1
|
Wang X, Wu Z, Liu Y, Wu C, Jiang J, Hashimoto K, Zhou X. The role of thyroid-stimulating hormone in regulating lipid metabolism: Implications for body-brain communication. Neurobiol Dis 2024; 201:106658. [PMID: 39236910 DOI: 10.1016/j.nbd.2024.106658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
Thyroid-stimulating hormone (TSH) is a pituitary hormone that stimulates the thyroid gland to produce and release thyroid hormones, primarily thyroxine and triiodothyronine. These hormones are key players in body-brain communication, influencing various physiological processes, including the regulation of metabolism (both peripheral and central effects), feedback mechanisms, and lipid metabolism. Recently, the increasing incidence of abnormal lipid metabolism has highlighted the link between thyroid function and lipid metabolism. Evidence suggests that TSH can affect all bodily systems through body-brain communication, playing a crucial role in growth, development, and the regulation of various physiological systems. Lipids serve dual purposes: they are involved in energy storage and metabolism, and they act as vital signaling molecules in numerous cellular activities, maintaining overall human health or contributing to various diseases. This article reviews the role of TSH in regulating lipid metabolism via body-brain crosstalk, focusing on its implications for common lipid metabolism disorders such as obesity, atherosclerosis, nonalcoholic fatty liver disease, neuropsychiatric disorders (including Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, and depression), and cerebrovascular disorders such as stroke.
Collapse
Affiliation(s)
- Xueqin Wang
- Department of Thyroid Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhen Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuting Liu
- Department of Thyroid Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chengxi Wu
- Department of Thyroid Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Jiang
- Department of Thyroid Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xiangyu Zhou
- Department of Thyroid Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
2
|
Alomair BM, Al-Kuraishy HM, Al-Gareeb AI, Alshammari MA, Alexiou A, Papadakis M, Saad HM, Batiha GES. Increased thyroid stimulating hormone (TSH) as a possible risk factor for atherosclerosis in subclinical hypothyroidism. Thyroid Res 2024; 17:13. [PMID: 38880884 PMCID: PMC11181570 DOI: 10.1186/s13044-024-00199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Primary hypothyroidism (PHT) is associated with an increased risk for the development of atherosclerosis (AS) and other cardiovascular disorders. PHT induces atherosclerosis (AS) through the induction of endothelial dysfunction, and insulin resistance (IR). PHT promotes vasoconstriction and the development of hypertension. However, patients with subclinical PHT with normal thyroid hormones (THs) are also at risk for cardiovascular complications. In subclinical PHT, increasing thyroid stimulating hormone (TSH) levels could be one of the causative factors intricate in the progression of cardiovascular complications including AS. Nevertheless, the mechanistic role of PHT in AS has not been fully clarified in relation to increased TSH. Therefore, in this review, we discuss the association between increased TSH and AS, and how increased TSH may be involved in the pathogenesis of AS. In addition, we also discuss how L-thyroxine treatment affects the development of AS.
Collapse
Affiliation(s)
- Basil Mohammed Alomair
- Assistant Professor, Internal Medicine and Endocrinology, Department of Medicine, College of Medicine, Jouf University, Sakakah, 04631, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majed Ayed Alshammari
- Department of Medicine, Prince Mohammed Bin Abdulaziz Medical City, Al Jouf-Sakkaka, 42421, Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, Vienna, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, 2770, NSW, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal, 42283, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
3
|
Labetoulle M, Baudouin C, Benitez Del Castillo JM, Rolando M, Rescigno M, Messmer EM, Aragona P. How gut microbiota may impact ocular surface homeostasis and related disorders. Prog Retin Eye Res 2024; 100:101250. [PMID: 38460758 DOI: 10.1016/j.preteyeres.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Changes in the bacterial flora in the gut, also described as gut microbiota, are readily acknowledged to be associated with several systemic diseases, especially those with an inflammatory, neuronal, psychological or hormonal factor involved in the pathogenesis and/or the perception of the disease. Maintaining ocular surface homeostasis is also based on all these four factors, and there is accumulating evidence in the literature on the relationship between gut microbiota and ocular surface diseases. The mechanisms involved are mostly interconnected due to the interaction of central and peripheral neuronal networks, inflammatory effectors and the hormonal system. A better understanding of the influence of the gut microbiota on the maintenance of ocular surface homeostasis, and on the onset or persistence of ocular surface disorders could bring new insights and help elucidate the epidemiology and pathology of ocular surface dynamics in health and disease. Revealing the exact nature of these associations could be of paramount importance for developing a holistic approach using highly promising new therapeutic strategies targeting ocular surface diseases.
Collapse
Affiliation(s)
- Marc Labetoulle
- Ophthalmology Départment, Hopital Bicetre, APHP, Université Paris-Saclay, IDMIT Infrastructure, Fontenay-aux-Roses Cedex, France; Hôpital National de la Vision des Quinze, Vingts, IHU ForeSight, Paris Saclay University, Paris, France.
| | - Christophe Baudouin
- Hôpital National de la Vision des Quinze, Vingts, IHU ForeSight, Paris Saclay University, Paris, France
| | - Jose M Benitez Del Castillo
- Departamento de Oftalmología, Hospital Clínico San Carlos, Clínica Rementeria, Instituto Investigaciones Oftalmologicas Ramon Castroviejo, Universidad Complutense, Madrid, Spain
| | - Maurizio Rolando
- Ocular Surface and Dry Eye Center, ISPRE Ophthalmics, Genoa, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, 20090, MI, Italy
| | | | - Pasquale Aragona
- Department of Biomedical Sciences, Ophthalmology Clinic, University of Messina, Messina, Italy
| |
Collapse
|
4
|
Abstract
The human microbiome plays an integral role in health. In particular, it is important for the development, differentiation, and maturation of the immune system, 70% of which resides in the intestinal mucosa. Microbiome studies conducted to date have revealed an association between disturbances in the microbiota (dysbiosis) and various pathological disorders, including changes in host immune status. Autoimmune thyroid diseases are one of the most common organ-specific autoimmune disorders, with a worldwide prevalence higher than 5%. The predominant autoimmune thyroid diseases are Hashimoto's thyroiditis and Grave's disease. Several factors, such as genetic and environmental ones, have been studied. In accordance with recent studies, it is assumed that the gut microbiome might play a significant role in triggering autoimmune diseases of the thyroid gland. However, the exact etiology has not yet been elucidated. The present review aims to describe the work carried out so far regarding the role of gut microflora in the pathogenesis of autoimmune thyroid diseases and its involvement in the appearance of benign nodules and papillary thyroid cancer. It appears that future work is needed to elucidate more precisely the mechanism for gut microbiota involvement in the development of autoimmune thyroid diseases.
Collapse
Affiliation(s)
- Ioannis Legakis
- Endocrinology and Metabolism, European University Cyprus, Nicosia, Cyprus
| | - George P Chrousos
- First Department of Pediatrics, University of Athens Medical School, Aghia Sophia Children's Hospital, Athens, Greece
| | | |
Collapse
|
5
|
Hepatic Energy Metabolism under the Local Control of the Thyroid Hormone System. Int J Mol Sci 2023; 24:ijms24054861. [PMID: 36902289 PMCID: PMC10002997 DOI: 10.3390/ijms24054861] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The energy homeostasis of the organism is orchestrated by a complex interplay of energy substrate shuttling, breakdown, storage, and distribution. Many of these processes are interconnected via the liver. Thyroid hormones (TH) are well known to provide signals for the regulation of energy homeostasis through direct gene regulation via their nuclear receptors acting as transcription factors. In this comprehensive review, we summarize the effects of nutritional intervention like fasting and diets on the TH system. In parallel, we detail direct effects of TH in liver metabolic pathways with regards to glucose, lipid, and cholesterol metabolism. This overview on hepatic effects of TH provides the basis for understanding the complex regulatory network and its translational potential with regards to currently discussed treatment options of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) involving TH mimetics.
Collapse
|
6
|
Shao F, Li R, Guo Q, Qin R, Su W, Yin H, Tian L. Plasma Metabolomics Reveals Systemic Metabolic Alterations of Subclinical and Clinical Hypothyroidism. J Clin Endocrinol Metab 2022; 108:13-25. [PMID: 36181451 PMCID: PMC9759175 DOI: 10.1210/clinem/dgac555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/01/2022] [Indexed: 02/03/2023]
Abstract
CONTEXT Clinical hypothyroidism (CH) and subclinical hypothyroidism (SCH) have been linked to various metabolic comorbidities but the underlying metabolic alterations remain unclear. Metabolomics may provide metabolic insights into the pathophysiology of hypothyroidism. OBJECTIVE We explored metabolic alterations in SCH and CH and identify potential metabolite biomarkers for the discrimination of SCH and CH from euthyroid individuals. METHODS Plasma samples from a cohort of 126 human subjects, including 45 patients with CH, 41 patients with SCH, and 40 euthyroid controls, were analyzed by high-resolution mass spectrometry-based metabolomics. Data were processed by multivariate principal components analysis and orthogonal partial least squares discriminant analysis. Correlation analysis was performed by a Multivariate Linear Regression analysis. Unbiased Variable selection in R algorithm and 3 machine learning models were utilized to develop prediction models based on potential metabolite biomarkers. RESULTS The plasma metabolomic patterns in SCH and CH groups were significantly different from those of control groups, while metabolite alterations between SCH and CH groups were dramatically similar. Pathway enrichment analysis found that SCH and CH had a significant impact on primary bile acid biosynthesis, steroid hormone biosynthesis, lysine degradation, tryptophan metabolism, and purine metabolism. Significant associations for 65 metabolites were found with levels of thyrotropin, free thyroxine, thyroid peroxidase antibody, or thyroglobulin antibody. We successfully selected and validated 17 metabolic biomarkers to differentiate 3 groups. CONCLUSION SCH and CH have significantly altered metabolic patterns associated with hypothyroidism, and metabolomics coupled with machine learning algorithms can be used to develop diagnostic models based on selected metabolites.
Collapse
Affiliation(s)
| | | | - Qian Guo
- Department of Endocrinology (Cadre Ward 3), Gansu Provincial Hospital, Lanzhou, Gansu 730099, China
- Clinical Research Center for Metabolic Disease, Gansu Province. 204 Donggang West Road, Lanzhou, Gansu 730099, China
| | - Rui Qin
- Clinical Research Center for Metabolic Disease, Gansu Province. 204 Donggang West Road, Lanzhou, Gansu 730099, China
| | - Wenxiu Su
- Clinical Research Center for Metabolic Disease, Gansu Province. 204 Donggang West Road, Lanzhou, Gansu 730099, China
| | - Huiyong Yin
- Correspondence: Limin Tian, M.D., The First School of Clinical Medicine, Lanzhou University, Gansu Provincial Hospital, Donggang West Road, 730030, Lanzhou, Gansu, China. ; Huiyong Yin, Ph.D., Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China 200031.
| | - Limin Tian
- Correspondence: Limin Tian, M.D., The First School of Clinical Medicine, Lanzhou University, Gansu Provincial Hospital, Donggang West Road, 730030, Lanzhou, Gansu, China. ; Huiyong Yin, Ph.D., Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China 200031.
| |
Collapse
|
7
|
Su X, Chen X, Wang B. Relationship between the development of hyperlipidemia in hypothyroidism patients. Mol Biol Rep 2022; 49:11025-11035. [PMID: 36097119 DOI: 10.1007/s11033-022-07423-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022]
Abstract
As shown in the previous studies, hypothyroidism (HT) is identified to be closely associated with the elevated plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and with the decreased plasma levels of high density lipoprotein cholesterol (HDL-C). On the other hand, the thyroid hormone (TH), which has been considered as a vital hormone produced and released by the thyroid gland, are well-established to regulate the metabolism of plasma TC; whereas other evidence proposed that the thyroid-stimulating hormone (TSH) also regulated the plasma cholesterol metabolism independently of the TH, which further promotes the progression of hyperlipidemia. Nevertheless, the potential mechanism is still not illustrated. It is worth noting that several studies has found that the progression of HT-induced hyperlipidemia might be associated with the down-regulated plasma levels of TH and the up-regulated plasma levels of TSH, revealing that HT could promote hyperlipidemia and its related cardio-metabolic disorders. Otherwise, multiple novel identified plasma proteins, such as proprotein convertase subtilisin/kexin type 9 (PCSK9), angiopoietin-like protein (ANGPTLs), and fibroblast growth factors (FGFs), have also been demonstrated to embrace a vital function in modulating the progression of hyperlipidemia induced by HT. In the present comprehensive review, the recent findings which elucidated the association of HT and the progression of hyperlipidemia were summarized. Furthermore, other results which illustrated the underlying mechanisms by which HT facilitates the progression of hyperlipidemia and its cardio-metabolic disorders are also listed in the current review.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, 361000, Xiamen, Fujian, China
| | - Xiang Chen
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, 361000, Xiamen, Fujian, China.
| | - Bin Wang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, 361000, Xiamen, Fujian, China.
| |
Collapse
|
8
|
Liu H, Peng D. Update on dyslipidemia in hypothyroidism: the mechanism of dyslipidemia in hypothyroidism. Endocr Connect 2022; 11:e210002. [PMID: 35015703 PMCID: PMC8859969 DOI: 10.1530/ec-21-0002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 11/18/2022]
Abstract
Hypothyroidism is often associated with elevated serum levels of total cholesterol, LDL-C and triglycerides. Thyroid hormone (TH) affects the production, clearance and transformation of cholesterol, but current research shows that thyroid-stimulating hormone (TSH) also participates in lipid metabolism independently of TH. Therefore, the mechanism of hypothyroidism-related dyslipidemia is associated with the decrease of TH and the increase of TSH levels. Some newly identified regulatory factors, such as proprotein convertase subtilisin/kexin type 9, angiogenin-like proteins and fibroblast growth factors are the underlying causes of dyslipidemia in hypothyroidism. HDL serum concentration changes were not consistent, and its function was reportedly impaired. The current review focuses on the updated understanding of the mechanism of hypothyroidism-related dyslipidemia.
Collapse
Affiliation(s)
- Huixing Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Correspondence should be addressed to D Peng:
| |
Collapse
|
9
|
Li J, Xu Y, Cai Y, Zhang M, Sun Z, Ban Y, Zhai S, Hao Y, Ouyang Q, Wu B, Wang M, Wang W. Association of Differential Metabolites With Small Intestinal Microflora and Maternal Outcomes in Subclinical Hypothyroidism During Pregnancy. Front Cell Infect Microbiol 2022; 11:779659. [PMID: 35071037 PMCID: PMC8777023 DOI: 10.3389/fcimb.2021.779659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Objective To investigate the association of differential metabolites with small intestinal microflora and maternal outcomes in subclinical hypothyroidism (SCH) during pregnancy. Methods The plasma of pregnant women in the SCH group and control group was analyzed by liquid chromatography-mass spectrometry (LC-MS), obtaining differential metabolites. Then, methane and hydrogen breath tests were performed in both groups, and basic clinical data and maternal outcome information were collected. Finally, differential metabolites were analyzed for small intestinal bacterial overgrowth (SIBO) and pregnancy outcomes using Spearman correlation analysis. Results (1) Multivariate statistics: There were 564 different metabolites in positive ion mode and 226 different metabolites in negative ion mode. (2) The positive rate of the methane hydrogen breath test in the SCH group was higher than that in the control group (p<0.05). (3) KEGG pathway analysis revealed that differential metabolites were mainly involved in bile secretion, cholesterol metabolism, and other pathways. (4) Serum cholesterol (TC) and triglyceride (TG) levels and hypertensive disorder complicating pregnancy (HDCP) were higher in the SCH group (p<0.05), and newborn birth weight (BW) was lower than that in the control group (p<0.05). (5) SIBO was negatively correlated with glycocholic acid and BW, and positively correlated with TC. Glycocholic acid was negatively correlated with TG but positively correlated with BW. TG was positively correlated with HDCP. Conclusion Differential metabolites in the SCH group during pregnancy were disordered with small intestinal bacteria, which may affect pregnancy outcomes, and bile acids and cholesterol may be potential biomarkers for studying their mechanism of action.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajuan Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjun Cai
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Miao Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjie Ban
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanshan Zhai
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingqi Hao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Ouyang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Wu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengqi Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wentao Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Abstract
As the gut microbiota exerts various effects on the intestinal milieu which influences distant organs and pathways, it is considered to be a full-fledged endocrine organ. The microbiota plays a major role in the reproductive endocrine system throughout a woman's lifetime by interacting with estrogen, androgens, insulin, and other hormones. Imbalance of the gut microbiota composition can lead to several diseases and conditions, such as pregnancy complications, adverse pregnancy outcomes, polycystic ovary syndrome (PCOS), endometriosis, and cancer; however, research on the mechanisms is limited. More effort should be concentrated on exploring the potential causes and underlying the mechanisms of microbiota-hormone-mediated disease, and providing novel therapeutic and preventive strategies.As the gut microbiota exerts various effects on the intestinal milieu which influences distant organs and pathways, it is considered to be a full-fledged endocrine organ. The microbiota plays a major role in the reproductive endocrine system throughout a woman's lifetime by interacting with estrogen, androgens, insulin, and other hormones. Imbalance of the gut microbiota composition can lead to several diseases and conditions, such as pregnancy complications, adverse pregnancy outcomes, polycystic ovary syndrome (PCOS), endometriosis, and cancer; however, research on the mechanisms is limited. More effort should be concentrated on exploring the potential causes and underlying the mechanisms of microbiota-hormone-mediated disease, and providing novel therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Xinyu Qi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
| | - Chuyu Yun
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yanli Pang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China,CONTACT Yanli Pang M.D.,Ph.D Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China,Jie Qiao M.D., Ph.D Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
11
|
Yang X, Zhang C, Williamson C, Liu Y, Zhou Y, Liu C, Chen L, Zhang Y, Korevaar T, Wu W, Fan J. Association of Maternal Thyroid Function with Gestational Hypercholanemia. Thyroid 2022; 32:97-104. [PMID: 34941431 DOI: 10.1089/thy.2021.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: High bile acid concentration is associated with adverse perinatal outcomes (i.e., stillbirth and preterm birth) and experimental studies indicate that thyroid hormone regulates bile acid metabolism, but this has not yet been translated to clinical data in pregnant women. We aim to explore the association of thyroid function with bile acid concentrations and the risk of gestational hypercholanemia. Methods: This study comprised 68,016 singleton pregnancies without known thyroid or hepatobiliary diseases before pregnancy and thyroid medication based on a prospective cohort. Thyroid function and serum total bile acid (TBA) were routinely screened in both early (9-13 weeks) and late pregnancy (32-36 weeks). Hypercholanemia was defined as serum TBA concentration ≥10 μmol/L. Multiple linear regression models and multiple logistic regression models were performed. Results: A higher free thyroxine (fT4) during both early or late pregnancy was associated with a higher TBA concentration and a higher risk of hypercholanemia (all p < 0.01). A higher thyrotropin (TSH) in early pregnancy was associated with a higher TBA concentration in early pregnancy (p = 0.0155), but with a lower TBA concentration during later pregnancy (p < 0.0001), and there was no association of TSH with hypercholanemia. Overt hyperthyroidism in late pregnancy was associated with a 2.12-fold higher risk of hypercholanemia ([confidence interval; CI 1.12-4.03], p = 0.021) and subclinical hyperthyroidism during later pregnancy was associated with a 1.5-fold higher risk of hypercholanemia ([CI 1.14-1.97], p = 0.0034). Sensitivity analyses indicated that a high fT4 throughout pregnancy was associated with a higher risk of hypercholanemia rather than only in early or late pregnancy. Conclusions: A higher fT4 concentration during either early or late pregnancy, but not the TSH concentration, is associated with higher TBA and a higher risk of gestational hypercholanemia. Furthermore, hyperthyroidism during pregnancy could be a novel risk factor for hypercholanemia.
Collapse
Affiliation(s)
- Xi Yang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Chen Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Catherine Williamson
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Yindi Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yulai Zhou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Chunxiao Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Lei Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Tim Korevaar
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Weibin Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Jianxia Fan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| |
Collapse
|
12
|
Hyperlipidemia and hypothyroidism. Clin Chim Acta 2022; 527:61-70. [DOI: 10.1016/j.cca.2022.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
|
13
|
Huo D, Cen C, Chang H, Ou Q, Jiang S, Pan Y, Chen K, Zhang J. Probiotic Bifidobacterium longum supplied with methimazole improved the thyroid function of Graves' disease patients through the gut-thyroid axis. Commun Biol 2021; 4:1046. [PMID: 34493790 PMCID: PMC8423791 DOI: 10.1038/s42003-021-02587-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
Graves’ disease (GD) is an autoimmune disorder that frequently results in hyperthyroidism and other symptoms. Here, we designed a 6-month study with patients divided into three treatment groups, namely, methimazole (MI, n = 8), MI + black bean (n = 9) and MI + probiotic Bifidobacterium longum (n = 9), to evaluate the curative effects of probiotics supplied with MI on thyroid function of patients with GD through clinical index determination and intestinal microbiota metagenomic sequencing. Unsurprisingly, MI intake significantly improved several thyroid indexes but not the most important thyrotropin receptor antibody (TRAb), which is an indicator of the GD recurrence rate. Furthermore, we observed a dramatic response of indigenous microbiota to MI intake, which was reflected in the ecological and evolutionary scale of the intestinal microbiota. In contrast, we did not observe any significant changes in the microbiome in the MI + black bean group. Similarly, the clinical thyroid indexes of patients with GD in the probiotic supplied with MI treatment group continued to improve. Dramatically, the concentration of TRAb recovered to the healthy level. Further mechanistic exploration implied that the consumed probiotic regulated the intestinal microbiota and metabolites. These metabolites impacted neurotransmitter and blood trace elements through the gut-brain axis and gut-thyroid axis, which finally improved the host’s thyroid function. Huo et al conducted a 6 month study in patients with Graves’ Disease in which they administered probiotic Bifidobacterium longum with and without methimazole. They report that Bifidobacterium longum with methimazole potentially improves thyroid function in patients and provide evidence to suggest that this is via the gut-thyroid axis.
Collapse
Affiliation(s)
- Dongxue Huo
- Department of Endocrinology, Hainan General Hospital, School of Food Science and Engineering, Hainan University, Haikou, China.,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Chaoping Cen
- Department of Endocrinology, Hainan General Hospital, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Haibo Chang
- Department of Endocrinology, Hainan General Hospital, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Qianying Ou
- Department of Endocrinology, Hainan General Hospital, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Shuaiming Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Yonggui Pan
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Kaining Chen
- Department of Endocrinology, Hainan General Hospital, School of Food Science and Engineering, Hainan University, Haikou, China.
| | - Jiachao Zhang
- Department of Endocrinology, Hainan General Hospital, School of Food Science and Engineering, Hainan University, Haikou, China. .,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China.
| |
Collapse
|
14
|
Microbiome Metabolites and Thyroid Dysfunction. J Clin Med 2021; 10:jcm10163609. [PMID: 34441905 PMCID: PMC8397005 DOI: 10.3390/jcm10163609] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Thyroid diseases are common conditions that have a negative impact on the health of all populations. The literature sheds light on the differences in the composition of the intestinal microbiota in patients suffering from thyroid diseases compared to healthy individuals. The microbiome affects the proper functioning of the thyroid gland, and the existence of the gut–thyroid axis is discussed in the context of both thyroid diseases and intestinal dysbiosis. The purpose of this review is to describe associations between the microbiome and its metabolites and thyroid dysfunction. We try to explain the role of the microbiome in the metabolism of thyroid hormones and the impact of thyroid autoimmune diseases. In addition, we raise issues related to the influence of bacterial metabolites, such as short-chain fatty acids or secondary bile acids, in the functioning of the thyroid gland. Last but not least, we explored the interactions between the gut microbiota and therapeutics and supplements typically administered to patients with thyroid diseases.
Collapse
|
15
|
Cayres LCDF, de Salis LVV, Rodrigues GSP, Lengert AVH, Biondi APC, Sargentini LDB, Brisotti JL, Gomes E, de Oliveira GLV. Detection of Alterations in the Gut Microbiota and Intestinal Permeability in Patients With Hashimoto Thyroiditis. Front Immunol 2021; 12:579140. [PMID: 33746942 PMCID: PMC7973118 DOI: 10.3389/fimmu.2021.579140] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Hashimoto thyroiditis (HT) is the most common autoimmune disease worldwide, characterized by chronic inflammation and circulating autoantibodies against thyroid peroxidase and thyroglobulin. Patients require hormone replacement with oral levothyroxine, and if untreated, they can develop serious adverse health effects and ultimately death. There is a lot of evidence that the intestinal dysbiosis, bacterial overgrowth, and increased intestinal permeability favor the HT development, and a thyroid–gut axis has been proposed, which seems to impact our entire metabolism. Here, we evaluated alterations in the gut microbiota in Brazilian patients with HT and correlated this data with dietary habits, clinical data, and systemic cytokines and zonulin concentrations. Stool samples from 40 patients with HT and 53 controls were analyzed using real-time PCR, the serum cytokine levels were evaluated by flow cytometry, zonulin concentrations by ELISA, and the dietary habits were recorded by a food frequency questionnaire. We observed a significant increase (p < 0.05) in the Bacteroides species and a decrease in Bifidobacterium in samples of patients with HT. In addition, Lactobacillus species were higher in patients without thyroid hormone replacement, compared with those who use oral levothyroxine. Regarding dietary habits, we demonstrated that there are significant differences in the consumption of vegetables, fruits, animal-derived proteins, dairy products, saturated fats, and carbohydrates between patients and control group, and an inverse correlation between animal-derived protein and Bacteroides genus was detected. The microbiota modulation by diet directly influences the inflammatory profile due to the generated microbiota metabolites and their direct or indirect action on immune cells in the gut mucosa. Although there are no differences in systemic cytokines in our patients with HT, we detected increased zonulin concentrations, suggesting a leaky gut in patients with HT. These findings could help understand the development and progression of HT, while further investigations to clarify the underlying mechanisms of the diet–microbiota–immune system axis are still needed.
Collapse
Affiliation(s)
| | - Larissa Vedovato Vilela de Salis
- Microbiology Program, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), São Paulo, Brazil
| | | | | | | | | | - João Luiz Brisotti
- Microbiome Study Group, School of Health Sciences Dr. Paulo Prata, São Paulo, Brazil
| | - Eleni Gomes
- Microbiology Program, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), São Paulo, Brazil
| | - Gislane Lelis Vilela de Oliveira
- Microbiome Study Group, School of Health Sciences Dr. Paulo Prata, São Paulo, Brazil.,Microbiology Program, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), São Paulo, Brazil.,Food Engineering and Technology Department, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, Brazil
| |
Collapse
|
16
|
Fröhlich E, Wahl R. Microbiota and Thyroid Interaction in Health and Disease. Trends Endocrinol Metab 2019; 30:479-490. [PMID: 31257166 DOI: 10.1016/j.tem.2019.05.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
The microbiota has been identified as an important factor in health and in a variety of diseases. An altered microbiota composition increases the prevalence of Hashimoto's thyroiditis (HT) and Graves' disease (GD). Microbes influence thyroid hormone levels by regulating iodine uptake, degradation, and enterohepatic cycling. In addition, there is a pronounced influence of minerals on interactions between host and microbiota, particularly selenium, iron, and zinc. In manifest thyroid disorders, the microbiota may affect L-thyroxine uptake and influence the action of propylthiouracil (PTU). Although it is relatively well documented that thyroid disorders are linked to the composition of the microbiota, the role of specific genera and the potential use of therapies targeting the microbiota are less clear.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany; Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Richard Wahl
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany.
| |
Collapse
|
17
|
Iwen KA, Oelkrug R, Brabant G. Effects of thyroid hormones on thermogenesis and energy partitioning. J Mol Endocrinol 2018; 60:R157-R170. [PMID: 29434028 DOI: 10.1530/jme-17-0319] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 01/08/2023]
Abstract
Thyroid hormones (TH) are of central importance for thermogenesis, energy homeostasis and metabolism. Here, we will discuss these aspects by focussing on the physiological aspects of TH-dependent regulation in response to cold exposure and fasting, which will be compared to alterations in primary hyperthyroidism and hypothyroidism. In particular, we will summarise current knowledge on regional thyroid hormone status in the central nervous system (CNS) and in peripheral cells. In contrast to hyperthyroidism and hypothyroidism, where parallel changes are observed, local alterations in the CNS differ to peripheral compartments when induced by cold exposure or fasting. Cold exposure is associated with low hypothalamic TH concentrations but increased TH levels in the periphery. Fasting results in a reversed TH pattern. Primary hypothyroidism and hyperthyroidism disrupt these fine-tuned adaptive mechanisms and both, the hypothalamus and the periphery, will have the same TH status. These important mechanisms need to be considered when discussing thyroid hormone replacement and other therapeutical interventions to modulate TH status.
Collapse
Affiliation(s)
- K Alexander Iwen
- Medizinische Klinik IExperimentelle und Klinische Endokrinologie, Universität zu Lübeck, Lübeck, Germany
- Department of Molecular EndocrinologyCenter of Brain, Behavior and Metabolism, Universität zu Lübeck, Lübeck, Germany
| | - Rebecca Oelkrug
- Department of Molecular EndocrinologyCenter of Brain, Behavior and Metabolism, Universität zu Lübeck, Lübeck, Germany
| | - Georg Brabant
- Medizinische Klinik IExperimentelle und Klinische Endokrinologie, Universität zu Lübeck, Lübeck, Germany
- Department of EndocrinologyThe Christie Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
18
|
Rijks JM, Plat J, Dorenbos E, Penders B, Gerver WJM, Vreugdenhil ACE. Association of TSH With Cardiovascular Disease Risk in Overweight and Obese Children During Lifestyle Intervention. J Clin Endocrinol Metab 2017; 102:2051-2058. [PMID: 28379580 DOI: 10.1210/jc.2016-3057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/10/2017] [Indexed: 02/13/2023]
Abstract
CONTEXT Overweight and obese children have an increased risk to develop cardiovascular diseases (CVDs) in which thyroid-stimulating hormone (TSH) has been suggested as an intermediary factor. However, results of cross-sectional studies are inconclusive, and intervention studies investigating changes in TSH concentrations in association with changes in cardiovascular risk parameters in overweight and obese children are scarce. OBJECTIVE To gain insight in associations of circulating TSH concentrations and cardiovascular risk parameters in overweight and obese children. DESIGN Nonrandomized lifestyle intervention. SETTING Centre for Overweight Adolescent and Children's Healthcare. PATIENTS Three hundred thirty euthyroid overweight and obese children. INTERVENTION Long-term lifestyle intervention. MAIN OUTCOME MEASURES TSH concentrations, pituitary TSH release in response to thyrotropin-releasing hormone (TRH), and cardiovascular risk parameters. RESULTS At baseline, serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triacylglycerol (TAG), and monocyte chemotactic protein 1 concentrations were significantly associated with serum TSH concentrations. TSH release by the pituitary in response to exogenous TRH was not associated with cardiovascular risk parameters. During lifestyle intervention, several cardiovascular risk parameters significantly improved. In children whose body mass index z score improved, changes in TSH concentrations were significantly associated with changes in TC, LDL-C, and TAG concentrations. CONCLUSIONS In euthyroid overweight and obese children, circulating TSH concentrations are positively associated with markers representing increased CVD risk. Changes in TSH concentrations are also associated with changes in lipid concentrations in children with successful weight loss, which is consistent with TSH being an intermediary factor in modulating lipid and lipoprotein metabolism.
Collapse
Affiliation(s)
- Jesse M Rijks
- Centre for Overweight Adolescent and Children's Healthcare, Department of Pediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HR Maastricht, The Netherlands
| | - Jogchum Plat
- School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HR Maastricht, The Netherlands
- Department of Human Biology, Maastricht University, 6229 HR Maastricht, The Netherlands
| | - Elke Dorenbos
- Centre for Overweight Adolescent and Children's Healthcare, Department of Pediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HR Maastricht, The Netherlands
| | - Bas Penders
- Centre for Overweight Adolescent and Children's Healthcare, Department of Pediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Willem-Jan M Gerver
- Centre for Overweight Adolescent and Children's Healthcare, Department of Pediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HR Maastricht, The Netherlands
| | - Anita C E Vreugdenhil
- Centre for Overweight Adolescent and Children's Healthcare, Department of Pediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HR Maastricht, The Netherlands
| |
Collapse
|