Spain
- Donostia International Physics Center (DIPC) Paseo Manuel de Lardizabal 4 20018 Donostia-San Sebastián Spain
| | - Jon M. Matxain
- Donostia International Physics Center (DIPC) Paseo Manuel de Lardizabal 4 20018 Donostia-San Sebastián Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila Kimika Fakultatea Euskal Herriko Unibertsitatea (UPV/EHU) Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Arkaitz Correa
- University of the Basque Country (UPV/EHU) Department of Organic Chemistry I Joxe Mari Korta R&D Center, Avda. Tolosa 72 20018 Donostia-San Sebastián Spain
| |
Collapse
|
21
|
Fang Z, Zhang Y, Wang H, Zanoni G, Li J, Li X, Liu Z, Ning Y. Straightforward access to fluoroalkyl tetrazoles from fluoroalkyl N-sulfonylhydrazones. Org Chem Front 2022. [DOI: 10.1039/d2qo00962e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free cycloaddition reaction of fluoroalkyl N-sulfonylhydrazones with arene-diazonium salts has been reported. This transformation represents the first general procedure to access mono-, di- and perfluoroalkyl tetrazole products.
Collapse
Affiliation(s)
- Zhongxue Fang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Yujie Zhang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Hongwei Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Jianxin Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xingqi Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhaohong Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
22
|
Delamare A, Naulet G, Kauffmann B, Guichard G, Compain G. Hexafluoroisobutylation of Enolates Through a Tandem Elimination/Allylic Shift/Hydrofluorination Reaction. Chem Sci 2022; 13:9507-9514. [PMID: 36091907 PMCID: PMC9400614 DOI: 10.1039/d2sc02871a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
The isobutyl side chain is a highly prevalent hydrophobic group in drugs, and it notably constitutes the side chain of leucine. Its replacement by a hexafluorinated version containing two CF3...
Collapse
Affiliation(s)
- Aline Delamare
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB F-33600 Pessac France
| | - Guillaume Naulet
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB F-33600 Pessac France
| | - Brice Kauffmann
- Univ. Bordeaux, CNRS, INSERM, IECB, UAR 3033 F-33600 Pessac France
| | - Gilles Guichard
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB F-33600 Pessac France
| | - Guillaume Compain
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB F-33600 Pessac France
| |
Collapse
|
23
|
Prinz C, Starke L, Ramspoth TF, Kerkering J, Martos Riaño V, Paul J, Neuenschwander M, Oder A, Radetzki S, Adelhoefer S, Ramos Delgado P, Aravina M, Millward JM, Fillmer A, Paul F, Siffrin V, von Kries JP, Niendorf T, Nazaré M, Waiczies S. Pentafluorosulfanyl (SF 5) as a Superior 19F Magnetic Resonance Reporter Group: Signal Detection and Biological Activity of Teriflunomide Derivatives. ACS Sens 2021; 6:3948-3956. [PMID: 34666481 PMCID: PMC8630787 DOI: 10.1021/acssensors.1c01024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022]
Abstract
Fluorine (19F) magnetic resonance imaging (MRI) is severely limited by a low signal-to noise ratio (SNR), and tapping it for 19F drug detection in vivo still poses a significant challenge. However, it bears the potential for label-free theranostic imaging. Recently, we detected the fluorinated dihydroorotate dehydrogenase (DHODH) inhibitor teriflunomide (TF) noninvasively in an animal model of multiple sclerosis (MS) using 19F MR spectroscopy (MRS). In the present study, we probed distinct modifications to the CF3 group of TF to improve its SNR. This revealed SF5 as a superior alternative to the CF3 group. The value of the SF5 bioisostere as a 19F MRI reporter group within a biological or pharmacological context is by far underexplored. Here, we compared the biological and pharmacological activities of different TF derivatives and their 19F MR properties (chemical shift and relaxation times). The 19F MR SNR efficiency of three MRI methods revealed that SF5-substituted TF has the highest 19F MR SNR efficiency in combination with an ultrashort echo-time (UTE) MRI method. Chemical modifications did not reduce pharmacological or biological activity as shown in the in vitro dihydroorotate dehydrogenase enzyme and T cell proliferation assays. Instead, SF5-substituted TF showed an improved capacity to inhibit T cell proliferation, indicating better anti-inflammatory activity and its suitability as a viable bioisostere in this context. This study proposes SF5 as a novel superior 19F MR reporter group for the MS drug teriflunomide.
Collapse
Affiliation(s)
- Christian Prinz
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Ludger Starke
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
| | - Tizian-Frank Ramspoth
- Medicinal
Chemistry, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Janis Kerkering
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Vera Martos Riaño
- Medicinal
Chemistry, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Jérôme Paul
- Medicinal
Chemistry, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Martin Neuenschwander
- Screening
Unit, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Andreas Oder
- Screening
Unit, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Silke Radetzki
- Screening
Unit, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Siegfried Adelhoefer
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
| | - Paula Ramos Delgado
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Mariya Aravina
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
| | - Jason M. Millward
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Ariane Fillmer
- Physikalisch-Technische
Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| | - Friedemann Paul
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
- Charité
− Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin, Humboldt-Universität zu Berlin,
and Berlin Institute of Health (BIH), Charitéplatz 1, 10117 Berlin, Germany
| | - Volker Siffrin
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Jens-Peter von Kries
- Screening
Unit, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Thoralf Niendorf
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Marc Nazaré
- Medicinal
Chemistry, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Sonia Waiczies
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| |
Collapse
|
24
|
Qin WB, Xiong W, Zhao YS, Fu KZ, Su L, Liu GK. Difluoromethyl Radical Triggered Tandem Reaction of N-Allyl Amides to Difluoromethylated β-Amino Alcohols by Photoredox Catalysis. Org Lett 2021; 23:8482-8487. [PMID: 34641687 DOI: 10.1021/acs.orglett.1c03242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An elegant tandem reaction process for transferring N-allyl amide into CF2H-β-amino alcohol is described. This approach proceeded smoothly under visible light irradiation in the presence of a 3 mol % Ir complex, exhibiting a broad substrate scope and functional group tolerance, and a variety of CF2H-β-amino alcohols were readily accessed in good to excellent yields under mild conditions. The reliable mechanistic studies revealed that sequential difluoromethyl radical addition/carbocation trap/rearrangement is involved.
Collapse
Affiliation(s)
- Wen-Bing Qin
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, Guangdong 518060, People's Republic of China
| | - Wei Xiong
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, Guangdong 518060, People's Republic of China
| | - Ya-Shi Zhao
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, Guangdong 518060, People's Republic of China
| | - Kai-Zhong Fu
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, Guangdong 518060, People's Republic of China
| | - Lei Su
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, Guangdong 518060, People's Republic of China
| | - Guo-Kai Liu
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, Guangdong 518060, People's Republic of China
| |
Collapse
|
25
|
Jin T, Xu L, Wang P, Hu X, Zhang R, Wu Z, Du W, Kan W, Li K, Wang C, Zhou Y, Li J, Liu T. Discovery and Development of a Potent, Selective, and Orally Bioavailable CHK1 Inhibitor Candidate: 5-((4-((3-Amino-3-methylbutyl)amino)-5-(trifluoromethyl)pyrimidin-2-yl)amino)picolinonitrile. J Med Chem 2021; 64:15069-15090. [PMID: 34665631 DOI: 10.1021/acs.jmedchem.1c00994] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Checkpoint kinase 1 (CHK1) plays an important role in the DNA damage response pathway, being a potential anti-cancer drug target. In this study, we used a strategy for trifluoromethyl substitution to obtain orally bioavailable CHK1 inhibitors to overcome the limitations of lead compound 1, which can only be administered intravenously. After detailed investigation, we identified compound 6c as an oral CHK1 inhibitor, which demonstrated a considerably higher plasma exposure in mice. Compound 6c also showed good kinase selectivity. Moreover, it exhibited a significant antiproliferative effect in MV-4-11 cells singly and a synergistic effect in combination with gemcitabine in HT-29, A549, and RPMI-8226 cells. Additionally, compound 6c could inhibit tumor growth in the MV-4-11 xenograft mouse model. The combination of 6c and gemcitabine exhibited synergistic effect in the HT-29 xenograft mouse model. Thus, compound 6c was found to be a selective and oral potential anticancer CHK1 inhibitor.
Collapse
Affiliation(s)
- Tingting Jin
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lei Xu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China
| | - Peipei Wang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaobei Hu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China
| | - Runyuan Zhang
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zhiqi Wu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China
| | - Wenxin Du
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Weijuan Kan
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kun Li
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chang Wang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yubo Zhou
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China
| | - Jia Li
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China
| | - Tao Liu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
26
|
Francis F, Wuest F. Advances in [ 18F]Trifluoromethylation Chemistry for PET Imaging. Molecules 2021; 26:molecules26216478. [PMID: 34770885 PMCID: PMC8587676 DOI: 10.3390/molecules26216478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Positron emission tomography (PET) is a preclinical and clinical imaging technique extensively used to study and visualize biological and physiological processes in vivo. Fluorine-18 (18F) is the most frequently used positron emitter for PET imaging due to its convenient 109.8 min half-life, high yield production on small biomedical cyclotrons, and well-established radiofluorination chemistry. The presence of fluorine atoms in many drugs opens new possibilities for developing radioligands labelled with fluorine-18. The trifluoromethyl group (CF3) represents a versatile structural motif in medicinal and pharmaceutical chemistry to design and synthesize drug molecules with favourable pharmacological properties. This fact also makes CF3 groups an exciting synthesis target from a PET tracer discovery perspective. Early attempts to synthesize [18F]CF3-containing radiotracers were mainly hampered by low radiochemical yields and additional challenges such as low radiochemical purity and molar activity. However, recent innovations in [18F]trifluoromethylation chemistry have significantly expanded the chemical toolbox to synthesize fluorine-18-labelled radiotracers. This review presents the development of significant [18F]trifluoromethylation chemistry strategies to apply [18F]CF3-containing radiotracers in preclinical and clinical PET imaging studies. The continuous growth of PET as a crucial functional imaging technique in biomedical and clinical research and the increasing number of CF3-containing drugs will be the primary drivers for developing novel [18F]trifluoromethylation chemistry strategies in the future.
Collapse
Affiliation(s)
- Felix Francis
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, AB T6G 2N4, Canada;
| | - Frank Wuest
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, AB T6G 2N4, Canada;
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Correspondence: ; Tel.: +1-780-391-7666; Fax: +1-780-432-8483
| |
Collapse
|
27
|
Gilbert A, Langowski P, Paquin JF. Synthesis of N-(2-SF5-ethyl)amines and impact of the SF5 substituent on their basicity and lipophilicity. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Wang D, Jana K, Studer A. Intramolecular Hydrogen Atom Transfer Induced 1,2-Migration of Boronate Complexes. Org Lett 2021; 23:5876-5879. [PMID: 34260254 PMCID: PMC8353630 DOI: 10.1021/acs.orglett.1c01998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Radical α-C-H
functionalization of alk-5-enyl boronic esters
with concomitant functionalization of the alkene moiety is reported.
These cascades comprise perfluoroalkyl radical addition to the alkene
moiety of a boronate complex, intramolecular hydrogen atom transfer
(HAT), single electron oxidation, and 1,2-alkyl/aryl migration. The
boronate complexes are readily generated in situ by reaction of the
alkenyl boronic esters with alkyl or aryl lithium reagents. Products
are formed in a divergent approach by varying carbon radical precursors
as well as alkyl/aryl lithium donors, and reactions proceed under
mild conditions upon UV irradiation.
Collapse
Affiliation(s)
- Dinghai Wang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Kalipada Jana
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
29
|
Nikiforov VA. Hydrolysis of FTOH precursors, a simple method to account for some of the unknown PFAS. CHEMOSPHERE 2021; 276:130044. [PMID: 33735648 DOI: 10.1016/j.chemosphere.2021.130044] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
There is a growing concern over a suspected presense of unknown perfluoroaliphatic substances (PFAS) in consumer goods and in the environment. Such unknown substances, possibly with high molecular weight, might be precursors of hazardous or controlled known PFAS. Recent studies confirmed that total organic fluorine (TOF) content often can not be explained by the measured target PFAS. One of the suspected classes of such unknowns are polymers with fluorotelomer alcohol (FTOH) residues in a side chain. In this report we suggest hydrolysis of precursors, as a complementary method to account for the unknown PFAS. It was shown here that hydrolysis allows to preserve structural information on the perlfuorinated parts of the precursors, which can be an advantage for the purpose of accurate risk assessment or source identification. A convenient procedure for hydrolysis with 4% sodium hydroxide in water-methanol mixture (1:9) at 60 °C for 16 h was shown to convert model substances - FTOH acrylate, methacrylate and isobutyrate esters as well as FTOH phenylcarbamate to free FTOHs. Analysis of extracts of textile samples with preliminary hydrolysis and without it showed up to 1300-fold higher level of "hidden" FTOHs.
Collapse
Affiliation(s)
- Vladimir A Nikiforov
- NILU - Norwegian Institute for Air Research, Hjalmar Johansens gate 14, Tromso, Norway.
| |
Collapse
|
30
|
In vitro, in vivo, and ADME evaluation of SF 5-containing N,N'-diarylureas as antischistosomal agents. Antimicrob Agents Chemother 2021; 65:e0061521. [PMID: 34310210 DOI: 10.1128/aac.00615-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In recent years, N,N'-diarylureas have emerged as a promising chemotype for the treatment of schistosomiasis, a disease that poses a considerable health burden to millions of people worldwide. Here, we report a novel series of N,N'-diarylureas featuring the scarcely explored pentafluorosulfanyl group. Low IC50 values for Schistosoma mansoni newly transformed schistosomula (0.6 - 7.7 μM) and adult worms (0.1 - 1.6 μM) were observed. Four selected compounds, highly active in presence of albumin (>70% at 10 μM), endowed with decent cytotoxicity profile (SI against L6 cells >8.5) and good microsomal hepatic stability (>62.5% of drug remaining after 60 min), were tested in S. mansoni infected mice. Despite the promising in vitro worm killing potency, none of them showed significant activity in vivo. Pharmacokinetic data showed a slow absorption, with maximal drug concentrations reached after 24 h of exposure. Finally, no direct correlation between drug exposure and in vivo activity was found. Thus, further investigations are needed to better understand the underlying mechanisms of SF5-containing N,N'-diarylureas.
Collapse
|
31
|
Synthesis and Cytotoxicity Evaluation of Spirocyclic Bromotyrosine Clavatadine C Analogs. Mar Drugs 2021; 19:md19070400. [PMID: 34356825 PMCID: PMC8305101 DOI: 10.3390/md19070400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Marine-originated spirocyclic bromotyrosines are considered as promising scaffolds for new anticancer drugs. In a continuation of our research to develop potent and more selective anticancer compounds, we synthesized a library of 32 spirocyclic clavatadine analogs by replacing the agmatine, i.e., 4-(aminobutyl)guanidine, side chain with different substituents. These compounds were tested for cytotoxicity against skin cancer using the human melanoma cell line (A-375) and normal human skin fibroblast cell line (Hs27). The highest cytotoxicity against the A-375 cell line was observed for dichloro compound 18 (CC50 0.4 ± 0.3 µM, selectivity index (SI) 2). The variation of selectivity ranged from SI 0.4 to reach 2.4 for the pyridin-2-yl derivative 29 and hydrazide analog of 2-picoline 37. The structure-activity relationships of the compounds in respect to cytotoxicity and selectivity toward cancer cell lines are discussed.
Collapse
|
32
|
Wang D, Mück-Lichtenfeld C, Daniliuc CG, Studer A. Radical Aryl Migration from Boron to Carbon. J Am Chem Soc 2021; 143:9320-9326. [PMID: 34151559 PMCID: PMC8251698 DOI: 10.1021/jacs.1c04217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Radical aryl migration
reactions represent a unique type of organic
transformations that involve the intramolecular migration of an aryl
group from a carbon or heteroatom to a C- or heteroatom-centered radical
through a spirocyclic intermediate. Various elements, including N,
O, Si, P, S, Sn, Ge, and Se, have been reported to participate in
radical aryl migrations. However, radical aryl migration from a boron
center has not been reported to date. In this communication, radical
1,5-aryl migration from boron to carbon in aryl boronate complexes
is presented. C-radicals readily generated through radical addition
onto alkenyl aryl boronate complexes are shown to engage in 1,5-aryl
migration reactions to provide 4-aryl-alkylboronic esters. As boronate
complexes can be generated in situ by the reaction
of alkenylboronic acid esters with aryl lithium reagents, the aryl
moiety is readily varied, providing access to a series of arylated
products starting from the same alkenylboronic acid ester via divergent
chemistry. Reactions proceed with high diastereoselectivity under
mild conditions, and also the analogous 1,4-aryl shifts are feasible.
The suggested mechanism is supported by DFT calculations.
Collapse
Affiliation(s)
- Dinghai Wang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
33
|
Exploration of 7-azaindole-coumaranone hybrids and their analogues as protein kinase inhibitors. Chem Biol Interact 2021; 343:109478. [PMID: 33905741 DOI: 10.1016/j.cbi.2021.109478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 01/01/2023]
Abstract
7-Azaindole has been labelled a privileged scaffold for the design of new potent inhibitors of protein kinases. In this paper, we determined the inhibition profiles of novel mono- and disubstituted derivatives of 7-azaindole-coumaranone hybrids on various disease-related protein kinases. Eight hit compounds were identified, including a potent Haspin inhibitor with an IC50 value of 0.15 μM. An interesting observation was that all active monosubstituted compounds displayed dual inhibition for Haspin and GSK-3β, while disubstituted derivatives inhibited GSK-3β and LmCK1 from Leishmania major parasite. Analyses of structure activity relationships (SARs) also revealed that mono-substitution with para-fluorobenzyloxy ring produced an equipotent inhibition of Haspin and GSK-3β. Haspin and GSK-3β are relevant targets for developing new anticancer agents while LmCK1 is an innovative target for leishmanicidal drugs. Novel compounds reported in this paper constitute promising starting points for the development of new anticancer and leishmanicidal drugs.
Collapse
|
34
|
Wang L, Zhu H, Peng T, Yang D. Conjugated ynones in catalytic enantioselective reactions. Org Biomol Chem 2021; 19:2110-2145. [PMID: 33625439 DOI: 10.1039/d0ob02521f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conjugated ynones are easily accessible feedstock and the existence of an alkyne bond endows ynones with different attractive reactivities, thus making them unique substrates for catalytic asymmetric reactions. Their compatibility under organocatalytic, metal-catalyzed as well as cooperative catalytic conditions has resulted in numerous enantioselective transformations. Importantly, conjugated ynones can act as nucleophiles or electrophiles, and serve as easily accessed synthons for different cyclization pathways. This review summarizes the recent literature examples of the catalytic reactions of conjugated ynones and related compounds such as alkyne conjugated α-ketoesters, and classifies these reaction types alongside mechanistic insights whenever possible. We aim to trigger more intensive research in the future to render the asymmetric transformation of ynones as a common and reliable tool for asymmetric synthesis.
Collapse
Affiliation(s)
- Linqing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Haiyong Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Tianyu Peng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
35
|
Design, synthesis, and biological evaluation of nitroisoxazole-containing spiro[pyrrolidin-oxindole] derivatives as novel glutathione peroxidase 4/mouse double minute 2 dual inhibitors that inhibit breast adenocarcinoma cell proliferation. Eur J Med Chem 2021; 217:113359. [PMID: 33725632 DOI: 10.1016/j.ejmech.2021.113359] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 02/05/2023]
Abstract
A series of highly active CF3-containing 3'-(nitroisoxazole)spiro[pyrrolidin-3,2'-oxindoles] were synthesized and found to be novel glutathione peroxidase 4 (GPX4)/mouse double minute 2 (MDM2) dual inhibitors. Bioactive spirooxindole and isoxazole skeletons were combined, and the resulting compounds exhibited strong activities against both targets. In particular, compound 3d displayed excellent activity in the suppression of MDM2-mediated degradation of p53, as well as levels of GPX4, in MCF-7 breast cancer cells. Moreover, 3d also exhibited inhibitory effects on MDM2 and GPX4 in MCF-7 xenograft model to trigger ferroptotic and apoptotic cell death in in vivo experiments, which was consistent with the results of in vitro experiments.
Collapse
|
36
|
|
37
|
Liu SJ, Mao Q, Zhong YJ, Xue J, Chen BH, Zhao Q, Huang W. Highly diastereoselective assembly of isoxazole and trifluoromethyl containing spiro[pyrrolidin-oxindoles] from N-2,2,2-trifluoroethyl-substituted isatin imines and styrylisoxazoles. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Mg/BOX complexes as efficient catalysts for the enantioselective Michael addition of malonates to β-trifluoromethyl-α,β-unsaturated ketones and their N-tosyl imines. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Zhang T, Gao Z. Copper-catalyzed thioketalization of enones featuring trifluoromethyl groups. RSC Adv 2021; 11:19832-19835. [PMID: 35479255 PMCID: PMC9033665 DOI: 10.1039/d1ra03222d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/24/2021] [Indexed: 11/21/2022] Open
Abstract
24 new thioketals featuring trifluoromethyl groups were synthesized via a new copper-catalyzed method.
Collapse
Affiliation(s)
- Tongfei Zhang
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Zhenbo Gao
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| |
Collapse
|
40
|
Gilbert A, Langowski P, Delgado M, Chabaud L, Pucheault M, Paquin JF. Amine-borane complex-initiated SF 5Cl radical addition on alkenes and alkynes. Beilstein J Org Chem 2020; 16:3069-3077. [PMID: 33414854 PMCID: PMC7753108 DOI: 10.3762/bjoc.16.256] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/03/2020] [Indexed: 11/30/2022] Open
Abstract
The SF5Cl radical addition on unsaturated compounds was performed using an air-stable amine-borane complex as the radical initiator. This method showed to be complementary to the classic Et3B-mediated SF5Cl addition on alkenes and alkynes. A total of seven alkene and three alkyne derivatives were tested in the reaction, with yields ranging from 3% to 85%.
Collapse
Affiliation(s)
- Audrey Gilbert
- Départment de chimie, Université Laval, Québec, QC, G1V 0A6, Canada
| | | | - Marine Delgado
- Institut des Sciences Moléculaires - Groupe ORGA - UMR 5255, Université de Bordeaux, 351 Cours de la libération, 33405 Talence, France
| | - Laurent Chabaud
- Institut des Sciences Moléculaires - Groupe ORGA - UMR 5255, Université de Bordeaux, 351 Cours de la libération, 33405 Talence, France
| | - Mathieu Pucheault
- Institut des Sciences Moléculaires - Groupe ORGA - UMR 5255, Université de Bordeaux, 351 Cours de la libération, 33405 Talence, France
| | | |
Collapse
|
41
|
Yu Y, Yu Q, Liu S, Wu C, Zhang X. Insight into the binding mode of HIF-2 agonists through molecular dynamic simulations and biological validation. Eur J Med Chem 2020; 211:112999. [PMID: 33189439 DOI: 10.1016/j.ejmech.2020.112999] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 01/05/2023]
Abstract
Hypoxia-inducible factor-2 (HIF-2), a heterodimeric transcriptional protein consisting of HIF-2α and aryl hydrocarbon receptor nuclear translocator (ARNT) subunits, has a broad transcriptional profile that plays a vital role in human oxygen metabolism. M1001, a HIF-2 agonist identified by high-throughput screening (HTS), is capable of altering the conformation of Tyr281 of the HIF-2α PAS-B domain and enhancing the affinity of HIF-2α and ARNT for transcriptional activation. M1002, an analog of M1001, shows improved efficacy than M1001. However, the cocrystal structure of M1001 and HIF-2 has some defects in revealing the agonist binding mode due to the relatively low resolution, while the binding mode of M1002 remained unexplored. To in-depth understand agonist binding profiles, herein, the molecular dynamic (MD) simulations was applied to construct a stable agonist-protein model, and a possible binding mode was proposed through the analysis of the binding free energy and hydrogen bonding of the simulation results. Nine compounds were then synthesized and evaluated to verify the proposed binding mode. Among them, compound 10 manifested improved agonistic activity and reduced toxicity compared to M1002. This study provides deep insight into the binding mode of such HIF-2 agonists, which would be useful for designing novel agonists for HIF-2.
Collapse
Affiliation(s)
- Yancheng Yu
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Quanwei Yu
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Simeng Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Chenyang Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaojin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
42
|
Tkachuk VM, Lukianov OO, Vovk MV, Gillaizeau I, Sukach VA. Chan-Evans-Lam N1-(het)arylation and N1-alkеnylation of 4-fluoroalkylpyrimidin-2(1 H)-ones. Beilstein J Org Chem 2020; 16:2304-2313. [PMID: 33014170 PMCID: PMC7509380 DOI: 10.3762/bjoc.16.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/04/2020] [Indexed: 01/17/2023] Open
Abstract
The Chan–Evans–Lam reaction of 1-unsubstituted 4-fluoroalkylpyrimidin-2(1Н)-ones with arylboronic acids is reported as a facile synthetic route to hitherto unavailable N1-(het)aryl and N1-alkenyl derivatives of the corresponding pyrimidines. An efficient C–N bond-forming process is also observed by using boronic acid pinacol esters as coupling partners in the presence of Cu(II) acetate and boric acid. The 4-fluoroalkyl group on the pyrimidine ring significantly assists in the formation of the target N1-substituted products, in contrast to the 4-methyl and 4-unsubstituted substrates which do not undergo N1-arylation under similar reaction conditions.
Collapse
Affiliation(s)
- Viktor M Tkachuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine
| | - Oleh O Lukianov
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine
| | - Mykhailo V Vovk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine
| | - Isabelle Gillaizeau
- Institute of Organic and Analytical Chemistry, ICOA UMR 7311 CNRS, Université d'Orléans, rue de Chartres, 45100 Orléans, France
| | - Volodymyr A Sukach
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine.,Enamine LTD, 78 Chervonotkats'ka str., Kyiv 02094, Ukraine
| |
Collapse
|
43
|
Bereczki I, Csávás M, Szűcs Z, Rőth E, Batta G, Ostorházi E, Naesens L, Borbás A, Herczegh P. Synthesis of Antiviral Perfluoroalkyl Derivatives of Teicoplanin and Vancomycin. ChemMedChem 2020; 15:1661-1671. [PMID: 32652783 PMCID: PMC7540527 DOI: 10.1002/cmdc.202000260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/28/2020] [Indexed: 02/07/2023]
Abstract
The limited scope of antiviral drugs and increasing problem of antiviral drug resistance represent a global health threat. Glycopeptide antibiotics and their lipophilic derivatives have emerged as relevant inhibitors of diverse viruses. Herein, we describe a new strategy for the synthesis of dual hydrophobic and lipophobic derivatives of glycopeptides to produce selective antiviral agents without membrane-disrupting activity. Perfluorobutyl and perfluorooctyl moieties were attached through linkers of different length to azido derivatives of vancomycin aglycone and teicoplanin pseudoaglycone, and the new derivatives were evaluated against a diverse panel of viruses. The teicoplanin derivatives displayed strong anti-influenza virus activity at nontoxic concentrations. Some of the perfluoroalkylated glycopeptides were also active against a few other viruses such as herpes simplex virus or coronavirus. These data encourage further exploration of glycopeptide analogues for broad antiviral application.
Collapse
Affiliation(s)
- Ilona Bereczki
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Magdolna Csávás
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Zsolt Szűcs
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
- Doctoral School of Pharmaceutical SciencesUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Erzsébet Rőth
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Gyula Batta
- Department of Organic ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Eszter Ostorházi
- Department of Medical MicrobiologySemmelweis UniversityMária u. 411085BudapestHungary
| | - Lieve Naesens
- Rega Institute for Medical ResearchKU Leuven3000LeuvenBelgium
| | - Anikó Borbás
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Pál Herczegh
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| |
Collapse
|
44
|
Synthesis, characterization, in vitro DNA photocleavage and cytotoxicity studies of 4-arylazo-1-phenyl-3-(2-thienyl)-5-hydroxy-5-trifluoromethylpyrazolines and regioisomeric 4-arylazo-1-phenyl-5(3)-(2-thienyl)-3(5)-trifluoromethylpyrazoles. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Qin WB, Xiong W, Li X, Chen JY, Lin LT, Wong HNC, Liu GK. Visible-Light-Driven Difluoromethylation of Isocyanides with S-(Difluoromethyl)diarylsulfonium Salt: Access to a Wide Variety of Difluoromethylated Phenanthridines and Isoquinolines. J Org Chem 2020; 85:10479-10487. [DOI: 10.1021/acs.joc.0c00816] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wen-Bing Qin
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, China
| | - Wei Xiong
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, China
| | - Xin Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, China
| | - Jia-Yi Chen
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, China
| | - Li-Ting Lin
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, China
| | - Henry N. C. Wong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Guo-Kai Liu
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, China
| |
Collapse
|
46
|
Electrophilic reactions as methods of modification of pyrrolobenzimidazolones and pyrroloquinazolinones. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Tzara A, Xanthopoulos D, Kourounakis AP. Morpholine As a Scaffold in Medicinal Chemistry: An Update on Synthetic Strategies. ChemMedChem 2020; 15:392-403. [PMID: 32017384 DOI: 10.1002/cmdc.201900682] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/21/2020] [Indexed: 12/14/2022]
Abstract
Morpholine is a frequently used heterocycle in medicinal chemistry and a privileged structural component of bioactive molecules. This is mainly due to its contribution to a plethora of biological activities as well as to an improved pharmacokinetic profile of such bioactive molecules. The synthesis of morpholines is a subject of much study due to their biological and pharmacological importance, with the last such review being published in 2013. Here, an overview of the main approaches toward morpholine synthesis or functionalization is presented, emphasizing on novel work which has not been reviewed so far. This review is an update on synthetic strategies leading to easily accessible libraries of bioactives which are of interest for drug discovery projects.
Collapse
Affiliation(s)
- Ariadni Tzara
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Dimitrios Xanthopoulos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Angeliki P Kourounakis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| |
Collapse
|
48
|
Cui L, Ono T, Hossain MJ, Hisaeda Y. Electrochemically driven, cobalt–carbon bond-mediated direct intramolecular cyclic and acyclic perfluoroalkylation of (hetero)arenes using X(CF2)4X. RSC Adv 2020; 10:24862-24866. [PMID: 35517485 PMCID: PMC9055166 DOI: 10.1039/d0ra05295g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/18/2020] [Indexed: 11/21/2022] Open
Abstract
A proof-of-concept for synthetically challenging cyclic and acyclic perfluoroalkylation of (hetero)arenes driven by the valence change of a cobalt catalyst with X(CF2)4X is demonstrated.
Collapse
Affiliation(s)
- Luxia Cui
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University 744 Motooka
- Japan
| | - Toshikazu Ono
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University 744 Motooka
- Japan
- Center for Molecular Systems (CMS)
| | - Md. Jakir Hossain
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University 744 Motooka
- Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University 744 Motooka
- Japan
- Center for Molecular Systems (CMS)
| |
Collapse
|
49
|
Synthesis of Aryl Propionamide Scaffold Containing a Pentafluorosulfanyl Moiety as SARMs. Molecules 2019; 24:molecules24234227. [PMID: 31757115 PMCID: PMC6930600 DOI: 10.3390/molecules24234227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
The pentafluorosulfane (SF5) group, as a more electronegative bioisostere than the trifluoromethyl (CF3) group, has been gaining greater attention and increasingly reported usage in medicinal chemistry. Ostarine is the selective androgen receptor modulators (SARMs) containing a CF3 group in clinical trial III. In this study, 21 ostarine derivatives for replacing the CF3 group with SF5 substituents were synthesized. Some SF5-derivatives showed androgen receptor (AR) agonistic activities in vitro. The results pointed to the potential of using this scaffold to develop new AR agonists.
Collapse
|
50
|
Liu GK, Qin WB, Li X, Lin LT, Wong HNC. Difluoromethylation of Phenols and Thiophenols with the S-(Difluo-romethyl)sulfonium Salt: Reaction, Scope, and Mechanistic Study. J Org Chem 2019; 84:15948-15957. [PMID: 31645096 DOI: 10.1021/acs.joc.9b02424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A facile and practical approach for the difluoromethylation of phenols and thiophenols was described. Making use of the recently developed bench-stable S-(difluoromethyl)sulfonium salt as the difluorocarbene precursor, a wide variety of diversely functionalized phenols and thiophenols were readily converted to their corresponding aryl difluoromethyl ethers in good to excellent yields in the presence of lithium hydroxide. Chemoselectivity of various O,S-nucleophiles toward difluorocarbene was systematically studied, suggesting the reactivity order ArS- > RS-, ArO- > ROH > RO-, ArSH, ArOH, RSH.
Collapse
Affiliation(s)
- Guo-Kai Liu
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre , Shenzhen University , 3688 Nanhai Avenue , Shenzhen , Guangdong 518060 , China
| | - Wen-Bing Qin
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre , Shenzhen University , 3688 Nanhai Avenue , Shenzhen , Guangdong 518060 , China
| | - Xin Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre , Shenzhen University , 3688 Nanhai Avenue , Shenzhen , Guangdong 518060 , China
| | - Li-Ting Lin
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre , Shenzhen University , 3688 Nanhai Avenue , Shenzhen , Guangdong 518060 , China
| | - Henry N C Wong
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , New Territories, Hong Kong SAR 999077 China
| |
Collapse
|