1
|
Zhang L, Hu Z, Li Z, Lin Y. Crosstalk among mitophagy, pyroptosis, ferroptosis, and necroptosis in central nervous system injuries. Neural Regen Res 2024; 19:1660-1670. [PMID: 38103229 PMCID: PMC10960298 DOI: 10.4103/1673-5374.389361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/28/2023] [Accepted: 09/24/2023] [Indexed: 12/18/2023] Open
Abstract
Central nervous system injuries have a high rate of resulting in disability and mortality; however, at present, effective treatments are lacking. Programmed cell death, which is a genetically determined form of active and ordered cell death with many types, has recently attracted increasing attention due to its functions in determining the fate of cell survival. A growing number of studies have suggested that programmed cell death is involved in central nervous system injuries and plays an important role in the progression of brain damage. In this review, we provide an overview of the role of programmed cell death in central nervous system injuries, including the pathways involved in mitophagy, pyroptosis, ferroptosis, and necroptosis, and the underlying mechanisms by which mitophagy regulates pyroptosis, ferroptosis, and necroptosis. We also discuss the new direction of therapeutic strategies targeting mitophagy for the treatment of central nervous system injuries, with the aim to determine the connection between programmed cell death and central nervous system injuries and to identify new therapies to modulate programmed cell death following central nervous system injury. In conclusion, based on these properties and effects, interventions targeting programmed cell death could be developed as potential therapeutic agents for central nervous system injury patients.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhigang Hu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhenxing Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
2
|
Teh MR, Armitage AE, Drakesmith H. Why cells need iron: a compendium of iron utilisation. Trends Endocrinol Metab 2024:S1043-2760(24)00109-7. [PMID: 38760200 DOI: 10.1016/j.tem.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
Iron deficiency is globally prevalent, causing an array of developmental, haematological, immunological, neurological, and cardiometabolic impairments, and is associated with symptoms ranging from chronic fatigue to hair loss. Within cells, iron is utilised in a variety of ways by hundreds of different proteins. Here, we review links between molecular activities regulated by iron and the pathophysiological effects of iron deficiency. We identify specific enzyme groups, biochemical pathways, cellular functions, and cell lineages that are particularly iron dependent. We provide examples of how iron deprivation influences multiple key systems and tissues, including immunity, hormone synthesis, and cholesterol metabolism. We propose that greater mechanistic understanding of how cellular iron influences physiological processes may lead to new therapeutic opportunities across a range of diseases.
Collapse
Affiliation(s)
- Megan R Teh
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew E Armitage
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hal Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Barra J, Crosbourne I, Roberge CL, Bossardi-Ramos R, Warren JSA, Matteson K, Wang L, Jourd'heuil F, Borisov SM, Bresnahan E, Bravo-Cordero JJ, Dmitriev RI, Jourd'heuil D, Adam AP, Lamar JM, Corr DT, Barroso MM. DMT1-dependent endosome-mitochondria interactions regulate mitochondrial iron translocation and metastatic outgrowth. Oncogene 2024; 43:650-667. [PMID: 38184712 PMCID: PMC10890933 DOI: 10.1038/s41388-023-02933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Transient early endosome (EE)-mitochondria interactions can mediate mitochondrial iron translocation, but the associated mechanisms are still elusive. We showed that Divalent Metal Transporter 1 (DMT1) sustains mitochondrial iron translocation via EE-mitochondria interactions in triple-negative MDA-MB-231, but not in luminal A T47D breast cancer cells. DMT1 silencing increases labile iron pool (LIP) levels and activates PINK1/Parkin-dependent mitophagy in MDA-MB-231 cells. Mitochondrial bioenergetics and the iron-associated protein profile were altered by DMT1 silencing and rescued by DMT1 re-expression. Transcriptomic profiles upon DMT1 silencing are strikingly different between 2D and 3D culture conditions, suggesting that the environment context is crucial for the DMT1 knockout phenotype observed in MDA-MB-231 cells. Lastly, in vivo lung metastasis assay revealed that DMT1 silencing promoted the outgrowth of lung metastatic nodules in both human and murine models of triple-negative breast cancer cells. These findings reveal a DMT1-dependent pathway connecting EE-mitochondria interactions to mitochondrial iron translocation and metastatic fitness of breast cancer cells.
Collapse
Affiliation(s)
- Jonathan Barra
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
- Department of Medicine, Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Isaiah Crosbourne
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Cassandra L Roberge
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Ramon Bossardi-Ramos
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Janine S A Warren
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Kailie Matteson
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
- Department of Medicine, Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ling Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Frances Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology Stremayrgasse 9, 8010, Graz, Austria
| | - Erin Bresnahan
- Department of Medicine, Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medical and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - David Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - John M Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Margarida M Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
4
|
Xiao Z, Wang X, Pan X, Xie J, Xu H. Mitochondrial iron dyshomeostasis and its potential as a therapeutic target for Parkinson's disease. Exp Neurol 2024; 372:114614. [PMID: 38007207 DOI: 10.1016/j.expneurol.2023.114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/30/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Abnormal iron accumulation has been implicated in the etiology of Parkinson's disease (PD). Understanding how iron damages dopaminergic neurons in the substantia nigra (SN) of PD is particularly important for developing targeted neurotherapeutic strategies for the disease. However, it is still not fully understood how excess iron contributes to the neurodegeneration of dopaminergic neurons in PD. There has been increased attention on mitochondrial iron dyshomeostasis, iron-induced mitochondrial dysfunction and ferroptosis in PD. Therefore, this review begins with a brief introduction to describe cellular iron metabolism and the dysregulation of iron metabolism in PD. Then we provide an update on how iron is delivered to mitochondria and induces the damage of dopaminergic neurons in PD. In addition, we also summarize new research progress on iron-dependent ferroptosis in PD and mitochondria-localized proteins involved in ferroptosis. This will provide new insight into potential therapeutic strategies targeting mitochondrial iron dysfunction.
Collapse
Affiliation(s)
- Zhixin Xiao
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Xiaoya Wang
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Xuening Pan
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Junxia Xie
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| | - Huamin Xu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Pasquadibisceglie A, Bonaccorsi di Patti MC, Musci G, Polticelli F. Membrane Transporters Involved in Iron Trafficking: Physiological and Pathological Aspects. Biomolecules 2023; 13:1172. [PMID: 37627237 PMCID: PMC10452680 DOI: 10.3390/biom13081172] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Iron is an essential transition metal for its involvement in several crucial biological functions, the most notable being oxygen storage and transport. Due to its high reactivity and potential toxicity, intracellular and extracellular iron levels must be tightly regulated. This is achieved through transport systems that mediate cellular uptake and efflux both at the level of the plasma membrane and on the membranes of lysosomes, endosomes and mitochondria. Among these transport systems, the key players are ferroportin, the only known transporter mediating iron efflux from cells; DMT1, ZIP8 and ZIP14, which on the contrary, mediate iron influx into the cytoplasm, acting on the plasma membrane and on the membranes of lysosomes and endosomes; and mitoferrin, involved in iron transport into the mitochondria for heme synthesis and Fe-S cluster assembly. The focus of this review is to provide an updated view of the physiological role of these membrane proteins and of the pathologies that arise from defects of these transport systems.
Collapse
Affiliation(s)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Fabio Polticelli
- Department of Sciences, University Roma Tre, 00146 Rome, Italy;
- National Institute of Nuclear Physics, Roma Tre Section, 00146 Rome, Italy
| |
Collapse
|
6
|
Lv WH, Zhao T, Pantopoulos K, Chen GH, Wei XL, Zhang DG, Luo Z. Manganese-Induced Oxidative Stress Contributes to Intestinal Lipid Deposition via the Deacetylation of PPARγ at K339 by SIRT1. Antioxid Redox Signal 2022; 37:417-436. [PMID: 35293223 DOI: 10.1089/ars.2021.0190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: Excessive manganese (Mn) exposure is toxic, and induces lipid deposition, but the underlying mechanisms remain elusive. Herein, we explored how dietary Mn supplementation affects lipid deposition and metabolism in the intestine of vertebrates using the yellow catfish Pelteobagrus fulvidraco as the model. Results: High-Mn (H-Mn) diet increased intestinal Mn content, promoted lipid accumulation and lipogenesis, and inhibited lipolysis. In addition, it induced oxidative stress, upregulated metal-response element-binding transcription factor-1 (MTF-1), and peroxisome proliferator-activated receptor gamma (PPARγ) protein expression in the nucleus, induced PPARγ acetylation, and the interaction between PPARγ and retinoid X receptor alpha (RXRα), while it downregulated sirtuin 1 (SIRT1) expression and activity. Mechanistically, Mn activated the MTF-1/divalent metal transporter 1 (DMT1) pathway, increased Mn accumulation in the mitochondria, and induced oxidative stress. This in turn promoted lipid deposition via deacetylation of PPARγ at K339 by SIRT1. Subsequently, PPARγ mediated Mn-induced lipid accumulation through transcriptionally activating fatty acid translocase, stearoyl-CoA desaturase 1, and perilipin 2 promoters. Innovation: These studies uncover a previously unknown mechanism by which Mn induces lipid deposition in the intestine via the oxidative stress-SIRT1-PPARγ pathway. Conclusion: High dietary Mn intake activates MTF-1/DMT1 and oxidative stress pathways. Oxidative stress-mediated PPARγ deacetylation at K339 site contributes to increased lipid accumulation. Our results provided a direct link between Mn and lipid metabolism via the oxidative stress-SIRT1-PPARγ axis. Antioxid. Redox Signal. 37, 417-436.
Collapse
Affiliation(s)
- Wu-Hong Lv
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhao
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research and Department of Medicine, McGill University, Montreal, Canada
| | - Guang-Hui Chen
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Lei Wei
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Dian-Guang Zhang
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Zhi Luo
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
7
|
Halcrow PW, Lakpa KL, Khan N, Afghah Z, Miller N, Datta G, Chen X, Geiger JD. HIV-1 gp120-Induced Endolysosome de-Acidification Leads to Efflux of Endolysosome Iron, and Increases in Mitochondrial Iron and Reactive Oxygen Species. J Neuroimmune Pharmacol 2022; 17:181-194. [PMID: 33834418 PMCID: PMC8497638 DOI: 10.1007/s11481-021-09995-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022]
Abstract
The HIV-1 coat protein gp120 continues to be implicated in the pathogenesis of HIV-1 associated neurocognitive disorder (HAND); a condition known to affect ~50% of people living with HIV-1 (PLWH). Autopsy brain tissues of HAND individuals display morphological changes to mitochondria and endolysosomes, and HIV-1 gp120 causes mitochondrial dysfunction including increased levels of reactive oxygen species (ROS) and de-acidification of endolysosomes. Ferrous iron is linked directly to ROS production, ferrous iron is contained in and released from endolysosomes, and PLWH have elevated iron and ROS levels. Based on those findings, we tested the hypothesis that HIV-1 gp120-induced endolysosome de-acidification and subsequent iron efflux from endolysosomes is responsible for increased levels of ROS. In U87MG glioblastoma cells, HIV-1 gp120 de-acidified endolysosomes, reduced endolysosome iron levels, increased levels of cytosolic and mitochondrial iron, and increased levels of cytosolic and mitochondrial ROS. These effects were all attenuated significantly by the endolysosome-specific iron chelator deferoxamine, by inhibitors of endolysosome-resident two-pore channels and divalent metal transporter-1 (DMT-1), and by inhibitors of mitochondria-resident DMT-1 and mitochondrial permeability transition pores. These results suggest that oxidative stress commonly observed with HIV-1 gp120 is downstream of its ability to de-acidify endolysosomes, to increase the release of iron from endolysosomes, and to increase the uptake of iron into mitochondria. Thus, endolysosomes might represent early and upstream targets for therapeutic strategies against HAND.
Collapse
Affiliation(s)
| | | | - Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Nicole Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Jonathan D. Geiger
- Address correspondence to: Jonathan D. Geiger, Ph.D., Chester Fritz Distinguished Professor, Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Room #110, Grand Forks, North Dakota 58203, (701) 777-2183 (P), (701) 777-0387 (F),
| |
Collapse
|
8
|
Wang X, Ma H, Sun J, Zheng T, Zhao P, Li H, Yang M. Mitochondrial Ferritin Deficiency Promotes Osteoblastic Ferroptosis Via Mitophagy in Type 2 Diabetic Osteoporosis. Biol Trace Elem Res 2022; 200:298-307. [PMID: 33594527 DOI: 10.1007/s12011-021-02627-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
The incidence of type 2 diabetic osteoporosis (T2DOP), which seriously threatens elderly people's health, is rapidly increasing in recent years. However, the specific mechanism of the T2DOP is still unclear. Studies have shown the relationship between iron overload and T2DOP. Mitochondrial ferritin (FtMt) is a protein that stores iron ions and intercepts toxic ferrous ions in cells mitochondria. Ferroptosis, an iron-dependent cell injured way, may be related to the pathogenesis of T2DOP. In this study, we intend to elucidate the effect of FtMt on ferroptosis in osteoblasts and explain the possible mechanism. We first detected the occurrence of ferroptosis in bone tissue and the expression of FtMt after inducing T2DOP rat model. Then we used hFOB1.19 cells to study the influence of high glucose on FtMt, ferroptosis, and osteogenic function of osteoblasts. Then we observed the effect of FtMt on ferroptosis and osteoblast function by lentiviral silencing and overexpression of FtMt. We found ferroptosis in T2DOP rats bone. Overexpression of FtMt reduced osteoblastic ferroptosis under high glucose condition while silent FtMt induced mitophagy through ROS / PINK1/Parkin pathway. Then we found increased ferroptosis in osteoblasts after activating mitophagy by carbonyl cyanide-m-chlorophenyl-hydrazine (CCCP, a mitophagy agonist). Our study demonstrated that FtMt inhibited the occurrence of ferroptosis in osteoblasts by reducing oxidative stress caused by excess ferrous ions, and FtMt deficiency induced mitophagy in the pathogenesis of T2DOP. This study suggested that FtMt might serve as a potential target for T2DOP therapy.
Collapse
Affiliation(s)
- XinDong Wang
- Department of Orthopedics, The First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - HongDong Ma
- Department of Orthopedics, The First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Jun Sun
- Department of Orthopedics, The Third Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - TianYu Zheng
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Peng Zhao
- Department of Orthopedics, The First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - HaiTian Li
- Department of Orthopedics, The First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - MaoWei Yang
- Department of Orthopedics, The First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
9
|
Molecular Mechanism of Nramp-Family Transition Metal Transport. J Mol Biol 2021; 433:166991. [PMID: 33865868 DOI: 10.1016/j.jmb.2021.166991] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
The Natural resistance-associated macrophage protein (Nramp) family of transition metal transporters enables uptake and trafficking of essential micronutrients that all organisms must acquire to survive. Two decades after Nramps were identified as proton-driven, voltage-dependent secondary transporters, multiple Nramp crystal structures have begun to illustrate the fine details of the transport process and provide a new framework for understanding a wealth of preexisting biochemical data. Here we review the relevant literature pertaining to Nramps' biological roles and especially their conserved molecular mechanism, including our updated understanding of conformational change, metal binding and transport, substrate selectivity, proton transport, proton-metal coupling, and voltage dependence. We ultimately describe how the Nramp family has adapted the LeuT fold common to many secondary transporters to provide selective transition-metal transport with a mechanism that deviates from the canonical model of symport.
Collapse
|
10
|
Manganese Accumulation in the Brain via Various Transporters and Its Neurotoxicity Mechanisms. Molecules 2020; 25:molecules25245880. [PMID: 33322668 PMCID: PMC7763224 DOI: 10.3390/molecules25245880] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Manganese (Mn) is an essential trace element, serving as a cofactor for several key enzymes, such as glutamine synthetase, arginase, pyruvate decarboxylase, and mitochondrial superoxide dismutase. However, its chronic overexposure can result in a neurological disorder referred to as manganism, presenting symptoms similar to those inherent to Parkinson’s disease. The pathological symptoms of Mn-induced toxicity are well-known, but the underlying mechanisms of Mn transport to the brain and cellular toxicity leading to Mn’s neurotoxicity are not completely understood. Mn’s levels in the brain are regulated by multiple transporters responsible for its uptake and efflux, and thus, dysregulation of these transporters may result in Mn accumulation in the brain, causing neurotoxicity. Its distribution and subcellular localization in the brain and associated subcellular toxicity mechanisms have also been extensively studied. This review highlights the presently known Mn transporters and their roles in Mn-induced neurotoxicity, as well as subsequent molecular and cellular dysregulation upon its intracellular uptakes, such as oxidative stress, neuroinflammation, disruption of neurotransmission, α-synuclein aggregation, and amyloidogenesis.
Collapse
|
11
|
Thévenod F, Lee WK, Garrick MD. Iron and Cadmium Entry Into Renal Mitochondria: Physiological and Toxicological Implications. Front Cell Dev Biol 2020; 8:848. [PMID: 32984336 PMCID: PMC7492674 DOI: 10.3389/fcell.2020.00848] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Regulation of body fluid homeostasis is a major renal function, occurring largely through epithelial solute transport in various nephron segments driven by Na+/K+-ATPase activity. Energy demands are greatest in the proximal tubule and thick ascending limb where mitochondrial ATP production occurs through oxidative phosphorylation. Mitochondria contain 20-80% of the cell's iron, copper, and manganese that are imported for their redox properties, primarily for electron transport. Redox reactions, however, also lead to reactive, toxic compounds, hence careful control of redox-active metal import into mitochondria is necessary. Current dogma claims the outer mitochondrial membrane (OMM) is freely permeable to metal ions, while the inner mitochondrial membrane (IMM) is selectively permeable. Yet we recently showed iron and manganese import at the OMM involves divalent metal transporter 1 (DMT1), an H+-coupled metal ion transporter. Thus, iron import is not only regulated by IMM mitoferrins, but also depends on the OMM to intermembrane space H+ gradient. We discuss how these mitochondrial transport processes contribute to renal injury in systemic (e.g., hemochromatosis) and local (e.g., hemoglobinuria) iron overload. Furthermore, the environmental toxicant cadmium selectively damages kidney mitochondria by "ionic mimicry" utilizing iron and calcium transporters, such as OMM DMT1 or IMM calcium uniporter, and by disrupting the electron transport chain. Consequently, unraveling mitochondrial metal ion transport may help develop new strategies to prevent kidney injury induced by metals.
Collapse
Affiliation(s)
- Frank Thévenod
- Faculty of Health, Centre for Biomedical Education and Research, Institute of Physiology, Pathophysiology and Toxicology, Witten/Herdecke University, Witten, Germany
| | - Wing-Kee Lee
- Faculty of Health, Centre for Biomedical Education and Research, Institute of Physiology, Pathophysiology and Toxicology, Witten/Herdecke University, Witten, Germany
| | - Michael D Garrick
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
12
|
Mechanisms of Co, Ni, and Mn toxicity: From exposure and homeostasis to their interactions with and impact on lipids and biomembranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183250. [DOI: 10.1016/j.bbamem.2020.183250] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 01/21/2023]
|
13
|
Cell organelles as targets of mammalian cadmium toxicity. Arch Toxicol 2020; 94:1017-1049. [PMID: 32206829 DOI: 10.1007/s00204-020-02692-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Ever increasing environmental presence of cadmium as a consequence of industrial activities is considered a health hazard and is closely linked to deteriorating global health status. General animal and human cadmium exposure ranges from ingestion of foodstuffs sourced from heavily polluted hotspots and cigarette smoke to widespread contamination of air and water, including cadmium-containing microplastics found in household water. Cadmium is promiscuous in its effects and exerts numerous cellular perturbations based on direct interactions with macromolecules and its capacity to mimic or displace essential physiological ions, such as iron and zinc. Cell organelles use lipid membranes to form complex tightly-regulated, compartmentalized networks with specialized functions, which are fundamental to life. Interorganellar communication is crucial for orchestrating correct cell behavior, such as adaptive stress responses, and can be mediated by the release of signaling molecules, exchange of organelle contents, mechanical force generated through organelle shape changes or direct membrane contact sites. In this review, cadmium effects on organellar structure and function will be critically discussed with particular consideration to disruption of organelle physiology in vertebrates.
Collapse
|
14
|
Low DMT1 Expression Associates With Increased Oxidative Phosphorylation and Early Recurrence in Hepatocellular Carcinoma. J Surg Res 2019; 234:343-352. [PMID: 30527495 DOI: 10.1016/j.jss.2018.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/11/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Despite a high rate of recurrences, long-term survival can be achieved after the resection of hepatocellular carcinoma (HCC) with effective local treatment. Discovery of adverse prognostic variables to identify patients with high risk of recurrence could improve the management of HCC. Accumulating evidence showing a link between carcinogenesis and increased expression of iron import proteins and intracellular iron prompted us to investigate a role of divalent metal-ion transporter-1 (DMT1) that binds and regulates a variety of divalent metals in HCC. MATERIALS AND METHODS Clinical and gene expression data from RNA seq in 369 HCC patients were obtained from The Cancer Genome Atlas. Disease-free survival was compared between DMT1 high- and low-expressing tumors, and gene set enrichment analysis was conducted. RESULTS Patients with lower expression of DMT1 exhibited significantly worse disease-free survival compared with the DMT1 high group (P = 0.044), notably in advanced-stage patients (P = 0.008). DMT1 expression did not differ in etiologies, stages, and differentiation status of HCC. Interestingly, DMT1 expression levels inversely associated with cellular respiratory function in HCC. Furthermore, gene set enrichment analysis revealed that metabolism-related gene sets such as glycolysis, oxidative phosphorylation, and reactive oxygen species pathway were significantly enriched in the DMT1 low-expressing HCC. CONCLUSIONS Low DMT1 expression associates with increased oxidative phosphorylation as well as glycolysis and identifies early recurrence in HCC patients after surgical treatment.
Collapse
|
15
|
Ingrassia R, Garavaglia B, Memo M. DMT1 Expression and Iron Levels at the Crossroads Between Aging and Neurodegeneration. Front Neurosci 2019; 13:575. [PMID: 31231185 PMCID: PMC6560079 DOI: 10.3389/fnins.2019.00575] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Iron homeostasis is an essential prerequisite for metabolic and neurological functions throughout the healthy human life, with a dynamic interplay between intracellular and systemic iron metabolism. The development of different neurodegenerative diseases is associated with alterations of the intracellular transport of iron and heavy metals, principally mediated by Divalent Metal Transporter 1 (DMT1), responsible for Non-Transferrin Bound Iron transport (NTBI). In addition, DMT1 regulation and its compartmentalization in specific brain regions play important roles during aging. This review highlights the contribution of DMT1 to the physiological exchange and distribution of body iron and heavy metals during aging and neurodegenerative diseases. DMT1 also mediates the crosstalk between central nervous system and peripheral tissues, by systemic diffusion through the Blood Brain Barrier (BBB), with the involvement of peripheral iron homeostasis in association with inflammation. In conclusion, a survey about the role of DMT1 and iron will illustrate the complex panel of interrelationship with aging, neurodegeneration and neuroinflammation.
Collapse
Affiliation(s)
- Rosaria Ingrassia
- Section of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maurizio Memo
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
16
|
Publisher's Note. J Surg Res 2019. [DOI: 10.1016/j.jss.2018.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Ballesteros C, Geary JF, Mackenzie CD, Geary TG. Characterization of Divalent Metal Transporter 1 (DMT1) in Brugia malayi suggests an intestinal-associated pathway for iron absorption. Int J Parasitol Drugs Drug Resist 2018; 8:341-349. [PMID: 29957332 PMCID: PMC6038845 DOI: 10.1016/j.ijpddr.2018.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 01/12/2023]
Abstract
Lymphatic filariasis and onchocerciasis are neglected parasitic diseases which pose a threat to public health in tropical and sub-tropical regions. Strategies for control and elimination of these diseases by mass drug administration (MDA) campaigns are designed to reduce symptoms of onchocerciasis and transmission of both parasites to eventually eliminate the burden on public health. Drugs used for MDA are predominantly microfilaricidal, and prolonged rounds of treatment are required for eradication. Understanding parasite biology is crucial to unravelling the complex processes involved in host-parasite interactions, disease transmission, parasite immune evasion, and the emergence of drug resistance. In nematode biology, large gaps still exist in our understanding of iron metabolism, iron-dependent processes and their regulation. The acquisition of iron from the host is a crucial determinant of the success of a parasitic infection. Here we identify a filarial ortholog of Divalent Metal Transporter 1 (DMT1), a member of a highly conserved family of NRAMP proteins that play an essential role in the transport of ferrous iron in many species. We cloned and expressed the B. malayi NRAMP ortholog in the iron-deficient fet3fet4 strain of Saccharomyces cerevisiae, performed qPCR to estimate stage-specific expression, and localized expression of this gene by immunohistochemistry. Results from functional iron uptake assays showed that expression of this gene in the iron transport-deficient yeast strain significantly rescued growth in low-iron medium. DMT1 was highly expressed in adult female and male B. malayi and Onchocerca volvulus. Immunolocalization revealed that DMT1 is expressed in the intestinal brush border, lateral chords, and reproductive tissues of males and females, areas also inhabited by Wolbachia. We hypothesize based on our results that DMT1 in B. malayi functions as an iron transporter. The presence of this transporter in the intestine supports the hypothesis that iron acquisition by adult females requires oral ingestion and suggests that the intestine plays a functional role in at least some aspects of nutrient uptake.
Collapse
Affiliation(s)
- Cristina Ballesteros
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - James F Geary
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Charles D Mackenzie
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Timothy G Geary
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
18
|
Liu P, Lin H, Xu Y, Zhou F, Wang J, Liu J, Zhu X, Guo X, Tang Y, Yao P. Frataxin-Mediated PINK1-Parkin-Dependent Mitophagy in Hepatic Steatosis: The Protective Effects of Quercetin. Mol Nutr Food Res 2018; 62:e1800164. [PMID: 29935106 DOI: 10.1002/mnfr.201800164] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/20/2018] [Indexed: 12/18/2022]
Abstract
SCOPE Naturally occurring quercetin has been found to induce mitophagy and prevent nonalcoholic fatty liver disease (NAFLD). However, it still remains elusive whether frataxin upregulation by quercetin contributes to the beneficial effect through mitophagy or not. METHODS AND RESULTS Adult male C57BL/J mice were fed a high-fat diet (HFD, 60% of energy from fat) with quercetin (100 mg kg-1 body weight) or not for 10 weeks. Quercetin alleviated HFD-induced histopathological changes, disorders of lipid metabolism, and mitochondrial damage. Moreover, quercetin blocked mitophagy suppression by HFD based on the increased LC3II, PTEN-induced putative kinase 1 (PINK1) and Beclin1 expressions, as well as decreased p62 levels. Quercetin also improved the Parkin translocation to mitochondria confirmed by immunofluorescence. Specifically, frataxin was lowered in the liver of HFD-fed mice or HepG2 cell incubated with oleate/palmitate but restored by quercetin, and quercetin's regulation of frataxin may depend on p53. Furthermore, lentivirus-mediated stable knockdown of frataxin in HepG2 inhibited PINK1-Parkin-associated mitophagy and resulted in lipid accumulation. Frataxin was further decreased by free fatty acids in knockdown cells concomitantly with depressed PINK1-Parkin-associated mitophagy, which was partially normalized by quercetin. CONCLUSION Quercetin alleviated hepatic steatosis by enhancing frataxin-mediated PINK1/Parkin-dependent mitophagy, highlighting a promising preventive strategy and mechanism for NAFLD by quercetin.
Collapse
Affiliation(s)
- Peiyi Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Hongkun Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Yanyan Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Feng Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Jing Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Jingjing Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Xinhong Zhu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Xiaoping Guo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| |
Collapse
|
19
|
Chiang S, Kalinowski DS, Jansson PJ, Richardson DR, Huang MLH. Mitochondrial dysfunction in the neuro-degenerative and cardio-degenerative disease, Friedreich's ataxia. Neurochem Int 2018; 117:35-48. [PMID: 28782591 DOI: 10.1016/j.neuint.2017.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/25/2017] [Accepted: 08/03/2017] [Indexed: 01/09/2023]
Abstract
Mitochondrial homeostasis is essential for maintaining healthy cellular function and survival. The detrimental involvement of mitochondrial dysfunction in neuro-degenerative diseases has recently been highlighted in human conditions, such as Parkinson's, Alzheimer's and Huntington's disease. Friedreich's ataxia (FA) is another neuro-degenerative, but also cardio-degenerative condition, where mitochondrial dysfunction plays a crucial role in disease progression. Deficient expression of the mitochondrial protein, frataxin, is the primary cause of FA, which leads to adverse alterations in whole cell and mitochondrial iron metabolism. Dys-regulation of iron metabolism in these compartments, results in the accumulation of inorganic iron deposits in the mitochondrial matrix that is thought to potentiate oxidative damage observed in FA. Therefore, the maintenance of mitochondrial homeostasis is crucial in the progression of neuro-degenerative conditions, particularly in FA. In this review, vital mitochondrial homeostatic processes and their roles in FA pathogenesis will be discussed. These include mitochondrial iron processing, mitochondrial dynamics (fusion and fission processes), mitophagy, mitochondrial biogenesis, mitochondrial energy production and calcium metabolism.
Collapse
Affiliation(s)
- Shannon Chiang
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Danuta S Kalinowski
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Patric J Jansson
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Des R Richardson
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Michael L-H Huang
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
20
|
A role for divalent metal transporter (DMT1) in mitochondrial uptake of iron and manganese. Sci Rep 2018; 8:211. [PMID: 29317744 PMCID: PMC5760699 DOI: 10.1038/s41598-017-18584-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/13/2017] [Indexed: 01/01/2023] Open
Abstract
Much of iron and manganese metabolism occurs in mitochondria. Uptake of redox-active iron must be tightly controlled, but little is known about how metal ions enter mitochondria. Recently, we established that the divalent metal transporter 1 (DMT1) is present in the outer mitochondrial membrane (OMM). Therefore we asked if it mediates Fe2+ and Mn2+ influx. Mitochondria were isolated from HEK293 cells permanently transfected with inducible rat DMT1 isoform 1 A/+IRE (HEK293-rDMT1). Fe2+-induced quenching of the dye PhenGreen™SK (PGSK) occurred in two phases, one of which reflected OMM DMT1 with stronger Fe2+ uptake after DMT1 overexpression. DMT1-specific quenching showed an apparent affinity of ~1.5 µM for Fe2+and was blocked by the DMT1 inhibitor CISMBI. Fe2+ influx reflected an imposed proton gradient, a response that was also observed in purified rat kidney cortex (rKC) mitochondria. Non-heme Fe accumulation assayed by ICPOES and stable 57Fe isotope incorporation by ICPMS were increased in HEK293-rDMT1 mitochondria. HEK293-rDMT1 mitochondria displayed higher 59Fe2+ and 54Mn2+ uptake relative to controls with 54Mn2+ uptake blocked by the DMT1 inhibitor XEN602. Such transport was defective in rKC mitochondria with the Belgrade (G185R) mutation. Thus, these results support a role for DMT1 in mitochondrial Fe2+ and Mn2+ acquisition.
Collapse
|
21
|
Ryu MS, Duck KA, Philpott CC. Ferritin iron regulators, PCBP1 and NCOA4, respond to cellular iron status in developing red cells. Blood Cells Mol Dis 2017; 69:75-81. [PMID: 29032941 DOI: 10.1016/j.bcmd.2017.09.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 10/18/2022]
Abstract
Developing red blood cells exhibit multiple, redundant systems for regulating and coordinating the uptake of iron, the synthesis of heme, and the formation of hemoglobin during terminal differentiation. We recently described the roles of poly rC-binding protein (PCBP1) and nuclear coactivator 4 (NCOA4) in mediating the flux of iron through ferritin in developing erythroid cells, with PCBP1, an iron chaperone, delivering iron to ferritin and NCOA4, an autophagic cargo receptor, directing ferritin to the lysosome for degradation and iron release. Ferritin iron flux is critical, as mice lacking these factors develop microcytic anemia. Here we report that these processes are regulated by cellular iron levels in a murine model of ex vivo terminal differentiation. PCBP1 delivers iron to ferritin via a direct protein-protein interaction. This interaction is developmentally regulated, enhanced by iron deprivation, and inhibited by iron excess, both in developing cells and in vitro. NCOA4 activity also exhibited developmental regulation and regulation by cellular iron levels. Excess iron uptake during differentiation triggered lysosomal degradation of NCOA4, which was dependent on the E3 ubiquitin ligase HERC2. Thus, developing red blood cells express a series of proteins that both mediate and regulate the flux of iron to the mitochondria.
Collapse
Affiliation(s)
- Moon-Suhn Ryu
- Genetics and Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kari A Duck
- Genetics and Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Caroline C Philpott
- Genetics and Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Gao G, Zhang N, Wang YQ, Wu Q, Yu P, Shi ZH, Duan XL, Zhao BL, Wu WS, Chang YZ. Mitochondrial Ferritin Protects Hydrogen Peroxide-Induced Neuronal Cell Damage. Aging Dis 2017; 8:458-470. [PMID: 28840060 PMCID: PMC5524808 DOI: 10.14336/ad.2016.1108] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress and iron accumulation are tightly associated with neurodegenerative diseases. Mitochondrial ferritin (FtMt) is identified as an iron-storage protein located in the mitochondria, and its role in regulation of iron hemeostasis in neurodegenerative diseases has been reported. However, the role of FtMt in hydrogen peroxide (H2O2)-induced oxidative stress and iron accumulation in neuronal cells has not been studied. Here, we overexpressed FtMt in neuroblastoma SH-SY5Y cells and induced oxidative stress by treating with extracellular H2O2. We found that overexpression of FtMt significantly prevented cell death induced by H2O2, particularly the apoptosis-dependent cell death. The protective effects involved inhibiting the generation of cellular reactive oxygen species, sustaining mitochondrial membrane potential, maintaining the level of anti-apoptotic protein Bcl-2, and inhibiting the activation of pro-apoptotic protein caspase 3. We further explored the mechanism of these protective effects and found that FtMt expression markedly altered iron homeostasis of the H2O2 treated cells as compared to that of controls. The FtMt overexpression significantly reduced cellular labile iron pool (LIP) and protected H2O2-induced elevation on LIP. While in H2O2 treated SH-SY5Y cells, the increased iron uptake and reduced iron release, in correlation with levels of DMT1(-IRE) and ferroportin 1, resulted in heavy iron accumulation, the FtMt overexpressing cells didn’t show any significant changes in levels of iron transport proteins and in the level of LIP. These results implicate a neuroprotective role of FtMt on H2O2-induced oxidative stress, which may provide insights into the treatment of iron accumulation associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Guofen Gao
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Nan Zhang
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Yue-Qi Wang
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Qiong Wu
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Peng Yu
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Zhen-Hua Shi
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Xiang-Lin Duan
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Bao-Lu Zhao
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Wen-Shuang Wu
- 2The 3rd Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yan-Zhong Chang
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| |
Collapse
|
23
|
Abstract
INTRODUCTION Mitochondria are cellular organelles that perform numerous bioenergetic, biosynthetic, and regulatory functions and play a central role in iron metabolism. Extracellular iron is taken up by cells and transported to the mitochondria, where it is utilized for synthesis of cofactors essential to the function of enzymes involved in oxidation-reduction reactions, DNA synthesis and repair, and a variety of other cellular processes. Areas covered: This article reviews the trafficking of iron to the mitochondria and normal mitochondrial iron metabolism, including heme synthesis and iron-sulfur cluster biogenesis. Much of our understanding of mitochondrial iron metabolism has been revealed by pathologies that disrupt normal iron metabolism. These conditions affect not only iron metabolism but mitochondrial function and systemic health. Therefore, this article also discusses these pathologies, including conditions of systemic and mitochondrial iron dysregulation as well as cancer. Literature covering these areas was identified via PubMed searches using keywords: Iron, mitochondria, Heme Synthesis, Iron-sulfur Cluster, and Cancer. References cited by publications retrieved using this search strategy were also consulted. Expert commentary: While much has been learned about mitochondrial and its iron, key questions remain. Developing a better understanding of mitochondrial iron and its regulation will be paramount in developing therapies for syndromes that affect mitochondrial iron.
Collapse
Affiliation(s)
- Bibbin T. Paul
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut
| | - David H. Manz
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut
- School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut
| | - Frank M. Torti
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut
| | - Suzy V. Torti
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut
| |
Collapse
|
24
|
Does any drug to treat cancer target mTOR and iron hemostasis in neurodegenerative disorders? Biometals 2016; 30:1-16. [PMID: 27853903 DOI: 10.1007/s10534-016-9981-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/08/2016] [Indexed: 12/23/2022]
Abstract
The prevalence of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease are increased by age. Alleviation of their symptoms and protection of normal neurons against degeneration are the main aspects of the research to establish novel therapeutic strategies. Iron as the one of most important cation not only play important role in the structure of electron transport chain proteins but also has pivotal duties in cellular activities. But disruption in iron hemostasis can make it toxin to neurons which causes lipid peroxidation, DNA damage and etc. In patients with Alzheimer and Parkinson misbalancing in iron homeostasis accelerate neurodegeneration and cause neuroinflmmation. mTOR as the common signaling pathway between cancer and neurodegenerative disorders controls iron uptake and it is in active form in both diseases. Anti-cancer drugs which target mTOR causes iron deficiency and dual effects of mTOR inhibitors can candidate them as a therapeutic strategy to alleviate neurodegeneration/inflammation because of iron overloading.
Collapse
|
25
|
Thévenod F, Wolff NA. Iron transport in the kidney: implications for physiology and cadmium nephrotoxicity. Metallomics 2016; 8:17-42. [PMID: 26485516 DOI: 10.1039/c5mt00215j] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The kidney has recently emerged as an organ with a significant role in systemic iron (Fe) homeostasis. Substantial amounts of Fe are filtered by the kidney, which have to be reabsorbed to prevent Fe deficiency. Accordingly Fe transporters and receptors for protein-bound Fe are expressed in the nephron that may also function as entry pathways for toxic metals, such as cadmium (Cd), by way of "ionic and molecular mimicry". Similarities, but also differences in handling of Cd by these transport routes offer rationales for the propensity of the kidney to develop Cd toxicity. This critical review provides a comprehensive update on Fe transport by the kidney and its relevance for physiology and Cd nephrotoxicity. Based on quantitative considerations, we have also estimated the in vivo relevance of the described transport pathways for physiology and toxicology. Under physiological conditions all segments of the kidney tubules are likely to utilize Fe for cellular Fe requiring processes for metabolic purposes and also to contribute to reabsorption of free and bound forms of Fe into the circulation. But Cd entering tubule cells disrupts metabolic pathways and is unable to exit. Furthermore, our quantitative analyses contest established models linking chronic Cd nephrotoxicity to proximal tubular uptake of metallothionein-bound Cd. Hence, Fe transport by the kidney may be beneficial by preventing losses from the body. But increased uptake of Fe or Cd that cannot exit tubule cells may lead to kidney injury, and Fe deficiency may facilitate renal Cd uptake.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute of Physiology, Pathophysiology & Toxicology, Center for Biomedical Training and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 12, 58453 Witten, Germany.
| | - Natascha A Wolff
- Institute of Physiology, Pathophysiology & Toxicology, Center for Biomedical Training and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 12, 58453 Witten, Germany.
| |
Collapse
|
26
|
Backe MB, Moen IW, Ellervik C, Hansen JB, Mandrup-Poulsen T. Iron Regulation of Pancreatic Beta-Cell Functions and Oxidative Stress. Annu Rev Nutr 2016; 36:241-73. [PMID: 27146016 DOI: 10.1146/annurev-nutr-071715-050939] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary advice is the cornerstone in first-line treatment of metabolic diseases. Nutritional interventions directed at these clinical conditions mainly aim to (a) improve insulin resistance by reducing energy-dense macronutrient intake to obtain weight loss and (b) reduce fluctuations in insulin secretion through avoidance of rapidly absorbable carbohydrates. However, even in the majority of motivated patients selected for clinical trials, massive efforts using this approach have failed to achieve lasting efficacy. Less attention has been given to the role of micronutrients in metabolic diseases. Here, we review the evidence that highlights (a) the importance of iron in pancreatic beta-cell function and dysfunction in diabetes and (b) the integrative pathophysiological effects of tissue iron levels in the interactions among the beta cell, gut microbiome, hypothalamus, innate and adaptive immune systems, and insulin-sensitive tissues. We propose that clinical trials are warranted to clarify the impact of dietary or pharmacological iron reduction on the development of metabolic disorders.
Collapse
Affiliation(s)
- Marie Balslev Backe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Ingrid Wahl Moen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Christina Ellervik
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Jakob Bondo Hansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| |
Collapse
|
27
|
Alvarado-Díaz CP, Núñez MT, Devoto L, González-Ramos R. Endometrial expression and in vitro modulation of the iron transporter divalent metal transporter-1: implications for endometriosis. Fertil Steril 2016; 106:393-401. [PMID: 27117373 DOI: 10.1016/j.fertnstert.2016.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To evaluate divalent metal transporter-1 (DMT1) expression in healthy women's and endometriosis patients' endometrium and to analyze DMT1 and ferritin light chain (Fn-L) expression modulation by iron overload and IL-1β in endometrial stromal cells (ESCs). DESIGN Observational and experimental study. SETTING University hospital research laboratory. PATIENT(S) Thirty-one healthy women and 24 endometriosis patients. INTERVENTION(S) Menstrual, proliferative, and secretory endometrial biopsies. Isolated ESCs from seven endometrial biopsies incubated with IL-1β or FeSO4 overload for 24 hours. MAIN OUTCOME MEASURE(S) Divalent metal transporter-1 endometrial protein expression assessed by immunohistochemistry and Western blot. Divalent metal transporter-1 and Fn-L proteins expression in stimulated ESCs evaluated by Western blot. RESULT(S) Divalent metal transporter-1 is expressed throughout the menstrual cycle in human endometrium. Four endometrial DMT1 variants were identified accordingly to their molecular weight: DMT-80, -65, -55, and -50. Endometrial expression of DMT-80 and -55 is higher in endometriosis patients than in healthy women. In ESCs, iron overload induces an overexpression of DMT-80, DMT-50, and Fn-L, whereas IL-1β increases DMT-80 and -50 expressions and decreases Fn-L expression. CONCLUSION(S) Divalent metal transporter-1 overexpression in endometriosis patients' endometrium can increase iron influx to endometrial cells, inducing oxidative stress-mediated proinflammatory signaling. In turn, endometriosis-related conditions, as iron overload and inflammation (IL-1β), enhance endometriosis patients endometrial DMT1 expression, creating a vicious circle on DMT-1-modulated pathways.
Collapse
Affiliation(s)
- Carlos Patricio Alvarado-Díaz
- Instituto de Investigaciones Materno Infantil, Departamento de Obstetricia y Ginecología, Hospital San Borja-Arriarán, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marco Tulio Núñez
- Instituto de Dinámica Celular y Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Luigi Devoto
- Instituto de Investigaciones Materno Infantil, Departamento de Obstetricia y Ginecología, Hospital San Borja-Arriarán, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Reinaldo González-Ramos
- Instituto de Investigaciones Materno Infantil, Departamento de Obstetricia y Ginecología, Hospital San Borja-Arriarán, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|