1
|
Guo X, Zheng B, Wang J, Zhao T, Zheng Y. Exploring the mechanism of action of Chinese medicine in regulating liver fibrosis based on the alteration of glucose metabolic pathways. Phytother Res 2024; 38:4865-4876. [PMID: 36433866 DOI: 10.1002/ptr.7667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2022]
Abstract
In recent years, metabolic reprogramming in liver fibrosis has become a research hotspot in the field of liver fibrosis at home and abroad. Liver fibrosis is a pathological change caused by chronic liver injury from a variety of causes. Liver fibrosis is a common pathological feature of many chronic liver diseases such as chronic hepatitis B, non-alcoholic steatohepatitis, and autoimmune hepatitis, as well as the pathogenesis of the disease. The development of chronic liver disease into cirrhosis must go through the pathological process of liver fibrosis, in which hepatic stellate cells (HSC) play an important role. Following liver injury, HSC are activated and transdifferentiated into scar-forming myofibroblasts, which drive the trauma healing response and which rely on the deposition of collagen-rich extracellular matrix to maintain tissue integrity. This reaction will continue without strict control, which will lead to excessive accumulation of matrix and liver fibrosis. The mechanisms and clinical studies of liver fibrosis have been the focus of research in liver diseases. In recent years, several studies have revealed the mechanism of HSC metabolic reprogramming and the impact of this process on liver fibrosis, in which glucose metabolic reprogramming plays an important role in the activation of HSC, and it mainly meets the energy demand of HSC activation by upregulating glycolysis. Glycolysis is the process by which one molecule of glucose is broken down into two molecules of pyruvate and produces energy and lactate under anaerobic conditions. Various factors have been found to be involved in regulating the glycolytic process of HSC, including glucose transport, intracellular processing of glucose, exosome secretion, and lactate production, etc. Inhibition of the glycolytic process of HSC can be an effective strategy against liver fibrosis. Currently, the combined action of multiple targets and links of Chinese medicine such as turmeric, comfrey, rhubarb and scutellaria baicalensis against the mechanism of liver fibrosis can effectively improve or even reverse liver fibrosis. This paper summarizes that turmeric extract curcumin, comfrey extract comfreyin, rhubarb, Subtle yang yu yin granules, Scutellaria baicalensis extract oroxylin A and cardamom extract cardamomin affect liver fibrosis by regulating gluconeogenic reprogramming. Therefore, studying the mechanism of action of TCM in regulating liver fibrosis through reprogramming of glucose metabolism is promising to explore new methods and approaches for Chinese Medicine modernization research.
Collapse
Affiliation(s)
- Xinhua Guo
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Bowen Zheng
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, China
| | - Tiejian Zhao
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Yang Zheng
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
2
|
Igwe CL, Pauk JN, Müller DF, Jaeger M, Deuschitz D, Hartmann T, Spadiut O. Comprehensive evaluation of recombinant lactate dehydrogenase production from inclusion bodies. J Biotechnol 2024; 379:65-77. [PMID: 38036002 DOI: 10.1016/j.jbiotec.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
A broad application spectrum ranging from clinical diagnostics to biosensors in a variety of sectors, makes the enzyme Lactate dehydrogenase (LDH) highly interesting for recombinant protein production. Expression of recombinant LDH is currently mainly carried out in uncontrolled shake-flask cultivations leading to protein that is mostly produced in its soluble form, however in rather low yields. Inclusion body (IB) processes have gathered a lot of attention due to several benefits like increased space-time yields and high purity of the target product. Thus, to investigate the suitability of this processing strategy for ldhL1 production, a fed-batch fermentation steering the production of IBs rather than soluble product formation was developed. It was shown that the space-time-yield of the fermentation could be increased almost 3-fold by increasing qs to 0.25 g g-1 h-1 which corresponds to 21% of qs,max, and keeping the temperature at 37°C after induction. Solubilization and refolding unit operations were developed to regain full bioactivity of the ldhL1. The systematic approach in screening for solubilization and refolding conditions revealed buffer compositions and processing strategies that ultimately resulted in 50% product recovery in the refolding step, revealing major optimization potential in the downstream processing chain. The recovered ldhL1 showed an optimal activity at pH 5.5 and 30∘C with a high catalytic activity and KM values of 0.46 mM and 0.18 mM for pyruvate and NADH, respectively. These features, show that the here produced LDH is a valuable source for various commercial applications, especially considering low pH-environments.
Collapse
Affiliation(s)
- Chika Linda Igwe
- Competence Center CHASE GmbH, Hafenstraße 47-51, Linz 4020, Austria; Institute of Chemical, Getreidemarkt 9, Vienna 1060, Austria
| | - Jan Niklas Pauk
- Competence Center CHASE GmbH, Hafenstraße 47-51, Linz 4020, Austria; Institute of Chemical, Getreidemarkt 9, Vienna 1060, Austria
| | | | - Mira Jaeger
- Institute of Chemical, Getreidemarkt 9, Vienna 1060, Austria
| | | | - Thomas Hartmann
- Institute of Chemical, Getreidemarkt 9, Vienna 1060, Austria
| | - Oliver Spadiut
- Institute of Chemical, Getreidemarkt 9, Vienna 1060, Austria.
| |
Collapse
|
3
|
Yan P, Liu J, Li Z, Wang J, Zhu Z, Wang L, Yu G. Glycolysis Reprogramming in Idiopathic Pulmonary Fibrosis: Unveiling the Mystery of Lactate in the Lung. Int J Mol Sci 2023; 25:315. [PMID: 38203486 PMCID: PMC10779333 DOI: 10.3390/ijms25010315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by excessive deposition of fibrotic connective tissue in the lungs. Emerging evidence suggests that metabolic alterations, particularly glycolysis reprogramming, play a crucial role in the pathogenesis of IPF. Lactate, once considered a metabolic waste product, is now recognized as a signaling molecule involved in various cellular processes. In the context of IPF, lactate has been shown to promote fibroblast activation, myofibroblast differentiation, and extracellular matrix remodeling. Furthermore, lactate can modulate immune responses and contribute to the pro-inflammatory microenvironment observed in IPF. In addition, lactate has been implicated in the crosstalk between different cell types involved in IPF; it can influence cell-cell communication, cytokine production, and the activation of profibrotic signaling pathways. This review aims to summarize the current research progress on the role of glycolytic reprogramming and lactate in IPF and its potential implications to clarify the role of lactate in IPF and to provide a reference and direction for future research. In conclusion, elucidating the intricate interplay between lactate metabolism and fibrotic processes may lead to the development of innovative therapeutic strategies for IPF.
Collapse
Affiliation(s)
| | | | | | | | | | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China; (P.Y.); (J.L.); (Z.L.); (J.W.); (Z.Z.)
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China; (P.Y.); (J.L.); (Z.L.); (J.W.); (Z.Z.)
| |
Collapse
|
4
|
Liang X, Zhou S, Xiao Z. Prognostic value of lactate dehydrogenase in patients with uveal melanoma treated with immune checkpoint inhibition. Aging (Albany NY) 2023; 15:8770-8781. [PMID: 37671944 PMCID: PMC10522394 DOI: 10.18632/aging.204996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/19/2023] [Indexed: 09/07/2023]
Abstract
OBJECTIVE We performed the meta-analysis to explore the predictive value of lactate dehydrogenase (LDH) levels in uveal melanoma (UM) patients receiving immune checkpoint inhibitors (ICIs). METHODS Eligible articles were obtained through EMBASE, PubMed, Google Scholar, and the Cochrane Library, until March 23, 2023. The clinical outcomes evaluated in this study encompassed overall survival (OS) and progression-free survival (PFS). RESULTS This meta-analysis comprised eight studies with a combined total of 383 patients. The results showed that patients with high LDH levels had noticeably worse OS (HR: 3.445, 95% CI: 2.504-4.740, p < 0.001) and PFS (HR: 1.720, 95% CI: 1.429-2.070, p < 0.001). Subgroup analysis confirmed that the upper limit of normal was the ideal cut-off value for LDH. In multivariate analysis, we also found that high LDH levels significantly predicted shorter OS (HR: 3.405, 95% CI: 1.827-6.348, p < 0.001) and PFS (HR: 2.519, 95% CI: 1.557-4.076, p < 0.001) in UM patients. The sensitivity analysis and publication bias test supported the reliability of our results. CONCLUSIONS In UM patients treated with ICIs, the LDH levels were reliable indicators of prognosis.
Collapse
Affiliation(s)
- Xiaocui Liang
- Department of Ophthalmology, Wuhan No. 1 Hospital, Wuhan 430023, Hubei Province, China
- Department of Ophthalmology, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan 430023, Hubei Province, China
| | - Shan Zhou
- Department of Ophthalmology, Wuhan No. 1 Hospital, Wuhan 430023, Hubei Province, China
- Department of Ophthalmology, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan 430023, Hubei Province, China
| | - Zefeng Xiao
- Department of Ophthalmology, Wuhan No. 1 Hospital, Wuhan 430023, Hubei Province, China
- Department of Ophthalmology, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan 430023, Hubei Province, China
| |
Collapse
|
5
|
Wei X, Chai Y, Li Z, Che X, Zhang Y, Zhou Z, Wang X. Up-regulated serum lactate dehydrogenase could become a poor prognostic marker in patients with bladder cancer by an evidence-based analysis of 2,182 patients. Front Oncol 2023; 13:1233620. [PMID: 37601656 PMCID: PMC10435851 DOI: 10.3389/fonc.2023.1233620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Background A growing number of studies have considered serum lactate dehydrogenase (LDH) as an indicator of bladder cancer (BC) prognosis. However, a meta-analysis of the serum LDH's influence on BC prognosis is still missing. Methods PubMed, EMBASE, Web of Science and Cochrane Library were exhaustively searched for studies comparing oncological outcomes between high-LDH and low-LDH patients. Standard cumulative analyses using hazard ratios (HR) with 95% confidence intervals (CI) were performed using Review Manager (version 5.3) for overall survival (OS) in patients with BC. Results Six studies involving 2,182 patients were selected according to predefined eligibility criteria. The results showed that serum LDH level was significantly associated with OS (HR = 1.86, 95%CI = 1.54-2.25, p<0.0001) in BC. Sensitivity analysis showed the stability of the results. Subgroup analysis revealed that the levels of serum LDH had a significant impact on the OS of BC patients among different groups including publication time, research country, sample size, tumor stage, LDH cut-off value, therapy and follow-up time (all HR>1 and p<0.05), revealing that the ability of serum LDH is not affected by other factors. Conclusion Our findings indicated that a high level of serum LDH was associated with inferior OS in patients with BC. However, caution must be taken before recommendations are given because this interpretation is based upon very few clinical studies and a small sample.
Collapse
Affiliation(s)
- Xiaoyu Wei
- Department of Oncology, Tianjin Binhai New Area Hospital of Traditional Chinese Medicine, Tianjin, China
| | - Yumeng Chai
- Department of Urology, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Zhouyue Li
- Department of Urology, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Xuanyan Che
- Department of Urology, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Yong Zhang
- Department of Urology, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Zhongbao Zhou
- Department of Urology, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Xiang Wang
- Department of Urology, Tengzhou Central People’s Hospital, Tengzhou, China
| |
Collapse
|
6
|
Salido S, Alejo-Armijo A, Altarejos J. Synthesis and hLDH Inhibitory Activity of Analogues to Natural Products with 2,8-Dioxabicyclo[3.3.1]nonane Scaffold. Int J Mol Sci 2023; 24:9925. [PMID: 37373073 DOI: 10.3390/ijms24129925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Human lactate dehydrogenase (hLDH) is a tetrameric enzyme present in almost all tissues. Among its five different isoforms, hLDHA and hLDHB are the predominant ones. In the last few years, hLDHA has emerged as a therapeutic target for the treatment of several kinds of disorders, including cancer and primary hyperoxaluria. hLDHA inhibition has been clinically validated as a safe therapeutic method and clinical trials using biotechnological approaches are currently being evaluated. Despite the well-known advantages of pharmacological treatments based on small-molecule drugs, few compounds are currently in preclinical stage. We have recently reported the detection of some 2,8-dioxabicyclo[3.3.1]nonane core derivatives as new hLDHA inhibitors. Here, we extended our work synthesizing a large number of derivatives (42-70) by reaction between flavylium salts (27-35) and several nucleophiles (36-41). Nine 2,8-dioxabicyclo[3.3.1]nonane derivatives showed IC50 values lower than 10 µM against hLDHA and better activity than our previously reported compound 2. In order to know the selectivity of the synthesized compounds against hLDHA, their hLDHB inhibitory activities were also measured. In particular, compounds 58, 62a, 65b, and 68a have shown the lowest IC50 values against hLDHA (3.6-12.0 µM) and the highest selectivity rate (>25). Structure-activity relationships have been deduced. Kinetic studies using a Lineweaver-Burk double-reciprocal plot have indicated that both enantiomers of 68a and 68b behave as noncompetitive inhibitors on hLDHA enzyme.
Collapse
Affiliation(s)
- Sofía Salido
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| | - Alfonso Alejo-Armijo
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| | - Joaquín Altarejos
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| |
Collapse
|
7
|
Alves ÂVF, Melo CR, Chagas-Neto JL, Amaral RG, Ambrósio SR, Moreira MR, Veneziani RCS, Cardoso JC, Severino P, Gondak RO, Souto EB, de Albuquerque-Júnior RLC. Ent-kaurenoic acid-enriched Mikania glomerata leaves-complexed β-cyclodextrin: Pharmaceutical development and in vivo antitumor activity in a sarcoma 180 mouse model. Int J Pharm 2023; 631:122497. [PMID: 36529360 DOI: 10.1016/j.ijpharm.2022.122497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The extract obtained from Mikania glomerata leaves rich in ent-kaurenoic acid (ERKA) shows cytotoxic activity in vitro, but its hydrophobic nature and thermosensitivity are issues to be solved prior to in vivo antitumor studies. The purpose of this study was to investigate the antitumor activity of inclusion complexes formed between ERKA and β-cyclodextrin (ERKA:β-CD) in rodents. ERKA:β-CD complexes obtained by malaxation (MX) and co-evaporation (CE) methods were firstly characterized regarding their physical properties, encapsulation efficiency, and cytotoxicity againts L929 cells. The antitumor activity study was then performed in mice with sarcoma 180 treated with saline, 5-fluouracil (5FU) and ERKA:β-CD at 30, 100 and 300 µg/kg. The weight, volume, percentage of inhibition growth, gross and pathological features and positivity for TUNEL, ki67, NFκB and NRF2 in the tumors were assessed. Serum lactate-dehydrogenase activity (LDH), white blood cells count (WBC) and both gross and pathological features of the liver, kidneys and spleen were also evaluated. The formation of the inclusion complexes was confirmed by thermal analysis and FTIR, and they were non-toxic for L929 cells. The MX provided a better complexation efficiency. ERKA:β-CD300 promoted significant tumor growth inhibition, and attenuated the tumor mitotic activity and necrosis content, comparable to 5-fluorouracil. ERKA:β-CD300 also increased TUNEL-detected cell death, reduced Ki67 and NF-kB immunoexpression, and partially inhibited the serum LDH activity. No side effect was observed in ERKA:β-CD300-treated animals. The ERKA:β-CD inclusion complexes at 300 µg/kg displays antitumour activity in mice with low systemic toxicity, likely due to inhibition on the NF-kB signaling pathway and LDH activity.
Collapse
Affiliation(s)
- Ângela V F Alves
- Institute of Technology and Research, University of Tiradentes, Av. Murilo Dantas, 300, Bairro Farolândia, 49032-490 Aracaju, Sergipe, Brazil
| | - Carlisson R Melo
- Institute of Technology and Research, University of Tiradentes, Av. Murilo Dantas, 300, Bairro Farolândia, 49032-490 Aracaju, Sergipe, Brazil
| | - José L Chagas-Neto
- School of Dentistry, University of Tiradentes, Av. Murilo Dantas, 300, Bairro Farolândia, 49032-490 Aracaju, Sergipe, Brazil
| | - Ricardo G Amaral
- Department of Physiology, Federal University of Sergipe, 49100-000 São Cristóvão, Sergipe, Brazil
| | - Sérgio R Ambrósio
- Research Group in Exact and Technological, University of Franca, Av. Dr. Armando de Salles Oliveira 201, 14404-600 Franca, São Paulo, Brazil
| | - Monique R Moreira
- Research Group in Exact and Technological, University of Franca, Av. Dr. Armando de Salles Oliveira 201, 14404-600 Franca, São Paulo, Brazil
| | - Rodrigo C S Veneziani
- Research Group in Exact and Technological, University of Franca, Av. Dr. Armando de Salles Oliveira 201, 14404-600 Franca, São Paulo, Brazil
| | - Juliana C Cardoso
- Institute of Technology and Research, University of Tiradentes, Av. Murilo Dantas, 300, Bairro Farolândia, 49032-490 Aracaju, Sergipe, Brazil
| | - Patricia Severino
- Institute of Technology and Research, University of Tiradentes, Av. Murilo Dantas, 300, Bairro Farolândia, 49032-490 Aracaju, Sergipe, Brazil
| | - Rogério O Gondak
- Department of Pathology, Federal University of Santa Catarina, R. Delfino Conti, S/N, 88040-370 Florianópolis, Santa Catarina, Brazil
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; REQUIMTE/UCIBIO, Faculty of Pharmacy of University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Ricardo L C de Albuquerque-Júnior
- Department of Pathology, Federal University of Santa Catarina, R. Delfino Conti, S/N, 88040-370 Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
8
|
Manoj KM, Nirusimhan V, Parashar A, Edward J, Gideon DA. Murburn precepts for lactic-acidosis, Cori cycle, and Warburg effect: Interactive dynamics of dehydrogenases, protons, and oxygen. J Cell Physiol 2021; 237:1902-1922. [PMID: 34927737 DOI: 10.1002/jcp.30661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
It is unresolved why lactate is transported to the liver for further utilization within the physiological purview of Cori cycle, when muscles have more lactate dehydrogenase (LDH) than liver. We point out that the answer lies in thermodynamics/equilibriums. While the utilization of NADH for the reduction of pyruvate to lactate can be mediated via the classical mechanism, the oxidation of lactate (with/without the uphill reduction of NAD+ ) necessitates alternative physiological approaches. The latter pathway occurs via interactive equilibriums involving the enzyme, protons and oxygen or diffusible reactive oxygen species (DROS). Since liver has high DROS, the murburn activity at LDH would enable the cellular system to tide over the unfavorable energy barriers of the forward reaction (~476 kJ/mol; earlier miscalculated as ~26 kJ/mole). Further, the new mechanism does not necessitate any "smart decision-making" or sophisticated control by/of proteins. The DROS-based murburn theory explains the invariant active-site structure of LDH isozymes and their multimeric nature. The theoretical insights, in silico evidence and analyses of literature herein also enrich our understanding of the underpinnings of "lactic acidosis" (lowering of physiological pH accompanied by lactate production), Warburg effect (increased lactate production at high pO2 by cancer cells) and approach for cancer therapy.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Vijay Nirusimhan
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Abhinav Parashar
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Jesucastin Edward
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Daniel Andrew Gideon
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| |
Collapse
|
9
|
Xiang J, Zhou L, He Y, Wu S. LDH-A inhibitors as remedies to enhance the anticancer effects of PARP inhibitors in ovarian cancer cells. Aging (Albany NY) 2021; 13:25920-25930. [PMID: 34919531 PMCID: PMC8751605 DOI: 10.18632/aging.203780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022]
Abstract
Ovarian cancer is one of the most lethal gynecologic malignancies. It has been shown that PARP inhibitors can selectively target BRCA-mutated ovarian cancer and exert some effects on ovarian cancer without BRCA mutations. However, the mechanism is still unclear. In this study, wild-type BRCA ovarian cancer cells (A2780 and SKOV3) were used. Our results showed that using a PARP inhibitor (olaparib or AG14361) alone significantly inhibited the proliferation of A2780 cells but negligibly inhibited the proliferation of SKOV3 cells. We used RNA sequencing to explore differentially expressed genes and found that PARP inhibitors increased LDH-A in SKOV3 cells, which was confirmed by RT-PCR. Oxamate (a specific inhibitor of LDH-A) was used to investigate whether LDH-A inhibition enhances the suppressive effects of PARP inhibitors on ovarian cancer without BRCA mutations. CCK-8 assays, scratch assays and Transwell assays were used to determine cell proliferation, cell migration ability and invasion ability, respectively. Both olaparib and AG14361 significantly inhibited the proliferation/invasion ability of A2780 cells but not SKOV3 cells. Inhibition of LDH-A can remarkably promote the inhibitory effects of PARP inhibitors on both A2780 and SKOV3 cells. Thus, high expression level of LDH-A influenced the suppressive effects of PARP inhibitors on ovarian cancer with wild-type BRCA, and LDH-A inhibition notably enhanced this effect.
Collapse
Affiliation(s)
- Jiangdong Xiang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Lina Zhou
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Yinyan He
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
10
|
Hou W, Liu C, Xia J, Niu H, Li S. Rapid screening and purification of potential inhibitors from Medicago sativa by ultrafiltration-liquid chromatography combined with stepwise flow rate counter-current chromatography. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:382-394. [PMID: 32893385 DOI: 10.1002/pca.2985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Medicago sativa contains flavonoids, saponins, coumarins, sterols, monoterpenes, and organic acids, with flavonoids being the main active constituents. Flavonoids naturally contain a 2-phenylchromone structure with antioxidant, free radical scavenging, cardiovascular, and trace estrogen-like effects. OBJECTIVE Screening and isolation of neuraminidase, lipoxidase, and lactate dehydrogenase inhibitors from M. sativa via ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) combined with stepwise flow rate counter-current chromatography (CCC). METHOD Utilising the medicinal plants M. sativa as the research objects and UF-LC-MS was used for activity screening followed by isolation and purification of the inhibitors by stepwise flow rate CCC. Finally, identification of the three active compounds was achieved by MS and nuclear magnetic resonance. RESULTS Three major compounds, viz. quercetin, genistein, and formononetin, were identified as potent neuraminidase, lipoxidase, and lactate dehydrogenase inhibitors, respectively. A two-phase solvent system of ethyl acetate/methanol/n-butanol/water (5.0:1.5:5.0:10; v/v/v/v) was subsequently selected for separation by stepwise flow rate CCC. CONCLUSION This novel approach based on UF-LC-MS and stepwise flow rate CCC represents a powerful tool for the screening and isolation of neuraminidase, lipoxidase, and lactate dehydrogenase inhibitors from complex matrices. Therefore, a useful platform for the large-scale production of bioactive and nutraceutical ingredients was developed herein.
Collapse
Affiliation(s)
- Wanchao Hou
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Jianli Xia
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Huazhou Niu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Sainan Li
- Central Laboratory, Changchun Normal University, Changchun, China
| |
Collapse
|
11
|
Prochownik EV, Wang H. The Metabolic Fates of Pyruvate in Normal and Neoplastic Cells. Cells 2021; 10:cells10040762. [PMID: 33808495 PMCID: PMC8066905 DOI: 10.3390/cells10040762] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023] Open
Abstract
Pyruvate occupies a central metabolic node by virtue of its position at the crossroads of glycolysis and the tricarboxylic acid (TCA) cycle and its production and fate being governed by numerous cell-intrinsic and extrinsic factors. The former includes the cell’s type, redox state, ATP content, metabolic requirements and the activities of other metabolic pathways. The latter include the extracellular oxygen concentration, pH and nutrient levels, which are in turn governed by the vascular supply. Within this context, we discuss the six pathways that influence pyruvate content and utilization: 1. The lactate dehydrogenase pathway that either converts excess pyruvate to lactate or that regenerates pyruvate from lactate for use as a fuel or biosynthetic substrate; 2. The alanine pathway that generates alanine and other amino acids; 3. The pyruvate dehydrogenase complex pathway that provides acetyl-CoA, the TCA cycle’s initial substrate; 4. The pyruvate carboxylase reaction that anaplerotically supplies oxaloacetate; 5. The malic enzyme pathway that also links glycolysis and the TCA cycle and generates NADPH to support lipid bio-synthesis; and 6. The acetate bio-synthetic pathway that converts pyruvate directly to acetate. The review discusses the mechanisms controlling these pathways, how they cross-talk and how they cooperate and are regulated to maximize growth and achieve metabolic and energetic harmony.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, UPMC, Pittsburgh, PA 15213, USA
- The Hillman Cancer Center, UPMC, Pittsburgh, PA 15213, USA
- The Pittsburgh Liver Research Center, Pittsburgh, PA 15260, USA
- Correspondence: ; Tel.: +1-(412)-692-6795
| | - Huabo Wang
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| |
Collapse
|
12
|
Prognostic significance of serum lactate dehydrogenase in patients undergoing radical cystectomy for bladder cancer. Urol Oncol 2020; 38:852.e1-852.e9. [PMID: 32624424 DOI: 10.1016/j.urolonc.2020.05.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/12/2020] [Accepted: 05/31/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND To investigate the prognostic significance of preoperative serum lactate dehydrogenase (LDH) in patients undergoing radical cystectomy for bladder cancer (BCa). PATIENTS AND METHODS A cohort of 263 patients undergoing open or laparoscopic radical cystectomy between 2011 and 2016 was studied. Baseline characteristics, hematological variables, follow-up data were collected. Kaplan-Meier curves and Cox proportional hazard regression model were applied to assess the relationship between LDH and overall survival (OS), cancer-specific survival (CSS), and disease-free survival (DFS). RESULTS After a median 34.2 (22.9-45.8) months follow-up, all-cause death, cancer-specific death, and disease recurrence occurred in 66 patients, 50 patients, and 91 patients. The elevation of serum LDH was associated with several unfavorable parameters, including advanced age, continent cutaneous urinary diversion, increased neutrophil-to-lymphocyte ratio, decreased lymphocyte-to-monocyte ratio. Patients with a higher serum LDH (> 220 U/L) had a worse OS (P < 0.001), CSS (P < 0.001) and DFS (P < 0.001). Multivariate Cox analysis suggested that elevated LDH was an independent predictor for OS (hazard ratio [HR]: 3.113, 95% confidence interval [CI]: 1.524-6.358; P = 0.002), CSS (HR: 4.564, 95% CI: 2.008-10.373; P < 0.001), DFS (HR: 2.051, 95% CI: 1.125-3.739; P = 0.019). Medical history of diabetes, high pT stage, and positive lymph node also were adverse predictors for oncological outcomes of BCa patients in multivariate analysis. CONCLUSIONS Preoperative serum LDH is an independent prognostic biomarker for OS, CSS, and DFS in patients undergoing radical cystectomy for BCa, which can be incorporated into prognostic models.
Collapse
|
13
|
Chiral Pyridine-3,5-bis- (L-phenylalaninyl-L-leucinyl) Schiff Base Peptides as Potential Anticancer Agents: Design, Synthesis, and Molecular Docking Studies Targeting Lactate Dehydrogenase-A. Molecules 2020; 25:molecules25051096. [PMID: 32121469 PMCID: PMC7179198 DOI: 10.3390/molecules25051096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
A series of branched tetrapeptide Schiff bases 3–6 were designed and synthesized from corresponding tetrapeptide hydrazide 2 as a starting material.In vitroevaluation of the synthesized compounds 4–6 against breast MCF-7 carcinoma cells identified their excellent anticancer potency, with IC50 ranging from 8.12 ± 0.14 to 17.55 ± 0.27 μM in comparison with the references, cisplatin and milaplatin (IC50= 13.34 ± 0.11and 18.43 ± 0.13 μM, respectively). Furthermore, all derivatives demonstrated promising activity upon evaluation of theirin vitroandin vivosuppression of p53 ubiquitination and inhibition assessment for LDHA kinase. Finally, molecular docking studies were performed to predict the possible binding features of the potent derivatives within the ATP pocket of LDHA in an attempt to get a lead for developing a more potent LDHA inhibitor with anti-proliferative potency.
Collapse
|
14
|
Rodríguez-García A, Morales ML, Garrido-García V, García-Baquero I, Leivas A, Carreño-Tarragona G, Sánchez R, Arenas A, Cedena T, Ayala RM, Bautista JM, Martínez-López J, Linares M. Protein Carbonylation in Patients with Myelodysplastic Syndrome: An Opportunity for Deferasirox Therapy. Antioxidants (Basel) 2019; 8:E508. [PMID: 31652983 PMCID: PMC6912333 DOI: 10.3390/antiox8110508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022] Open
Abstract
Control of oxidative stress in the bone marrow (BM) is key for maintaining the interplay between self-renewal, proliferation, and differentiation of hematopoietic cells. Breakdown of this regulation can lead to diseases characterized by BM failure such as the myelodysplastic syndromes (MDS). To better understand the role of oxidative stress in MDS development, we compared protein carbonylation as an indicator of oxidative stress in the BM of patients with MDS and control subjects, and also patients with MDS under treatment with the iron chelator deferasirox (DFX). As expected, differences in the pattern of protein carbonylation were observed in BM samples between MDS patients and controls, with an increase in protein carbonylation in the former. Strikingly, patients under DFX treatment had lower levels of protein carbonylation in BM with respect to untreated patients. Proteomic analysis identified four proteins with high carbonylation levels in MDS BM cells. Finally, as oxidative stress-related signaling pathways can modulate the cell cycle through p53, we analyzed the expression of the p53 target gene p21 in BM cells, finding that it was significantly upregulated in patients with MDS and was significantly downregulated after DFX treatment. Overall, our results suggest that the fine-tuning of oxidative stress levels in the BM of patients with MDS might control malignant progression.
Collapse
Affiliation(s)
- Alba Rodríguez-García
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - María Luz Morales
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Vanesa Garrido-García
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Irene García-Baquero
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Alejandra Leivas
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Gonzalo Carreño-Tarragona
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Ricardo Sánchez
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Alicia Arenas
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Teresa Cedena
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Rosa María Ayala
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - José M Bautista
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain.
| | - Joaquín Martínez-López
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
- Department of Medicine, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain.
| | - María Linares
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain.
| |
Collapse
|
15
|
Long G, Tang W, Fu X, Liu D, Zhang L, Hu G, Hu G, Sun W. Pre-treatment Serum Lactate Dehydrogenase Predicts Distant Metastasis and Poor Survival in Nasopharyngeal Carcinoma. J Cancer 2019; 10:3657-3664. [PMID: 31333783 PMCID: PMC6636291 DOI: 10.7150/jca.32716] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Pre-treatment serum lactate dehydrogenase (LDH) has emerged as prognostic factor for many cancers. In this study, we evaluated the value of LDH in predicting distant metastasis and poor survival for patients with nasopharyngeal carcinoma (NPC). Methods: Clinical data from 172 non-metastatic NPC patients were retrospectively collected and serum LDH levels were routinely measured before treatment. The independent-samples t test was used to calculate differences between serum LDH levels from the various patient groups. Receiver-operating characteristic (ROC) curve analysis was performed to select the optimal cutoff points. The Kaplan-Meier method and log-rank test were adopted to calculate and compare the distant metastasis free survival (DMFS) and overall survival (OS) rates. The Cox proportional hazards model was used to carry out univariate and multivariate analyses. Results: NPC patients progressed with distant metastasis often have higher pre-treatment serum LDH levels than those did not develop distant metastasis (mean LDH level was 237.1U/L and 108.8U/L, respectively, p=0.001). Elevated LDH level was identified as an independent prognostic factor for poor DMFS (hazard ratio (HR), 8.31; 95% confidence interval (CI), 2.44-28.32; p=0.001) and OS (HR, 4.45; 95% CI, 1.77-11.21; p=0.002). Moreover, subgroup analyses revealed significant associations between serum LDH level and worse survival in advanced stage patients. Conclusions: Pre-treatment serum LDH level can predict distant metastasis and associate with the poor survival in patients with NPC.
Collapse
Affiliation(s)
- Guoxian Long
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan 430030, People's Republic of China
| | - Wenhua Tang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan 430030, People's Republic of China
| | - Xiugen Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan 430030, People's Republic of China
| | - DongBo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan 430030, People's Republic of China
| | - LinLi Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan 430030, People's Republic of China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan 430030, People's Republic of China
| | - Guoqing Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan 430030, People's Republic of China
| | - Wei Sun
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan 430030, People's Republic of China
| |
Collapse
|
16
|
Schruf E, Schroeder V, Kuttruff CA, Weigle S, Krell M, Benz M, Bretschneider T, Holweg A, Schuler M, Frick M, Nicklin P, Garnett JP, Sobotta MC. Human lung fibroblast-to-myofibroblast transformation is not driven by an LDH5-dependent metabolic shift towards aerobic glycolysis. Respir Res 2019; 20:87. [PMID: 31072408 PMCID: PMC6507142 DOI: 10.1186/s12931-019-1058-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a fatal respiratory disease characterized by aberrant fibroblast activation and progressive fibrotic remodelling of the lungs. Though the exact pathophysiological mechanisms of IPF remain unknown, TGF-β1 is thought to act as a main driver of the disease by mediating fibroblast-to-myofibroblast transformation (FMT). Recent reports have indicated that a metabolic shift towards aerobic glycolysis takes place during FMT and that metabolic shifts can directly influence aberrant cell function. This has led to the hypothesis that inhibition of lactate dehydrogenase 5 (LDH5), an enzyme responsible for converting pyruvate into lactate, could constitute a therapeutic concept for IPF. METHODS In this study, we investigated the potential link between aerobic glycolysis and FMT using a potent LDH5 inhibitor (Compound 408, Genentech). Seahorse analysis was performed to determine the effect of Compound 408 on TGF-β1-driven glycolysis in WI-38 fibroblasts. TGF-β1-mediated FMT was measured by quantifying α-smooth muscle actin (α-SMA) and fibronectin in primary human lung fibroblasts following treatment with Compound 408. Lactate and pyruvate levels in the cell culture supernatant were assessed by LC-MS/MS. In addition to pharmacological LDH5 inhibition, the effect of siRNA-mediated knockdown of LDHA and LDHB on FMT was examined. RESULTS We show that treatment of lung fibroblasts with Compound 408 efficiently inhibits LDH5 and attenuates the TGF-β1-mediated metabolic shift towards aerobic glycolysis. Additionally, we demonstrate that LDH5 inhibition has no significant effect on TGF-β1-mediated FMT in primary human lung fibroblasts by analysing α-SMA fibre formation and fibronectin expression. CONCLUSIONS Our data strongly suggest that while LDH5 inhibition can prevent metabolic shifts in fibroblasts, it has no influence on FMT and therefore glycolytic dysregulation is unlikely to be the sole driver of FMT.
Collapse
Affiliation(s)
- Eva Schruf
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Victoria Schroeder
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Christian A Kuttruff
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany.,Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Sabine Weigle
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany.,Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Martin Krell
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Maryke Benz
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Tom Bretschneider
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Alexander Holweg
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Michael Schuler
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Manfred Frick
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany.,Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Paul Nicklin
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - James P Garnett
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany.
| | - Mirko C Sobotta
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany.
| |
Collapse
|
17
|
Korga A, Ostrowska M, Jozefczyk A, Iwan M, Wojcik R, Zgorka G, Herbet M, Vilarrubla GG, Dudka J. Apigenin and hesperidin augment the toxic effect of doxorubicin against HepG2 cells. BMC Pharmacol Toxicol 2019; 20:22. [PMID: 31053173 PMCID: PMC6499973 DOI: 10.1186/s40360-019-0301-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 04/11/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies, with an increasing incidence. Despite the fact that systematic chemotherapy with a doxorubicin provides only marginal improvements in survival of the HCC patients, the doxorubicin is being used in transarterial therapies or combined with the target drug - sorafenib. The aim of the study was to evaluate the effect of natural flavonoids on the cytotoxicity of the doxorubicin against human hepatocellular carcinoma cell line HepG2. METHODS The effect of apigenin and its glycosides - cosmosiin, rhoifolin; baicalein and its glycosides - baicalin as well as hesperetin and its glycosides - hesperidin on glycolytic genes expression of HepG2 cell line, morphology and cells' viability at the presence of doxorubicin have been tested. In an attempt to elucidate the mechanism of observed results, the fluorogenic probe for reactive oxygen species (ROS), the DNA oxidative damage, the lipid peroxidation and the double strand breaks were evaluated. To assess impact on the glycolysis pathway, the mRNA expression for a hexokinase 2 (HK2) and a lactate dehydrogenase A (LDHA) enzymes were measured. The results were analysed statistically with the one-way analysis of variance (ANOVA) and post hoc multiple comparisons. RESULTS The apigenin and the hesperidin revealed the strongest effect on the toxicity of doxorubicin. Both flavonoids simultaneously changed the expression of the glycolytic pathway genes - HK2 and LDHA, which play a key role in the Warburg effect. Although separate treatment with doxorubicin, apigenin and hesperidin led to a significant oxidative DNA damage and double strand breaks, simultaneous administration of doxorubicin and apigenin or hesperidin abolished these damage with the simultaneous increase in the doxorubicin toxicity. CONCLUSION The obtained results indicate the existence of a very effective cytotoxic mechanism in the HepG2 cells of the combined effect of doxorubicin and apigenin (or hesperidin), not related to the oxidative stress. To explain this synergy mechanism, further research is needed, The observed intensification of the cytotoxic effect of doxorubicin by this flavonoids may be a promising direction of the research on the therapy of hepatocellular carcinoma, especially in a chemoembolization.
Collapse
Affiliation(s)
- Agnieszka Korga
- Independent Medical Biology Unit, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland
| | - Marta Ostrowska
- Department of Toxicology, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland
| | - Aleksandra Jozefczyk
- Department of Pharmacognosy with Medicinal Plant Laboratory, Medical University of Lublin, 1 Chodzko Street, 20-093 Lublin, Poland
| | - Magdalena Iwan
- Independent Medical Biology Unit, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland
| | - Rafal Wojcik
- Department of Human Anatomy, Medical University of Lublin, 4 Jaczewski Street, 20-090 Lublin, Poland
| | - Grazyna Zgorka
- Department of Pharmacognosy with Medicinal Plant Laboratory, Medical University of Lublin, 1 Chodzko Street, 20-093 Lublin, Poland
| | - Mariola Herbet
- Department of Toxicology, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland
| | - Gemma Gomez Vilarrubla
- Independent Medical Biology Unit, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland
| | - Jaroslaw Dudka
- Department of Toxicology, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland
| |
Collapse
|
18
|
Liu D, Wang D, Wu C, Zhang L, Mei Q, Hu G, Long G, Sun W. Prognostic significance of serum lactate dehydrogenase in patients with breast cancer: a meta-analysis. Cancer Manag Res 2019; 11:3611-3619. [PMID: 31118783 PMCID: PMC6497911 DOI: 10.2147/cmar.s199260] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/21/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Multiple studies have assessed the prognostic significance of serum lactate dehydrogenase (LDH) in patients with breast cancer, but their results remain controversial. This study aimed to evaluate the prognostic value of LDH in breast cancer by meta-analysis. Methods: Electronic searches for relevant articles were conducted in PubMed, Embase and Web of Science databases. The HR and their 95% CI were used to assess the prognostic value of serum LDH. Stata Statistical Software 12.0 was applied for statistical analysis. Results: A total of 11 studies involving 6,102 patients were subjected to final analysis. Our results showed that higher serum LDH had significant effect on poor overall survival (HR, 1.88; 95% CI, 1.68–2.11) and progression-free survival (HR, 1.98; 95% CI, 1.46–2.68). Moreover, the results of subgroup analyses were consistent with that of overall outcomes. No significant heterogeneity and publication bias were found in this study. Conclusion: Serum LDH could act as a prognostic factor for patients with breast cancer. Future data are needed to validate and update our results.
Collapse
Affiliation(s)
- Dongbo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Cheng Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Linli Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Guoxian Long
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Wei Sun
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| |
Collapse
|
19
|
Wang F, Jia Y, Li M, Wang L, Shao J, Guo Q, Tan S, Ding H, Chen A, Zhang F, Zheng S. Blockade of glycolysis-dependent contraction by oroxylin a via inhibition of lactate dehydrogenase-a in hepatic stellate cells. Cell Commun Signal 2019; 17:11. [PMID: 30744642 PMCID: PMC6371416 DOI: 10.1186/s12964-019-0324-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/04/2019] [Indexed: 12/29/2022] Open
Abstract
Background Contraction of hepatic stellate cells (HSCs) plays an important role in the pathogenesis of liver fibrosis by regulating sinusoidal blood flow and extracellular matrix remodeling. Here, we investigated how HSC contraction was affected by the natural compound oroxylin A, and elucidated the underlying mechanism. Methods Cell contraction and glycolysis were examined in cultured human HSCs and mouse liver fibrosis model upon oroxylin A intervention using diversified cellular and molecular assays, as well as genetic approaches. Results Oroxylin A limited HSC contraction associated with inhibiting myosin light chain 2 phosphorylation. Oroxylin A blocked aerobic glycolysis in HSCs evidenced by reduction in glucose uptake and consumption and lactate production. Oroxylin A also decreased extracellular acidification rate and inhibited the expression and activity of glycolysis rate-limiting enzymes (hexose kinase 2, phosphofructokinase 1 and pyruvate kinas type M2) in HSCs. Then, we identified that oroxylin A blockade of aerobic glycolysis contributed to inhibition of HSC contraction. Furthermore, oroxylin A inhibited the expression and activity of lactate dehydrogenase-A (LDH-A) in HSCs, which was required for oroxylin A blockade of glycolysis and suppression of contraction. Oral administration of oroxylin A at 40 mg/kg reduced liver injury and fibrosis, and inhibited HSC glycolysis and contraction in mice with carbon tetrachloride-induced hepatic fibrosis. However, adenovirus-mediated overexpression of LDH-A significantly counteracted the oroxylin A’s effects in fibrotic mice. Conclusions Blockade of aerobic glycolysis by oroxylin A via inhibition of LDH-A reduced HSC contraction and attenuated liver fibrosis, suggesting LDH-A as a promising target for intervention of hepatic fibrosis. Electronic supplementary material The online version of this article (10.1186/s12964-019-0324-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan Jia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengmeng Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ling Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qinglong Guo
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, China
| | - Shanzhong Tan
- The Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Hai Ding
- The Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
20
|
Altamimi AMS, Alafeefy AM, Balode A, Vozny I, Pustenko A, El Shikh ME, Alasmary FAS, Abdel-Gawad SA, Žalubovskis R. Symmetric molecules with 1,4-triazole moieties as potent inhibitors of tumour-associated lactate dehydrogenase-A. J Enzyme Inhib Med Chem 2018; 33:147-150. [PMID: 29199484 PMCID: PMC6009863 DOI: 10.1080/14756366.2017.1404593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/26/2022] Open
Abstract
A series of symmetric molecules incorporating aryl or pyridyl moieties as central core and 1,4-substituted triazoles as a side bridge was synthesised. The new compounds were investigated as lactate dehydro-genase (LDH, EC 1.1.1.27) inhibitors. The cancer associated LDHA isoform was inhibited with IC50 = 117-174 µM. Seven compounds exhibited better LDHA inhibition (IC50 117-136 µM) compared to known LDH inhibitor - galloflavin (IC50 157 µM).
Collapse
Affiliation(s)
- Abdul-Malek S. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ahmed M. Alafeefy
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia
| | - Agnese Balode
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Igor Vozny
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Aleksandrs Pustenko
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Mohey Eldin El Shikh
- Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Fatmah A. S. Alasmary
- Chemistry Department, College of Science, King Saud University, Saudi Arabia, Riyadh
| | - Sherif A. Abdel-Gawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | |
Collapse
|
21
|
Nadeem MS, Al-Ghamdi MA, Khan JA, Sadath S, Al-Malki A. Recombinant production and biochemical and in silico characterization of lactate dehydrogenase from Geobacillus thermodenitrificans DSM-465. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
22
|
Vitamin K: Redox-modulation, prevention of mitochondrial dysfunction and anticancer effect. Redox Biol 2018; 16:352-358. [PMID: 29597144 PMCID: PMC5953218 DOI: 10.1016/j.redox.2018.03.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 12/21/2022] Open
Abstract
This review is directed to the redox-modulating properties and anticancer effect of vitamin K. The concept is focused on two aspects: (i) redox-cycle of vitamin K and its effect on the calcium homeostasis, “oncogenic” and “onco-suppressive” reactive oxygen species and the specific induction of oxidative stress in cancer; (ii) vitamin K plus C as a powerful redox-system, which forms a bypass between mitochondrial complexes II and III and thus prevents mitochondrial dysfunction, restores oxidative phosphorylation and aerobic glycolysis, modulates the redox-state of endogenous redox-pairs, eliminates the hypoxic environment of cancer cells and induces cell death. The analyzed data suggest that vitamin C&K can sensitize cancer cells to conventional chemotherapy, which allows achievement of a lower effective dose of the drug and minimizing the harmful side-effects. The review is intended for a wide audience of readers - from students to specialists in the field.
Collapse
|
23
|
When will small molecule lactate dehydrogenase inhibitors realize their potential in the cancer clinic? Future Med Chem 2017; 9:1113-1115. [PMID: 28722474 DOI: 10.4155/fmc-2017-0082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
24
|
Abstract
Mitochondria play a key role in ATP generation, redox homeostasis and regulation of apoptosis. Due to the essential role of mitochondria in metabolism and cell survival, targeting mitochondria in cancer cells is considered as an attractive therapeutic strategy. However, metabolic flexibility in cancer cells may enable the upregulation of compensatory pathways, such as glycolysis to support cancer cell survival when mitochondrial metabolism is inhibited. Thus, compounds capable of both targeting mitochondria and inhibiting glycolysis may be particularly useful to overcome such drug-resistant mechanism. This review provides an update on recent development in the field of targeting mitochondria and novel compounds that impact mitochondria, glycolysis or both. Key challenges in this research area and potential solutions are also discussed.
Collapse
|
25
|
Falco M, Palma G, Rea D, De Biase D, Scala S, D'Aiuto M, Facchini G, Perdonà S, Barbieri A, Arra C. Tumour biomarkers: homeostasis as a novel prognostic indicator. Open Biol 2016; 6:160254. [PMID: 27927793 PMCID: PMC5204124 DOI: 10.1098/rsob.160254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/10/2016] [Indexed: 12/15/2022] Open
Abstract
The term 'personalized medicine' refers to a medical procedure that consists in the grouping of patients based on their predicted individual response to therapy or risk of disease. In oncologic patients, a 'tailored' therapeutic approach may potentially improve their survival and well-being by not only reducing the tumour, but also enhancing therapeutic response and minimizing the adverse effects. Diagnostic tests are often used to select appropriate and optimal therapies that rely both on patient genome and other molecular/cellular analysis. Several studies have shown that lifestyle and environmental factors can influence the epigenome and that epigenetic events may be involved in carcinogenesis. Thus, in addition to traditional biomarkers, epigenetic factors are raising considerable interest, because they could potentially be used as an excellent tool for cancer diagnosis and prognosis. In this review, we summarize the role of conventional cancer genetic biomarkers and their association with epigenomics. Furthermore, we will focus on the so-called 'homeostatic biomarkers' that result from the physiological response to cancer, emphasizing the concept that an altered 'new' homeostasis influence not only tumour environment, but also the whole organism.
Collapse
Affiliation(s)
- Michela Falco
- Struttura Semplice Dipartimentale Sperimentazione Animale, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Via Mariano Semmola, 80131 Naples, Italy
| | - Giuseppe Palma
- Struttura Semplice Dipartimentale Sperimentazione Animale, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Via Mariano Semmola, 80131 Naples, Italy
| | - Domenica Rea
- Struttura Semplice Dipartimentale Sperimentazione Animale, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Via Mariano Semmola, 80131 Naples, Italy
| | - Davide De Biase
- Department of Veterinary Medicine and Animal Production, University of Naples 'Federico II', Via Delpino 1, 80137 Naples, Italy
| | - Stefania Scala
- Molecular lmmunology and Immuneregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS Naples 'Fondazione G. Pascale', Naples, italy, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Via Mariano Semmola, 80131 Naples, Italy
| | - Massimiliano D'Aiuto
- Division of Breast Surgery, Department of Breast Disease, National Cancer Institute, IRCCS, 'Fondazione Pascale', Naples, Italy
| | - Gaetano Facchini
- Division of Medical Oncology, Department of Uro-Gynaecological Oncology, , Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione G. Pascale', IRCCS, 80131 Naples, Italy
| | - Sisto Perdonà
- Department of Urology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione G. Pascale', IRCCS, 80131 Naples, Italy
| | - Antonio Barbieri
- Struttura Semplice Dipartimentale Sperimentazione Animale, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Via Mariano Semmola, 80131 Naples, Italy
| | - Claudio Arra
- Struttura Semplice Dipartimentale Sperimentazione Animale, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Via Mariano Semmola, 80131 Naples, Italy
| |
Collapse
|