1
|
Gallage S, Irvine EE, Barragan Avila JE, Reen V, Pedroni SMA, Duran I, Ranvir V, Khadayate S, Pombo J, Brookes S, Heide D, Dharmalingham G, Choudhury AI, Singh I, Herranz N, Vernia S, Heikenwalder M, Gil J, Withers DJ. Ribosomal S6 kinase 1 regulates inflammaging via the senescence secretome. NATURE AGING 2024:10.1038/s43587-024-00695-z. [PMID: 39210150 DOI: 10.1038/s43587-024-00695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Inhibition of S6 kinase 1 (S6K1) extends lifespan and improves healthspan in mice, but the underlying mechanisms are unclear. Cellular senescence is a stable growth arrest accompanied by an inflammatory senescence-associated secretory phenotype (SASP). Cellular senescence and SASP-mediated chronic inflammation contribute to age-related pathology, but the specific role of S6K1 has not been determined. Here we show that S6K1 deletion does not reduce senescence but ameliorates inflammation in aged mouse livers. Using human and mouse models of senescence, we demonstrate that reduced inflammation is a liver-intrinsic effect associated with S6K deletion. Specifically, we show that S6K1 deletion results in reduced IRF3 activation; impaired production of cytokines, such as IL1β; and reduced immune infiltration. Using either liver-specific or myeloid-specific S6K knockout mice, we also demonstrate that reduced immune infiltration and clearance of senescent cells is a hepatocyte-intrinsic phenomenon. Overall, deletion of S6K reduces inflammation in the liver, suggesting that suppression of the inflammatory SASP by loss of S6K could underlie the beneficial effects of inhibiting this pathway on healthspan and lifespan.
Collapse
Affiliation(s)
- Suchira Gallage
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University of Tübingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Tübingen, Germany
| | - Elaine E Irvine
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Jose Efren Barragan Avila
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Virinder Reen
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Silvia M A Pedroni
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Imanol Duran
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Vikas Ranvir
- Emmy Noether Research Group, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Epigenetic Machineries and Cancer, Heidelberg, Germany
| | - Sanjay Khadayate
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Joaquim Pombo
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Sharon Brookes
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gopuraja Dharmalingham
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Agharul I Choudhury
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Indrabahadur Singh
- Emmy Noether Research Group, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Epigenetic Machineries and Cancer, Heidelberg, Germany
| | - Nicolás Herranz
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Santiago Vernia
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- University of Tübingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Tübingen, Germany.
| | - Jesús Gil
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
| | - Dominic J Withers
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
2
|
Yao G. Quiescence-Origin Senescence: A New Paradigm in Cellular Aging. Biomedicines 2024; 12:1837. [PMID: 39200301 PMCID: PMC11351160 DOI: 10.3390/biomedicines12081837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Cellular senescence, traditionally viewed as a consequence of proliferating and growing cells overwhelmed by extensive stresses and damage, has long been recognized as a critical cellular aging mechanism. Recent research, however, has revealed a novel pathway termed "quiescence-origin senescence", where cells directly transition into senescence from the quiescent state, bypassing cell proliferation and growth. This opinion paper presents a framework conceptualizing a continuum between quiescence and senescence with quiescence deepening as a precursor to senescence entry. We explore the triggers and controllers of this process and discuss its biological implications. Given that the majority of cells in the human body are dormant rather than proliferative, understanding quiescence-origin senescence has significant implications for tissue homeostasis, aging, cancer, and various disease processes. The new paradigm in exploring this previously overlooked senescent cell population may reshape our intervention strategies for age-related diseases and tissue regeneration.
Collapse
Affiliation(s)
- Guang Yao
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
- Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
3
|
Gupta S, Silveira DA, Lorenzoni PR, Mombach JCM, Hashimoto RF. LncRNA PTENP1/miR-21/PTEN Axis Modulates EMT and Drug Resistance in Cancer: Dynamic Boolean Modeling for Cell Fates in DNA Damage Response. Int J Mol Sci 2024; 25:8264. [PMID: 39125832 PMCID: PMC11311614 DOI: 10.3390/ijms25158264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
It is well established that microRNA-21 (miR-21) targets phosphatase and tensin homolog (PTEN), facilitating epithelial-to-mesenchymal transition (EMT) and drug resistance in cancer. Recent evidence indicates that PTEN activates its pseudogene-derived long non-coding RNA, PTENP1, which in turn inhibits miR-21. However, the dynamics of PTEN, miR-21, and PTENP1 in the DNA damage response (DDR) remain unclear. Thus, we propose a dynamic Boolean network model by integrating the published literature from various cancers. Our model shows good agreement with the experimental findings from breast cancer, hepatocellular carcinoma (HCC), and oral squamous cell carcinoma (OSCC), elucidating how DDR activation transitions from the intra-S phase to the G2 checkpoint, leading to a cascade of cellular responses such as cell cycle arrest, senescence, autophagy, apoptosis, drug resistance, and EMT. Model validation underscores the roles of PTENP1, miR-21, and PTEN in modulating EMT and drug resistance. Furthermore, our analysis reveals nine novel feedback loops, eight positive and one negative, mediated by PTEN and implicated in DDR cell fate determination, including pathways related to drug resistance and EMT. Our work presents a comprehensive framework for investigating cellular responses following DDR, underscoring the therapeutic potential of targeting PTEN, miR-21, and PTENP1 in cancer treatment.
Collapse
Affiliation(s)
- Shantanu Gupta
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| | | | - Pedro R. Lorenzoni
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (P.R.L.); (J.C.M.M.)
| | - Jose Carlos M. Mombach
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (P.R.L.); (J.C.M.M.)
| | - Ronaldo F. Hashimoto
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| |
Collapse
|
4
|
Skrzeszewski M, Maciejewska M, Kobza D, Gawrylak A, Kieda C, Waś H. Risk factors of using late-autophagy inhibitors: Aspects to consider when combined with anticancer therapies. Biochem Pharmacol 2024; 225:116277. [PMID: 38740222 DOI: 10.1016/j.bcp.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Cancer resistance to therapy is still an unsolved scientific and clinical problem. In 2022, the hallmarks of cancer have been expanded to include four new features, including cellular senescence. Therapy-induced senescence (TIS) is a stressor-based response to conventional treatment methods, e.g. chemo- and radiotherapy, but also to non-conventional targeted therapies. Since TIS reinforces resistance in cancers, new strategies for sensitizing cancer cells to therapy are being adopted. These include macroautophagy as a potential target for inhibition due to its potential cytoprotective role in many cancers. The mechanism of late-stage autophagy inhibitors is based on blockage of autophagolysosome formation or an increase in lysosomal pH, resulting in disrupted cargo degradation. Such inhibitors are relevant candidates for increasing anticancer therapy effectiveness. In particular, 4-aminoquoline derivatives: chloroquine/hydroxychloroquine (CQ/HCQ) have been tested in multiple clinical trials in combination with senescence-inducing anti-cancer drugs. In this review, we summarize the properties of selected late-autophagy inhibitors and their role in the regulation of autophagy and senescent cell phenotype in vitro and in vivo models of cancer as well as treatment response in clinical trials on oncological patients. Additionally, we point out that, although these compounds increase the effectiveness of treatment in some cases, their practical usage might be hindered due to systemic toxicity, hypoxic environment, dose- ant time-dependent inhibitory effects, as well as a possible contribution to escaping from TIS.
Collapse
Affiliation(s)
- Maciej Skrzeszewski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, Poland
| | - Monika Maciejewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland
| | - Dagmara Kobza
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; School of Chemistry, University of Leeds, Leeds, UK
| | - Aleksandra Gawrylak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Centre for Molecular Biophysics, UPR CNRS 4301, Orléans, France; Department of Molecular and Translational Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Halina Waś
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland.
| |
Collapse
|
5
|
Dong J, Wang Q, Gu T, Liu G, Petrov YV, Baulin VE, Yu Tsivadze A, Jia D, Zhou Y, Yuan H, Li B. Rapamycin functionalized carbon Dots: Target-oriented synthesis and suppression of vascular cell senescence. J Colloid Interface Sci 2024; 660:534-544. [PMID: 38266335 DOI: 10.1016/j.jcis.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
Suppression of vascular cell senescence is of great significance in preventing cardiovascular diseases such as hypertension and atherosclerosis. The oxidative stress damage caused by reactive oxygen species (ROS) can lead to cellular senescence. Rapamycin (Rapa) is well known to suppress cell senescence via mammalian target of rapamycin (mTOR) pathway. However, poor water solubility and lack of ROS scavenging ability limit the further development of Rapa. To improve the solubility of Rapa and endow with ROS scavenging ability, Rapa functionalized carbon dots (Rapa-CDs) are target-oriented synthesized via free radical polymerization combination with hydrothermal carbonization. Rapa-CDs improve the solubility of Rapa and show ROS scavenging abilities. The solubility of Rapa-CDs with 9.41 g is improved 3.6 × 104 times higher than that of Rapa (2.6 × 10-4 g). The half maximal inhibitory concentration (IC50) of Rapa-CDs toward hydroxyl radical (•OH) and 2,2-Diphenyl-1-picrylhydrazyl free radical (DPPH•) are 0.18 and 0.17 mg/mL, respectively. Rapa-CDs show anti-oxidative stress effect in HEVECs (Human Umbilical Vein Endothelial Cells) via reducing ROS levels by 87 %. Rapa-CDs alleviate HUVECs senescence by suppressing mTOR overactivation, attenuate the expression of P53, P21 and P16. The study demonstrates the target-oriented synthesis of drugs functionalized CDs with anti-senescence via dual-pathway of anti-oxidative stress and mTOR.
Collapse
Affiliation(s)
- Jiaxin Dong
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Qi Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Tingting Gu
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Guanxiong Liu
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yuri V Petrov
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, St. Petersburg, 199034, Russia
| | - Vladimir E Baulin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Dechang Jia
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yu Zhou
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Huiping Yuan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China.
| | - Baoqiang Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China; Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, St. Petersburg, 199034, Russia.
| |
Collapse
|
6
|
Reimann M, Lee S, Schmitt CA. Cellular senescence: Neither irreversible nor reversible. J Exp Med 2024; 221:e20232136. [PMID: 38385946 PMCID: PMC10883852 DOI: 10.1084/jem.20232136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
Cellular senescence is a critical stress response program implicated in embryonic development, wound healing, aging, and immunity, and it backs up apoptosis as an ultimate cell-cycle exit mechanism. In analogy to replicative exhaustion of telomere-eroded cells, premature types of senescence-referring to oncogene-, therapy-, or virus-induced senescence-are widely considered irreversible growth arrest states as well. We discuss here that entry into full-featured senescence is not necessarily a permanent endpoint, but dependent on essential maintenance components, potentially transient. Unlike a binary state switch, we view senescence with its extensive epigenomic reorganization, profound cytomorphological remodeling, and distinctive metabolic rewiring rather as a journey toward a full-featured arrest condition of variable strength and depth. Senescence-underlying maintenance-essential molecular mechanisms may allow cell-cycle reentry if not continuously provided. Importantly, senescent cells that resumed proliferation fundamentally differ from those that never entered senescence, and hence would not reflect a reversion but a dynamic progression to a post-senescent state that comes with distinct functional and clinically relevant ramifications.
Collapse
Affiliation(s)
- Maurice Reimann
- Medical Department of Hematology, Oncology and Tumor Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Charité-Universitätsmedizin, Berlin, Germany
| | - Soyoung Lee
- Medical Department of Hematology, Oncology and Tumor Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Charité-Universitätsmedizin, Berlin, Germany
- Johannes Kepler University , Linz, Austria
| | - Clemens A Schmitt
- Medical Department of Hematology, Oncology and Tumor Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Charité-Universitätsmedizin, Berlin, Germany
- Johannes Kepler University , Linz, Austria
- Department of Hematology and Oncology, Kepler University Hospital, Linz, Austria
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany
| |
Collapse
|
7
|
Tighanimine K, Nabuco Leva Ferreira Freitas JA, Nemazanyy I, Bankolé A, Benarroch-Popivker D, Brodesser S, Doré G, Robinson L, Benit P, Ladraa S, Saada YB, Friguet B, Bertolino P, Bernard D, Canaud G, Rustin P, Gilson E, Bischof O, Fumagalli S, Pende M. A homoeostatic switch causing glycerol-3-phosphate and phosphoethanolamine accumulation triggers senescence by rewiring lipid metabolism. Nat Metab 2024; 6:323-342. [PMID: 38409325 PMCID: PMC10896726 DOI: 10.1038/s42255-023-00972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/21/2023] [Indexed: 02/28/2024]
Abstract
Cellular senescence affects many physiological and pathological processes and is characterized by durable cell cycle arrest, an inflammatory secretory phenotype and metabolic reprogramming. Here, by using dynamic transcriptome and metabolome profiling in human fibroblasts with different subtypes of senescence, we show that a homoeostatic switch that results in glycerol-3-phosphate (G3P) and phosphoethanolamine (pEtN) accumulation links lipid metabolism to the senescence gene expression programme. Mechanistically, p53-dependent glycerol kinase activation and post-translational inactivation of phosphate cytidylyltransferase 2, ethanolamine regulate this metabolic switch, which promotes triglyceride accumulation in lipid droplets and induces the senescence gene expression programme. Conversely, G3P phosphatase and ethanolamine-phosphate phospho-lyase-based scavenging of G3P and pEtN acts in a senomorphic way by reducing G3P and pEtN accumulation. Collectively, our study ties G3P and pEtN accumulation to controlling lipid droplet biogenesis and phospholipid flux in senescent cells, providing a potential therapeutic avenue for targeting senescence and related pathophysiology.
Collapse
Affiliation(s)
- Khaled Tighanimine
- Université Paris Cité, CNRS, Inserm, Institut Necker Enfants Malades (INEM), Paris, France
| | - José Américo Nabuco Leva Ferreira Freitas
- IMRB, Mondor Institute for Biomedical Research, Inserm U955, Université Paris Est Créteil, UPEC, Faculté de Médecine de Créteil 8, Créteil, France
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Biological Adaptation and Ageing (B2A-IBPS), Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Alexia Bankolé
- Université Paris Cité, CNRS, Inserm, Institut Necker Enfants Malades (INEM), Paris, France
| | | | - Susanne Brodesser
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
| | - Gregory Doré
- Institut Pasteur, Plasmodium RNA Biology Unit, Paris, France
| | - Lucas Robinson
- Institut Pasteur, Department of Cell Biology and Infection, INSERM, Paris, France
| | - Paule Benit
- Université Paris Cité, Inserm U1141, NeuroDiderot, Paris, France
| | - Sophia Ladraa
- Université Paris Cité, CNRS, Inserm, Institut Necker Enfants Malades (INEM), Paris, France
| | - Yara Bou Saada
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Biological Adaptation and Ageing (B2A-IBPS), Paris, France
| | - Bertrand Friguet
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Biological Adaptation and Ageing (B2A-IBPS), Paris, France
| | - Philippe Bertolino
- Equipe Labellisée la Ligue Contre le Cancer, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - David Bernard
- Equipe Labellisée la Ligue Contre le Cancer, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Guillaume Canaud
- Université Paris Cité, CNRS, Inserm, Institut Necker Enfants Malades (INEM), Paris, France
- Unité de médecine translationnelle et thérapies ciblées, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Pierre Rustin
- Université Paris Cité, Inserm U1141, NeuroDiderot, Paris, France
| | - Eric Gilson
- Université Côte d'Azur, Inserm, CNRS, Institut for Research on Cancer and Aging (IRCAN), Nice, France
- Department of Medical Genetics, University-Hospital (CHU) of Nice, Nice, France
| | - Oliver Bischof
- IMRB, Mondor Institute for Biomedical Research, Inserm U955, Université Paris Est Créteil, UPEC, Faculté de Médecine de Créteil 8, Créteil, France.
| | - Stefano Fumagalli
- Université Paris Cité, CNRS, Inserm, Institut Necker Enfants Malades (INEM), Paris, France.
| | - Mario Pende
- Université Paris Cité, CNRS, Inserm, Institut Necker Enfants Malades (INEM), Paris, France.
| |
Collapse
|
8
|
Veloso Pereira BM, Zeng Y, Maggiore JC, Schweickart RA, Eng DG, Kaverina N, McKinzie SR, Chang A, Loretz CJ, Thieme K, Hukriede NA, Pippin JW, Wessely O, Shankland SJ. Podocyte injury at young age causes premature senescence and worsens glomerular aging. Am J Physiol Renal Physiol 2024; 326:F120-F134. [PMID: 37855038 PMCID: PMC11198990 DOI: 10.1152/ajprenal.00261.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
As life expectancy continues to rise, age-related diseases are becoming more prevalent. For example, proteinuric glomerular diseases typified by podocyte injury have worse outcomes in the elderly compared with young patients. However, the reasons are not well understood. We hypothesized that injury to nonaged podocytes induces senescence, which in turn augments their aging processes. In primary cultured human podocytes, injury induced by a cytopathic antipodocyte antibody, adriamycin, or puromycin aminonucleoside increased the senescence-related genes CDKN2A (p16INK4a/p14ARF), CDKN2D (p19INK4d), and CDKN1A (p21). Podocyte injury in human kidney organoids was accompanied by increased expression of CDKN2A, CDKN2D, and CDKN1A. In young mice, experimental focal segmental glomerulosclerosis (FSGS) induced by adriamycin and antipodocyte antibody increased the glomerular expression of p16, p21, and senescence-associated β-galactosidase (SA-β-gal). To assess the long-term effects of early podocyte injury-induced senescence, we temporally followed young mice with experimental FSGS through adulthood (12 m of age) and middle age (18 m of age). p16 and Sudan black staining were higher at middle age in mice with earlier FSGS compared with age-matched mice that did not get FSGS when young. This was accompanied by lower podocyte density, reduced canonical podocyte protein expression, and increased glomerular scarring. These results are consistent with injury-induced senescence in young podocytes, leading to increased senescence of podocytes by middle age accompanied by lower podocyte lifespan and health span.NEW & NOTEWORTHY Glomerular function is decreased by aging. However, little is known about the molecular mechanisms involved in age-related glomerular changes and which factors could contribute to a worse glomerular aging process. Here, we reported that podocyte injury in young mice and culture podocytes induced senescence, a marker of aging, and accelerates glomerular aging when compared with healthy aging mice.
Collapse
Affiliation(s)
- Beatriz Maria Veloso Pereira
- Division of Nephrology, University of Washington, Seattle, Washington, United States
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Yuting Zeng
- Department of Chemistry, University of Washington, Seattle, Washington, United States
| | - Joseph C Maggiore
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | | | - Diana G Eng
- Division of Nephrology, University of Washington, Seattle, Washington, United States
| | - Natalya Kaverina
- Division of Nephrology, University of Washington, Seattle, Washington, United States
| | - Sierra R McKinzie
- Division of Nephrology, University of Washington, Seattle, Washington, United States
| | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, Illinois, United States
| | - Carol J Loretz
- Division of Nephrology, University of Washington, Seattle, Washington, United States
| | - Karina Thieme
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, Washington, United States
| | - Oliver Wessely
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Stuart J Shankland
- Division of Nephrology, University of Washington, Seattle, Washington, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States
| |
Collapse
|
9
|
Moskalev AA. Potential Geroprotectors - From Bench to Clinic. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1732-1738. [PMID: 38105194 DOI: 10.1134/s0006297923110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023]
Abstract
Geroprotectors are substances that slow down aging process and can be used for prevention of age-related diseases. Geroprotectors can improve functioning of various organ systems and enhance their homeostatic capabilities. We have developed a system of criteria for geroprotectors and proposed their classification based on the mechanisms of their action on the aging processes. Geroprotectors are required to reduce mortality, improve human aging biomarkers, have minimal side effects, and enhance quality of life. Additionally, there are approaches based on combining geroprotectors targeted to different targets and mechanisms of aging to achieve maximum effectiveness. Currently, numerous preclinical studies are being conducted to identify new molecular targets and develop new approaches to extend healthy aging, although the number of clinical trials is limited. Geroprotectors have the potential to become a new class of preventive medicines as they prevent onset of certain diseases or slow down their progression.
Collapse
Affiliation(s)
- Alexey A Moskalev
- Institute of Biogerontology, Lobachevsky University, Nizhny Novgorod, 603950, Russia.
| |
Collapse
|
10
|
Ali JH, Walter M. Combining old and new concepts in targeting telomerase for cancer therapy: transient, immediate, complete and combinatory attack (TICCA). Cancer Cell Int 2023; 23:197. [PMID: 37679807 PMCID: PMC10483736 DOI: 10.1186/s12935-023-03041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Telomerase can overcome replicative senescence by elongation of telomeres but is also a specific element in most cancer cells. It is expressed more vastly than any other tumor marker. Telomerase as a tumor target inducing replicative immortality can be overcome by only one other mechanism: alternative lengthening of telomeres (ALT). This limits the probability to develop resistance to treatments. Moreover, telomerase inhibition offers some degree of specificity with a low risk of toxicity in normal cells. Nevertheless, only one telomerase antagonist reached late preclinical studies. The underlying causes, the pitfalls of telomerase-based therapies, and future chances based on recent technical advancements are summarized in this review. Based on new findings and approaches, we propose a concept how long-term survival in telomerase-based cancer therapies can be significantly improved: the TICCA (Transient Immediate Complete and Combinatory Attack) strategy.
Collapse
Affiliation(s)
- Jaber Haj Ali
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Michael Walter
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany.
| |
Collapse
|
11
|
Shichijo K, Takatsuji T, Uzbekov D, Chaizhunusova N, Shabdarbaeva D, Kurisu M, Takahashi Y, Stepanenko V, Azhimkhanov A, Hoshi M. Radiation makes cells select the form of death dependent on external or internal exposure: apoptosis or pyroptosis. Sci Rep 2023; 13:12002. [PMID: 37491560 PMCID: PMC10368746 DOI: 10.1038/s41598-023-38789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
Internal radiation exposure from neutron-induced radioisotopes environmentally activated following atomic bombing or nuclear accidents should be considered for a complete picture of pathologic effects on survivors. Acute and localized high dose radiation exposure from hot particles taken into the body must induce cell death and severe damage to tissues, whether they are proliferating or not. However, very little the cellular and molecular mechanisms underlying this internal radiation pathology has been investigated. Male Wistar rats were internally exposed to 56MnO2 powder by inhalation. Small intestine samples were investigated by histological staining at acute phase (6 h, 3 days and 14 days) and late phase (2, 6 and 8 months) after the exposure. Histological location and chemical properties of the hot particles embedded in small intestinal tissues were analyzed by synchrotron radiation-X-ray fluorescence-X-ray absorption near-edge structure (SR-XRF-XANES). Hot particles located in the intestinal cavity were identified as accumulations of Mn and iron. Pathological changes showed evidence of crypt shortening, massive cell death at the position of stem cell zone, including apoptosis and pyroptosis from 6 h through 8 months in the internal exposed rats.
Collapse
Affiliation(s)
- Kazuko Shichijo
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Toshihiro Takatsuji
- Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
- School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi, 321-0293, Japan
| | - Darkhan Uzbekov
- Department of Pathological Anatomy and Forensic Medicine, Semey State Medical University, Abay Str., 103, Semey, 071400, Kazakhstan
| | - Nailya Chaizhunusova
- Department of Pathological Anatomy and Forensic Medicine, Semey State Medical University, Abay Str., 103, Semey, 071400, Kazakhstan
| | - Dariya Shabdarbaeva
- Department of Pathological Anatomy and Forensic Medicine, Semey State Medical University, Abay Str., 103, Semey, 071400, Kazakhstan
| | - Minako Kurisu
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsusima-cho, Yokosuka-shi, Kanagawa, 237-0061, Japan
| | - Yoshio Takahashi
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Valeriy Stepanenko
- A.Tsyb Medical Radiological Research Center-National Medical Research Center of Radiology, Ministry of Health of Russian Federation, 249036, Obninsk, Russia
| | - Almas Azhimkhanov
- National Nuclear Center of the Republic of Kazakhstan, Beibyt atom st., 2B, Kurchatov, 071100, Kazakhstan
| | - Masaharu Hoshi
- The Center for Peace, Hiroshima University, Higashi-senda-machi, Naka-ku, Hiroshima, 730-0053, Japan
| |
Collapse
|
12
|
Cunningham A, Brown M, Dresselhuis J, Robinson N, Hervie K, Cox ME, Mills J. Combination Effects of Integrin-linked Kinase and Abelson Kinase Inhibition on Aberrant Mitosis and Cell Death in Glioblastoma Cells. BIOLOGY 2023; 12:906. [PMID: 37508338 PMCID: PMC10376030 DOI: 10.3390/biology12070906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/21/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
In cancer cells, inhibition of integrin-linked kinase (ILK) increases centrosome declustering causing mitotic arrest and cell death. Yet, not all cancer cells are susceptible to anti-ILK treatment alone. We investigate a combination drug strategy targeting ILK and another oncogenic kinase, Abelson kinase (ABL). Drug-concentration viability assays (i.e., MTT assays) indicate that ILK and ABL inhibitors in combination decreased the viability of glioblastoma cells over the ILK drug QLT-0267 alone. Combination strategies also increased aberrant mitoses and cell death over QLT-0267 alone. This was evident from an increase in mitotic arrest, apoptosis and a sub-G1 peak following FAC analysis. In vitro, ILK and ABL localized to the centrosome and the putative ILK kinase domain was important for this localization. Increased levels of cytosolic ABL are associated with its transformative abilities. ILK inhibitor effects on survival correlated with its ability to decrease cytosolic ABL levels and inhibit ABL's localization to mitotic centrosomes in glioblastoma cells. ILK inhibitor effects on ABL's centrosomal localization were reversed by the proteasomal inhibitor MG132 (a drug that inhibits ABL degradation). These results indicate that ILK regulates ABL at mitotic centrosomes and that combination treatments targeting ILK and ABL are more effective then QLT-0267 alone at decreasing the survival of dividing glioblastoma cells.
Collapse
Affiliation(s)
- Abigail Cunningham
- Department of Biology, Trinity Western University, Langley, BC V2Y 1Y1, Canada
| | - Maddisen Brown
- Department of Biology, Trinity Western University, Langley, BC V2Y 1Y1, Canada
| | | | - Nicole Robinson
- Vancouver Prostate Center and Vancouver Coastal Health Research Institute, Vancouver, BC V6T 1Z3, Canada
| | - Keni Hervie
- Department of Biology, Trinity Western University, Langley, BC V2Y 1Y1, Canada
| | - Michael E Cox
- Vancouver Prostate Center and Vancouver Coastal Health Research Institute, Vancouver, BC V6T 1Z3, Canada
| | - Julia Mills
- Department of Biology, Trinity Western University, Langley, BC V2Y 1Y1, Canada
| |
Collapse
|
13
|
Nehme J, Altulea A, Gheorghe T, Demaria M. The effects of macronutrients metabolism on cellular and organismal aging. Biomed J 2023; 46:100585. [PMID: 36801257 PMCID: PMC10209809 DOI: 10.1016/j.bj.2023.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Evidence supports the notion that metabolic pathways are major regulators of organismal aging, and that metabolic perturbations can extend health- and lifespan. For this reason, dietary interventions and compounds perturbing metabolism are currently explored as anti-aging strategies. A common target for metabolic interventions delaying aging is cellular senescence, a state of stable growth arrest that is accompanied by various structural and functional changes including the activation of a pro-inflammatory secretome. Here, we summarize the current knowledge on the molecular and cellular events associated with carbohydrate, lipid and protein metabolism, and define how macronutrients can regulate induction or prevention of cellular senescence. We discuss how various dietary interventions can achieve prevention of disease and extension of healthy longevity by partially modulating senescence-associated phenotypes. We also emphasize the importance of developing personalized nutritional interventions that take into account the current health and age status of the individual.
Collapse
Affiliation(s)
- Jamil Nehme
- University of Groningen, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Abdullah Altulea
- University of Groningen, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Teodora Gheorghe
- University of Groningen, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Marco Demaria
- University of Groningen, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, Netherlands.
| |
Collapse
|
14
|
Luo L, Pervaiz S, Clement MV. A superoxide-driven redox state promotes geroconversion and resistance to senolysis in replication-stress associated senescence. Redox Biol 2023; 64:102757. [PMID: 37285741 DOI: 10.1016/j.redox.2023.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
Using S-phase synchronized RPE1-hTERT cells exposed to the DNA damaging agent, methyl methanesulfonate, we show the existence of a redox state associated with replication stress-induced senescence termed senescence-associated redox state (SA-redox state). SA-redox state is characterized by its reactivity with superoxide-sensing fluorescent probes such as dihydroethidine, lucigenin and mitosox and peroxynitrite or hydroxyl radical sensing probe hydroxyphenyl fluorescein (HPF) but not the hydrogen peroxide (H2O2) reactive fluorescent probe CM-H2DCFDA. Measurement of GSH and GSSH also reveals that SA-redox state mitigates the level of total GSH rather than oxidizes GSH to GSSG. Moreover, supporting the role of superoxide (O2.-) in the SA-redox state, we show that incubation of senescent RPE1-hTERT cells with the O2.- scavenger, Tiron, decreases the reactivity of SA-redox state with the oxidants' reactive probes lucigenin and HPF while the H2O2 antioxidant N-acetyl cysteine has no effect. SA-redox state does not participate in the loss of proliferative capacity, G2/M cell cycle arrest or the increase in SA-β-Gal activity. However, SA-redox state is associated with the activation of NF-κB, dictates the profile of the Senescence Associated Secretory Phenotype, increases TFEB protein level, promotes geroconversion evidenced by increased phosphorylation of S6K and S6 proteins, and influences senescent cells response to senolysis. Furthermore, we provide evidence for crosstalk between SA redox state, p53 and p21. While p53 mitigates the establishment of SA-redox state, p21 is critical for the sustained reinforcement of the SA-redox state involved in geroconversion and resistance to senolysis.
Collapse
Affiliation(s)
- Le Luo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Medicine Healthy Longevity Program, National University of Singapore, Singapore; Integrated Science and Engineering Program, NUS Graduate School, National University of Singapore, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore
| | - Marie-Veronique Clement
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore; NUS Medicine Healthy Longevity Program, National University of Singapore, Singapore; Integrated Science and Engineering Program, NUS Graduate School, National University of Singapore, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore.
| |
Collapse
|
15
|
Gupta S, Panda PK, Silveira DA, Ahuja R, Hashimoto RF. Quadra-Stable Dynamics of p53 and PTEN in the DNA Damage Response. Cells 2023; 12:cells12071085. [PMID: 37048159 PMCID: PMC10093226 DOI: 10.3390/cells12071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Cell fate determination is a complex process that is frequently described as cells traveling on rugged pathways, beginning with DNA damage response (DDR). Tumor protein p53 (p53) and phosphatase and tensin homolog (PTEN) are two critical players in this process. Although both of these proteins are known to be key cell fate regulators, the exact mechanism by which they collaborate in the DDR remains unknown. Thus, we propose a dynamic Boolean network. Our model incorporates experimental data obtained from NSCLC cells and is the first of its kind. Our network's wild-type system shows that DDR activates the G2/M checkpoint, and this triggers a cascade of events, involving p53 and PTEN, that ultimately lead to the four potential phenotypes: cell cycle arrest, senescence, autophagy, and apoptosis (quadra-stable dynamics). The network predictions correspond with the gain-and-loss of function investigations in the additional two cell lines (HeLa and MCF-7). Our findings imply that p53 and PTEN act as molecular switches that activate or deactivate specific pathways to govern cell fate decisions. Thus, our network facilitates the direct investigation of quadruplicate cell fate decisions in DDR. Therefore, we concluded that concurrently controlling PTEN and p53 dynamics may be a viable strategy for enhancing clinical outcomes.
Collapse
Affiliation(s)
- Shantanu Gupta
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | | | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Ronaldo F Hashimoto
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil
| |
Collapse
|
16
|
Moiseeva V, Cisneros A, Cobos AC, Tarrega AB, Oñate CS, Perdiguero E, Serrano AL, Muñoz-Cánoves P. Context-dependent roles of cellular senescence in normal, aged, and disease states. FEBS J 2023; 290:1161-1185. [PMID: 35811491 DOI: 10.1111/febs.16573] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 07/07/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of irreversible cell cycle arrest that often emerges after tissue damage and in age-related diseases. Through the production of a multicomponent secretory phenotype (SASP), senescent cells can impact the regeneration and function of tissues. However, the effects of senescent cells and their SASP are very heterogeneous and depend on the tissue environment and type as well as the duration of injury, the degree of persistence of senescent cells and the organism's age. While the transient presence of senescent cells is widely believed to be beneficial, recent data suggest that it is detrimental for tissue regeneration after acute damage. Furthermore, although senescent cell persistence is typically associated with the progression of age-related chronic degenerative diseases, it now appears to be also necessary for correct tissue function in the elderly. Here, we discuss what is currently known about the roles of senescent cells and their SASP in tissue regeneration in ageing and age-related diseases, highlighting their (negative and/or positive) contributions. We provide insight for future research, including the possibility of senolytic-based therapies and cellular reprogramming, with aims ranging from enhancing tissue repair to extending a healthy lifespan.
Collapse
Affiliation(s)
- Victoria Moiseeva
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Andrés Cisneros
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Aina Calls Cobos
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Aida Beà Tarrega
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Claudia Santos Oñate
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Eusebio Perdiguero
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Antonio L Serrano
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,ICREA, Barcelona, Spain.,Spanish National Center on Cardiovascular Research (CNIC), Madrid, Spain
| |
Collapse
|
17
|
Peng H, Lin H. Integrative analysis of microRNA-320a-related genes in osteoarthritis cartilage. Front Surg 2023; 9:1005243. [PMID: 36700022 PMCID: PMC9869261 DOI: 10.3389/fsurg.2022.1005243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Objectives To investigate microRNA-320a-related differentially expressed genes (DEGs) and pathways in osteoarthritis (OA) by bioinformatic analysis. Methods The target genes of microRNA-320a were searched and collected from MiRTarBase microRNA Targets dataset, the TargetScan Predicted Nonconserved microRNA Targets dataset and the TargetScan Predicted Conserved microRNA Targets dataset. OA-related microRNAs and OA-related target genes were collected from GeneCards databases. The pathway enrichment analysis of miRNAs ware performed by Funrich analysis tool. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was obtained from Database for Annotation, Visualization and Integrated Discovery (DAVID). GeneMANIA and STRING are used for protein-protein interaction (PPI) network analysis. Module analysis was performed by Cytoscape. Results A total of 176 OA related miRNAs were searched and collected for enrichment analysis, and microRNA-320a was one of OA related miRNAs. Enrichment pathway and analysis of 1721 miRNA-320a-related target genes from MiRTarBase and TargetScan were performed using the online tools Metascape. And results shown that the biological processes were remarkably enriched in chromatin organization, cellular response to DNA damage stimuli, mRNA metabolic process, protein ubiquitination, and regulation of cell adhesion. And then we analysed miRNA-320a-targeted OA genes via KEGG, GO enrichment and PPI Network. Our results showed that miRNA-320a played a role in OA through FoxO signaling pathway, PI3K-Akt signaling pathway, focal adhesion, MAPK signaling pathway, HIF-1 signaling pathway and cellular senescence. And we speculate that MAPK signaling pathway plays a key role in the effect of miRNA-320a on OA. Conclusion This study implied microRNA-320a-related DEGs and dysregulated pathways in OA. The aim is to screen miRNA-320a-related genes and pathways in OA and, eventually, to improve the understanding of underlying mechanisms of miRNA-320a in OA.
Collapse
Affiliation(s)
- Hao Peng
- The Third Clinical College of Southern Medical University, Guangzhou, China
| | - Haibin Lin
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China,Correspondence: Haibin Lin
| |
Collapse
|
18
|
Effects of Oleuropein and Hydroxytyrosol on Inflammatory Mediators: Consequences on Inflammaging. Int J Mol Sci 2022; 24:ijms24010380. [PMID: 36613822 PMCID: PMC9820525 DOI: 10.3390/ijms24010380] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Aging is associated with a low-grade, systemic inflammatory state defined as "inflammaging", ruled by the loss of proper regulation of the immune system leading to the accumulation of pro-inflammatory mediators. Such a condition is closely connected to an increased risk of developing chronic diseases. A number of studies demonstrate that olive oil phenolic compound oleuropein and its derivative hydroxytyrosol contribute to modulating tissue inflammation and oxidative stress, thus becoming attractive potential candidates to be used in the context of nutraceutical interventions, in order to ameliorate systemic inflammation in aging subjects. In this review, we aim to summarize the available data about the anti-inflammatory properties of oleuropein and hydroxytyrosol, discussing them in the light of molecular pathways involved in the synthesis and release of inflammatory mediators in inflammaging.
Collapse
|
19
|
Chrienova Z, Rysanek D, Oleksak P, Stary D, Bajda M, Reinis M, Mikyskova R, Novotny O, Andrys R, Skarka A, Vasicova P, Novak J, Valis M, Kuca K, Hodny Z, Nepovimova E. Discovery of small molecule mechanistic target of rapamycin inhibitors as anti-aging and anti-cancer therapeutics. Front Aging Neurosci 2022; 14:1048260. [PMID: 36561137 PMCID: PMC9767416 DOI: 10.3389/fnagi.2022.1048260] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
To date, the most studied drug in anti-aging research is the mTOR inhibitor - rapamycin. Despite its almost perfect anti-aging profile, rapamycin exerts one significant limitation - inappropriate physicochemical properties. Therefore, we have decided to utilize virtual high-throughput screening and fragment-based design in search of novel mTOR inhibiting scaffolds with suitable physicochemical parameters. Seven lead compounds were selected from the list of obtained hits that were commercially available (4, 5, and 7) or their synthesis was feasible (1, 2, 3, and 6) and evaluated in vitro and subsequently in vivo. Of all these substances, only compound 3 demonstrated a significant cytotoxic, senolytic, and senomorphic effect on normal and cancerous cells. Further, it has been confirmed that compound 3 is a direct mTORC1 inhibitor. Last but not least, compound 3 was found to exhibit anti-SASP activity concurrently being relatively safe within the test of in vivo tolerability. All these outstanding results highlight compound 3 as a scaffold worthy of further investigation.
Collapse
Affiliation(s)
- Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - David Rysanek
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Dorota Stary
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland,Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Milan Reinis
- Laboratory of Immunological and Tumor Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Romana Mikyskova
- Laboratory of Immunological and Tumor Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ondrej Novotny
- Laboratory of Immunological and Tumor Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Rudolf Andrys
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Adam Skarka
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Pavla Vasicova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Josef Novak
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Valis
- Department of Neurology, University Hospital Hradec Kralove, Hradec Králové, Czechia,Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia,Zdenek Hodny,
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia,*Correspondence: Eugenie Nepovimova,
| |
Collapse
|
20
|
Capanni C, Schena E, Di Giampietro ML, Montecucco A, Mattioli E, Lattanzi G. The role of prelamin A post-translational maturation in stress response and 53BP1 recruitment. Front Cell Dev Biol 2022; 10:1018102. [PMID: 36467410 PMCID: PMC9709412 DOI: 10.3389/fcell.2022.1018102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2023] Open
Abstract
Lamin A is a main constituent of the nuclear lamina and contributes to nuclear shaping, mechano-signaling transduction and gene regulation, thus affecting major cellular processes such as cell cycle progression and entry into senescence, cellular differentiation and stress response. The role of lamin A in stress response is particularly intriguing, yet not fully elucidated, and involves prelamin A post-translational processing. Here, we propose prelamin A as the tool that allows lamin A plasticity during oxidative stress response and permits timely 53BP1 recruitment to DNA damage foci. We show that while PCNA ubiquitination, p21 decrease and H2AX phosphorylation occur soon after stress induction in the absence of prelamin A, accumulation of non-farnesylated prelamin A follows and triggers recruitment of 53BP1 to lamin A/C complexes. Then, the following prelamin A processing steps causing transient accumulation of farnesylated prelamin A and maturation to lamin A reduce lamin A affinity for 53BP1 and favor its release and localization to DNA damage sites. Consistent with these observations, accumulation of prelamin A forms in cells under basal conditions impairs histone H2AX phosphorylation, PCNA ubiquitination and p21 degradation, thus affecting the early stages of stress response. As a whole, our results are consistent with a physiological function of prelamin A modulation during stress response aimed at timely recruitment/release of 53BP1 and other molecules required for DNA damage repair. In this context, it becomes more obvious how farnesylated prelamin A accumulation to toxic levels alters timing of DNA damage signaling and 53BP1 recruitment, thus contributing to cellular senescence and accelerated organismal aging as observed in progeroid laminopathies.
Collapse
Affiliation(s)
- Cristina Capanni
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, Bologna, Italy
- IRCCS Rizzoli Orthopedic Institute, Bologna, Italy
| | - Elisa Schena
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, Bologna, Italy
- IRCCS Rizzoli Orthopedic Institute, Bologna, Italy
| | | | | | - Elisabetta Mattioli
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, Bologna, Italy
- IRCCS Rizzoli Orthopedic Institute, Bologna, Italy
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, Bologna, Italy
- IRCCS Rizzoli Orthopedic Institute, Bologna, Italy
| |
Collapse
|
21
|
Xie X, Wan J, Zheng X, Pan W, Yuan J, Hu B, Feng M, Liu Z, Cai S. Synergistic effects of epigallocatechin gallate and l-theanine in nerve repair and regeneration by anti-amyloid damage, promoting metabolism, and nourishing nerve cells. Front Nutr 2022; 9:951415. [PMID: 36034895 PMCID: PMC9399931 DOI: 10.3389/fnut.2022.951415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Green tea has significant protective activity on nerve cells, but the mechanism of action is unclear. Epigallocatechin gallate (EGCG) and N-ethyl-L-glutamine (L-theanine) are the representative functional components of green tea (Camellia sinensis). In this study, an AD model of Aβ25–35-induced differentiated neural cell line PC12 cells was established to study the synergistic effect of EGCG and L-theanine in protecting neural cells. The results showed that under Aβ25–35 stress conditions, mitochondria and axons degenerated, and the expression of cyclins was up-regulated, showing the gene and protein characteristics of cellular hyperfunction. EGCG + L-theanine inhibited inflammation and aggregate formation pathways, significantly increased the percentage of G0/G1 in the cell cycle, downregulated the expression of proteins such as p-mTOR, Cyclin D1, and Cyclin B1, upregulated the expression of GAP43, Klotho, p-AMPK, and other proteins, promoted mitochondrial activity and energy metabolism, and had repair and regeneration effects on differentiated nerve cells. The synergistic mechanism study showed that under the premise that EGCG inhibits amyloid stress and inflammation and promotes metabolism, L-theanine could play a nourish nerve effect. EGCG + L-theanine keeps differentiated nerve cells in a quiescent state, which is beneficial to the repair and regeneration of nerve cells. In addition, EGCG + L-theanine maintains the high-fidelity structure of cellular proteins. This study revealed for the first time that the synergistic effect of EGCG with L-theanine may be an effective way to promote nerve cell repair and regeneration and slow down the progression of AD. Our findings provide a new scientific basis for the relationship between tea drinking and brain protection.
Collapse
Affiliation(s)
- Xinya Xie
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China.,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China.,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Juan Wan
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China.,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China.,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Xin Zheng
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China.,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China.,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Wenjing Pan
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China.,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China.,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Jiayi Yuan
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China.,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China.,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Baozhu Hu
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China.,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China.,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Meiyan Feng
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China.,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China.,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China.,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China.,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Shuxian Cai
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China.,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China.,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| |
Collapse
|
22
|
Jäger K, Mensch J, Grimmig ME, Neuner B, Gorzelniak K, Türkmen S, Demuth I, Hartmann A, Hartmann C, Wittig F, Sporbert A, Hermann A, Fuellen G, Möller S, Walter M. A conserved long-distance telomeric silencing mechanism suppresses mTOR signaling in aging human fibroblasts. SCIENCE ADVANCES 2022; 8:eabk2814. [PMID: 35977016 PMCID: PMC9385144 DOI: 10.1126/sciadv.abk2814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Telomeres are repetitive nucleotide sequences at the ends of each chromosome. It has been hypothesized that telomere attrition evolved as a tumor suppressor mechanism in large long-lived species. Long telomeres can silence genes millions of bases away through a looping mechanism called telomere position effect over long distances (TPE-OLD). The function of this silencing mechanism is unknown. We determined a set of 2322 genes with high positional conservation across replicatively aging species that includes known and candidate TPE-OLD genes that may mitigate potentially harmful effects of replicative aging. Notably, we identified PPP2R2C as a tumor suppressor gene, whose up-regulation by TPE-OLD in aged human fibroblasts leads to dephosphorylation of p70S6 kinase and mammalian target of rapamycin suppression. A mechanistic link between telomeres and a tumor suppressor mechanism supports the hypothesis that replicative aging fulfills a tumor suppressor function and motivates previously unknown antitumor and antiaging strategies.
Collapse
Affiliation(s)
- Kathrin Jäger
- Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
| | - Juliane Mensch
- Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
| | - Maria Elisabeth Grimmig
- Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Bruno Neuner
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Intensive Care Medicine, Berlin, Germany
| | - Kerstin Gorzelniak
- Unfallkrankenhaus Berlin, Institute of Laboratory Medicine, Berlin, Germany
| | - Seval Türkmen
- LNS Hematooncogenetics, National Center of Genetics Luxembourg, Dudelange, Luxemburg
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Genetics and Human Genetics, Berlin, Germany
| | - Ilja Demuth
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Alexander Hartmann
- Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Christiane Hartmann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, Rostock University Medical Center, University of Rostock, 18147 Rostock, Germany
| | - Felix Wittig
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Anje Sporbert
- Advanced Light Microscopy, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, Rostock University Medical Center, University of Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, Rostock, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Steffen Möller
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Michael Walter
- Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
- Corresponding author.
| |
Collapse
|
23
|
Pupyshev AB, Klyushnik TP, Akopyan AA, Singh SK, Tikhonova MA. Disaccharide Trehalose in Experimental Therapies for Neurodegenerative Disorders: Molecular Targets and Translational Potential. Pharmacol Res 2022; 183:106373. [PMID: 35907433 DOI: 10.1016/j.phrs.2022.106373] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Induction of autophagy is a prospective approach to the treatment of neurodegeneration. In the recent decade, trehalose attracted special attention. It is an autophagy inducer with negligible adverse effects and is approved for use in humans according to FDA requirements. Trehalose has a therapeutic effect in various experimental models of diseases. This glucose disaccharide with a flexible α-1-1'-glycosidic bond has unique properties: induction of mTOR-independent autophagy (with kinase AMPK as the main target) and a chaperone-like effect on proteins imparting them natural spatial structure. Thus, it can reduce the accumulation of neurotoxic aberrant/misfolded proteins. Trehalose has an anti-inflammatory effect and inhibits detrimental oxidative stress partially owing to the enhancement of endogenous antioxidant defense represented by the Nrf2 protein. The disaccharide activates lysosome and autophagosome biogenesis pathways through the protein factors TFEB and FOXO1. Here we review various mechanisms of the neuroprotective action of trehalose and touch on the possibility of pleiotropic effects. Current knowledge about specific features of trehalose pharmacodynamics is discussed. The neuroprotective effects of trehalose in animal models of major neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases are examined too. Attention is given to translational transition to clinical trials of this drug, especially oral and parenteral routes of administration. Besides, the possibility of enhancing the therapeutic benefit via a combination of mTOR-dependent and mTOR-independent autophagy inducers is analyzed. In general, trehalose appears to be a promising multitarget tool for the inhibition of experimental neurodegeneration and requires thorough investigation of its clinical capabilities.
Collapse
Affiliation(s)
- Alexander B Pupyshev
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| | - Tatyana P Klyushnik
- Mental Health Research Center, Kashirskoye shosse 34, Moscow 115522, Russia.
| | - Anna A Akopyan
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Krishna Bhawan, 594 Kha/123, Shahinoor Colony, Nilmatha, Uttar Pradesh, Lucknow 226002, India.
| | - Maria A Tikhonova
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| |
Collapse
|
24
|
Digiacomo G, Fumarola C, La Monica S, Bonelli M, Cavazzoni A, Galetti M, Terenziani R, Eltayeb K, Volta F, Zoppi S, Bertolini P, Missale G, Alfieri R, Petronini PG. CDK4/6 inhibitors improve the anti-tumor efficacy of lenvatinib in hepatocarcinoma cells. Front Oncol 2022; 12:942341. [PMID: 35936714 PMCID: PMC9354684 DOI: 10.3389/fonc.2022.942341] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/29/2022] [Indexed: 11/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer with a poor prognosis and limited treatment options. Considering that alterations of the CDK4/6-cyclin D-Rb pathway occur frequently in HCC, we tested the efficacy of two CDK4/6 inhibitors, abemaciclib and ribociclib, in combination with lenvatinib, a multi-kinase inhibitor approved as first-line therapy for advanced HCC, in a panel of HCC Rb-expressing cell lines. The simultaneous drug combinations showed a superior anti-proliferative activity as compared with single agents or sequential schedules of treatment, either in short or in long-term experiments. In addition, the simultaneous combination of abemaciclib with lenvatinib reduced 3D cell growth, and impaired colony formation and cell migration. Mechanistically, these growth-inhibitory effects were associated with a stronger down-regulation of c-myc protein expression. Depending on the HCC cell model, reduced activation of MAPK, mTORC1/p70S6K or src/FAK signaling was also observed. Abemaciclib combined with lenvatinib arrested the cells in the G1 cell cycle phase, induced p21 accumulation, and promoted a stronger increase of cellular senescence, associated with elevation of β-galactosidase activity and accumulation of ROS, as compared with single treatments. After drug withdrawal, the capacity of forming colonies was significantly impaired, suggesting that the anti-tumor efficacy of abemaciclib and lenvatinib combination was persistent. Our pre-clinical results demonstrate the effectiveness of the simultaneous combination of CDK4/6 inhibitors with lenvatinib in HCC cell models, suggesting that this combination may be worthy of further investigation as a therapeutic approach for the treatment of advanced HCC.
Collapse
Affiliation(s)
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- *Correspondence: Silvia La Monica, ; Andrea Cavazzoni,
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- *Correspondence: Silvia La Monica, ; Andrea Cavazzoni,
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL - Italian Workers’ Compensation Authority, Rome, Italy
| | - Rita Terenziani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Kamal Eltayeb
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Volta
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia Zoppi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Patrizia Bertolini
- Paediatric Hematology Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Infectious Diseases and Hepatology, University Hospital of Parma, Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | |
Collapse
|
25
|
Papaccio F, D′Arino A, Caputo S, Bellei B. Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants (Basel) 2022; 11:1121. [PMID: 35740018 PMCID: PMC9220264 DOI: 10.3390/antiox11061121] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Skin aging is one of the most evident signs of human aging. Modification of the skin during the life span is characterized by fine lines and wrinkling, loss of elasticity and volume, laxity, rough-textured appearance, and pallor. In contrast, photoaged skin is associated with uneven pigmentation (age spot) and is markedly wrinkled. At the cellular and molecular level, it consists of multiple interconnected processes based on biochemical reactions, genetic programs, and occurrence of external stimulation. The principal cellular perturbation in the skin driving senescence is the alteration of oxidative balance. In chronological aging, reactive oxygen species (ROS) are produced mainly through cellular oxidative metabolism during adenosine triphosphate (ATP) generation from glucose and mitochondrial dysfunction, whereas in extrinsic aging, loss of redox equilibrium is caused by environmental factors, such as ultraviolet radiation, pollution, cigarette smoking, and inadequate nutrition. During the aging process, oxidative stress is attributed to both augmented ROS production and reduced levels of enzymatic and non-enzymatic protectors. Apart from the evident appearance of structural change, throughout aging, the skin gradually loses its natural functional characteristics and regenerative potential. With aging, the skin immune system also undergoes functional senescence manifested as a reduced ability to counteract infections and augmented frequency of autoimmune and neoplastic diseases. This review proposes an update on the role of oxidative stress in the appearance of the clinical manifestation of skin aging, as well as of the molecular mechanisms that underline this natural phenomenon sometimes accelerated by external factors.
Collapse
Affiliation(s)
| | | | | | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (F.P.); (S.C.)
| |
Collapse
|
26
|
Stallaert W, Kedziora KM, Taylor CD, Zikry TM, Ranek JS, Sobon HK, Taylor SR, Young CL, Cook JG, Purvis JE. The structure of the human cell cycle. Cell Syst 2022; 13:230-240.e3. [PMID: 34800361 PMCID: PMC8930470 DOI: 10.1016/j.cels.2021.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/16/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023]
Abstract
Understanding the organization of the cell cycle has been a longstanding goal in cell biology. We combined time-lapse microscopy, highly multiplexed single-cell imaging of 48 core cell cycle proteins, and manifold learning to render a visualization of the human cell cycle. This data-driven approach revealed the comprehensive "structure" of the cell cycle: a continuum of molecular states that cells occupy as they transition from one cell division to the next, or as they enter or exit cell cycle arrest. Paradoxically, progression deeper into cell cycle arrest was accompanied by increases in proliferative effectors such as CDKs and cyclins, which can drive cell cycle re-entry by overcoming p21 induction. The structure also revealed the molecular trajectories into senescence and the unique combination of molecular features that define this irreversibly arrested state. This approach will enable the comparison of alternative cell cycles during development, in response to environmental perturbation and in disease. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Wayne Stallaert
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Katarzyna M Kedziora
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Bioinformatics and Analytics Research Collaborative, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Colin D Taylor
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tarek M Zikry
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jolene S Ranek
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Holly K Sobon
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sovanny R Taylor
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Catherine L Young
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeanette G Cook
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeremy E Purvis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
27
|
Gems D. The hyperfunction theory: An emerging paradigm for the biology of aging. Ageing Res Rev 2022; 74:101557. [PMID: 34990845 PMCID: PMC7612201 DOI: 10.1016/j.arr.2021.101557] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022]
Abstract
The process of senescence (aging) is predominantly determined by the action of wild-type genes. For most organisms, this does not reflect any adaptive function that senescence serves, but rather evolutionary effects of declining selection against genes with deleterious effects later in life. To understand aging requires an account of how evolutionary mechanisms give rise to pathogenic gene action and late-life disease, that integrates evolutionary (ultimate) and mechanistic (proximate) causes into a single explanation. A well-supported evolutionary explanation by G.C. Williams argues that senescence can evolve due to pleiotropic effects of alleles with antagonistic effects on fitness and late-life health (antagonistic pleiotropy, AP). What has remained unclear is how gene action gives rise to late-life disease pathophysiology. One ultimate-proximate account is T.B.L. Kirkwood's disposable soma theory. Based on the hypothesis that stochastic molecular damage causes senescence, this reasons that aging is coupled to reproductive fitness due to preferential investment of resources into reproduction, rather than somatic maintenance. An alternative and more recent ultimate-proximate theory argues that aging is largely caused by programmatic, developmental-type mechanisms. Here ideas about AP and programmatic aging are reviewed, particularly those of M.V. Blagosklonny (the hyperfunction theory) and J.P. de Magalhães (the developmental theory), and their capacity to make sense of diverse experimental findings is assessed.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| |
Collapse
|
28
|
Asatryan A, Calandria JM, Kautzmann MAI, Jun B, Gordon WC, Do KV, Bhattacharjee S, Pham TL, Bermúdez V, Mateos MV, Heap J, Bazan NG. New Retinal Pigment Epithelial Cell Model to Unravel Neuroprotection Sensors of Neurodegeneration in Retinal Disease. Front Neurosci 2022; 16:926629. [PMID: 35873810 PMCID: PMC9301569 DOI: 10.3389/fnins.2022.926629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023] Open
Abstract
Retinal pigment epithelial (RPE) cells sustain photoreceptor integrity, and when this function is disrupted, retinal degenerations ensue. Herein, we characterize a new cell line from human RPE that we termed ABC. These cells remarkably recapitulate human eye native cells. Distinctive from other epithelia, RPE cells originate from the neural crest and follow a neural development but are terminally differentiated into "epithelial" type, thus sharing characteristics with their neuronal lineages counterparts. Additionally, they form microvilli, tight junctions, and honeycomb packing and express distinctive markers. In these cells, outer segment phagocytosis, phagolysosome fate, phospholipid metabolism, and lipid mediator release can be studied. ABC cells display higher resistance to oxidative stress and are protected from senescence through mTOR inhibition, making them more stable in culture. The cells are responsive to Neuroprotectin D1 (NPD1), which downregulates inflammasomes and upregulates antioxidant and anti-inflammatory genes. ABC gene expression profile displays close proximity to native RPE lineage, making them a reliable cell system to unravel signaling in uncompensated oxidative stress (UOS) and retinal degenerative disease to define neuroprotection sites.
Collapse
Affiliation(s)
- Aram Asatryan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Jorgelina M Calandria
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Marie-Audrey I Kautzmann
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - William C Gordon
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Khanh V Do
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Surjyadipta Bhattacharjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Thang L Pham
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Vicente Bermúdez
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Melina Valeria Mateos
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Jessica Heap
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| |
Collapse
|
29
|
Inturi R, Jemth P. CRISPR/Cas9-based inactivation of human papillomavirus oncogenes E6 or E7 induces senescence in cervical cancer cells. Virology 2021; 562:92-102. [PMID: 34280810 DOI: 10.1016/j.virol.2021.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 01/10/2023]
Abstract
Human papillomaviruses (HPVs) such as HPV16 and HPV18 can cause cancers of the cervix, anogenital and oropharyngeal sites. Continuous expression of the HPV oncoproteins E6 and E7 are essential for transformation and maintenance of cancer cells. Therefore, therapeutic targeting of E6 or E7 genes can potentially treat HPV-related cancers. Here we report that CRISPR/Cas9-based knockout of E6 or E7 can trigger cellular senescence in HPV18 immortalized HeLa cells. Specifically, E6 or E7-inactivated HeLa cells exhibited characteristic senescence markers like enlarged cell surface area, increased β-galactosidase expression and loss of lamin B1. Since E6 and E7 are bicistronic transcripts, inactivation of HPV18 E6 resulted in knockout of both E6 and E7 and increasing levels of p53/p21 and pRb/p21, respectively. Knockout of HPV18 E7 resulted in decreased E6 expression with activation of pRb/p21 pathway. Taken together, our study demonstrates cellular senescence as an alternative outcome of HPV oncogene inactivation by CRISPR/Cas9.
Collapse
Affiliation(s)
- Raviteja Inturi
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-75123, Uppsala, Sweden.
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-75123, Uppsala, Sweden.
| |
Collapse
|
30
|
Admasu TD, Rae MJ, Stolzing A. Dissecting primary and secondary senescence to enable new senotherapeutic strategies. Ageing Res Rev 2021; 70:101412. [PMID: 34302996 DOI: 10.1016/j.arr.2021.101412] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of stable cell cycle arrest that is known to be elicited in response to different stresses or forms of damage. Senescence limits the replication of old, damaged, and precancerous cells in the short-term but is implicated in diseases and debilities of aging due to loss of regenerative reserve and secretion of a complex combination of factors called the senescence-associated secretory phenotype (SASP). More recently, investigators have discovered that senescent cells induced by these methods (what we term "primary senescent cells") are also capable of inducing other non-senescent cells to undergo senescence - a phenomenon we call "secondary senescence." Secondary senescence has been demonstrated to occur via two broad types of mechanisms. First, factors in the SASP have been shown to be involved in spreading senescence; we call this phenomenon "paracrine senescence." Second, primary senescent cells can induce senescence via an additional group of mechanisms involving cell-to-cell contacts of different types; we term this phenomenon "juxtacrine senescence." "Secondary senescence" in our definition is thus the overarching term for both paracrine and juxtacrine senescence together. By allowing cells that are inherently small in number and incapable of replication to increase in number and possibly spread to anatomically distant locations, secondary senescence allows an initially small number of senescent cells to contribute further to age-related pathologies. We propose that understanding how primary and secondary senescent cells differ from each other and the mechanisms of their spread will enable the development of new rejuvenation therapies to target different senescent cell populations and interrupt their spread, extending human health- and potentially lifespan.
Collapse
|
31
|
Anti-aging: senolytics or gerostatics (unconventional view). Oncotarget 2021; 12:1821-1835. [PMID: 34504654 PMCID: PMC8416555 DOI: 10.18632/oncotarget.28049] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Senolytics are basically anti-cancer drugs, repurposed to kill senescent cells selectively. It is even more difficult to selectively kill senescent cells than to kill cancer cells. Based on lessons of cancer therapy, here I suggest how to exploit oncogene-addiction and to combine drugs to achieve selectivity. However, even if selective senolytic combinations will be developed, there is little evidence that a few senescent cells are responsible for organismal aging. I also discuss gerostatics, such as rapamycin and other rapalogs, pan-mTOR inhibitors, dual PI3K/mTOR inhibitors, which inhibit growth- and aging-promoting pathways. Unlike senolytics, gerostatics do not kill cells but slow down cellular geroconversion to senescence. Numerous studies demonstrated that inhibition of the mTOR pathways by any means (genetic, pharmacological and dietary) extends lifespan. Currently, only two studies demonstrated that senolytics (fisetin and a combination Dasatinib plus Quercetin) extend lifespan in mice. These senolytics slightly inhibit the mTOR pathway. Thus, life extension by these senolytics can be explained by their slight rapamycin-like (gerostatic) effects.
Collapse
|
32
|
Lung T, Di Cesare P, Risch L, Nydegger U, Risch M. Elementary Laboratory Assays as Biomarkers of Ageing: Support for Treatment of COVID-19? Gerontology 2021; 67:503-516. [PMID: 34340235 PMCID: PMC8450824 DOI: 10.1159/000517659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022] Open
Abstract
Youth, working age and the elderly: On a timeline, chronological age (CA) and biological age (BA) may dissociate; nosological entities manifest themselves at different BAs. In determining which disease corresponds to a given age decade, statistical registries of causes of death are unreliable and this does not change with SARS CoV-2 infection. Beyond adolescence, ageing metrics involve estimations of changes in fitness, including prediction models to estimate the number of remaining years left to live. A substantial disparity in biomarker levels and health status of ageing can be observed: the difference in CA and BA in the large cohorts under consideration is glaring. Here, we focus more closely on ageing and senescence metrics in order to make information available for risk analysis non the least with COVID-19, including the most recent risk factors of ABO blood type and 3p21.31 chromosome cluster impacting on C5a and SC5b-9 plasma levels. From the multitude of routine medical laboratory assays, a potentially meaningful set of assays aimed to best reflect the stage of individual senescence; hence risk factors the observational prospective SENIORLABOR study of 1,467 healthy elderly performed since 2009 and similar approaches since 1958 can be instantiated as a network to combine a set of elementary laboratory assays quantifying senescence.
Collapse
Affiliation(s)
- Thomas Lung
- Labormedizinisches Zentrum Dr. Risch, Vaduz, Liechtenstein
| | | | - Lorenz Risch
- Labormedizinisches Zentrum Dr. Risch, Vaduz, Liechtenstein
| | - Urs Nydegger
- Labormedizinisches Zentrum Dr. Risch, Vaduz, Liechtenstein
| | | |
Collapse
|
33
|
Cho KH, An S, Kang J. Systems biology for reverse aging. Aging (Albany NY) 2021; 13:14549-14551. [PMID: 34107452 PMCID: PMC8221313 DOI: 10.18632/aging.203188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/16/2021] [Indexed: 12/04/2022]
Affiliation(s)
- Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sugyun An
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Junsoo Kang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
34
|
Hoppe-Seyler K, Herrmann AL, Däschle A, Kuhn BJ, Strobel TD, Lohrey C, Bulkescher J, Krijgsveld J, Hoppe-Seyler F. Effects of Metformin on the virus/host cell crosstalk in human papillomavirus-positive cancer cells. Int J Cancer 2021; 149:1137-1149. [PMID: 33844847 DOI: 10.1002/ijc.33594] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/17/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
Oncogenic types of human papillomaviruses (HPVs) are major human carcinogens. The viral E6/E7 oncogenes maintain the malignant growth of HPV-positive cancer cells. Targeted E6/E7 inhibition results in efficient induction of cellular senescence, which could be exploited for therapeutic purposes. Here we show that viral E6/E7 expression is strongly downregulated by Metformin in HPV-positive cervical cancer and head and neck cancer cells, both at the transcript and protein level. Metformin-induced E6/E7 repression is glucose and PI3K-dependent but-other than E6/E7 repression under hypoxia-AKT-independent. Proteome analyses reveal that Metformin-induced HPV oncogene repression is linked to the downregulation of cellular factors associated with E6/E7 expression in HPV-positive cancer biopsies. Notably, despite efficient E6/E7 repression, Metformin induces only a reversible proliferative stop in HPV-positive cancer cells and enables them to evade senescence. Metformin also efficiently blocks senescence induction in HPV-positive cancer cells in response to targeted E6/E7 inhibition by RNA interference. Moreover, Metformin treatment enables HPV-positive cancer cells to escape from chemotherapy-induced senescence. These findings uncover profound effects of Metformin on the virus/host cell interactions and the phenotype of HPV-positive cancer cells with implications for therapy-induced senescence, for attempts to repurpose Metformin as an anticancer agent and for the development of E6/E7-inhibitory therapeutic strategies.
Collapse
Affiliation(s)
- Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja L Herrmann
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Antonia Däschle
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bianca J Kuhn
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias D Strobel
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Claudia Lohrey
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Bulkescher
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
35
|
van Vliet T, Varela-Eirin M, Wang B, Borghesan M, Brandenburg SM, Franzin R, Evangelou K, Seelen M, Gorgoulis V, Demaria M. Physiological hypoxia restrains the senescence-associated secretory phenotype via AMPK-mediated mTOR suppression. Mol Cell 2021; 81:2041-2052.e6. [PMID: 33823141 DOI: 10.1016/j.molcel.2021.03.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/21/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of stable proliferative arrest triggered by damaging signals. Senescent cells persist during aging and promote age-related pathologies via the pro-inflammatory senescence-associated secretory phenotype (SASP), whose regulation depends on environmental factors. In vivo, a major environmental variable is oxygenation, which varies among and within tissues. Here, we demonstrate that senescent cells express lower levels of detrimental pro-inflammatory SASP factors in physiologically hypoxic environments, as measured in culture and in tissues. Mechanistically, exposure of senescent cells to low-oxygen conditions leads to AMPK activation and AMPK-mediated suppression of the mTOR-NF-κB signaling loop. Finally, we demonstrate that treatment with hypoxia-mimetic compounds reduces SASP in cells and tissues and improves strength in chemotherapy-treated and aged mice. Our findings highlight the importance of oxygen as a determinant for pro-inflammatory SASP expression and offer a potential new strategy to reduce detrimental paracrine effects of senescent cells.
Collapse
Affiliation(s)
- Thijmen van Vliet
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, 9713 AV, the Netherlands
| | - Marta Varela-Eirin
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, 9713 AV, the Netherlands
| | - Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, 9713 AV, the Netherlands
| | - Michela Borghesan
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, 9713 AV, the Netherlands
| | - Simone M Brandenburg
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, 9713 AV, the Netherlands
| | - Rossana Franzin
- Experimental Nephrology Department, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, the Netherlands
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 157 72, Greece
| | - Marc Seelen
- Experimental Nephrology Department, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, the Netherlands
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 157 72, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9NQ, UK; Biomedical Research Foundation, Academy of Athens, Athens 115 27, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens 157 72, Greece
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, 9713 AV, the Netherlands.
| |
Collapse
|
36
|
van Vliet T, Casciaro F, Demaria M. To breathe or not to breathe: Understanding how oxygen sensing contributes to age-related phenotypes. Ageing Res Rev 2021; 67:101267. [PMID: 33556549 DOI: 10.1016/j.arr.2021.101267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
Aging is characterized by a progressive loss of tissue integrity and functionality due to disrupted homeostasis. Molecular oxygen is pivotal to maintain tissue functions, and aerobic species have evolved a sophisticated sensing system to ensure proper oxygen supply and demand. It is not surprising that aberrations in oxygen and oxygen-associated pathways subvert health and promote different aspects of aging. In this review, we discuss emerging findings on how oxygen-sensing mechanisms regulate different cellular and molecular processes during normal physiology, and how dysregulation of oxygen availability lead to disease and aging. We describe various clinical manifestations associated with deregulation of oxygen balance, and how oxygen-modulating therapies and natural oxygen oscillations influence longevity. We conclude by discussing how a better understanding of oxygen-related mechanisms that orchestrate aging processes may lead to the development of new therapeutic strategies to extend healthy aging.
Collapse
|
37
|
Saoudaoui S, Bernard M, Cardin GB, Malaquin N, Christopoulos A, Rodier F. mTOR as a senescence manipulation target: A forked road. Adv Cancer Res 2021; 150:335-363. [PMID: 33858600 DOI: 10.1016/bs.acr.2021.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cellular senescence, cancer and aging are highly interconnected. Among many important molecular machines that lie at the intersection of this triad, the mechanistic (formerly mammalian) target of rapamycin (mTOR) is a central regulator of cell metabolism, proliferation, and survival. The mTOR signaling cascade is essential to maintain cellular homeostasis in normal biological processes or in response to stress, and its dysregulation is implicated in the progression of many disorders, including age-associated diseases. Accordingly, the pharmacological implications of mTOR inhibition using rapamycin or others rapalogs span the treatment of various human diseases from immune disorders to cancer. Importantly, rapamycin is one of the only known pan-species drugs that can extend lifespan. The molecular and cellular mechanisms explaining the phenotypic consequences of mTOR are vast and heavily studied. In this review, we will focus on the potential role of mTOR in the context of cellular senescence, a tumor suppressor mechanism and a pillar of aging. We will explore the link between senescence, autophagy and mTOR and discuss the opportunities to exploit senescence-associated mTOR functions to manipulate senescence phenotypes in age-associated diseases and cancer treatment.
Collapse
Affiliation(s)
- Sarah Saoudaoui
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada
| | - Monique Bernard
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada
| | - Guillaume B Cardin
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada
| | - Nicolas Malaquin
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada
| | - Apostolos Christopoulos
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada; Otolaryngology-Head and Neck Surgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Francis Rodier
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada; Université de Montréal, Département de radiologie, radio-oncologie et médicine nucléaire, Montreal, QC, Canada.
| |
Collapse
|
38
|
The combination of mitogenic stimulation and DNA damage induces chondrocyte senescence. Osteoarthritis Cartilage 2021; 29:402-412. [PMID: 33227437 PMCID: PMC7925350 DOI: 10.1016/j.joca.2020.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 10/23/2020] [Accepted: 11/10/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cellular senescence is a phenotypic state characterized by stable cell-cycle arrest, enhanced lysosomal activity, and the secretion of inflammatory molecules and matrix degrading enzymes. Senescence has been implicated in osteoarthritis (OA) pathophysiology; however, the mechanisms that drive senescence induction in cartilage and other joint tissues are unknown. While numerous physiological signals are capable of initiating senescence, one emerging theme is that damaged cells convert to senescence in response to sustained mitogenic stimulation. The goal of this study was to develop an in vitro articular cartilage explant model to investigate the mechanisms of senescence induction. DESIGN This study utilized healthy cartilage derived from cadaveric equine stifles and human ankles. Explants were irradiated to initiate DNA damage, and mitogenic stimulation was provided through serum-containing medium and treatment with transforming growth factor β1 and basic fibroblastic growth factor. Readouts of senescence were a quantitative flow cytometry assay to detect senescence-associated β galactosidase activity (SA-β-gal), immunofluorescence for p16 and γH2AX, and qPCR for the expression of inflammatory genes. RESULTS Human cartilage explants required both irradiation and mitogenic stimulation to induce senescence as compared to baseline control conditions (7.16% vs 2.34% SA-β-gal high, p = 0.0007). These conditions also resulted in chondrocyte clusters within explants, a persistent DNA damage response, increased p16, and gene expression changes. CONCLUSIONS Treatment of cartilage explants with mitogenic stimuli in the context of cellular damage reliably induces high levels of SA-β-gal activity and other senescence markers, which provides a physiologically relevant model system to investigate the mechanisms of senescence induction.
Collapse
|
39
|
Kolesnichenko M, Mikuda N, Höpken UE, Kärgel E, Uyar B, Tufan AB, Milanovic M, Sun W, Krahn I, Schleich K, von Hoff L, Hinz M, Willenbrock M, Jungmann S, Akalin A, Lee S, Schmidt-Ullrich R, Schmitt CA, Scheidereit C. Transcriptional repression of NFKBIA triggers constitutive IKK- and proteasome-independent p65/RelA activation in senescence. EMBO J 2021; 40:e104296. [PMID: 33459422 PMCID: PMC7957429 DOI: 10.15252/embj.2019104296] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
The IκB kinase (IKK)‐NF‐κB pathway is activated as part of the DNA damage response and controls both inflammation and resistance to apoptosis. How these distinct functions are achieved remained unknown. We demonstrate here that DNA double‐strand breaks elicit two subsequent phases of NF‐κB activation in vivo and in vitro, which are mechanistically and functionally distinct. RNA‐sequencing reveals that the first‐phase controls anti‐apoptotic gene expression, while the second drives expression of senescence‐associated secretory phenotype (SASP) genes. The rapidly activated first phase is driven by the ATM‐PARP1‐TRAF6‐IKK cascade, which triggers proteasomal destruction of inhibitory IκBα, and is terminated through IκBα re‐expression from the NFKBIA gene. The second phase, which is activated days later in senescent cells, is on the other hand independent of IKK and the proteasome. An altered phosphorylation status of NF‐κB family member p65/RelA, in part mediated by GSK3β, results in transcriptional silencing of NFKBIA and IKK‐independent, constitutive activation of NF‐κB in senescence. Collectively, our study reveals a novel physiological mechanism of NF‐κB activation with important implications for genotoxic cancer treatment.
Collapse
Affiliation(s)
- Marina Kolesnichenko
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nadine Mikuda
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Uta E Höpken
- Microenvironmental Regulation in Autoimmunity and Cancer, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Eva Kärgel
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Bora Uyar
- Bioinformatics/Mathematical Modeling Platform, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ahmet Bugra Tufan
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Maja Milanovic
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - Wei Sun
- Laboratory for Functional Genomics and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Inge Krahn
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Kolja Schleich
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - Linda von Hoff
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Michael Hinz
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Michael Willenbrock
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Sabine Jungmann
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Altuna Akalin
- Bioinformatics/Mathematical Modeling Platform, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Soyoung Lee
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - Ruth Schmidt-Ullrich
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Clemens A Schmitt
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - Claus Scheidereit
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
40
|
An S, Cho SY, Kang J, Lee S, Kim HS, Min DJ, Son E, Cho KH. Inhibition of 3-phosphoinositide-dependent protein kinase 1 (PDK1) can revert cellular senescence in human dermal fibroblasts. Proc Natl Acad Sci U S A 2020; 117:31535-31546. [PMID: 33229519 PMCID: PMC7733858 DOI: 10.1073/pnas.1920338117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence is defined as a stable, persistent arrest of cell proliferation. Here, we examine whether senescent cells can lose senescence hallmarks and reenter a reversible state of cell-cycle arrest (quiescence). We constructed a molecular regulatory network of cellular senescence based on previous experimental evidence. To infer the regulatory logic of the network, we performed phosphoprotein array experiments with normal human dermal fibroblasts and used the data to optimize the regulatory relationships between molecules with an evolutionary algorithm. From ensemble analysis of network models, we identified 3-phosphoinositide-dependent protein kinase 1 (PDK1) as a promising target for inhibitors to convert the senescent state to the quiescent state. We showed that inhibition of PDK1 in senescent human dermal fibroblasts eradicates senescence hallmarks and restores entry into the cell cycle by suppressing both nuclear factor κB and mTOR signaling, resulting in restored skin regeneration capacity. Our findings provide insight into a potential therapeutic strategy to treat age-related diseases associated with the accumulation of senescent cells.
Collapse
Affiliation(s)
- Sugyun An
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Si-Young Cho
- R&D Unit, Amorepacific Corporation, 17074 Gyeonggi-do, Republic of Korea
| | - Junsoo Kang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soobeom Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyung-Su Kim
- R&D Unit, Amorepacific Corporation, 17074 Gyeonggi-do, Republic of Korea
| | - Dae-Jin Min
- R&D Unit, Amorepacific Corporation, 17074 Gyeonggi-do, Republic of Korea
| | - EuiDong Son
- R&D Unit, Amorepacific Corporation, 17074 Gyeonggi-do, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea;
| |
Collapse
|
41
|
Kyritsi K, Francis H, Zhou T, Ceci L, Wu N, Yang Z, Meng F, Chen L, Baiocchi L, Kundu D, Kennedy L, Liangpunsakul S, Wu C, Glaser S, Alpini G. Downregulation of p16 Decreases Biliary Damage and Liver Fibrosis in the Mdr2 / Mouse Model of Primary Sclerosing Cholangitis. Gene Expr 2020; 20:89-103. [PMID: 32393417 PMCID: PMC7650011 DOI: 10.3727/105221620x15889714507961] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biliary senescence and hepatic fibrosis are hallmarks of cholangiopathies including primary sclerosing cholangitis (PSC). Senescent cholangiocytes display senescence-associated secretory phenotypes [SASPs, e.g., transforming growth factor-1 (TGF-1)] that further increase biliary senescence (by an autocrine loop) and trigger liver fibrosis by paracrine mechanisms. The aim of this study was to determine the effect of p16 inhibition and role of the TGF-1/microRNA (miR)-34a/sirtuin 1 (SIRT1) axis in biliary damage and liver fibrosis in the Mdr2/ mouse model of PSC. We treated (i) in vivo male wild-type (WT) and Mdr2/ mice with p16 Vivo-Morpholino or controls before measuring biliary mass [intrahepatic bile duct mass (IBDM)] and senescence, biliary SASP levels, and liver fibrosis, and (ii) in vitro intrahepatic murine cholangiocyte lines (IMCLs) with small interfering RNA against p16 before measuring the mRNA expression of proliferation, senescence, and fibrosis markers. p16 and miR-34a increased but SIRT1 decreased in Mdr2/ mice and PSC human liver samples compared to controls. p16 immunoreactivity and biliary senescence and SASP levels increased in Mdr2/ mice but decreased in Mdr2/ mice treated with p16 Vivo-Morpholino. The increase in IBDM and hepatic fibrosis (observed in Mdr2/ mice) returned to normal values in Mdr2/ mice treated with p16 Vivo-Morpholino. TGF-1 immunoreactivity and biliary SASPs levels were higher in Mdr2/ compared to those of WT mice but returned to normal values in Mdr2/ mice treated with p16 Vivo-Morpholino. The expression of fibrosis/senescence markers decreased in cholangiocytes from Mdr2/ mice treated with p16 Vivo-Morpholino (compared to Mdr2/ mice) and in IMCLs (after p16 silencing) compared to controls. Modulation of the TGF-1/miR-34a/SIRT1 axis may be important in the management of PSC phenotypes.
Collapse
Affiliation(s)
| | - Heather Francis
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Tianhao Zhou
- ‡Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Ludovica Ceci
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Nan Wu
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Zhihong Yang
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Fanyin Meng
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Lixian Chen
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Leonardo Baiocchi
- §Liver Unit, Department of Medicine, University of Rome “Tor Vergata,”Rome, Italy
| | - Debjyoti Kundu
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Lindsey Kennedy
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Suthat Liangpunsakul
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Chaodong Wu
- ¶Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Shannon Glaser
- ‡Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Gianfranco Alpini
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
42
|
Julve M, Clark JJ, Lythgoe MP. Advances in cyclin-dependent kinase inhibitors for the treatment of melanoma. Expert Opin Pharmacother 2020; 22:351-361. [PMID: 33030382 DOI: 10.1080/14656566.2020.1828348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Despite the recent advances in the treatment of malignant melanoma with immunotherapy and BRAF/MEK targeted agents, advanced disease still beholds a poor prognosis for a significant proportion of patients. Cyclin-dependent kinase (CDK) inhibitors have been investigated as novel melanoma therapeutics throughout a range of phase 1 and 2 trials, as single agents and in combination with established treatments. Areas covered: This article summarizes the rationale for, and development of CDK inhibitors in melanoma, with their evolution from pan-CDK inhibitors to highly specific agents, throughout clinical trials and finally their potential future use. Expert opinion: Whilst CDK inhibitors have been practice changing in breast cancer management, their efficacy is yet to be proven in melanoma. Combination with BRAF/MEK inhibitors has been hindered by dose-limiting toxicities, but their role may yet to be found within the spectrum of biomarker-derived personalized melanoma management. The effect that CDK inhibitors can have as an adjunct to immunotherapy also remains to be seen.
Collapse
Affiliation(s)
- Maximilian Julve
- Department of Surgery & Cancer, Imperial College London , London, UK
| | - James J Clark
- Department of Surgery & Cancer, Imperial College London , London, UK
| | - Mark P Lythgoe
- Department of Surgery & Cancer, Imperial College London , London, UK
| |
Collapse
|
43
|
Schnabel F, Kornak U, Wollnik B. Premature aging disorders: A clinical and genetic compendium. Clin Genet 2020; 99:3-28. [PMID: 32860237 DOI: 10.1111/cge.13837] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022]
Abstract
Progeroid disorders make up a heterogeneous group of very rare hereditary diseases characterized by clinical signs that often mimic physiological aging in a premature manner. Apart from Hutchinson-Gilford progeria syndrome, one of the best-investigated progeroid disorders, a wide spectrum of other premature aging phenotypes exist, which differ significantly in their clinical presentation and molecular pathogenesis. Next-generation sequencing (NGS)-based approaches have made it feasible to determine the molecular diagnosis in the early stages of a disease. Nevertheless, a broad clinical knowledge on these disorders and their associated symptoms is still fundamental for a comprehensive patient management and for the interpretation of variants of unknown significance from NGS data sets. This review provides a detailed overview on characteristic clinical features and underlying molecular genetics of well-known as well as only recently identified premature aging disorders and also highlights novel findings towards future therapeutic options.
Collapse
Affiliation(s)
- Franziska Schnabel
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
44
|
Zhang Z, Xu HN, Li S, Jr AD, Chellappa K, Davis JG, Guan Y, Frederick DW, Chu W, Zhao H, Li LZ, Baur JA. Rapamycin maintains NAD +/NADH redox homeostasis in muscle cells. Aging (Albany NY) 2020; 12:17786-17799. [PMID: 32960787 PMCID: PMC7585102 DOI: 10.18632/aging.103954] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/03/2020] [Indexed: 01/24/2023]
Abstract
Rapamycin delays multiple age-related conditions and extends lifespan in organisms ranging from yeast to mice. However, the mechanisms by which rapamycin influences longevity are incompletely understood. The objective of this study was to investigate the effect of rapamycin on NAD+/NADH redox balance. We report that the NAD+/NADH ratio of C2C12 myoblasts or differentiated myotubes significantly decreases over time in culture, and that rapamycin prevents this effect. Despite lowering the NADH available to support ATP generation, rapamycin increases ATP availability, consistent with lowering energetic demand. Although rapamycin did not change the NAD+/NADH ratio or steady-state ATP concentration in the livers, kidneys, or muscles of young mice, optical redox imaging revealed that rapamycin caused a substantial decline in the NADH content and an increase in the optical redox ratio (a surrogate of NAD+/NADH redox ratio) in muscles from aged mice. Collectively, these data suggest that rapamycin favors a more oxidized NAD+/NADH ratio in aged muscle, which may influence metabolism and the activity of NAD+-dependent enzymes. This study provides new insight into the mechanisms by which rapamycin might influence the aging process to improve health and longevity among the aging population.
Collapse
Affiliation(s)
- Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China,Institute for Diabetes, Obesity, and Metabolism, Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - He N. Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Antonio Davila Jr
- Institute for Diabetes, Obesity, and Metabolism, Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karthikeyani Chellappa
- Institute for Diabetes, Obesity, and Metabolism, Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James G. Davis
- Institute for Diabetes, Obesity, and Metabolism, Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuxia Guan
- Division of Trauma, Critical Care, and Emergency Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David W. Frederick
- Institute for Diabetes, Obesity, and Metabolism, Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weiqing Chu
- Institute for Diabetes, Obesity, and Metabolism, Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Huaqing Zhao
- Department of Clinical Sciences, Temple University School of Medicine, Philadelphia, PA 19104, USA
| | - Lin Z. Li
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph A. Baur
- Institute for Diabetes, Obesity, and Metabolism, Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
45
|
Borghesan M, Hoogaars WMH, Varela-Eirin M, Talma N, Demaria M. A Senescence-Centric View of Aging: Implications for Longevity and Disease. Trends Cell Biol 2020; 30:777-791. [PMID: 32800659 DOI: 10.1016/j.tcb.2020.07.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of stable cell cycle arrest associated with macromolecular alterations and secretion of proinflammatory cytokines and molecules. From their initial discovery in the 1960s, senescent cells have been hypothesized as potential contributors to the age-associated loss of regenerative potential. Here, we discuss recent evidence that implicates cellular senescence as a central regulatory mechanism of the aging process. We provide a comprehensive overview of age-associated pathologies in which cellular senescence has been implicated. We describe mechanisms by which senescent cells drive aging and diseases, and we discuss updates on exploiting these mechanisms as therapeutic targets. Finally, we critically analyze the use of senotherapeutics and their translation to the clinic, highlighting limitations and suggesting ideas for future applications and developments.
Collapse
Affiliation(s)
- M Borghesan
- European Research Institute for the Biology of Ageing (ERIBA);, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, The Netherlands
| | - W M H Hoogaars
- European Research Institute for the Biology of Ageing (ERIBA);, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, The Netherlands
| | - M Varela-Eirin
- European Research Institute for the Biology of Ageing (ERIBA);, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, The Netherlands
| | - N Talma
- European Research Institute for the Biology of Ageing (ERIBA);, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, The Netherlands
| | - M Demaria
- European Research Institute for the Biology of Ageing (ERIBA);, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, The Netherlands.
| |
Collapse
|
46
|
Gebbia V, Valerio MR, Firenze A, Vigneri P. Abemaciclib: safety and effectiveness of a unique cyclin-dependent kinase inhibitor. Expert Opin Drug Saf 2020; 19:945-954. [PMID: 32552035 DOI: 10.1080/14740338.2020.1781814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The discovery and the clinical availability of novel cyclin-dependent kinases 4 and 6 inhibitors have profoundly changed the therapeutic scenario of metastatic hormone receptor-positive breast carcinoma. Among these inhibitors, abemaciclib can induce potent and sustained cell cycle arrest and immune system stimulation. AREAS COVERED This review summarizes the safety profile and clinical efficacy data on abemaciclib alone or in combination with aromatase inhibitors or fulvestrant in metastatic hormone receptor-positive breast carcinoma. The management of patients treated with abemaciclib is the object of this paper. EXPERT OPINION As shown in phase 2 and 3 clinical trials on efficacy and tolerability, abemaciclib is a potentially convenient, safe, and effective agent for the treatment of patients with advanced hormone receptor-positive patients. Orally administered abemaciclib in combination with aromatase inhibitors or fulvestrant has the potential to allow significant improvement in survival outcomes, quality of life, response rate, and duration of response even in poor prognosis subgroups. Adequate patients' information, clinical selection, and prompt, proactive management of side effects are mandatory.
Collapse
Affiliation(s)
- Vittorio Gebbia
- Medical Oncology Unit, La Maddalena Clinic for Cancer , Palermo, Italy.,Department of Internal Medicine "Promise", University of Palermo , Palermo, Italy
| | - Maria Rosaria Valerio
- Medical Oncology Unit, Policlinic P. Giaccone, Palermo, University of Palermo , Palermo, Italy
| | - Alberto Firenze
- Risk Management Unit, Policlinic P. Giaccone, Palermo, University of Palermo , Palermo, Italy
| | - Paolo Vigneri
- Medical Oncology Unit, Policlinic "G. Rodolico", University of Catania , Catania, Italy
| |
Collapse
|
47
|
Senescence in polyploid giant cancer cells: A road that leads to chemoresistance. Cytokine Growth Factor Rev 2020; 52:68-75. [DOI: 10.1016/j.cytogfr.2019.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 01/07/2023]
|
48
|
Saleh T, Bloukh S, Carpenter VJ, Alwohoush E, Bakeer J, Darwish S, Azab B, Gewirtz DA. Therapy-Induced Senescence: An "Old" Friend Becomes the Enemy. Cancers (Basel) 2020; 12:cancers12040822. [PMID: 32235364 PMCID: PMC7226427 DOI: 10.3390/cancers12040822] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 01/10/2023] Open
Abstract
For the past two decades, cellular senescence has been recognized as a central component of the tumor cell response to chemotherapy and radiation. Traditionally, this form of senescence, termed Therapy-Induced Senescence (TIS), was linked to extensive nuclear damage precipitated by classical genotoxic chemotherapy. However, a number of other forms of therapy have also been shown to induce senescence in tumor cells independently of direct genomic damage. This review attempts to provide a comprehensive summary of both conventional and targeted anticancer therapeutics that have been shown to induce senescence in vitro and in vivo. Still, the utility of promoting senescence as a therapeutic endpoint remains under debate. Since senescence represents a durable form of growth arrest, it might be argued that senescence is a desirable outcome of cancer therapy. However, accumulating evidence suggesting that cells have the capacity to escape from TIS would support an alternative conclusion, that senescence provides an avenue whereby tumor cells can evade the potentially lethal action of anticancer drugs, allowing the cells to enter a temporary state of dormancy that eventually facilitates disease recurrence, often in a more aggressive state. Furthermore, TIS is now strongly connected to tumor cell remodeling, potentially to tumor dormancy, acquiring more ominous malignant phenotypes and accounts for several untoward adverse effects of cancer therapy. Here, we argue that senescence represents a barrier to effective anticancer treatment, and discuss the emerging efforts to identify and exploit agents with senolytic properties as a strategy for elimination of the persistent residual surviving tumor cell population, with the goal of mitigating the tumor-promoting influence of the senescent cells and to thereby reduce the likelihood of cancer relapse.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan; (T.S.); (S.D.)
| | - Sarah Bloukh
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
| | - Valerie J. Carpenter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Enas Alwohoush
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
| | - Jomana Bakeer
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
| | - Sarah Darwish
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan; (T.S.); (S.D.)
| | - Belal Azab
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
- Correspondence:
| |
Collapse
|
49
|
Bellei B, Picardo M. Premature cell senescence in human skin: Dual face in chronic acquired pigmentary disorders. Ageing Res Rev 2020; 57:100981. [PMID: 31733332 DOI: 10.1016/j.arr.2019.100981] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023]
Abstract
Although senescence was originally described as an in vitro acquired cellular characteristic, it was recently recognized that senescence is physiologically and pathologically involved in aging and age-related diseases in vivo. The definition of cellular senescence has expanded to include the growth arrest caused by various cellular stresses, including DNA damage, inadequate mitochondria function, activated oncogene or tumor suppressor genes and oxidative stress. While senescence in normal aging involves various tissues over time and contributes to a decline in tissue function even with healthy aging, disease-induced premature senescence may be restricted to one or a few organs triggering a prolonged and more intense rate of accumulation of senescent cells than in normal aging. Organ-specific high senescence rate could lead to chronic diseases, especially in post-mitotic rich tissue. Recently, two opposite acquired pathological conditions related to skin pigmentation were described to be associated with premature senescence: vitiligo and melasma. In both cases, it was demonstrated that pathological dysfunctions are not restricted to melanocytes, the cell type responsible for melanin production and transport to surrounding keratinocytes. Similar to physiological melanogenesis, dermal and epidermal cells contribute directly and indirectly to deregulate skin pigmentation as a result of complex intercellular communication. Thus, despite senescence usually being reported as a uniform phenotype sharing the expression of characteristic markers, skin senescence involving mainly the dermal compartment and its paracrine function could be associated with the disappearance of melanocytes in vitiligo lesions and with the exacerbated activity of melanocytes in the hyperpigmentation spots of melasma. This suggests that the difference may arise in melanocyte intrinsic differences and/or in highly defined microenvironment peculiarities poorly explored at the current state of the art. A similar dualistic phenotype has been attributed to intratumoral stromal cells as cancer-associated fibroblasts presenting a senescent-like phenotype which influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. Here, we present a framework dissecting senescent-related molecular alterations shared by vitiligo and melasma patients and we also discuss disease-specific differences representing new challenges for treatment.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
50
|
Schmeer C, Kretz A, Wengerodt D, Stojiljkovic M, Witte OW. Dissecting Aging and Senescence-Current Concepts and Open Lessons. Cells 2019; 8:cells8111446. [PMID: 31731770 PMCID: PMC6912776 DOI: 10.3390/cells8111446] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/10/2023] Open
Abstract
In contrast to the programmed nature of development, it is still a matter of debate whether aging is an adaptive and regulated process, or merely a consequence arising from a stochastic accumulation of harmful events that culminate in a global state of reduced fitness, risk for disease acquisition, and death. Similarly unanswered are the questions of whether aging is reversible and can be turned into rejuvenation as well as how aging is distinguishable from and influenced by cellular senescence. With the discovery of beneficial aspects of cellular senescence and evidence of senescence being not limited to replicative cellular states, a redefinition of our comprehension of aging and senescence appears scientifically overdue. Here, we provide a factor-based comparison of current knowledge on aging and senescence, which we converge on four suggested concepts, thereby implementing the newly emerging cellular and molecular aspects of geroconversion and amitosenescence, and the signatures of a genetic state termed genosenium. We also address the possibility of an aging-associated secretory phenotype in analogy to the well-characterized senescence-associated secretory phenotype and delineate the impact of epigenetic regulation in aging and senescence. Future advances will elucidate the biological and molecular fingerprints intrinsic to either process.
Collapse
Affiliation(s)
- Christian Schmeer
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (A.K.); (D.W.); (M.S.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
- Correspondence:
| | - Alexandra Kretz
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (A.K.); (D.W.); (M.S.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| | - Diane Wengerodt
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (A.K.); (D.W.); (M.S.); (O.W.W.)
| | - Milan Stojiljkovic
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (A.K.); (D.W.); (M.S.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| | - Otto W. Witte
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (A.K.); (D.W.); (M.S.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| |
Collapse
|