1
|
Saffarionpour S, Diosady LL. Cyclodextrins and their potential applications for delivering vitamins, iron, and iodine for improving micronutrient status. Drug Deliv Transl Res 2025; 15:26-65. [PMID: 38671315 DOI: 10.1007/s13346-024-01586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Cyclodextrins (CDs) have been investigated as potential biopolymeric carriers that can form inclusion complexes with numerous bioactive ingredients. The inclusion of micronutrients (e.g. vitamins or minerals) into cyclodextrins can enhance their solubility and provide oxidative or thermal stability. It also enables the formulation of products with extended shelf-life. The designed delivery systems with CDs and their inclusion complexes including electrospun nanofibers, emulsions, liposomes, and hydrogels, show potential in enhancing the solubility and oxidative stability of micronutrients while enabling their controlled and sustained release in applications including food packaging, fortified foods and dietary supplements. Nano or micrometer-sized delivery systems capable of controlling burst release and permeation, or moderating skin hydration have been reported, which can facilitate the formulation of several personal and skin care products for topical or transdermal delivery of micronutrients. This review highlights recent developments in the application of CDs for the delivery of micronutrients, i.e. vitamins, iron, and iodine, which play key roles in the human body, emphasizing their existing and potential applications in the food, pharmaceuticals, and cosmeceuticals industries.
Collapse
Affiliation(s)
| | - Levente L Diosady
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Ebid AI, Abdeen HA, Muhammed Maher R, Mohamed-Abdel-Motaleb SM. Cefoperazone-Sulbactam-Induced Coagulopathy in Critically Ill Egyptian Patients: Role of Vitamin K Prophylactic Doses. Hosp Pharm 2024; 59:575-583. [PMID: 39318741 PMCID: PMC11418688 DOI: 10.1177/00185787241238310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Aim: Evaluating the impact of vitamin K prophylaxis on cefoperazone-sulbactam-induced coagulopathy in critically ill patients. Methods: We conducted a randomized controlled trial on critically ill adult patients treated with cefoperazone-sulbactam. Patients received systemic cefoperazone-sulbactam antibiotics of 1.5 to 2 g every 12 hours. Patients were randomized into 2 groups: the intervention group (Gp-I), who received a 10 mg intravenous dose of vitamin K every week until cefoperazone-sulbactam therapy ended, and the control group (Gp-C), who received only cefoperazone-sulbactam. Results: Our main finding was the significantly higher survival probability from coagulopathy in Gp-I than in Gp-C using the Kaplan-Myers curve (χ2 = 25.5, P < .001). The adjusted hazard ratios for coagulopathy obtained from the Cox regression analysis revealed that the intervention was significantly associated with a 99% reduction in the hazard of coagulopathy relative to Gp-C (HR = 0.01, P = .001). The Kaplan-Myers curve indicated a significantly higher survival probability from bleeding in Gp-I than in Gp-C (χ2 = 9, degree of freedom = 1, P = .005). Conclusion: In critically ill patients, intravenous prophylactic doses of vitamin K of 10 mg per week prevent cefoperazone-sulbactam-induced coagulopathy. Therefore, we recommend adding vitamin K supplementation to ICU protocols in Egypt for cefoperazone-sulbactam safety.
Collapse
Affiliation(s)
| | - Hebatallah Ali Abdeen
- 6-October Hospital, General Health Insurance Organization, Ministry of Health and Population, Cairo, Egypt
| | | | | |
Collapse
|
3
|
Viganò C, Palermo A, Mulinacci G, Pirola L, Losco A, Meucci G, Saibeni S, Pastorelli L, Amato A, Gatti M, Cortelezzi C, Di Sabatino A, Morganti D, Boni F, Grasso G, Casella G, Casini V, Caprioli FA, Vecchi M, Bezzio C, Bergna I, Radaelli F, Mengoli C, Massironi S. Prevalence of Disease-Related Malnutrition and Micronutrients Deficit in Patients with Inflammatory Bowel Disease: A Multicentric Cross-Sectional Study by the GSMII (Inflammatory Bowel Disease Study Group). Inflamm Bowel Dis 2024; 30:1112-1120. [PMID: 37536282 DOI: 10.1093/ibd/izad146] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 08/05/2023]
Abstract
BACKGROUND AND AIMS Inflammatory bowel disease (IBD) patients might experience disease-related malnutrition (DRM), but prevalence and risk factors are not well defined. The primary aim of the study was to define the prevalence of DRM and micronutrient deficiency in IBD patients; the secondary aim was to assess variables related to DRM. MATERIALS AND METHODS A multicenter, cross-sectional study was performed including consecutive adult IBD patients during a period of 2 weeks. Nutritional status was assessed with the body mass index (BMI) and the Malnutrition Universal Screening Tool. DRM was defined according to European Society for Clinical Nutrition and Metabolism guidelines. RESULTS Among the 295 enrolled patients, the prevalence of DRM was 23%, with no statistical difference between Crohn's disease and ulcerative colitis. Compared with well-nourished patients, patients with DRM showed higher rate of hospitalization in the previous month, were more often receiving systemic steroids, and had lower hemoglobin, albumin, and prealbumin levels and higher median C-reactive protein levels. At univariate logistic regression, current hospitalization, hospitalization in the previous month, low serum albumin, low BMI, high C-reactive protein, high Crohn's Disease Activity Index, and female sex were variables related to DRM. At the multivariate logistic regression, low BMI, current hospitalization and hospitalization in the previous month were significantly associated with DRM. In 23% of IBD patients, a deficiency of at least 1 micronutrient was observed, with no difference between ulcerative colitis and Crohn's disease. CONCLUSIONS DRM and microelements malnutrition are frequent conditions in the IBD population. DRM seems to be associated with disease activity and hospitalization.
Collapse
Affiliation(s)
- Chiara Viganò
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | - Andrea Palermo
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | - Giacomo Mulinacci
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | - Lorena Pirola
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | - Alessandra Losco
- Gastroenterology Unit, ASST Santi Paolo e Carlo, Ospedale San Carlo, Milan, Italy
| | | | - Simone Saibeni
- IBD Unit, Gastroenterology Unit, Rho Hospital, ASST Rhodense, Rho, Italy
| | - Luca Pastorelli
- Gastroenterology Unit, IRCSS Policlinico San Donato, San Donato Milanese, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Arnaldo Amato
- Digestive Endoscopy and Gastroenterology Department, Manzoni Hospital, ASST Lecco, Lecco, Italy
| | - Mario Gatti
- Digestive Endoscopy, Ospedale di Carate, ASST Brianza, Carate Brianza, Italy
| | - Claudio Cortelezzi
- Digestive Endoscopy and Gastroenterology Department, ASST Settelaghi, Varese, Italy
| | - Antonio Di Sabatino
- First Department of Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Daniela Morganti
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Francesca Boni
- Department of Gastroenterology, ASST Melegnano Martesana, Melegnano, Italy
| | | | | | - Valentina Casini
- Gastroenterology and Endoscopy Unit, Ospedale Bolognini, ASST Bergamo Est, Seriate, Italy
| | - Flavio Andrea Caprioli
- Digestive Endoscopy and Gastroenterology Department, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Maurizio Vecchi
- Digestive Endoscopy, Presidio Ospedaliero Garbagnate, USC Gastroenterologia, ASST Rhodense, Rho, Italy
| | - Cristina Bezzio
- IBD Unit, Gastroenterology Unit, Rho Hospital, ASST Rhodense, Rho, Italy
| | - Irene Bergna
- Digestive Endoscopy and Gastroenterology Department, Manzoni Hospital, ASST Lecco, Lecco, Italy
| | | | - Caterina Mengoli
- First Department of Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Sara Massironi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| |
Collapse
|
4
|
Jiang C, Zhao G, Wang H, Zheng W, Zhang R, Wang L, Zheng Z. Comparative genomics analysis and transposon mutagenesis provides new insights into high menaquinone-7 biosynthetic potential of Bacillus subtilis natto. Gene 2024; 907:148264. [PMID: 38346457 DOI: 10.1016/j.gene.2024.148264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
This research combined Whole-Genome sequencing, intraspecific comparative genomics and transposon mutagenesis to investigate the menaquinone-7 (MK-7) synthesis potential in Bacillus subtilis natto. First, Whole-Genome sequencing showed that Bacillus subtilis natto BN-P15-11-1 contains one single circular chromosome in size of 3,982,436 bp with a GC content of 43.85 %, harboring 4,053 predicted coding genes. Next, the comparative genomics analysis among strain BN-P15-11-1 with model Bacillus subtilis 168 and four typical Bacillus subtilis natto strains proves that the closer evolutionary relationship Bacillus subtilis natto BN-P15-11-1 and Bacillus subtilis 168 both exhibit strong biosynthetic potential. To further dig for MK-7 biosynthesis latent capacity of BN-P15-11-1, we constructed a mutant library using transposons and a high throughput screening method using microplates. We obtained a YqgQ deficient high MK-7 yield strain F4 with a yield 3.02 times that of the parent strain. Experiments also showed that the high yield mutants had defects in different transcription and translation regulatory factor genes, indicating that regulatory factor defects may affect the biosynthesis and accumulation of MK-7 by altering the overall metabolic level. The findings of this study will provide more novel insights on the precise identification and rational utilization of the Bacillus subtilis subspecies for biosynthesis latent capacity.
Collapse
Affiliation(s)
- Chunxu Jiang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China; University of Science and Technology of China, Hefei, Anhui, PR China
| | - Genhai Zhao
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Han Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Wenqian Zheng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China; University of Science and Technology of China, Hefei, Anhui, PR China
| | - Rui Zhang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Li Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China.
| | - Zhiming Zheng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China.
| |
Collapse
|
5
|
Chen A, Li J, Shen N, Huang H, Hang Q. Vitamin K: New insights related to senescence and cancer metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189057. [PMID: 38158025 DOI: 10.1016/j.bbcan.2023.189057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Several clinical trials and experimental studies have recently shown that vitamin K (VK) supplementation benefits the human body. Specifically, VK participates in coagulation and is associated with cellular senescence and cancer. VK has a potential anticancer effect in various cancers, such as pancreatic and prostate cancers. Through anti-inflammatory and antioxidant effects, VK can prevent senescence and inhibit cancer metastasis. Therefore, cancer prognosis can be improved by preventing cellular senescence. In addition, VK can inhibit the proliferation, growth, and differentiation of cancer cells through various mechanisms, including induction of c-myc and c-fos genes, regulation of B-cell lymphoma-2 (Bcl-2) and p21 genes, and angiogenesis inhibition. This review aims to discuss the relationship among VK, cellular senescence, and cancer metastasis and thus may improve comprehension of the specific functions of VK in human health. The potential application of VK as an adjuvant therapy for cancer (or in combination with traditional chemotherapy drugs or other vitamins) has also been highlighted.
Collapse
Affiliation(s)
- Anqi Chen
- Medical College, Yangzhou University, Yangzhou 225001, China
| | - Jialu Li
- Medical College, Yangzhou University, Yangzhou 225001, China
| | - Nianxuan Shen
- Medical College, Yangzhou University, Yangzhou 225001, China
| | - Haifeng Huang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Yancheng 224006, China; Department of Laboratory Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng 224006, China.
| | - Qinglei Hang
- Department of Laboratory Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225001, China.
| |
Collapse
|
6
|
Sultana OF, Hia RA, Reddy PH. A Combinational Therapy for Preventing and Delaying the Onset of Alzheimer's Disease: A Focus on Probiotic and Vitamin Co-Supplementation. Antioxidants (Basel) 2024; 13:202. [PMID: 38397800 PMCID: PMC10886126 DOI: 10.3390/antiox13020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder with a complex etiology, and effective interventions to prevent or delay its onset remain a global health challenge. In recent years, there has been growing interest in the potential role of probiotic and vitamin supplementation as complementary strategies for Alzheimer's disease prevention. This review paper explores the current scientific literature on the use of probiotics and vitamins, particularly vitamin A, D, E, K, and B-complex vitamins, in the context of Alzheimer's disease prevention and management. We delve into the mechanisms through which probiotics may modulate gut-brain interactions and neuroinflammation while vitamins play crucial roles in neuronal health and cognitive function. The paper also examines the collective impact of this combinational therapy on reducing the risk factors associated with Alzheimer's disease, such as oxidative stress, inflammation, and gut dysbiosis. By providing a comprehensive overview of the existing evidence and potential mechanisms, this review aims to shed light on the promise of probiotic and vitamin co-supplementation as a multifaceted approach to combat Alzheimer's disease, offering insights into possible avenues for future research and clinical application.
Collapse
Affiliation(s)
- Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Raksa Andalib Hia
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA;
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
7
|
Moore AE, Dulnoan D, Voong K, Ayis S, Mangelis A, Gorska R, Harrington DJ, Tang JCY, Fraser WD, Hampson G. The additive effect of vitamin K supplementation and bisphosphonate on fracture risk in post-menopausal osteoporosis: a randomised placebo controlled trial. Arch Osteoporos 2023; 18:83. [PMID: 37338608 PMCID: PMC10282078 DOI: 10.1007/s11657-023-01288-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/22/2023] [Indexed: 06/21/2023]
Abstract
This study assessed whether vitamin K, given with oral bisphosphonate, calcium and/or vitamin D has an additive effect on fracture risk in post-menopausal women with osteoporosis. No difference in bone density or bone turnover was observed although vitamin K1 supplementation led to a modest effect on parameters of hip geometry. PURPOSE Some clinical studies have suggested that vitamin K prevents bone loss and may improve fracture risk. The aim was to assess whether vitamin K supplementation has an additive effect on bone mineral density (BMD), hip geometry and bone turnover markers (BTMs) in post-menopausal women with osteoporosis (PMO) and sub-optimum vitamin K status receiving bisphosphonate, calcium and/or vitamin D treatment. METHODS We conducted a trial in 105 women aged 68.7[12.3] years with PMO and serum vitamin K1 ≤ 0.4 µg/L. They were randomised to 3 treatment arms; vitamin K1 (1 mg/day) arm, vitamin K2 arm (MK-4; 45 mg/day) or placebo for 18 months. They were on oral bisphosphonate and calcium and/or vitamin D. We measured BMD by DXA, hip geometry parameters using hip structural analysis (HSA) software and BTMs. Vitamin K1 or MK-4 supplementation was each compared to placebo. Intention to treat (ITT) and per protocol (PP) analyses were performed. RESULTS Changes in BMD at the total hip, femoral neck and lumbar spine and BTMs; CTX and P1NP did not differ significantly following either K1 or MK-4 supplementation compared to placebo. Following PP analysis and correction for covariates, there were significant differences in some of the HSA parameters at the intertrochanter (IT) and femoral shaft (FS): IT endocortical diameter (ED) (% change placebo:1.5 [4.1], K1 arm: -1.02 [5.07], p = 0.04), FS subperiosteal/outer diameter (OD) (placebo: 1.78 [5.3], K1 arm: 0.46 [2.23] p = 0.04), FS cross sectional area (CSA) (placebo:1.47 [4.09],K1 arm: -1.02[5.07], p = 0.03). CONCLUSION The addition of vitamin K1 to oral bisphosphonate with calcium and/or vitamin D treatment in PMO has a modest effect on parameters of hip geometry. Further confirmatory studies are needed. TRIAL REGISTRATION The study was registered at Clinicaltrial.gov:NCT01232647.
Collapse
Affiliation(s)
| | | | - Kieran Voong
- Nutristasis Unit, Synnovis Analytics, St Thomas' Hospital, London, UK
| | - Salma Ayis
- School of Life Course and Population Sciences, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, UK
| | - Anastasios Mangelis
- School of Life Course and Population Sciences, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, UK
| | - Renata Gorska
- Nutristasis Unit, Synnovis Analytics, St Thomas' Hospital, London, UK
| | | | - Jonathan C Y Tang
- Norwich Medical School, University of East Anglia, Norwich, UK
- Depts of Endocrinology and Clinical Biochemistry Norfolk and Norwich University Hospitals Trust, Norwich, UK
| | - William D Fraser
- Norwich Medical School, University of East Anglia, Norwich, UK
- Depts of Endocrinology and Clinical Biochemistry Norfolk and Norwich University Hospitals Trust, Norwich, UK
| | - Geeta Hampson
- Osteoporosis Unit, Guy's Hospital, London, UK.
- Department of Chemical Pathology and Metabolic Medicine, St Thomas' Hospital, Lambeth Palace Road, London, SE1 7EH, UK.
- Metabolic Bone Clinic, Department of Diabetes and Endocrinology, St Thomas' Hospital, London, UK.
| |
Collapse
|
8
|
Indrayan A, Vishwakarma G, Verma S, Sarmukaddam S, Tyagi A. Quest for Biomarkers of Positive Health: A Review. Indian J Community Med 2023; 48:382-389. [PMID: 37469906 PMCID: PMC10353687 DOI: 10.4103/ijcm.ijcm_480_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/19/2022] [Indexed: 07/21/2023] Open
Abstract
The positive health of a person can be defined as the ability to live long in good health, possibly with no activity limitation. No method is yet available for its objective assessment in individuals, and we propose a framework in this communication that can operationalize this concept. Instead of distal factors, such as diet and lifestyle because these are subjective and difficult to measure, we concentrate on the objectively measurable biomarkers such as immunity level, endorphins, and handgrip strength. The focus is on the major parameters that may protect from diseases and infirmity and can be assessed by noninvasive methods. A combination of such parameters may signify positive health. This may be a novel way to measure positive health at the individual level. In this communication, we briefly review the literature and identify a few major biomarkers that provide a protective shield and could determine the status of positive health at the individual level. This exercise demonstrates that the assessment of the positive health of a person is feasible. A scale based on these and other relevant parameters can be developed later that could quantitatively measure the exact level of positive health. As the exact combination of the parameters that protects from ailments is not fully known yet, a framework such as this may help in identifying the data gaps that require attention in this context. The proposed framework may initiate a discussion on indicators of positive health and characterize the parameters for intervention that could increase a healthy life.
Collapse
Affiliation(s)
- Abhaya Indrayan
- Department of Clinical Research, Max Healthcare, New Delhi, India
| | - Gayatri Vishwakarma
- Department of Biostatistics, George Institute of Global Health India, New Delhi, India
| | - Saumya Verma
- Department of Biostatistics, George Institute of Global Health India, New Delhi, India
| | - Sanjeev Sarmukaddam
- Department of Community Medicine, BJ Medical College, Pune, Maharashtra, India
| | - Asha Tyagi
- Department of Anesthesia, University College of Medical Sciences, Delhi, India
| |
Collapse
|
9
|
Matsuo M, Ogata Y, Yamanashi Y, Takada T. ABCG5 and ABCG8 Are Involved in Vitamin K Transport. Nutrients 2023; 15:nu15040998. [PMID: 36839356 PMCID: PMC9966996 DOI: 10.3390/nu15040998] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
ATP-binding cassette protein G5 (ABCG5)/ABCG8 heterodimer exports cholesterol from cells, while Niemann-Pick C1-like 1 (NPC1L1) imports cholesterol and vitamin K. We examined whether ABCG5/ABCG8 transports vitamin K similar to NPC1L1. Since high concentrations of vitamin K3 show cytotoxicity, the cytoprotective effects of ABCG5/ABCG8 were examined. BHK cells expressing ABCG5/ABCG8 were more resistant to vitamin K3 cytotoxicity than control cells, suggesting that ABCG5/ABCG8 transports vitamin K3 out of cells. The addition of vitamin K1 reversed the effects of ABCG5/ABCG8, suggesting that vitamin K1 competitively inhibits the transport of vitamin K3. To examine the transport of vitamin K1 by ABCG5/ABCG8, vitamin K1 levels in the medium and cells were measured. Vitamin K1 levels in cells expressing ABCG5/ABCG8 were lower than those in control cells, while vitamin K1 efflux increased in cells expressing ABCG5/ABCG8. Furthermore, the biliary vitamin K1 concentration in Abcg5/Abcg8-deficient mice was lower than that in wild-type mice, although serum vitamin K1 levels were not affected by the presence of Abcg5/Abcg8. These findings suggest that ABCG5 and ABCG8 are involved in the transport of sterols and vitamin K. ABCG5/ABCG8 and NPC1L1 might play important roles in the regulation of vitamin K absorption and excretion.
Collapse
Affiliation(s)
- Michinori Matsuo
- Department of Food and Nutrition, Faculty of Home Economics, Kyoto Women’s University, Kyoto 605-8501, Japan
- Correspondence:
| | - Yutaka Ogata
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshihide Yamanashi
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
10
|
Shaw MA, Liu A. Take the Shot: A Review of Vitamin K Deficiency. Pediatr Ann 2023; 52:e42-e45. [PMID: 36779880 DOI: 10.3928/19382359-20230102-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Vitamin K is essential for the process of coagulation. In its absence, severe and sometimes fatal bleeding events can occur, especially in newborns. Vitamin K prophylaxis at birth has been shown to prevent morbidity and mortality associated with vitamin K deficiency bleeding (VKDB) and is recommended by multiple organizations including the American Academy of Pediatrics and the World Health Organization. Pediatricians should feel comfortable explaining the risks and benefits of vitamin K prophylaxis to families and should be equipped to recognize signs of VKDB, especially given increasing rates of parental refusal. This article aims to improve understanding of VKDB, including prevention, early recognition, and treatment. [Pediatr Ann. 2023;52(2):e42-e45.].
Collapse
|
11
|
Zarkasi KA, Abdullah N, Abdul Murad NA, Ahmad N, Jamal R. Genetic Factors for Coronary Heart Disease and Their Mechanisms: A Meta-Analysis and Comprehensive Review of Common Variants from Genome-Wide Association Studies. Diagnostics (Basel) 2022; 12:2561. [PMID: 36292250 PMCID: PMC9601486 DOI: 10.3390/diagnostics12102561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies (GWAS) have discovered 163 loci related to coronary heart disease (CHD). Most GWAS have emphasized pathways related to single-nucleotide polymorphisms (SNPs) that reached genome-wide significance in their reports, while identification of CHD pathways based on the combination of all published GWAS involving various ethnicities has yet to be performed. We conducted a systematic search for articles with comprehensive GWAS data in the GWAS Catalog and PubMed, followed by a meta-analysis of the top recurring SNPs from ≥2 different articles using random or fixed-effect models according to Cochran Q and I2 statistics, and pathway enrichment analysis. Meta-analyses showed significance for 265 of 309 recurring SNPs. Enrichment analysis returned 107 significant pathways, including lipoprotein and lipid metabolisms (rs7412, rs6511720, rs11591147, rs1412444, rs11172113, rs11057830, rs4299376), atherogenesis (rs7500448, rs6504218, rs3918226, rs7623687), shared cardiovascular pathways (rs72689147, rs1800449, rs7568458), diabetes-related pathways (rs200787930, rs12146487, rs6129767), hepatitis C virus infection/hepatocellular carcinoma (rs73045269/rs8108632, rs56062135, rs188378669, rs4845625, rs11838776), and miR-29b-3p pathways (rs116843064, rs11617955, rs146092501, rs11838776, rs73045269/rs8108632). In this meta-analysis, the identification of various genetic factors and their associated pathways associated with CHD denotes the complexity of the disease. This provides an opportunity for the future development of novel CHD genetic risk scores relevant to personalized and precision medicine.
Collapse
Affiliation(s)
- Khairul Anwar Zarkasi
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Biochemistry Unit, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (UPNM), Kuala Lumpur 57000, Malaysia
| | - Noraidatulakma Abdullah
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Norfazilah Ahmad
- Epidemiology and Statistics Unit, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| |
Collapse
|
12
|
Role of Vitamin K in Selected Malignant Neoplasms in Women. Nutrients 2022; 14:nu14163401. [PMID: 36014904 PMCID: PMC9413298 DOI: 10.3390/nu14163401] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022] Open
Abstract
The main function of vitamin K in the human organism is its activity in the blood clotting cascade. Epidemiological studies suggest that reduced intake of vitamin K may contribute to an increased risk of geriatric diseases such as atherosclerosis, dementia, osteoporosis, and osteoarthritis. A growing number of studies also indicate that vitamin K may be involved not only in preventing the development of certain cancers but it may also support classical cancer chemotherapy. This review article summarizes the results of studies on the anticancer effects of vitamin K on selected female malignancies, i.e., breast, cervical, and ovarian cancer, published over the past 20 years. The promising effects of vitamin K on cancer cells observed so far indicate its great potential, but also the need for expansion of our knowledge in this area by conducting extensive research, including clinical trials.
Collapse
|
13
|
Lundberg HE, Glasø M, Chhura R, Shukla AA, Austlid T, Sarwar Z, Hovland K, Iqbal S, Fagertun HE, Holo H, Larsen SE. Effect on bone anabolic markers of daily cheese intake with and without vitamin K 2: a randomised clinical trial. BMJ Nutr Prev Health 2022; 5:182-190. [PMID: 36619332 PMCID: PMC9813627 DOI: 10.1136/bmjnph-2022-000424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Background Daily intake of 57 g Jarlsberg cheese has been shown to increase the total serum osteocalcin (tOC). Is this a general cheese effect or specific for Jarlsberg containing vitamin K2 and 1,4-dihydroxy-2naphtoic acid (DHNA)? Methods 66 healthy female volunteers (HV) were recruited. By skewed randomisation (3:2), 41 HV were allocated to daily intake of 57 g Jarlsberg (J-group) and 25-50 g Camembert (C-group) in 6 weeks. After 6 weeks the C-group was switched to Jarlsberg. The study duration was 12 weeks with clinical investigations every 6 weeks. The main variables were procollagen type 1 N-terminal propeptide (PINP), tOC, carboxylated osteocalcin (cOC) and the osteocalcin ratio (RO) defined as the ratio between cOC and undercarboxylated osteocalcin (ucOC). Serum cross-linked C-telopeptide type I collagen (CTX), vitamin K2, lipids and clinical chemistry were used as secondary variables. Results PINP, tOC, cOC, RO and vitamin K2 increased significantly (p<0.01) after 6 weeks in the J-group. PINP remained unchanged in the C-group. The other variables decreased slightly in the C-group but increased significantly (p≤0.05) after switching to Jarlsberg. No CTX-changes detected in neither of the groups.Serum lipids increased slightly in both groups. Switching to Jarlsberg, total cholesterol and low-density lipoprotein-cholesterol were significantly reduced (p≤0.05). Glycated haemoglobin (HbA1c), Ca++ and Mg++ were significantly reduced in the J-group, but unchanged in the C-group. Switching to Jarlsberg, HbA1c and Ca++ decreased significantly. Conclusion The effect of daily Jarlsberg intake on increased s-osteocalcin level is not a general cheese effect. Jarlsberg contain vitamin K2 and DHNA which increases PINP, tOC, cOC and RO and decreases Ca++, Mg++ and HbA1c. These effects reflect increased bone anabolism and a possible reduced risk of adverse metabolic outcomes. Trial registration number NCT04189796.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sapna Iqbal
- Stallbakken Medical Center, Rælingen, Norway
| | | | - Helge Holo
- Norwegian University of Life Sciences, As, Norway
| | - Stig Einride Larsen
- Clinical Department, Meddoc Research, Lillestrøm, Skjetten, Norway,Veterinary Medicine, Norwegian University of Life Sciences, As, Oslo, Norway
| |
Collapse
|
14
|
McCarty MF, Lewis Lujan L, Iloki Assanga S. Targeting Sirt1, AMPK, Nrf2, CK2, and Soluble Guanylate Cyclase with Nutraceuticals: A Practical Strategy for Preserving Bone Mass. Int J Mol Sci 2022; 23:4776. [PMID: 35563167 PMCID: PMC9104509 DOI: 10.3390/ijms23094776] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
There is a vast pre-clinical literature suggesting that certain nutraceuticals have the potential to aid the preservation of bone mass in the context of estrogen withdrawal, glucocorticoid treatment, chronic inflammation, or aging. In an effort to bring some logical clarity to these findings, the signaling pathways regulating osteoblast, osteocyte, and osteoclast induction, activity, and survival are briefly reviewed in the present study. The focus is placed on the following factors: the mechanisms that induce and activate the RUNX2 transcription factor, a key driver of osteoblast differentiation and function; the promotion of autophagy and prevention of apoptosis in osteoblasts/osteoclasts; and the induction and activation of NFATc1, which promotes the expression of many proteins required for osteoclast-mediated osteolysis. This analysis suggests that the activation of sirtuin 1 (Sirt1), AMP-activated protein kinase (AMPK), the Nrf2 transcription factor, and soluble guanylate cyclase (sGC) can be expected to aid the maintenance of bone mass, whereas the inhibition of the serine kinase CK2 should also be protective in this regard. Fortuitously, nutraceuticals are available to address each of these targets. Sirt1 activation can be promoted with ferulic acid, N1-methylnicotinamide, melatonin, nicotinamide riboside, glucosamine, and thymoquinone. Berberine, such as the drug metformin, is a clinically useful activator of AMPK. Many agents, including lipoic acid, melatonin, thymoquinone, astaxanthin, and crucifera-derived sulforaphane, can promote Nrf2 activity. Pharmacological doses of biotin can directly stimulate sGC. Additionally, certain flavonols, notably quercetin, can inhibit CK2 in high nanomolar concentrations that may be clinically relevant. Many, though not all, of these agents have shown favorable effects on bone density and structure in rodent models of bone loss. Complex nutraceutical regimens providing a selection of these nutraceuticals in clinically meaningful doses may have an important potential for preserving bone health. Concurrent supplementation with taurine, N-acetylcysteine, vitamins D and K2, and minerals, including magnesium, zinc, and manganese, plus a diet naturally high in potassium, may also be helpful in this regard.
Collapse
Affiliation(s)
| | - Lidianys Lewis Lujan
- Department of Research and Postgraduate in Food Science, Sonoran University, Hermosillo 83200, Mexico;
| | - Simon Iloki Assanga
- Department of Biological Chemical Sciences, Sonoran University, Hermosillo 83200, Mexico;
| |
Collapse
|
15
|
Isacco CG, Nguyen KC, Pham VH, Di Palma G, Aityan SK, Tomassone D, Distratis P, Lazzaro R, Balzanelli MG, Inchingolo F. Bone decay and diabetes type 2 in searching for a link. Endocr Metab Immune Disord Drug Targets 2022; 22:904-910. [PMID: 35331127 DOI: 10.2174/1871530322666220324150327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/17/2022] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine (D.I.M.) of Bari University of Medicine Aldo Moro, Bari City Italy
| | - Kieu Cd Nguyen
- 118 Pre-Hospital and Emergency Department, SG Moscati Hospital, ASL Taranto, Italy
| | - Van H Pham
- Phan Chau Trinh University of Medicine Hoi An City Vietnam
| | - Gianna Di Palma
- Department of Interdisciplinary Medicine (D.I.M.) of Bari University of Medicine Aldo Moro, Bari City Italy
| | | | - Diego Tomassone
- Foundation of Physics Research Center (FoPRC), Celico-CS, Italy
| | - Pietro Distratis
- 118 Pre-Hospital and Emergency Department, SG Moscati Hospital, ASL Taranto, Italy
| | - Rita Lazzaro
- 118 Pre-Hospital and Emergency Department, SG Moscati Hospital, ASL Taranto, Italy
| | - Mario G Balzanelli
- 118 Pre-Hospital and Emergency Department, SG Moscati Hospital, ASL Taranto, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine (D.I.M.) of Bari University of Medicine Aldo Moro, Bari City Italy
| |
Collapse
|
16
|
Panter F, Popoff A, Garcia R, Krug D, Müller R. Myxobacteria of the Cystobacterineae Suborder Are Producers of New Vitamin K 2 Derived Myxoquinones. Microorganisms 2022; 10:microorganisms10030534. [PMID: 35336107 PMCID: PMC8955186 DOI: 10.3390/microorganisms10030534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
Vitamin K is an essential, lipid soluble vitamin that plays an important role in the human blood coagulation cascade as well as in the life cycle of bacteria and plants. In this study, we report the isolation and structure elucidation of unprecedented polyhydroxylated menaquinone variants named myxoquinones that are produced by myxobacteria and structurally belong to the Vitamin K family. We analyze the occurrence of myxoquinones across an LC-MS data collection from myxobacterial extracts and shed light on the distribution of myxoquinone-type biosynthetic gene clusters among publicly available myxobacterial genomes. Our findings indicate that myxoquinones are specifically produced by strains of the Cystobacterineae suborder within myxobacteria. Furthermore, bioinformatic analysis of the matching gene clusters allowed us to propose a biosynthetic model for myxoquinone formation. Due to their increased water-solubility, the myxoquinones could be a suitable starting point for the development of a better bioavailable treatment of vitamin K deficiency.
Collapse
Affiliation(s)
- Fabian Panter
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.P.); (A.P.); (R.G.); (D.K.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E8 1, 66123 Saarbrücken, Germany
| | - Alexander Popoff
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.P.); (A.P.); (R.G.); (D.K.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Ronald Garcia
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.P.); (A.P.); (R.G.); (D.K.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Daniel Krug
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.P.); (A.P.); (R.G.); (D.K.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.P.); (A.P.); (R.G.); (D.K.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E8 1, 66123 Saarbrücken, Germany
- Correspondence:
| |
Collapse
|
17
|
Congenital Tricuspid Valve Calcification Necessitating Neonatal Surgical Intervention. Ann Thorac Surg 2021; 114:e165-e167. [PMID: 34968447 DOI: 10.1016/j.athoracsur.2021.11.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 11/22/2022]
Abstract
We report a case of isolated idiopathic congenital tricuspid valve calcification which necessitated urgent neonatal surgical intervention. Hemodynamic analysis revealed circular shunt caused by severe tricuspid regurgitation, pulmonary regurgitation and a hypoplastic right ventricle. The patient successfully underwent tricuspid valve repair at postnatal Day 10. Although intervention for neonatal tricuspid valve is challenging, hemodynamic evaluation and early surgical intervention are necessary in patients with this rare cardiac calcification.
Collapse
|
18
|
Elalfy M, Eltonbary K, Elalfy O, Gadallah M, Zidan A, Abdel‐Hady H. Intracranial haemorrhage associated with Vitamin K deficiency in Egyptian infants. Acta Paediatr 2021; 110:2937-2943. [PMID: 34196053 DOI: 10.1111/apa.16011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022]
Abstract
AIM Intracranial haemorrhage (ICH) in infancy is a rare life-threatening event. The aim of this review is to highlight the association of ICH and potentially preventable vitamin K deficiency and to describe risk factors, presentation and outcome. METHODS Original published data on ICH related to vitamin K deficiency during 2008-2012 were extracted from records of participating centres in Egypt (Cairo and Delta region). Full data on 70 infants (0-24 weeks) have been reported in three publications. RESULTS The first study involved premature infants where ICH was potentially preventable with administration of parenteral vitamin K prophylactic doses to mothers ahead of imminent preterm delivery. The other 2 studies involved term newborns and infants. ICH due to early or classic vitamin K deficiency was reported in nine patients while 44 were due to late vitamin K deficiency. Main risk factors for late onset were exclusive breastfeeding, persistent diarrhoea and/or prolonged antibiotic therapy. CONCLUSION Vitamin K deficiency bleeding is a relatively frequent problem underlying ICH in infancy. Prophylactic vitamin K to mothers when anticipating preterm labour or a vitamin K boost in exclusively breast-fed infants with prolonged antibiotic usage and, or, persistent diarrhoea might have an impact on prevention and outcome.
Collapse
Affiliation(s)
- Mohsen Elalfy
- Department of Paediatrics Haematology/Oncology Ain Shams University Cairo Egypt
| | - Khadiga Eltonbary
- Department of Paediatrics Haematology/Oncology Ain Shams University Cairo Egypt
| | - Omar Elalfy
- Department of Complementary Medicine National Research Center Cairo Egypt
| | - Mohsen Gadallah
- Department of Community Medicine Ain Shams University Cairo Egypt
| | - Ashraf Zidan
- Department of Neurosurgery Mansoura University Mansoura Egypt
| | | |
Collapse
|
19
|
Travica N, Ried K, Hudson I, Scholey A, Pipingas A, Sali A. The effects of cardiovascular and orthopaedic surgery on vitamin concentrations: a narrative review of the literature and mechanisms of action. Crit Rev Food Sci Nutr 2021:1-31. [PMID: 34619992 DOI: 10.1080/10408398.2021.1983762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Given the rise in worldwide chronic diseases, supplemented by an aging population, the volume of global major surgeries, encompassing cardiac and orthopedic procedures is anticipated to surge significantly. Surgical trauma can be accompanied by numerous postoperative complications and metabolic changes. The present review summarized the results from studies assessing the effects of orthopedic and cardiovascular surgery on vitamin concentrations, in addition to exploring the possible mechanisms associated with changes in concentrations. Studies have revealed a potentially severe depletion in plasma/serum concentrations of numerous vitamins following these surgeries acutely. Vitamins C, D and B1 appear particularly vulnerable to significant depletions, with vitamin C and D depletions consistently transpiring into inadequate and deficient concentrations, respectively. The possible multifactorial mechanisms impacting postoperative vitamin concentrations include changes in hemodilution and vitamin utilization, redistribution, circulatory transport and absorption. For a majority of vitamins, there has been a lack of investigation into the effects of both, cardiac and orthopedic surgery. Additionally, studies were predominantly restricted to short-term postoperative investigations, primarily performed within the first postoperative week of surgery. Overall, results indicated that further examination is necessary to determine the severity and clinical significance of the possible depletions in vitamin concentrations that ensue cardiovascular and orthopedic surgery.
Collapse
Affiliation(s)
- Nikolaj Travica
- Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, the Institute for Mental and Physical Health and Clinical Translation (IMPACT), Geelong, Australia.,Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia.,The National Institute of Integrative Medicine, Melbourne, Australia
| | - Karin Ried
- The National Institute of Integrative Medicine, Melbourne, Australia.,Honorary Associate Professor, Discipline of General Practice, University of Adelaide, South Australia, Australia.,Torrens University, Melbourne, Australia
| | - Irene Hudson
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia.,Digital Health, CRC, College of STEM, Mathematical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, Australia.,School of Mathematical and Physical Science, University of Newcastle, Newcastle, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| | - Avni Sali
- The National Institute of Integrative Medicine, Melbourne, Australia
| |
Collapse
|
20
|
Kieronska-Rudek A, Kij A, Kaczara P, Tworzydlo A, Napiorkowski M, Sidoryk K, Chlopicki S. Exogenous Vitamins K Exert Anti-Inflammatory Effects Dissociated from Their Role as Substrates for Synthesis of Endogenous MK-4 in Murine Macrophages Cell Line. Cells 2021; 10:1571. [PMID: 34206530 PMCID: PMC8303864 DOI: 10.3390/cells10071571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/07/2023] Open
Abstract
Vitamins K exert a range of activities that extend far beyond coagulation and include anti-inflammatory effects, but the mechanisms involved in anti-inflammatory action remain unclear. In the present study, we showed that various forms of exogenous vitamins-K1, K3, K2 (MK-4, MK-5, MK-6 and MK-7)-regulated a wide scope of inflammatory pathways in murine macrophages in vitro, including NOS-2, COX-2, cytokines and MMPs. Moreover, we demonstrated for the first time that macrophages are able to synthesise endogenous MK-4 on their own. Vitamins with shorter isoprenoid chains-K1, K3 and MK-5-exhibited stronger anti-inflammatory potential than vitamins with longer isoprenoid chains (MK-6 and MK-7) and simultaneously were preferably used as a substrate for MK-4 endogenous production. Most interesting, atorvastatin pretreatment inhibited endogenous MK-4 production but had no impact on the anti-inflammatory activity of vitamins K. In summary, our results demonstrate that macrophages are able to synthesise endogenous MK-4 using exogenous vitamins K, and statin inhibits this process. However, the anti-inflammatory effect of exogenous vitamins K was independent of endogenous MK-4 synthesis.
Collapse
Affiliation(s)
- Anna Kieronska-Rudek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.-R.); (A.K.); (P.K.); (A.T.)
- Department of Pharmacology, Medical College, Jagiellonian University, Grzegorzecka 16, 31-531 Krakow, Poland
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.-R.); (A.K.); (P.K.); (A.T.)
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.-R.); (A.K.); (P.K.); (A.T.)
| | - Anna Tworzydlo
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.-R.); (A.K.); (P.K.); (A.T.)
| | - Marek Napiorkowski
- Chemistry Department, Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warszawa, Poland; (M.N.); (K.S.)
| | - Katarzyna Sidoryk
- Chemistry Department, Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warszawa, Poland; (M.N.); (K.S.)
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.-R.); (A.K.); (P.K.); (A.T.)
- Department of Pharmacology, Medical College, Jagiellonian University, Grzegorzecka 16, 31-531 Krakow, Poland
| |
Collapse
|
21
|
Wu J, Li W, Zhao SG, Qian SH, Wang Z, Zhou MJ, Hu WS, Wang J, Hu LX, Liu Y, Xue ZL. Site-directed mutagenesis of the quorum-sensing transcriptional regulator SinR affects the biosynthesis of menaquinone in Bacillus subtilis. Microb Cell Fact 2021; 20:113. [PMID: 34098969 PMCID: PMC8183045 DOI: 10.1186/s12934-021-01603-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/31/2021] [Indexed: 01/02/2023] Open
Abstract
Background Menaquinone (MK-7) is a highly valuable vitamin K2 produced by Bacillus subtilis. Common static metabolic engineering approaches for promoting the production of MK-7 have been studied previously. However, these approaches caused an accumulation of toxic substances and reduced product yield. Hence, dynamic regulation by the quorum sensing (QS) system is a promising method for achieving a balance between product synthesis and cell growth. Results In this study, the QS transcriptional regulator SinR, which plays a significant role in biofilm formation and MK production simultaneously, was selected, and its site-directed mutants were constructed. Among these mutants, sinR knock out strain (KO-SinR) increased the biofilm biomass by 2.8-fold compared to the wild-type. SinRquad maximized the yield of MK-7 (102.56 ± 2.84 mg/L). To decipher the mechanism of how this mutant regulates MK-7 synthesis and to find additional potential regulators that enhance MK-7 synthesis, RNA-seq was used to analyze expression changes in the QS system, biofilm formation, and MK-7 synthesis pathway. The results showed that the expressions of tapA, tasA and epsE were up-regulated 9.79-, 0.95-, and 4.42-fold, respectively. Therefore, SinRquad formed more wrinkly and smoother biofilms than BS168. The upregulated expressions of glpF, glpk, and glpD in this biofilm morphology facilitated the flow of glycerol through the biofilm. In addition, NADH dehydrogenases especially sdhA, sdhB, sdhC and glpD, increased 1.01-, 3.93-, 1.87-, and 1.11-fold, respectively. The increased expression levels of NADH dehydrogenases indicated that more electrons were produced for the electron transport system. Electrical hyperpolarization stimulated the synthesis of the electron transport chain components, such as cytochrome c and MK, to ensure the efficiency of electron transfer. Wrinkly and smooth biofilms formed a network of interconnected channels with a low resistance to liquid flow, which was beneficial for the uptake of glycerol, and facilitated the metabolic flux of four modules of the MK-7 synthesis pathway. Conclusions In this study, we report for the first time that SinRquad has significant effects on MK-7 synthesis by forming wrinkly and smooth biofilms, upregulating the expression level of most NADH dehydrogenases, and providing higher membrane potential to stimulate the accumulation of the components in the electron transport system. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01603-5.
Collapse
Affiliation(s)
- Jing Wu
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Wei Li
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Shi-Guang Zhao
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, China
| | - Sen-He Qian
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, China
| | - Zhou Wang
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, China
| | - Meng-Jie Zhou
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Wen-Song Hu
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Jian Wang
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Liu-Xiu Hu
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.,Wuhu Zhanghengchun Medicine CO., LTD, Wuhu, 241000, China
| | - Yan Liu
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China. .,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, China.
| | - Zheng-Lian Xue
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China. .,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, China.
| |
Collapse
|
22
|
Arrhythmia Recurrence After Atrial Fibrillation Ablation: Impact of Warfarin vs. Non-Vitamin K Antagonist Oral Anticoagulants. Cardiovasc Drugs Ther 2021; 36:891-901. [PMID: 34003404 DOI: 10.1007/s10557-021-07200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Both warfarin and non-vitamin K antagonist oral anticoagulants (NOACs) have pleiotropic effects including anti-inflammatory and anti-fibrotic properties. This study aims to explore whether arrhythmia recurrence after AF ablation is influenced by the choice of oral anticoagulant. METHODS We retrospectively studied all patients who underwent primary AF ablation between 2011 and 2017 and divided them into two groups according to the anticoagulant used: Warfarin vs. NOACs. The primary endpoint was atrial tachyarrhythmia recurrence after ablation. RESULTS Of the 1106 patients who underwent AF ablation in the study period (median age 62.5 years; 71.5% males, 48.2% persistent AF), 697 (63%) received warfarin and 409 (37%) received NOACs. After a median of 26.4 months follow-up, arrhythmia recurrence was noted in 368 patients in warfarin group and 173 patients in NOACs group, with a 1-year recurrence probability of 35% vs. 36% (log rank P = 0.81) and 5-year recurrence probability of 62% vs. 63% (Log rank P = 0.32). However, NOACs use was associated with a higher probability of recurrence (46% for 1 year, 68% for 5 years) in patients with persistent AF compared with those taking warfarin (34% for 1 year, 63% for 5 years; log rank P = 0.01 and P = 0.02 respectively). Multivariate analysis indicated that in patients with persistent AF, use of NOACs was an independent risk factor of atrial tachyarrhythmia recurrence after ablation (HR 1.39, 95% CI 1.07-1.81, P = 0.013). CONCLUSION In this large contemporary cohort, overall AF recurrence after ablation was similar with NOACs or warfarin use. However, in patients with persistent AF, NOACs use was associated with a higher probability of arrhythmia recurrence and was an independent risk factor of recurrence at long-term follow-up.
Collapse
|
23
|
Bose S, Sarkar N, Banerjee D. Natural medicine delivery from biomedical devices to treat bone disorders: A review. Acta Biomater 2021; 126:63-91. [PMID: 33657451 PMCID: PMC8247456 DOI: 10.1016/j.actbio.2021.02.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/28/2022]
Abstract
With an increasing life expectancy and aging population, orthopedic defects and bone graft surgeries are increasing in global prevalence. Research to date has advanced the understanding of bone biology and defect repair mechanism, leading to a marked success in the development of synthetic bone substitutes. Yet, the quest for functionalized bone grafts prompted the researchers to find a viable alternative that regulates cellular activity and supports bone regeneration and healing process without causing serious side-effects. Recently, researchers have introduced natural medicinal compounds (NMCs) in bone scaffold that enables them to release at a desirable rate, maintains a sustained release allowing sufficient time for tissue in-growth, and guides bone regeneration process with minimized risk of tissue toxicity. According to World Health Organization (WHO), NMCs are gaining popularity in western countries for the last two decades and are being used by 80% of the population worldwide. Compared to synthetic drugs, NMCs have a broader range of safety window and thus suitable for prolonged localized delivery for bone regeneration. There is limited literature focusing on the integration of bone grafts and natural medicines that provides detailed scientific evidences on NMCs, their toxic limits and particular application in bone tissue engineering, which could guide the researchers to develop functionalized implants for various bone disorders. This review will discuss the emerging trend of NMC delivery from bone grafts, including 3D-printed structures and surface-modified implants, highlighting the significance and potential of NMCs for bone health, guiding future paths toward the development of an ideal bone tissue engineering scaffold. STATEMENT OF SIGNIFICANCE: To date, additive manufacturing technology provids us with many advanced patient specific or defect specific bone constructs exhibiting three-dimensional, well-defined microstructure with interconnected porous networks for defect-repair applications. However, an ideal scaffold should also be able to supply biological signals that actively guide tissue regeneration while simultaneously preventing post-implantation complications. Natural biomolecules are gaining popularity in tissue engineering since they possess a safer, effective approach compared to synthetic drugs. The integration of bone scaffolds and natural biomolecules exploits the advantages of customized, multi-functional bone implants to provide localized delivery of biochemical signals in a controlled manner. This review presents an overview of bone scaffolds as delivery systems for natural biomolecules, which may provide prominent advancement in bone development and improve defect-healing caused by various musculoskeletal disorders.
Collapse
Affiliation(s)
- Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States.
| | - Naboneeta Sarkar
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States
| | - Dishary Banerjee
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States
| |
Collapse
|
24
|
Indyk HE, Gill BD, Wei S, Harvey L, Woollard DC. Quantitation of Vitamin K in Milk Products by Pre-column Reduction HPLC–Fluorescence. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01922-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
The Dual Role of Vitamin K2 in "Bone-Vascular Crosstalk": Opposite Effects on Bone Loss and Vascular Calcification. Nutrients 2021; 13:nu13041222. [PMID: 33917175 PMCID: PMC8067793 DOI: 10.3390/nu13041222] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis (OP) and vascular calcification (VC) represent relevant health problems that frequently coexist in the elderly population. Traditionally, they have been considered independent processes, and mainly age-related. However, an increasing number of studies have reported their possible direct correlation, commonly defined as “bone-vascular crosstalk”. Vitamin K2 (VitK2), a family of several natural isoforms also known as menaquinones (MK), has recently received particular attention for its role in maintaining calcium homeostasis. In particular, VitK2 deficiency seems to be responsible of the so-called “calcium paradox” phenomenon, characterized by low calcium deposition in the bone and its accumulation in the vessel wall. Since these events may have important clinical consequences, and the role of VitK2 in bone-vascular crosstalk has only partially been explained, this review focuses on its effects on the bone and vascular system by providing a more recent literature update. Overall, the findings reported here propose the VitK2 family as natural bioactive molecules that could be able to play an important role in the prevention of bone loss and vascular calcification, thus encouraging further in-depth studies to achieve its use as a dietary food supplement.
Collapse
|
26
|
The Role of Vitamin K in Humans: Implication in Aging and Age-Associated Diseases. Antioxidants (Basel) 2021; 10:antiox10040566. [PMID: 33917442 PMCID: PMC8067486 DOI: 10.3390/antiox10040566] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022] Open
Abstract
As human life expectancy is rising, the incidence of age-associated diseases will also increase. Scientific evidence has revealed that healthy diets, including good fats, vitamins, minerals, or polyphenolics, could have antioxidant and anti-inflammatory activities, with antiaging effects. Recent studies demonstrated that vitamin K is a vital cofactor in activating several proteins, which act against age-related syndromes. Thus, vitamin K can carboxylate osteocalcin (a protein capable of transporting and fixing calcium in bone), activate matrix Gla protein (an inhibitor of vascular calcification and cardiovascular events) and carboxylate Gas6 protein (involved in brain physiology and a cognitive decline and neurodegenerative disease inhibitor). By improving insulin sensitivity, vitamin K lowers diabetes risk. It also exerts antiproliferative, proapoptotic, autophagic effects and has been associated with a reduced risk of cancer. Recent research shows that protein S, another vitamin K-dependent protein, can prevent the cytokine storm observed in COVID-19 cases. The reduced activation of protein S due to the pneumonia-induced vitamin K depletion was correlated with higher thrombogenicity and possibly fatal outcomes in COVID-19 patients. Our review aimed to present the latest scientific evidence about vitamin K and its role in preventing age-associated diseases and/or improving the effectiveness of medical treatments in mature adults ˃50 years old.
Collapse
|
27
|
Zhao C, Wan Y, Tang G, Jin Q, Zhang H, Xu Z. Comparison of different fermentation processes for the vitamin K2 (Menaquinone-7) production by a novel Bacillus velezensis ND strain. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Martinon P, Fraticelli L, Giboreau A, Dussart C, Bourgeois D, Carrouel F. Nutrition as a Key Modifiable Factor for Periodontitis and Main Chronic Diseases. J Clin Med 2021; 10:jcm10020197. [PMID: 33430519 PMCID: PMC7827391 DOI: 10.3390/jcm10020197] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Nutrition is recognized as an essential component in the prevention of a number of chronic diseases, including periodontal disease. Based on these considerations, a better understanding is required regarding how the diet, and more particularly the intake of macronutrients and micronutrients, could impact the potential relationship between nutrition and periodontal diseases, periodontal diseases and chronic diseases, nutrition and chronic diseases. To overcome this complexity, an up-to-date literature review on the nutriments related to periodontal and chronic diseases was performed. High-sugar, high-saturated fat, low-polyols, low-fiber and low-polyunsaturated-fat intake causes an increased risk of periodontal diseases. This pattern of nutrients is classically found in the Western diet, which is considered as an ‘unhealthy’ diet that causes cardiovascular diseases, diabetes and cancers. Conversely, low-sugar, high-fiber and high-omega-6-to-omega-3 fatty acid ratio intake reduces the risk of periodontal diseases. The Mediterranean, DASH, vegetarian and Okinawa diets that correspond to these nutritional intakes are considered as ‘healthy’ diets, reducing this risk of cardiovascular diseases, diabetes and cancers. The role of micronutrients, such as vitamin D, E, K and magnesium, remains unclear, while others, such as vitamin A, B, C, calcium, zinc and polyphenols have been shown to prevent PDs. Some evidence suggests that probiotics and prebiotics could promote periodontal health. Periodontal and chronic diseases share, with a time delay, nutrition as a risk factor. Thus, any change in periodontal health should be considered as a warning signal to control the dietary quality of patients and thus reduce the risk of developing chronic diseases later on.
Collapse
Affiliation(s)
- Prescilla Martinon
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (P.M.); (L.F.); (C.D.); (D.B.)
| | - Laurie Fraticelli
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (P.M.); (L.F.); (C.D.); (D.B.)
| | - Agnes Giboreau
- Institute Paul Bocuse Research Center, 69130 Ecully, France;
| | - Claude Dussart
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (P.M.); (L.F.); (C.D.); (D.B.)
| | - Denis Bourgeois
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (P.M.); (L.F.); (C.D.); (D.B.)
| | - Florence Carrouel
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (P.M.); (L.F.); (C.D.); (D.B.)
- Correspondence: ; Tel.: +33-4-78-78-57-44
| |
Collapse
|
29
|
Moore AE, Kim E, Dulnoan D, Dolan AL, Voong K, Ahmad I, Gorska R, Harrington DJ, Hampson G. Serum vitamin K 1 (phylloquinone) is associated with fracture risk and hip strength in post-menopausal osteoporosis: A cross-sectional study. Bone 2020; 141:115630. [PMID: 32919111 DOI: 10.1016/j.bone.2020.115630] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/14/2020] [Accepted: 09/07/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE Vitamin K may play a potential role in bone metabolism, although further evidence is needed. The mechanisms behind its skeletal effects and optimum intake for maintaining bone health remain poorly defined. To elucidate these two issues, we investigated the association between circulating vitamin K1 (phylloquinone) concentrations with fracture risk, bone mineral density (BMD), hip geometry and plasma dephospho-uncarboxylated-Matrix Gla Protein (dp-ucMGP), an extra-hepatic vitamin K dependent protein (VKDP), in post-menopausal osteoporosis (PMO). METHODS We studied 374 women aged (mean [SD]) 68.7[12.3] years with PMO. Information including demographics, lifestyle habits and previous fractures was captured through a questionnaire. Serum was analysed for vitamin K1. BMD at the lumbar spine (LS), total hip (TH) and femoral neck (FN) (n = 277) and hip structural analysis (HSA) parameters (n = 263) were derived from DXA scans. VKDPs including undercarboxylated prothrombin (PIVKA-II) and dp-ucMGP were measured in a sub-group (n = 130). RESULTS Serum vitamin K1 was significantly lower in the group with fractures (prevalent fractures: 0.53 [0.41], no fractures; 0.65 [0.66] μg/L, p = 0.04) and independently associated with fracture risk. The adjusted odds ratio (95% CI) per μg/L increase in vitamin K1 was 0.550 (0.310-0.978, p = 0.042). Among the HSA parameters, serum vitamin K1 was positively associated with cross-sectional area (CSA) (p = 0.02), cross sectional moment of inertia (CSMI) (p = 0.028) and section modulus (Z) (p = 0.02) at the narrow neck (NN) of femur. Dp-ucMGP was detectable in 97 (75%) participants with serum vitamin K1 of 0.26 [0.15] μg/L, whilst PIVKA-II was above the clinical threshold in only 3.8%. CONCLUSIONS Our data suggest that the positive effect of vitamin K on fracture risk may be related to its effects on bone strength. Higher concentrations of serum vitamin K1 may be required for vitamin K's skeletal effects compared to coagulation. Further prospective or interventional studies are needed for confirmation and should include measures of bone quality.
Collapse
Affiliation(s)
| | - EunJi Kim
- Department of Chemical Pathology and Metabolic Medicine, St Thomas' Hospital, London, UK; Metabolic Bone Clinic, Department of Rheumatology, Guy's Hospital, London, UK
| | | | - A Louise Dolan
- Department of Rheumatology, Queen Elizabeth Hospital, Woolwich, London, UK
| | - Kieran Voong
- Nutristasis Unit, Viapath, St Thomas' Hospital, London, UK
| | | | - Renata Gorska
- Nutristasis Unit, Viapath, St Thomas' Hospital, London, UK
| | | | - Geeta Hampson
- Osteoporosis Unit, Guy's Hospital, London, UK; Department of Chemical Pathology and Metabolic Medicine, St Thomas' Hospital, London, UK; Metabolic Bone Clinic, Department of Rheumatology, Guy's Hospital, London, UK.
| |
Collapse
|
30
|
Banasaz S, Morozova K, Ferrentino G, Scampicchio M. Encapsulation of Lipid-Soluble Bioactives by Nanoemulsions. Molecules 2020; 25:E3966. [PMID: 32878137 PMCID: PMC7504786 DOI: 10.3390/molecules25173966] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 01/31/2023] Open
Abstract
Lipid-soluble bioactives are important nutrients in foods. However, their addition in food formulations, is often limited by limited solubility and high tendency for oxidation. Lipid-soluble bioactives, such as vitamins A, E, D and K, carotenoids, polyunsaturated fatty acids (PUFA) and essential oils are generally dispersed in water-based solutions by homogenization. Among the different homogenization technologies available, nanoemulsions are one of the most promising. Accordingly, this review aims to summarize the most recent advances in nanoemulsion technology for the encapsulation of lipid-soluble bioactives. Modern approaches for producing nanoemulsion systems will be discussed. In addition, the challenges on the encapsulation of common food ingredients, including the physical and chemical stability of the nanoemulsion systems, will be also critically examined.
Collapse
Affiliation(s)
| | - Ksenia Morozova
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (S.B.); (G.F.); (M.S.)
| | | | | |
Collapse
|
31
|
Ciebiera M, Ali M, Zgliczyńska M, Skrzypczak M, Al-Hendy A. Vitamins and Uterine Fibroids: Current Data on Pathophysiology and Possible Clinical Relevance. Int J Mol Sci 2020; 21:ijms21155528. [PMID: 32752274 PMCID: PMC7432695 DOI: 10.3390/ijms21155528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 01/27/2023] Open
Abstract
Uterine fibroid (UF) is the most common benign tumor pathology of the female reproductive organs. UFs constitute the main reason for a hysterectomy and hospitalization due to gynecological conditions. UFs consist of uterine smooth muscle immersed in a large amount of extracellular matrix (ECM). Genetic studies have demonstrated that UFs are monoclonal tumors originating from the myometrial stem cells that have underwent specific molecular changes to tumor initiating stem cells which proliferate and differentiate later under the influence of steroid hormones. There is growing interest in the role of micronutrients, for example, vitamins, in UFs. This article is a comprehensive review of publications regarding the available data concerning the role of vitamins in the biology and management of UFs. In summary, the results showed that some vitamins are important in the biology and pathophysiology of UFs. For example, vitamins A and D deserve particular attention following studies of their influence on the treatment of UF tumors. Vitamins B3, C, and E have not been as widely studied as the abovementioned vitamins. However, more research could reveal their potential role in UF biology.
Collapse
Affiliation(s)
- Michał Ciebiera
- Second Department of Obstetrics and Gynecology, The Center of Postgraduate Medical Education, 01-809 Warsaw, Poland;
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Correspondence: (M.C.); (A.A.-H.); Tel.: +48-225690274 (M.C.); +1-312-996-7006 (A.A.-H.)
| | - Mohamed Ali
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Magdalena Zgliczyńska
- Second Department of Obstetrics and Gynecology, The Center of Postgraduate Medical Education, 01-809 Warsaw, Poland;
| | - Maciej Skrzypczak
- Second Department of Gynecology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ayman Al-Hendy
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Correspondence: (M.C.); (A.A.-H.); Tel.: +48-225690274 (M.C.); +1-312-996-7006 (A.A.-H.)
| |
Collapse
|
32
|
Deng C, Yao K, Peng F, Zhao B, Chen Z, Chen W, Zhao Y, Zhang H, Wang J. The Effect of Dietary Vitamin K1 Supplementation on Trabecular Meshwork and Retina in a Chronic Ocular Hypertensive Rat Model. Invest Ophthalmol Vis Sci 2020; 61:40. [PMID: 32721021 PMCID: PMC7425704 DOI: 10.1167/iovs.61.8.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose The pathophysiologic relationship between vitamin K and glaucoma remains largely unknown. The aim of the study was to explore the effect of dietary vitamin K supplementation in a rat glaucoma model. Methods Rats were randomly divided into two groups: standard diet and high vitamin K1 (VitK1) diet (300 mg VitK1/kg diet). Induction of chronic ocular hypertension by episcleral vein cauterization was performed on the right eye. The left eye with sham operation served as controls. Rats received standard or high VitK1 diets for 5 weeks after surgery until the end of experiment. Immunohistochemistry analyses of the retina and trabecular meshwork were performed. The change in coagulation function and IOP were evaluated. Results We observed a significant declined IOP at 2 weeks after surgery in the high VitK1 group compared with the control group. High VitK1 showed no significant effect on the body weight, rat phenotypes, or coagulation function. High VitK1 significantly inhibited the loss of retinal ganglion cells in the retina and increased the expression of matrix gla protein. High VitK1 also ameliorated the collapsed trabecular meshwork structure and increased collagen staining in the trabecular meshwork. Conclusions High VitK1 intake inhibited the loss of retinal ganglion cells during glaucomatous injury, probably by increasing the expression of matrix gla protein. A transient decrease in the IOP was observed in the high VitK1 group, implying a potential effect of VitK1 on aqueous outflow. Retinal ganglion cells protection by high VitK1 supplementation may be due to the IOP-lowering effects as well as neuroprotective effect. Further research is required to delineate these processes.
Collapse
Affiliation(s)
- Chaohua Deng
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Ke Yao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Fei Peng
- Hubei Provincial Center for Disease Control and Prevention, 430079, Wuhan, Hubei, China
| | - Bowen Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Zhiqi Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Wei Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Junming Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| |
Collapse
|
33
|
Akbulut AC, Pavlic A, Petsophonsakul P, Halder M, Maresz K, Kramann R, Schurgers L. Vitamin K2 Needs an RDI Separate from Vitamin K1. Nutrients 2020; 12:E1852. [PMID: 32575901 PMCID: PMC7353270 DOI: 10.3390/nu12061852] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin K and its essential role in coagulation (vitamin K [Koagulation]) have been well established and accepted the world over. Many countries have a Recommended Daily Intake (RDI) for vitamin K based on early research, and its necessary role in the activation of vitamin K-dependent coagulation proteins is known. In the past few decades, the role of vitamin K-dependent proteins in processes beyond coagulation has been discovered. Various isoforms of vitamin K have been identified, and vitamin K2 specifically has been highlighted for its long half-life and extrahepatic activity, whereas the dietary form vitamin K1 has a shorter half-life. In this review, we highlight the specific activity of vitamin K2 based upon proposed frameworks necessary for a bioactive substance to be recommended for an RDI. Vitamin K2 meets all these criteria and should be considered for a specific dietary recommendation intake.
Collapse
Affiliation(s)
- Asim Cengiz Akbulut
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands; (A.C.A.); (A.P.); (P.P.)
| | - Angelina Pavlic
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands; (A.C.A.); (A.P.); (P.P.)
| | - Ploingarm Petsophonsakul
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands; (A.C.A.); (A.P.); (P.P.)
| | - Maurice Halder
- Division of Nephrology, RWTH Aachen University, 52074 Aachen, Germany; (M.H.); (R.K.)
| | - Katarzyna Maresz
- International Science & Health Foundation, 30-134 Krakow, Poland;
| | - Rafael Kramann
- Division of Nephrology, RWTH Aachen University, 52074 Aachen, Germany; (M.H.); (R.K.)
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands; (A.C.A.); (A.P.); (P.P.)
- Division of Nephrology, RWTH Aachen University, 52074 Aachen, Germany; (M.H.); (R.K.)
| |
Collapse
|
34
|
Dharmaraj K, Román Silva JI, Kahlert H, Lendeckel U, Scholz F. The acid-base and redox properties of menaquinone MK-4, MK-7, and MK-9 (vitamin K 2) in DMPC monolayers on mercury. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:279-288. [PMID: 32372117 PMCID: PMC7244470 DOI: 10.1007/s00249-020-01433-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/16/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023]
Abstract
Abstract The acid–base and redox properties of the menaquinones MK-4, MK-7, and MK-9 (vitamin K2) have been studied in DMPC monolayers on mercury electrodes. The monolayers were prepared by adhesion-spreading of menaquinone-spiked DMPC liposomes on a stationary mercury drop electrode. All three menaquinones possess \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{p}}K_{{\text{a}}}$$\end{document}pKa constants outside the experimentally accessible range, i.e., they are higher than about 12. The standard potentials of MK-4, MK-7, and MK-9 in the DMPC monolayers are very similar, i.e., 0.351, 0.326, and 0.330 V (corresponding to the biochemical standard potentials − 0.063, − 0.088, and − 0.085 V). Graphic abstract ![]()
Collapse
Affiliation(s)
- Karuppasamy Dharmaraj
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | | | - Heike Kahlert
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, University of Greifswald, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Fritz Scholz
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany.
| |
Collapse
|
35
|
Kojima A, Ikehara S, Kamiya K, Kajita E, Sato Y, Kouda K, Tamaki J, Kagamimori S, Iki M. Natto Intake is Inversely Associated with Osteoporotic Fracture Risk in Postmenopausal Japanese Women. J Nutr 2020; 150:599-605. [PMID: 31825069 DOI: 10.1093/jn/nxz292] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/10/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The direct association between intake of Japanese fermented soybeans, namely natto, and bone mineral density (BMD) is known. However, the association with osteoporotic fractures has not been studied. OBJECTIVE This study aimed to investigate whether habitual natto intake is associated with a risk of osteoporotic fractures. METHODS This prospective cohort study included 1417 postmenopausal Japanese women who were enrolled in the Japanese Population-Based Osteoporosis cohort study in 1996, 1999, 2002, and 2006 and were aged ≥45 y at baseline. The intake of natto, tofu, and other soybean products was surveyed with use of a FFQ at baseline. Fractures were ascertained in follow-up surveys conducted in 1999, 2002, 2006, and 2011/2012. Osteoporotic fracture was the primary outcome and was defined as a clinical fracture occurring without strong external force, diagnosed with radiographs by a medical doctor. HRs with 95% CIs were estimated with Cox proportional hazard models. RESULTS During the 17,699 person-years of follow-up (median, 15.2 y), 172 women experienced osteoporotic fractures. After adjustment for age and BMD at the total hip, the HRs compared with those of < 1 pack (approximately 40 g)/wk natto intake were 0.72 (95% CI: 0.52, 0.98) and 0.51 (95% CI: 0.30, 0.87) for 1-6 and ≥7 packs/wk, respectively. After further adjustment for BMI, history of osteoporotic fractures, history of myocardial infarction or stroke, diabetes mellitus, current smoking, alcohol intake, frequency of tofu and other soybean product intakes, and dietary calcium intake, the HRs were 0.79 (95% CI: 0.56, 1.10) and 0.56 (95% CI: 0.32, 0.99) for 1-6 and ≥7 packs/wk, respectively. Frequency of tofu or other soybean product intakes had no association with the risk of osteoporotic fractures. CONCLUSIONS Habitual natto intake may be associated with a reduced risk of osteoporotic fractures independent of confounding factors, including BMD, in Japanese postmenopausal women. This trial was registered at umin.ac.jp as UMIN 000032869.
Collapse
Affiliation(s)
- Akane Kojima
- Department of Hygiene and Public Health, Osaka Medical College, Takatsuki City, Osaka, Japan
- Department of Health and Nutrition, Kyoto College of Nutritional & Medical Sciences, Kyoto City, Kyoto, Japan
| | - Satoyo Ikehara
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine,Suita City, Osaka, Japan
| | - Kuniyasu Kamiya
- Department of Hygiene and Public Health, Osaka Medical College, Takatsuki City, Osaka, Japan
| | - Etsuko Kajita
- Chukyo Gakuin University Faculty of Nursing, Mizunami City, Gifu, Japan
| | - Yuho Sato
- Department of Human Life, Jin-ai University, Echizen City, Fukui, Japan
| | - Katsuyasu Kouda
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata City, Osaka, Japan
| | - Junko Tamaki
- Department of Hygiene and Public Health, Osaka Medical College, Takatsuki City, Osaka, Japan
| | | | - Masayuki Iki
- Department of Public Health, Kindai University Faculty of Medicine, Osaka-Sayama City, Osaka, Japan
| |
Collapse
|
36
|
Cell Membrane and Electron Transfer Engineering for Improved Synthesis of Menaquinone-7 in Bacillus subtilis. iScience 2020; 23:100918. [PMID: 32109677 PMCID: PMC7044751 DOI: 10.1016/j.isci.2020.100918] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/09/2020] [Accepted: 02/11/2020] [Indexed: 11/23/2022] Open
Abstract
The formation of biofilm facilitates the synthesis of valuable natural product menaquinone-7 (MK-7) in static culture of Bacillus subtilis, whereas the essential role and mechanism of biofilm in MK-7 synthesis have not been revealed. Herein, comparative transcriptomics show that the formation of biofilm affected MK-7 synthesis by changing the transcription levels of signal receptor (BSU02010), transmembrane transporter (BSU29340, BSU03070), and signal transduction (BSU02630). Moreover, we also found that oxalate decarboxylase OxdC has an important effect on electron generation and MK-7 synthesis, when the transcriptional level of NADH dehydrogenase decreases in static culture. Our results revealed that cell membrane and electron transfer are important factors in promoting MK-7 synthesis. Transcriptome analysis shows the relationship between biofilm and MK-7 synthesis Electron transfer significantly affects the synthesis of MK-7 Oxalate decarboxylase OxdC plays a role in electron generation and MK-7 synthesis
Collapse
|
37
|
Vitamin K 2-MK-7 improves nitric oxide-dependent endothelial function in ApoE/LDLR -/- mice. Vascul Pharmacol 2019; 122-123:106581. [PMID: 31421222 DOI: 10.1016/j.vph.2019.106581] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 12/25/2022]
Abstract
Although, vitamin K2 displays vasoprotective effects, it is still not known whether K2 treatment improves endothelial function. In ApoE/LDLR-/- mice at the stage prior to atherosclerosis development, four-week treatment with K2-MK-7, given at a low dose (0.05 mg/kg), improved acetylcholine- and flow-induced, endothelium-dependent vasodilation in aorta or in femoral artery, as assessed by MRI in vivo. This effect was associated with an increased NO production, as evidenced by EPR measurements in ex vivo aorta. Treatment with higher doses of K2-MK-7 (0.5; 5 mg/kg) resulted in a dose-dependent increase in plasma K2-MK-7 and K2-MK-4 concentration, without further improvement in endothelial function. In ApoE/LDLR-/- mice with developed atherosclerotic plaques, treatment with a low (0.03 mg/kg) or high (10 mg/kg) dose of K2-MK-7 resulted in a similar degree of endothelium-dependent vasodilation improvement and increase in plasma nitrate concentration, what was not associated with changes in thrombin generation as measured by CAT. Both doses of K2-MK-7 also reduced media thickness in the brachiocephalic artery, but did not modify atherosclerotic plaque size. In conclusion, K2-MK-7 improves NO-dependent endothelial function in ApoE/LDLR-/- mice. This study, identifies the endothelial profile of the pharmacological activity of vitamin K2, which has not been previously described.
Collapse
|
38
|
Piscaer I, van den Ouweland JMW, Vermeersch K, Reynaert NL, Franssen FME, Keene S, Wouters EFM, Janssens W, Vermeer C, Janssen R. Low Vitamin K Status Is Associated with Increased Elastin Degradation in Chronic Obstructive Pulmonary Disease. J Clin Med 2019; 8:E1116. [PMID: 31357639 PMCID: PMC6724066 DOI: 10.3390/jcm8081116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022] Open
Abstract
Elastin degradation is accelerated in chronic obstructive pulmonary disease (COPD) and is partially regulated by Matrix Gla Protein (MGP), via a vitamin K-dependent pathway. The aim was to assess vitamin K status in COPD as well as associations between vitamin K status, elastin degradation, lung function parameters and mortality. A total of 192 COPD patients and 186 age-matched controls were included. In addition to this, 290 COPD patients from a second independent longitudinal cohort were also included. Vitamin K status was assessed by measuring plasma inactive MGP levels and rates of elastin degradation by measuring plasma desmosine levels. Reduced vitamin K status was found in COPD patients compared to smoking controls (p < 0.0005) and controls who had never smoked (p = 0.001). Vitamin K status was inversely associated with desmosine (cohort 1: p = 0.001; cohort 2: p = 0.004). Only few significant associations between vitamin K status and lung function parameters were found. Mortality was higher in COPD patients within the quartile with the lowest vitamin K status compared to those within the other quartiles (hazard ratio 1.85, 95% confidence interval (CI), 1.21-2.83, p = 0.005). In conclusion, we demonstrated reduced vitamin K status in COPD and an inverse association between vitamin K status and elastin degradation rate. Our results therefore suggest a potential role of vitamin K in COPD pathogenesis.
Collapse
Affiliation(s)
- Ianthe Piscaer
- Department of Respiratory Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands.
| | | | - Kristina Vermeersch
- Laboratory of Respiratory Diseases, Catholic University Leuven, 3000 Leuven, Belgium
| | - Niki L Reynaert
- Department of Respiratory Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Frits M E Franssen
- Department of Respiratory Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- CIRO, Centre of Expertise for Chronic Organ Failure, 6085 NM Horn, The Netherlands
| | - Spencer Keene
- CIRO, Centre of Expertise for Chronic Organ Failure, 6085 NM Horn, The Netherlands
- Department of Respiratory Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - Emiel F M Wouters
- Department of Respiratory Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- CIRO, Centre of Expertise for Chronic Organ Failure, 6085 NM Horn, The Netherlands
| | - Wim Janssens
- Department of Respiratory Medicine, Catholic University Leuven, 3000 Leuven, Belgium
| | - Cees Vermeer
- R&D Group VitaK, Maastricht University, 6229 EV Maastricht, The Netherlands
| | - Rob Janssen
- Department of Pulmonary Medicine, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| |
Collapse
|
39
|
Kilby K, Mathias H, Boisvenue L, Heisler C, Jones JL. Micronutrient Absorption and Related Outcomes in People with Inflammatory Bowel Disease: A Review. Nutrients 2019; 11:E1388. [PMID: 31226828 PMCID: PMC6627381 DOI: 10.3390/nu11061388] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/31/2019] [Accepted: 06/08/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic disorder associated with immune dysregulation and chronic inflammation of the digestive tract. While it is poorly understood, the role of nutrition and nutrient status in the etiology of IBD and its associated outcomes has led to increased research relating to micronutrient deficiency. This review offers an overview of recent literature related to micronutrient absorption and outcomes in adults with IBD. Although the absorption and IBD-related outcomes of some micronutrients (e.g., vitamin D and iron) are well understood, other micronutrients (e.g., vitamin A) require further research. Increased research and clinician knowledge of the relationship between micronutrients and IBD may manifest in improved nutrient screening, monitoring, treatment, and outcomes for people living with IBD.
Collapse
Affiliation(s)
- Kyle Kilby
- Faculty of Medicine, Dalhousie University, 1459 Oxford Street, Halifax, NS B3J 4R2, Canada.
| | - Holly Mathias
- School of Health and Human Performance, Dalhousie University, 6230 South Street, Halifax, NS B3H 1T8, Canada.
| | - Lindsay Boisvenue
- Seaway Valley Community Health Care, 353 Pitt Street, Cornwall, ON K6J 3R1, Canada.
| | - Courtney Heisler
- Nova Scotia Collaborative Inflammatory Bowel Disease Program, Division of Digestive Care and Endoscopy, QEII Health Science Centre, Room 932, Victoria Building, 1276 South Park Street, Halifax, NS B3H 2Y9, Canada.
| | - Jennifer L Jones
- Nova Scotia Collaborative Inflammatory Bowel Disease Program, Division of Digestive Care and Endoscopy, QEII Health Science Centre, Room 932, Victoria Building, 1276 South Park Street, Halifax, NS B3H 2Y9, Canada.
| |
Collapse
|
40
|
Szmodis M, Bosnyák E, Protzner A, Szőts G, Trájer E, Tóth M. Relationship between physical activity, dietary intake and bone parameters in 10-12 years old Hungarian boys and girls. Cent Eur J Public Health 2019; 27:10-16. [PMID: 30927391 DOI: 10.21101/cejph.a5140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Physical activity (PA) and adequate macro- and micronutrient intake have favourable influence on the bone status. The aim of this study was to analyse the relationships among PA, anthropometric data, dietary intake and ultrasound bone characteristics in children. METHODS 10-12 years old Hungarian children (N = 123, 59 girls, 64 boys) provided physical activity, diet, anthropometric and bone data. PA was measured with accelerometer (Actigraph GT3X+). Diet was evaluated with three-day, 24-hour food recall. Calcaneal quantitative ultrasound (QUS) bone parameters were registered with Sonost3000 bone densitometer. RESULTS Nutrition and anthropometry did not differ by gender. The values of broadband ultrasound attenuation (BUA) were significantly higher in boys. Girls spent significantly more time being sedentary, boys had greater light, moderate, vigorous, and moderate to vigorous physical activity (MVPA) levels. The children accumulated more than twice the suggested amount of public health guidelines for MVPA. QUS parameters correlated significantly with vigorous physical activity in boys, and with age, height, weight, fat percentage, and body mass index (BMI) for both genders. There was no significant relationship between nutrition and QUS; however, inadequate vitamin K intake correlated with less favourable bone parameters. Multiple linear regression analysis confirmed the importance of vigorous PA - speed of sound (SOS): β = 0.358, p = 0.006; BUA: β = 0.340, p = 0.007; bone quality index (BQI): β = 0.377, p = 0.002; vitamin K intake - SOS: β = 0.256, p = 0.025; BUA: β = 0.235, p = 0.033; BQI: β = 0.295, p = 0.007; BMI - SOS: β = 0.207, p = 0.064; BUA: β = 0.455, p < 0.001; BQI: β = 0.284, p = 0.008; and age - SOS: β = 0.450, p < 0.001; BUA: β = 0.318, p = 0.004; BQI: β = 0.444, p < 0.001). CONCLUSIONS Changes in the characteristics of ultrasound bone parameters among 10-12 years old children mainly depended on the amount of intense PA, adequate vitamin K intake and anthropometric variables related to age.
Collapse
Affiliation(s)
- Márta Szmodis
- University of Physical Education, Department of Health Sciences and Sports Medicine, Budapest, Hungary
| | - Edit Bosnyák
- University of Physical Education, Department of Health Sciences and Sports Medicine, Budapest, Hungary
| | - Anna Protzner
- University of Physical Education, Department of Health Sciences and Sports Medicine, Budapest, Hungary
| | - Gábor Szőts
- University of Physical Education, Department of Health Sciences and Sports Medicine, Budapest, Hungary
| | - Emese Trájer
- University of Physical Education, Department of Health Sciences and Sports Medicine, Budapest, Hungary
| | - Miklós Tóth
- University of Physical Education, Department of Health Sciences and Sports Medicine, Budapest, Hungary
| |
Collapse
|
41
|
Beaudin S, Kokabee L, Welsh J. Divergent effects of vitamins K1 and K2 on triple negative breast cancer cells. Oncotarget 2019; 10:2292-2305. [PMID: 31040920 PMCID: PMC6481349 DOI: 10.18632/oncotarget.26765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
Vitamin K serves as an essential co-factor in the γ-carboxylation of glutamate to γ-carboxyglutamate (GLA), a post-translational modification mediated by gamma-glutamyl carboxylase (GGCX) and vitamin K oxidoreductases (VKORC1 or VKORC1L1). While both phylloquinone (K1) and menaquinone (K2) support the synthesis of GLA-modified proteins, studies assessing K1 and/or K2 effects in cancer cells have reported minimal effects of K1 and anti-proliferative or pro-apoptotic effects of K2. qPCR results indicated highest expression of GGCX, VKORC1, and VKORC1L1 in triple negative breast cancer (TNBC) cell lines, Hs578T, MDA-MB-231 and SUM159PT, and in advanced stage disease. To assess differential effects of vitamin K, TNBC cells were cultured in media supplemented with K1 or K2. K1 treatment increased cell growth, and enhanced stemness and GLA-modified protein expression in TNBC lysates. Alternatively, lysates from cells exposed to vehicle, K2, or the VKOR antagonist, warfarin, did not express GLA-modified proteins. Further, K2 exposure reduced stemness and elicited anti-proliferative effects. These studies show that TNBC cells express a functional vitamin K pathway and that K1 and K2 exert distinct phenotypic effects. Clarification of the mechanisms by which K1 and K2 induce these effects may lead to relevant therapeutic strategies for manipulating this pathway in TNBC patients.
Collapse
Affiliation(s)
- Sarah Beaudin
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| | - Leila Kokabee
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| | - JoEllen Welsh
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|
42
|
Verkhnyatskaya S, Ferrari M, de Vos P, Walvoort MTC. Shaping the Infant Microbiome With Non-digestible Carbohydrates. Front Microbiol 2019; 10:343. [PMID: 30858844 PMCID: PMC6397869 DOI: 10.3389/fmicb.2019.00343] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
Natural polysaccharides with health benefits are characterized by a large structural diversity and differ in building blocks, linkages, and lengths. They contribute to human health by functioning as anti-adhesives preventing pathogen adhesion, stimulate immune maturation and gut barrier function, and serve as fermentable substrates for gut bacteria. Examples of such beneficial carbohydrates include the human milk oligosaccharides (HMOs). Also, specific non-digestible carbohydrates (NDCs), such as galacto-oligosaccharides (GOS) and fructo-oligosaccharides (FOS) are being produced with this purpose in mind, and are currently added to infant formula to stimulate the healthy development of the newborn. They mimic some functions of HMO, but not all. Therefore, many research efforts focus on identification and production of novel types of NDCs. In this review, we give an overview of the few NDCs currently available [GOS, FOS, polydextrose (PDX)], and outline the potential of alternative oligosaccharides, such as pectins, (arabino)xylo-oligosaccharides, and microbial exopolysaccharides (EPS). Moreover, state-of-the-art techniques to generate novel types of dietary glycans, including sialylated GOS (Sia-GOS) and galactosylated chitin, are presented as a way to obtain novel prebiotic NDCs that help shaping the infant microbiome.
Collapse
Affiliation(s)
- Stella Verkhnyatskaya
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Michela Ferrari
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Paul de Vos
- University Medical Center Groningen, Groningen, Netherlands
| | - Marthe T. C. Walvoort
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| |
Collapse
|
43
|
Janssen R, Piscaer I, Franssen FME, Wouters EFM. Emphysema: looking beyond alpha-1 antitrypsin deficiency. Expert Rev Respir Med 2019; 13:381-397. [DOI: 10.1080/17476348.2019.1580575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rob Janssen
- Department of Pulmonary Medicine, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Ianthe Piscaer
- Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Frits M. E. Franssen
- Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
- CIRO, Center of Expertise for Chronic Organ Failure, Horn, The Netherlands
| | - Emiel F. M. Wouters
- Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
- CIRO, Center of Expertise for Chronic Organ Failure, Horn, The Netherlands
| |
Collapse
|
44
|
Halder M, Petsophonsakul P, Akbulut AC, Pavlic A, Bohan F, Anderson E, Maresz K, Kramann R, Schurgers L. Vitamin K: Double Bonds beyond Coagulation Insights into Differences between Vitamin K1 and K2 in Health and Disease. Int J Mol Sci 2019; 20:E896. [PMID: 30791399 PMCID: PMC6413124 DOI: 10.3390/ijms20040896] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 01/27/2023] Open
Abstract
Vitamin K is an essential bioactive compound required for optimal body function. Vitamin K can be present in various isoforms, distinguishable by two main structures, namely, phylloquinone (K1) and menaquinones (K2). The difference in structure between K1 and K2 is seen in different absorption rates, tissue distribution, and bioavailability. Although differing in structure, both act as cofactor for the enzyme gamma-glutamylcarboxylase, encompassing both hepatic and extrahepatic activity. Only carboxylated proteins are active and promote a health profile like hemostasis. Furthermore, vitamin K2 in the form of MK-7 has been shown to be a bioactive compound in regulating osteoporosis, atherosclerosis, cancer and inflammatory diseases without risk of negative side effects or overdosing. This review is the first to highlight differences between isoforms vitamin K1 and K2 by means of source, function, and extrahepatic activity.
Collapse
Affiliation(s)
- Maurice Halder
- Division of Nephrology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Ploingarm Petsophonsakul
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands.
| | - Asim Cengiz Akbulut
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands.
| | - Angelina Pavlic
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands.
| | | | | | - Katarzyna Maresz
- International Science & Health Foundation, 30-134 Krakow, Poland.
| | - Rafael Kramann
- Division of Nephrology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Leon Schurgers
- Division of Nephrology, RWTH Aachen University, 52074 Aachen, Germany.
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands.
| |
Collapse
|
45
|
Wasilewski GB, Vervloet MG, Schurgers LJ. The Bone-Vasculature Axis: Calcium Supplementation and the Role of Vitamin K. Front Cardiovasc Med 2019; 6:6. [PMID: 30805347 PMCID: PMC6370658 DOI: 10.3389/fcvm.2019.00006] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Calcium supplements are broadly prescribed to treat osteoporosis either as monotherapy or together with vitamin D to enhance calcium absorption. It is still unclear whether calcium supplementation significantly contributes to the reduction of bone fragility and fracture risk. Data suggest that supplementing post-menopausal women with high doses of calcium has a detrimental impact on cardiovascular morbidity and mortality. Chronic kidney disease (CKD) patients are prone to vascular calcification in part due to impaired phosphate excretion. Calcium-based phosphate binders further increase risk of vascular calcification progression. In both bone and vascular tissue, vitamin K-dependent processes play an important role in calcium homeostasis and it is tempting to speculate that vitamin K supplementation might protect from the potentially untoward effects of calcium supplementation. This review provides an update on current literature on calcium supplementation among post-menopausal women and CKD patients and discusses underlying molecular mechanisms of vascular calcification. We propose therapeutic strategies with vitamin K2 treatment to prevent or hold progression of vascular calcification as a consequence of excessive calcium intake.
Collapse
Affiliation(s)
- Grzegorz B Wasilewski
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands.,Nattopharma ASA, Hovik, Norway
| | - Marc G Vervloet
- Department of Nephrology and Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
46
|
Yang S, Cao Y, Sun L, Li C, Lin X, Cai Z, Zhang G, Song H. Modular Pathway Engineering of Bacillus subtilis To Promote De Novo Biosynthesis of Menaquinone-7. ACS Synth Biol 2019; 8:70-81. [PMID: 30543412 DOI: 10.1021/acssynbio.8b00258] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Menaquinone-7 (MK-7), a valuable vitamin K2, plays an important role in the prevention of osteoporosis and cardiovascular calcification. We chose B. subtilis 168 as the chassis for the modular metabolic engineering design to promote the biosynthesis of MK-7. The biosynthetic pathway of MK-7 was categorized into four modules, namely, the MK-7 pathway (Module I), the shikimate (SA) pathway (Module II), the methylerythritol phosphate (MEP) pathway (Module III), and the glycerol metabolism pathway (Module IV). Overexpression of menA (Module I) resulted in 6.6 ± 0.1 mg/L of MK-7 after 120 h fermentation, which was 2.1-fold that of the starting strain BS168NU (3.1 ± 0.2 mg/L). Overexpression of aroA, aroD, and aroE (Module II) had a negative effect on the synthesis of MK-7. Simultaneous overexpression of dxs, dxr, yacM, and yacN (Module III) enabled the yield of MK-7 to 12.0 ± 0.1 mg/L. Moreover, overexpression of glpD (Module IV) resulted in an increase of the yield of MK-7 to 13.7 ± 0.2 mg/L. Furthermore, deletion of dhbB reduced the consumption of the intermediate metabolite isochorismate, thus promoting the yield of MK-7 to 15.4 ± 0.6 mg/L. Taken together, the final resulting strain MK3-MEP123-Gly2-Δ dhbB with simultaneous overexpression of menA, dxs, dxr, yacM-yacN, glpD and deletion of dhbB enabled the yield of MK-7 to 69.5 ± 2.8 mg/L upon 144 h fermentation in a 2 L baffled flask.
Collapse
Affiliation(s)
- Shaomei Yang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, and SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yingxiu Cao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, and SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Liming Sun
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Congfa Li
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Xue Lin
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Zhigang Cai
- Chifeng Pharmaceutical Company Limited, Chifeng, Inner Mongolia 024000, China
| | - Guoyin Zhang
- Chifeng Pharmaceutical Company Limited, Chifeng, Inner Mongolia 024000, China
| | - Hao Song
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, and SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
47
|
Dickson L, Tenon M, Svilar L, Fança-Berthon P, Lugan R, Martin JC, Vaillant F, Rogez H. Main Human Urinary Metabolites after Genipap ( Genipa americana L.) Juice Intake. Nutrients 2018; 10:E1155. [PMID: 30149503 PMCID: PMC6165415 DOI: 10.3390/nu10091155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 12/25/2022] Open
Abstract
Genipap (Genipa americana L.) is a native fruit from Amazonia that contains bioactive compounds with a wide range of bioactivities. However, the response to genipap juice ingestion in the human exposome has never been studied. To identify biomarkers of genipap exposure, the untargeted metabolomics approach in human urine was applied. Urine samples from 16 healthy male volunteers, before and after drinking genipap juice, were analyzed by liquid chromatography⁻high-resolution mass spectrometry. XCMS package was used for data processing in the R environment and t-tests were applied on log-transformed and Pareto-scaled data to select the significant metabolites. The principal component analysis (PCA) score plots showed a clear distinction between experimental groups. Thirty-three metabolites were putatively annotated and the most discriminant were mainly related to the metabolic pathways of iridoids and phenolic derivatives. For the first time, the bioavailability of genipap iridoids after human consumption is reported. Dihydroxyhydrocinnamic acid, (1R,6R)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate, hydroxyhydrocinnamic acid, genipic acid, 12-demethylated-8-hydroxygenipinic acid, 3(7)-dehydrogenipinic acid, genipic acid glucuronide, nonate, and 3,4-dihydroxyphenylacetate may be considered biomarkers of genipap consumption. Human exposure to genipap reveals the production of derivative forms of bioactive compounds such as genipic and genipinic acid. These findings suggest that genipap consumption triggers effects on metabolic signatures.
Collapse
Affiliation(s)
- Livia Dickson
- Federal University of Pará & Centre for Valorization of Amazonian Bioactive Compounds (CVACBA), Parque de Ciência e Tecnologia Guamá, Avenida Perimetral da Ciência, km 01, Guamá 66075-750, Brazil.
- Naturex SA, 250 rue Pierre Bayle, BP81218, 84911 Avignon CEDEX 9, France.
- Centre International de Recherche Agronomique pour le Développement (CIRAD), Avenue Agropolis, TA50/PS4, 34398 Montpellier CEDEX 5, France.
| | - Mathieu Tenon
- Naturex SA, 250 rue Pierre Bayle, BP81218, 84911 Avignon CEDEX 9, France.
| | - Ljubica Svilar
- Aix Marseille Univ, INSERM, INRA, C2VN, CRIBIOM, 5-9, Boulevard Maurice Bourdet, CS 80501, 13205 Marseille CEDEX 01, France.
| | | | - Raphael Lugan
- UMR Qualisud, Université d'Avignon, 301 rue Baruch de Spinoza, BP21239, 84916 Avignon CEDEX 9, France.
| | - Jean-Charles Martin
- Aix Marseille Univ, INSERM, INRA, C2VN, CRIBIOM, 5-9, Boulevard Maurice Bourdet, CS 80501, 13205 Marseille CEDEX 01, France.
| | - Fabrice Vaillant
- Centre International de Recherche Agronomique pour le Développement (CIRAD), Avenue Agropolis, TA50/PS4, 34398 Montpellier CEDEX 5, France.
| | - Hervé Rogez
- Federal University of Pará & Centre for Valorization of Amazonian Bioactive Compounds (CVACBA), Parque de Ciência e Tecnologia Guamá, Avenida Perimetral da Ciência, km 01, Guamá 66075-750, Brazil.
| |
Collapse
|
48
|
Hemmingway A, O'Callaghan KM, Hennessy Á, Hull GLJ, Cashman KD, Kiely ME. Interactions between Vitamin D Status, Calcium Intake and Parathyroid Hormone Concentrations in Healthy White-Skinned Pregnant Women at Northern Latitude. Nutrients 2018; 10:E916. [PMID: 30018262 PMCID: PMC6073976 DOI: 10.3390/nu10070916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 01/02/2023] Open
Abstract
Adverse effects of low vitamin D status and calcium intakes in pregnancy may be mediated through functional effects on the calcium metabolic system. Little explored in pregnancy, we aimed to examine the relative importance of serum 25-hydroxyvitamin D (25(OH)D) and calcium intake on parathyroid hormone (PTH) concentrations in healthy white-skinned pregnant women. This cross-sectional analysis included 142 participants (14 ± 2 weeks' gestation) at baseline of a vitamin D intervention trial at 51.9 °N. Serum 25(OH)D, PTH, and albumin-corrected calcium were quantified biochemically. Total vitamin D and calcium intakes (diet and supplements) were estimated using a validated food frequency questionnaire. The mean ± SD vitamin D intake was 10.7 ± 5.2 μg/day. With a mean ± SD serum 25(OH)D of 54.9 ± 22.6 nmol/L, 44% of women were <50 nmol/L and 13% <30 nmol/L. Calcium intakes (mean ± SD) were 1182 ± 488 mg/day and 23% of participants consumed <800 mg/day. The mean ± SD serum albumin-adjusted calcium was 2.2 ± 0.1 mmol/L and geometric mean (95% CI) PTH was 9.2 (8.4, 10.2) pg/mL. PTH was inversely correlated with serum 25(OH)D (r = -0.311, p < 0.001), but not with calcium intake or serum calcium (r = -0.087 and 0.057, respectively, both p > 0.05). Analysis of variance showed that while serum 25(OH)D (dichotomised at 50 nmol/L) had a significant effect on PTH (p = 0.025), calcium intake (<800, 800⁻1000, ≥1000 mg/day) had no effect (p = 0.822). There was no 25(OH)D-calcium intake interaction effect on PTH (p = 0.941). In this group of white-skinned women with largely sufficient calcium intakes, serum 25(OH)D was important for maintaining normal PTH concentration.
Collapse
Affiliation(s)
- Andrea Hemmingway
- Cork Centre for Vitamin D and Nutrition Research, School of Food and Nutritional Sciences, University College Cork, T12 Y337 Cork, Ireland.
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, T12 Y337 Cork, Ireland.
| | - Karen M O'Callaghan
- Cork Centre for Vitamin D and Nutrition Research, School of Food and Nutritional Sciences, University College Cork, T12 Y337 Cork, Ireland.
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, T12 Y337 Cork, Ireland.
| | - Áine Hennessy
- Cork Centre for Vitamin D and Nutrition Research, School of Food and Nutritional Sciences, University College Cork, T12 Y337 Cork, Ireland.
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, T12 Y337 Cork, Ireland.
| | - George L J Hull
- Cork Centre for Vitamin D and Nutrition Research, School of Food and Nutritional Sciences, University College Cork, T12 Y337 Cork, Ireland.
| | - Kevin D Cashman
- Cork Centre for Vitamin D and Nutrition Research, School of Food and Nutritional Sciences, University College Cork, T12 Y337 Cork, Ireland.
- Department of Medicine, University College Cork, T12 Y337 Cork, Ireland.
| | - Mairead E Kiely
- Cork Centre for Vitamin D and Nutrition Research, School of Food and Nutritional Sciences, University College Cork, T12 Y337 Cork, Ireland.
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, T12 Y337 Cork, Ireland.
| |
Collapse
|
49
|
Vitamin K2 improves proliferation and migration of bovine skeletal muscle cells in vitro. PLoS One 2018; 13:e0195432. [PMID: 29617432 PMCID: PMC5884547 DOI: 10.1371/journal.pone.0195432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 03/22/2018] [Indexed: 01/20/2023] Open
Abstract
Skeletal muscle function is highly dependent on the ability to regenerate, however, during ageing or disease, the proliferative capacity is reduced, leading to loss of muscle function. We have previously demonstrated the presence of vitamin K2 in bovine skeletal muscles, but whether vitamin K has a role in muscle regulation and function is unknown. In this study, we used primary bovine skeletal muscle cells, cultured in monolayers in vitro, to assess a potential effect of vitamin K2 (MK-4) during myogenesis of muscle cells. Cell viability experiments demonstrate that the amount of ATP produced by the cells was unchanged when MK-4 was added, indicating viable cells. Cytotoxicity analysis show that MK-4 reduced the lactate dehydrogenase (LDH) released into the media, suggesting that MK-4 was beneficial to the muscle cells. Cell migration, proliferation and differentiation was characterised after MK-4 incubation using wound scratch analysis, immunocytochemistry and real-time PCR analysis. Adding MK-4 to the cells led to an increased muscle proliferation, increased gene expression of the myogenic transcription factor myod as well as increased cell migration. In addition, we observed a reduction in the fusion index and relative gene expression of muscle differentiation markers, with fewer complex myotubes formed in MK-4 stimulated cells compared to control cells, indicating that the MK-4 plays a significant role during the early phases of muscle proliferation. Likewise, we see the same pattern for the relative gene expression of collagen 1A, showing increased gene expression in proliferating cells, and reduced expression in differentiating cells. Our results also suggest that MK-4 incubation affect low density lipoprotein receptor-related protein 1 (LRP1) and the low-density lipoprotein receptor (LDLR) with a peak in gene expression after 45 min of MK-4 incubation. Altogether, our experiments show that MK-4 has a positive effect on muscle cell migration and proliferation, which are two important steps during early myogenesis.
Collapse
|
50
|
Vermeer C, Raes J, van 't Hoofd C, Knapen MHJ, Xanthoulea S. Menaquinone Content of Cheese. Nutrients 2018; 10:E446. [PMID: 29617314 PMCID: PMC5946231 DOI: 10.3390/nu10040446] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/07/2023] Open
Abstract
Vitamin K₂ (menaquinone) concentrations were measured in a wide range of cheeses and the effects of fat content, ripening and origin of the cheeses were investigated. Moreover, the menaquinone content of cheese was compared with that of other foods known to contain vitamin K₂. It was found that cheese and curd are the most important sources of long-chain menaquinones in the Western diet and, in general, hard cheeses are richer in menaquinones than soft cheeses. However, the actual menaquinone content varies substantially and is dependent on the type of cheese, the time of ripening, the fat content and the geographic area where the cheeses are produced. Given the fact that poor vitamin K status has been mentioned as a risk factor for cardiovascular disease and mortality, while there is no clear evidence for adverse cardiovascular effects of dairy fats, cheese should be considered as a recommendable component in a heart-healthy diet.
Collapse
Affiliation(s)
- Cees Vermeer
- R&D Group VitaK, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands.
| | - Joyce Raes
- R&D Group VitaK, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands.
| | - Cynthia van 't Hoofd
- R&D Group VitaK, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands.
| | - Marjo H J Knapen
- R&D Group VitaK, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands.
| | - Sofia Xanthoulea
- R&D Group VitaK, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands.
| |
Collapse
|