1
|
Hallas-Møller M, Burow M, Henrissat B, Johansen KS. Cryptococcus neoformans: plant-microbe interactions and ecology. Trends Microbiol 2024; 32:984-995. [PMID: 38519353 DOI: 10.1016/j.tim.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
While the opportunistic human pathogens Cryptococcus neoformans and Cryptococcus gattii are often isolated from plants and plant-related material, evidence suggests that these Cryptococcus species do not directly infect plants. Studies find that plants are important for Cryptococcus mating and dispersal. However, these studies have not provided enough detail about how plants and these fungi interact, especially in ways that could show the fungi are capable of causing disease. This review synthesizes recent findings from studies utilizing different plant models associated with the ecology of C. neoformans and C. gattii. Unanswered questions about their environmental role are highlighted. Overall, current research indicates that Cryptococcus utilizes plants as a substrate rather than harming them, arguing against Cryptococcus as a genuine plant pathogen. We hypothesize that plants represent reservoirs that aid dispersal, not hosts vulnerable to infection.
Collapse
Affiliation(s)
- Magnus Hallas-Møller
- Department of Geoscience and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Meike Burow
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kgs, Lyngby, Denmark
| | - Katja Salomon Johansen
- Department of Geoscience and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark.
| |
Collapse
|
2
|
Shi D, Yang Z, Liao W, Liu C, Zhao L, Su H, Wang X, Mei H, Chen M, Song Y, de Hoog S, Deng S. Galleria mellonella in vitro model for chromoblastomycosis shows large differences in virulence between isolates. IMA Fungus 2024; 15:5. [PMID: 38454527 PMCID: PMC10921731 DOI: 10.1186/s43008-023-00134-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/22/2023] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Chromoblastomycosis is the World Health Organization (WHO)-recognized fungal implantation disease that eventually leads to severe mutilation. Cladophialophora carrionii (C. carrionii) is one of the agents. However, the pathogenesis of C. carrionii is not fully investigated yet. METHODS We investigated the pathogenic potential of the fungus in a Galleria mellonella (G. mellonella) larvae infection model. Six strains of C. carrionii, and three of its environmental relative C. yegresii were tested. The G. mellonella model was also applied to determine antifungal efficacy of amphotericin B, itraconazole, voriconazole, posaconazole, and terbinafine. RESULTS All strains were able to infect the larvae, but virulence potentials were strain-specific and showed no correlation with clinical background of the respective isolate. Survival of larvae also varied with infection dose, and with growth speed and melanization of the fungus. Posaconazole and voriconazole exhibited best activity against Cladophialophora, followed by itraconazole and terbinafine, while limited efficacy was seen for amphotericin B. CONCLUSION Infection behavior deviates significantly between strains. In vitro antifungal susceptibility of tested strains only partly explained the limited treatment efficacy in vivo.
Collapse
Affiliation(s)
- Dongmei Shi
- Department of Dermatology & Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Shandong, China
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Shandong, China
| | - Zhiya Yang
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Shandong, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Shanghai, China
| | - Chen Liu
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Shandong, China
| | - Liang Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Guizhou Talent Base for Microbiology and Human Health, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Huilin Su
- Department of Dermatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaodong Wang
- Department of Dermatology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Huan Mei
- Institute of Dermatology, Chinese Academy of Medical Science, Nanjing, China
| | - Min Chen
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Shanghai, China
| | - Yinggai Song
- Department of Dermatology and Venereology, First Hospital in Peking University, Beijing, China
| | - Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.
- Department of Medical Microbiology, The People's Hospital of Suzhou New District, Suzhou, Jiangsu, China.
| | - Shuwen Deng
- Department of Medical Microbiology, The People's Hospital of Suzhou New District, Suzhou, Jiangsu, China.
| |
Collapse
|
3
|
Eisenman HC. A Galleria Model of Cryptococcus neoformans Infection. Methods Mol Biol 2024; 2775:3-11. [PMID: 38758307 DOI: 10.1007/978-1-0716-3722-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Galleria mellonella larvae are a popular and simple model organism for infectious disease research. Last instar larvae can be purchased inexpensively from commercial suppliers and infected with Cryptococcus. Injection into the proleg of larvae results in systemic infections. Larvae may then be monitored for survival or homogenized to determine fungal burden. Fixation of infected larvae produces samples suitable for histological staining and analysis.
Collapse
Affiliation(s)
- Helene C Eisenman
- Department of Natural Sciences, Baruch College, The City University of New York, New York, NY, USA.
| |
Collapse
|
4
|
Reis NF, de Jesus MCS, de Souza LCDSV, Alcântara LM, Rodrigues JADC, Brito SCP, Penna PDA, Vieira CS, Silva JRS, Penna BDA, Machado RLD, Mora-Montes HM, Baptista ARDS. Sporothrix brasiliensis Infection Modulates Antimicrobial Peptides and Stress Management Gene Expression in the Invertebrate Biomodel Galleria mellonella. J Fungi (Basel) 2023; 9:1053. [PMID: 37998858 PMCID: PMC10672515 DOI: 10.3390/jof9111053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Sporothrix brasiliensis is the most pathogenic species, responsible for the Brazilian cat-transmitted sporotrichosis hyperendemic. In this scenario, an investigation of the pathogen-host interaction can provide relevant information for future treatment strategies. To this end, the invertebrate Galleria mellonella has proven to be a suitable alternative for evaluating the virulence of pathogenic fungi, since the insect immune system is similar to the mammalian innate immune response. The aim of this work was to investigate phenotypic and molecular aspects of the immune response of G. mellonella throughout the S. brasiliensis infection. Hemocyte density and the evolution of the fungal load were evaluated. In parallel, RT-qPCR expression analysis of genes encoding antimicrobial peptides (Gallerimycin and Galiomycin) and stress management genes (C7 Contig 15362 and C8 Contig 19101) was conducted. The fungal load and hemocyte densities increased simultaneously and proportionally to the deleterious morphological events and larvae mortality. Gallerimycin, C7 Contig 15362 and C8 Contig 19101 genes were positively regulated (p < 0.05) at distinct moments of S. brasiliensis infection, characterizing a time-dependent and alternately modulated profile. Galiomycin gene expression remained unchanged. Our results contribute to the future proposal of potential alternative pathways for treating and consequently controlling S. brasiliensis zoonosis, a major public health issue in Latin America.
Collapse
Affiliation(s)
- Nathália Faria Reis
- Center for Microorganisms’ Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil; (N.F.R.); (M.C.S.d.J.); (L.C.d.S.V.d.S.); (L.M.A.); (J.A.d.C.R.); (S.C.P.B.); (R.L.D.M.)
| | - Myrela Conceição Santos de Jesus
- Center for Microorganisms’ Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil; (N.F.R.); (M.C.S.d.J.); (L.C.d.S.V.d.S.); (L.M.A.); (J.A.d.C.R.); (S.C.P.B.); (R.L.D.M.)
| | - Lais Cavalcanti dos Santos Velasco de Souza
- Center for Microorganisms’ Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil; (N.F.R.); (M.C.S.d.J.); (L.C.d.S.V.d.S.); (L.M.A.); (J.A.d.C.R.); (S.C.P.B.); (R.L.D.M.)
| | - Lucas Martins Alcântara
- Center for Microorganisms’ Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil; (N.F.R.); (M.C.S.d.J.); (L.C.d.S.V.d.S.); (L.M.A.); (J.A.d.C.R.); (S.C.P.B.); (R.L.D.M.)
| | - Julia Andrade de Castro Rodrigues
- Center for Microorganisms’ Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil; (N.F.R.); (M.C.S.d.J.); (L.C.d.S.V.d.S.); (L.M.A.); (J.A.d.C.R.); (S.C.P.B.); (R.L.D.M.)
| | - Simone Cristina Pereira Brito
- Center for Microorganisms’ Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil; (N.F.R.); (M.C.S.d.J.); (L.C.d.S.V.d.S.); (L.M.A.); (J.A.d.C.R.); (S.C.P.B.); (R.L.D.M.)
| | - Patrícia de Azambuja Penna
- Laboratory of Insect Biology, Federal Fluminense University, Niterói 24220-900, RJ, Brazil; (P.d.A.P.); (C.S.V.)
| | - Cecília Stahl Vieira
- Laboratory of Insect Biology, Federal Fluminense University, Niterói 24220-900, RJ, Brazil; (P.d.A.P.); (C.S.V.)
| | - José Rodrigo Santos Silva
- Department of Statistics and Actuarial Sciences, Federal University of Sergipe, São Cristóvão 49107-230, SE, Brazil;
| | - Bruno de Araújo Penna
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Fluminense Federal University, Niterói 24020-141, RJ, Brazil;
| | - Ricardo Luiz Dantas Machado
- Center for Microorganisms’ Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil; (N.F.R.); (M.C.S.d.J.); (L.C.d.S.V.d.S.); (L.M.A.); (J.A.d.C.R.); (S.C.P.B.); (R.L.D.M.)
| | - Hector M. Mora-Montes
- Department of Biology, Division of Natural and Exact Sciences, Campus Guanajuato, University of Guanajuato, Guanajuato 36050, Mexico;
| | - Andréa Regina de Souza Baptista
- Center for Microorganisms’ Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil; (N.F.R.); (M.C.S.d.J.); (L.C.d.S.V.d.S.); (L.M.A.); (J.A.d.C.R.); (S.C.P.B.); (R.L.D.M.)
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-630, RJ, Brazil
| |
Collapse
|
5
|
Li X, Yang H, Duan X, Cui M, Xing W, Zheng S. Synergistic effect of eravacycline combined with fluconazole against resistant Candida albicans in vitro and in vivo. Expert Rev Anti Infect Ther 2023; 21:1259-1267. [PMID: 37818633 DOI: 10.1080/14787210.2023.2270160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND The limited availability of antifungal drugs for candidiasis and the persistent problem of drug resistance, necessitates the urgent development of new antifungal drugs and alternative treatment options. RESEARCH DESIGN AND METHODS This study examined the synergistic antifungal activity of the combination of eravacycline (ERV) and fluconazole (FLC) both in vitro by microdilution checkerboard assay and in vivo by Galleria mellonella model. The underlying synergistic mechanisms of this drug combination was investigated using RNA-sequencing and qPCR. RESULTS ERV (2 μg/mL) + FLC (0.25-0.5 μg/mL) had strong synergistic antifungal activity against resistant Candida albicans (C. albicans) in vitro, as evidenced by a fractional inhibitory concentration index of 0.0044-0.0088. In vivo experiments in Galleria mellonella larvae infected with resistant C. albicans revealed that ERV (2 μg/larva) + FLC (1 μg/larva) improved survival rates and reduced fungal burden. The results of RNA-sequencing and qPCR showed that the mechanism of synergistic inhibition on resistant C. albicans was related to the inhibition of DNA replication and cell meiosis. CONCLUSIONS These results indicate that the combination of ERV and FLC effectively inhibits resistant C. albicans both in vitro and in vivo and lay the foundation for a potential novel treatment option for candidiasis.
Collapse
Affiliation(s)
- Xiuyun Li
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong Province, P.R, China
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, P.R, China
| | - Huijun Yang
- Reproductive Medicine Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong Province, P.R, China
| | - Ximeng Duan
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong Province, P.R, China
| | - Min Cui
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong Province, P.R, China
| | - Wenlan Xing
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong Province, P.R, China
| | - Shicun Zheng
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong Province, P.R, China
| |
Collapse
|
6
|
Bugyna L, Kendra S, Bujdáková H. Galleria mellonella-A Model for the Study of aPDT-Prospects and Drawbacks. Microorganisms 2023; 11:1455. [PMID: 37374956 PMCID: PMC10301295 DOI: 10.3390/microorganisms11061455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Galleria mellonella is a promising in vivo model insect used for microbiological, medical, and pharmacological research. It provides a platform for testing the biocompatibility of various compounds and the kinetics of survival after an infection followed by subsequent treatment, and for the evaluation of various parameters during treatment, including the host-pathogen interaction. There are some similarities in the development of pathologies with mammals. However, a limitation is the lack of adaptive immune response. Antimicrobial photodynamic therapy (aPDT) is an alternative approach for combating microbial infections, including biofilm-associated ones. aPDT is effective against Gram-positive and Gram-negative bacteria, viruses, fungi, and parasites, regardless of whether they are resistant to conventional treatment. The main idea of this comprehensive review was to collect information on the use of G. mellonella in aPDT. It provides a collection of references published in the last 10 years from this area of research, complemented by some practical experiences of the authors of this review. Additionally, the review summarizes in brief information on the G. mellonella model, its advantages and methods used in the processing of material from these larvae, as well as basic knowledge of the principles of aPDT.
Collapse
Affiliation(s)
| | | | - Helena Bujdáková
- Faculty of Natural Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovakia; (L.B.); (S.K.)
| |
Collapse
|
7
|
Elizalde-Bielsa A, Aragón-Aranda B, Loperena-Barber M, Salvador-Bescós M, Moriyón I, Zúñiga-Ripa A, Conde-Álvarez R. Development and evaluation of the Galleria mellonella (greater wax moth) infection model to study Brucella host-pathogen interaction. Microb Pathog 2023; 174:105930. [PMID: 36496059 DOI: 10.1016/j.micpath.2022.105930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Brucellosis is a zoonotic disease caused by Gram-negative bacteria of the genus Brucella. These pathogens cause long-lasting infections, a process in which Brucella modifications in the lipopolysaccharide (LPS) and envelope lipids reduce pathogen-associated molecular pattern (PAMP) recognition, thus hampering innate immunity activation. In vivo models are essential to investigate bacterial virulence, mice being the most used model. However, ethical and practical considerations impede their use in high-throughput screening studies. Although lacking the complexity of the mammalian immune system, insects share key-aspects of innate immunity with mammals, and Galleria mellonella has been used increasingly as a model. G. mellonella larvae have been shown useful in virulence analyses, including Gram-negative pathogens like Klebsiella pneumoniae and Legionella pneumophila. To assess its potential to study Brucella virulence, we first evaluated larva survival upon infection with representative Brucella species (i.e.B. abortus 2308W, B. microti CCM4915 and B. suis biovar 2) and mutants in the VirB type-IV secretion system (T4SS) or in the LPS-O-polysaccharide (O-PS). As compared to K.pneumoniae, the Brucella spp. tested induced a delayed and less severe mortality profile consistent with an escape of innate immunity detection. Brucella replication within larvae was affected by the lack of O-PS, which is reminiscent of their attenuation in natural hosts. On the contrary, replication was not affected by T4SS dysfunction and the mutant induced only slightly less mortality (not statistically significant) than its parental strain. We also evaluated G. mellonella to efficiently recognise Brucella and their LPS by quantification of the pro-phenoloxidase system and melanisation activation, using Pseudomonas LPS as a positive control. Among the brucellae, only B. microti LPS triggered an early-melanisation response consistent with the slightly increased endotoxicity of this species in mice. Therefore, G. mellonella represents a tool to screen for potential Brucella factors modulating innate immunity, but its usefulness to investigate other mechanisms relevant in Brucella intracellular life is limited.
Collapse
Affiliation(s)
- Aitor Elizalde-Bielsa
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Beatriz Aragón-Aranda
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Maite Loperena-Barber
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Miriam Salvador-Bescós
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Ignacio Moriyón
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Amaia Zúñiga-Ripa
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Raquel Conde-Álvarez
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain.
| |
Collapse
|
8
|
Smith DFQ, Dragotakes Q, Kulkarni M, Hardwick JM, Casadevall A. Galleria mellonella immune melanization is fungicidal during infection. Commun Biol 2022; 5:1364. [PMID: 36510005 PMCID: PMC9744840 DOI: 10.1038/s42003-022-04340-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
A key component of the insect immune response is melanin production, including within nodules, or aggregations of immune cells surrounding microbes. Melanization produces oxidative and toxic intermediates that limit microbial infections. However, a direct fungicidal role of melanin during infection has not been demonstrated. We previously reported that the fungus Cryptococcus neoformans is encapsulated with melanin within nodules of Galleria mellonella hosts. Here we developed techniques to study melanin's role during C. neoformans infection in G. mellonella. We provided evidence that in vivo melanin-encapsulation was fungicidal. To further study immune melanization, we applied tissue-clearing techniques to visualize melanized nodules in situ throughout the larvae. Further, we developed a time-lapse microscopy protocol to visualize the melanization kinetics in extracted hemolymph following fungal exposure. Using this technique, we found that cryptococcal melanin and laccase enhance immune melanization. We extended this approach to study the fungal pathogens Candida albicans and Candida auris. We find that the yeast morphologies of these fungi elicited robust melanization responses, while hyphal and pseudohyphal morphologies were melanin-evasive. Approximately 23% of melanin-encapsulated C. albicans yeast can survive and breakthrough the encapsulation. Overall, our results provide direct evidence that immune melanization functions as a direct antifungal mechanism in G. mellonella.
Collapse
Affiliation(s)
- Daniel F Q Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Quigly Dragotakes
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Madhura Kulkarni
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - J Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
9
|
Lycopene, Mesoporous Silica Nanoparticles and Their Association: A Possible Alternative against Vulvovaginal Candidiasis? Molecules 2022; 27:molecules27238558. [PMID: 36500650 PMCID: PMC9738730 DOI: 10.3390/molecules27238558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Commonly found colonizing the human microbiota, Candida albicans is a microorganism known for its ability to cause infections, mainly in the vulvovaginal region known as vulvovaginal candidiasis (VVC). This pathology is, in fact, one of the main C. albicans clinical manifestations, changing from a colonizer to a pathogen. The increase in VVC cases and limited antifungal therapy make C. albicans an increasingly frequent risk in women's lives, especially in immunocompromised patients, pregnant women and the elderly. Therefore, it is necessary to develop new therapeutic options, especially those involving natural products associated with nanotechnology, such as lycopene and mesoporous silica nanoparticles. From this perspective, this study sought to assess whether lycopene, mesoporous silica nanoparticles and their combination would be an attractive product for the treatment of this serious disease through microbiological in vitro tests and acute toxicity tests in an alternative in vivo model of Galleria mellonella. Although they did not show desirable antifungal activity for VVC therapy, the present study strongly encourages the use of mesoporous silica nanoparticles impregnated with lycopene for the treatment of other human pathologies, since the products evaluated here did not show toxicity in the in vivo test performed, being therefore, a topic to be further explored.
Collapse
|
10
|
Smith DFQ, Mudrak NJ, Zamith-Miranda D, Honorato L, Nimrichter L, Chrissian C, Smith B, Gerfen G, Stark RE, Nosanchuk JD, Casadevall A. Melanization of Candida auris Is Associated with Alteration of Extracellular pH. J Fungi (Basel) 2022; 8:1068. [PMID: 36294632 PMCID: PMC9604884 DOI: 10.3390/jof8101068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
Candida auris is a recently emerged global fungal pathogen, which causes life-threatening infections, often in healthcare settings. C. auris infections are worrisome because the fungus is often resistant to multiple antifungal drug classes. Furthermore, C. auris forms durable and difficult to remove biofilms. Due to the relatively recent, resilient, and resistant nature of C. auris, we investigated whether it produces the common fungal virulence factor melanin. Melanin is a black-brown pigment typically produced following enzymatic oxidation of aromatic precursors, which promotes fungal virulence through oxidative stress resistance, mammalian immune response evasion, and antifungal peptide and pharmaceutical inactivation. We found that certain strains of C. auris oxidized L-DOPA and catecholamines into melanin. Melanization occurred extracellularly in a process mediated by alkalinization of the extracellular environment, resulting in granule-like structures that adhere to the fungus' external surface. C. auris had relatively high cell surface hydrophobicity, but there was no correlation between hydrophobicity and melanization. Melanin protected the fungus from oxidative damage, but we did not observe a protective role during infection of macrophages or Galleria mellonella larvae. In summary, C. auris alkalinizes the extracellular medium, which promotes the non-enzymatic oxidation of L-DOPA to melanin that attaches to its surface, thus illustrating a novel mechanism for fungal melanization.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Nathan J. Mudrak
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Krieger School of Arts & Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Leandro Honorato
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Christine Chrissian
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, The City University of New York, New York, NY 10031, USA
| | - Barbara Smith
- Institute for Basic Biomedical Sciences Microscope Facility, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Gary Gerfen
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Ruth E. Stark
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, The City University of New York, New York, NY 10031, USA
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Cryptococcus spp. and Cryptococcosis: focusing on the infection in Brazil. Braz J Microbiol 2022; 53:1321-1337. [PMID: 35486354 PMCID: PMC9433474 DOI: 10.1007/s42770-022-00744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 03/25/2022] [Indexed: 11/02/2022] Open
Abstract
Cryptococcosis is a global fungal infection caused by the Cryptococcus neoformans/Cryptococcus gattii yeast complex. This infection is acquired by inhalation of propagules such as basidiospores or dry yeast, initially causing lung infections with the possibility of progressing to the meninges. This infection mainly affects immunocompromised HIV and transplant patients; however, immunocompetent patients can also be affected. This review proposes to evaluate cryptococcosis focusing on studies of this mycosis in Brazilian territory; moreover, recent advances in the understanding of its virulence mechanism, animal models in research are also assessed. For this, literature review as realized in PubMed, Scielo, and Brazilian legislation. In Brazil, cryptococcosis has been identified as one of the most lethal fungal infections among HIV patients and C. neoformans VNI and C. gattii VGII are the most prevalent genotypes. Moreover, different clinical settings published in Brazil were described. As in other countries, cryptococcosis is difficult to treat due to a limited therapeutic arsenal, which is highly toxic and costly. The presence of a polysaccharide capsule, thermo-tolerance, production of melanin, biofilm formation, mechanisms for iron use, and morphological alterations is an important virulence mechanism of these yeasts. The introduction of cryptococcosis as a compulsory notification disease could improve data regarding incidence and help in the management of these infections.
Collapse
|
12
|
Curtis A, Binder U, Kavanagh K. Galleria mellonella Larvae as a Model for Investigating Fungal-Host Interactions. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:893494. [PMID: 37746216 PMCID: PMC10512315 DOI: 10.3389/ffunb.2022.893494] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 09/26/2023]
Abstract
Galleria mellonella larvae have become a widely accepted and utilised infection model due to the functional homology displayed between their immune response to infection and that observed in the mammalian innate immune response. Due to these similarities, comparable results to murine studies can be obtained using G. mellonella larvae in assessing the virulence of fungal pathogens and the in vivo toxicity or efficacy of anti-fungal agents. This coupled with their low cost, rapid generation of results, and lack of ethical/legal considerations make this model very attractive for analysis of host-pathogen interactions. The larvae of G. mellonella have successfully been utilised to analyse various fungal virulence factors including toxin and enzyme production in vivo providing in depth analysis of the processes involved in the establishment and progression of fungal pathogens (e.g., Candida spps, Aspergillus spp., Madurella mycetomatis, Mucormycetes, and Cryptococcus neoformans). A variety of experimental endpoints can be employed including analysis of fungal burdens, alterations in haemocyte density or sub-populations, melanisation, and characterisation of infection progression using proteomic, histological or imaging techniques. Proteomic analysis can provide insights into both sides of the host-pathogen interaction with each respective proteome being analysed independently following infection and extraction of haemolymph from the larvae. G. mellonella can also be employed for assessing the efficacy and toxicity of antifungal strategies at concentrations comparable to those used in mammals allowing for early stage investigation of novel compounds and combinations of established therapeutic agents. These numerous applications validate the model for examination of fungal infection and development of therapeutic approaches in vivo in compliance with the need to reduce animal models in biological research.
Collapse
Affiliation(s)
- Aaron Curtis
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Ulrike Binder
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
13
|
Ding K, Shen P, Xie Z, Wang L, Dang X. In vitro and in vivo antifungal activity of two peptides with the same composition and different distribution. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109243. [PMID: 34768011 DOI: 10.1016/j.cbpc.2021.109243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/01/2021] [Accepted: 11/07/2021] [Indexed: 11/20/2022]
Abstract
Candida albicans can cause local or systemic diseases when host immune status is disrupted. Drug resistance to C. albicans highlights the necessity of novel antifungal drugs. Antimicrobial peptides exhibit potential as antifungal drugs. PAF26 was found to exhibit favorable activity against plant pathogenic fungi. However, it showed low antifungal activity against C. albicans. Here, P255 and P256 with the same composition and different distribution were derived from PAF26. P256 exhibited higher antifungal activity against C. albicans than did P255 and PAF26. P256 and P255 exhibited synergism when combined with amphotericin B (AMB). Both peptides reduced cell wall integrity, rapidly increased membrane permeability, disrupted cell morphology and intracellular alterations. The peptides affected the expression of fungal DNA replication and repair, cell wall synthesis and ergosterol synthesis genes. They increased cellular reactive oxygen species production and bound with fungal genomic DNA. Antibiofilm activities were observed when peptide alone or combined with AMB. Finally, these peptides protected 70% of Galleria mellonella from infection-caused death. Insects treated with peptides exhibited fewer infection foci compared with the untreatment. These results demonstrate the therapeutic potential of the peptides, particularly P256 with clear amphipathicity, in the development of therapies for C. albicans infections.
Collapse
Affiliation(s)
- Kang Ding
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Panpan Shen
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Lifang Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xiangli Dang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
14
|
de Siqueira KA, Liotti RG, de Sousa JR, Vendruscullo SJ, de Souza GB, de Vasconcelos LG, Januário AH, de Oliveira Mendes TA, Soares MA. Streptomyces griseocarneus R132 expresses antimicrobial genes and produces metabolites that modulate Galleria mellonella immune system. 3 Biotech 2021; 11:396. [PMID: 34422537 DOI: 10.1007/s13205-021-02942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022] Open
Abstract
Actinobacteria is a phylum composed of aerobic, Gram-positive, and filamentous bacteria with a broad spectrum of biological activity, including antioxidant, antitumor, and antibiotic. The crude extract of Streptomyces griseocarneus R132 was fractionated on a C18 silica column and the isolated compound was identified by 1H and 13C nuclear magnetic resonance as 3-(phenylprop-2-enoic acid), also known as trans-cinnamic acid. Antimicrobial activity against human pathogens was assayed in vitro (disk-diffusion qualitative test) and in vivo using Galleria mellonella larvae (RT-qPCR). The methanol fractions 132-F30%, 132-F50%, 132-F70%, and 132-F100% inhibited the Escherichia coli (ATCC 25922) and Staphylococcus aureus (MRSA) growth in vitro the most effectively. Compared with the untreated control (60-80% of larvae death), the fractions and isolated trans-cinnamic acid increased the survival rate and modulated the immune system of G. mellonella larvae infected with pathogenic microorganisms. The anti-infection effect of the S. griseocarneus R132 fermentation product led us to sequence its genome, which was assembled and annotated using the Rast and antiSMASH platforms. The assembled genome consisted of 227 scaffolds represented on a linear chromosome of 8.85 Mb and 71.3% of GC. We detected conserved domains typical of enzymes that produce molecules with biological activity, such as polyketides and non-ribosomal and ribosomal peptides, indicating a great potential for obtaining new antibiotics and molecules with biotechnological application. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02942-1.
Collapse
|
15
|
Granato MQ, Mello TP, Nascimento RS, Pereira MD, Rosa TLSA, Pessolani MCV, McCann M, Devereux M, Branquinha MH, Santos ALS, Kneipp LF. Silver(I) and Copper(II) Complexes of 1,10-Phenanthroline-5,6-Dione Against Phialophora verrucosa: A Focus on the Interaction With Human Macrophages and Galleria mellonella Larvae. Front Microbiol 2021; 12:641258. [PMID: 34025603 PMCID: PMC8138666 DOI: 10.3389/fmicb.2021.641258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Phialophora verrucosa is a dematiaceous fungus that causes mainly chromoblastomycosis, but also disseminated infections such as phaeohyphomycosis and mycetoma. These diseases are extremely hard to treat and often refractory to current antifungal therapies. In this work, we have evaluated the effect of 1,10-phenanthroline-5,6-dione (phendione) and its metal-based complexes, [Ag (phendione)2]ClO4 and [Cu(phendione)3](ClO4)2.4H2O, against P. verrucosa, focusing on (i) conidial viability when combined with amphotericin B (AmB); (ii) biofilm formation and disarticulation events; (iii) in vitro interaction with human macrophages; and (iv) in vivo infection of Galleria mellonella larvae. The combination of AmB with each of the test compounds promoted the additive inhibition of P. verrucosa growth, as judged by the checkerboard assay. During the biofilm formation process over polystyrene surface, sub-minimum inhibitory concentrations (MIC) of phendione and its silver(I) and copper(II) complexes were able to reduce biomass and extracellular matrix production. Moreover, a mature biofilm treated with high concentrations of the test compounds diminished biofilm viability in a concentration-dependent manner. Pre-treatment of conidial cells with the test compounds did not alter the percentage of infected THP-1 macrophages; however, [Ag(phendione)2]ClO4 caused a significant reduction in the number of intracellular fungal cells compared to the untreated system. In addition, the killing process was significantly enhanced by post-treatment of infected macrophages with the test compounds. P. verrucosa induced a typically cell density-dependent effect on G. mellonella larvae death after 7 days of infection. Interestingly, exposure to the silver(I) complex protected the larvae from P. verrucosa infection. Collectively, the results corroborate the promising therapeutic potential of phendione-based drugs against fungal infections, including those caused by P. verrucosa.
Collapse
Affiliation(s)
- Marcela Q. Granato
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Thaís P. Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Renata S. Nascimento
- Laboratório de Citotoxicidade e Genotoxicidade (LaCiGen), Instituto de Química, UFRJ, Rio de Janeiro, Brazil
| | - Marcos D. Pereira
- Laboratório de Citotoxicidade e Genotoxicidade (LaCiGen), Instituto de Química, UFRJ, Rio de Janeiro, Brazil
| | | | | | - Malachy McCann
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Michael Devereux
- Center for Biomimetic and Therapeutic Research, Focas Research Institute, Technological University Dublin, Dublin, Ireland
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório de Citotoxicidade e Genotoxicidade (LaCiGen), Instituto de Química, UFRJ, Rio de Janeiro, Brazil
| | - Lucimar F. Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
16
|
F. Q. Smith D, Casadevall A. Fungal immunity and pathogenesis in mammals versus the invertebrate model organism Galleria mellonella. Pathog Dis 2021; 79:ftab013. [PMID: 33544836 PMCID: PMC7981337 DOI: 10.1093/femspd/ftab013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
In recent decades, Galleria mellonella (Lepidoptera: Pyralidae) have emerged as a model system to explore experimental aspects of fungal pathogenesis. The benefits of the G. mellonella model include being faster, cheaper, higher throughput and easier compared with vertebrate models. Additionally, as invertebrates, their use is subject to fewer ethical and regulatory issues. However, for G. mellonella models to provide meaningful insight into fungal pathogenesis, the G. mellonella-fungal interactions must be comparable to mammalian-fungal interactions. Indeed, as discussed in the review, studies suggest that G. mellonella and mammalian immune systems share many similarities, and fungal virulence factors show conserved functions in both hosts. While the moth model has opened novel research areas, many comparisons are superficial and leave large gaps of knowledge that need to be addressed concerning specific mechanisms underlying G. mellonella-fungal interactions. Closing these gaps in understanding will strengthen G. mellonella as a model for fungal virulence in the upcoming years. In this review, we provide comprehensive comparisons between fungal pathogenesis in mammals and G. mellonella from immunological and virulence perspectives. When information on an antifungal immune component is unknown in G. mellonella, we include findings from other well-studied Lepidoptera. We hope that by outlining this information available in related species, we highlight areas of needed research and provide a framework for understanding G. mellonella immunity and fungal interactions.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Li C, Hou S, Ma X, Li J, Huo L, Zhang P, Hao X, Zhu X. Epigenetic regulation of virulence and the transcription of ribosomal protein genes involves a YEATS family protein in Cryptococcus deneoformans. FEMS Yeast Res 2021; 21:6095727. [PMID: 33440003 DOI: 10.1093/femsyr/foab001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/11/2021] [Indexed: 01/18/2023] Open
Abstract
Epigenetic marks or post-translational modifications on histones have important regulatory roles in gene expression in eukaryotic organisms. The epigenetic regulation of gene expression in the pathogenic yeast Cryptococcus deneoformans remains largely undetermined. The YEATS domain proteins are readers of crotonylated lysine residues in histones. Here, we reported the identification of a single-copy gene putatively coding for a YEATS domain protein (Yst1) in C. deneoformans. To define its function, we created a mutant strain, yst1Δ, using CRISPR-Cas9 editing. yst1Δ exhibited defects in phenotype, for instance, it was hypersensitive to osmotic stress in the presence of 1.3 M NaCl or KCl. Furthermore, it was hypersensitive to 1% Congo red, suggesting defects in the cell wall. Interestingly, RNA-seq data revealed that Yst1p was critical for the expression of genes encoding the ribosomal proteins, that is, most were expressed with significantly lower levels of mRNA in yst1Δ than in the wild-type strain. The mutant strain was hypersensitive to low temperature and anti-ribosomal drugs, which we putatively attribute to the impairment in ribosomal function. In addition, the yst1Δ strain was less virulent to Galleria mellonella. These results generally suggest that Yst1, as a histone modification reader, might be a key coordinator of the transcriptome of this human pathogen. Yst1 could be a potential target for novel antifungal drugs, which might lead to significant developments in the clinical treatment of cryptococcosis.
Collapse
Affiliation(s)
- Chenxi Li
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University (CLS-BNU), Beijing 100875, PR China
| | - Shaonan Hou
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University (CLS-BNU), Beijing 100875, PR China
| | - Xiaoyu Ma
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University (CLS-BNU), Beijing 100875, PR China
| | - Jiajia Li
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University (CLS-BNU), Beijing 100875, PR China
| | - Liang Huo
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University (CLS-BNU), Beijing 100875, PR China
| | - Ping Zhang
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University (CLS-BNU), Beijing 100875, PR China
| | - Xiaoran Hao
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University (CLS-BNU), Beijing 100875, PR China
| | - Xudong Zhu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University (CLS-BNU), Beijing 100875, PR China
| |
Collapse
|
18
|
Firacative C, Khan A, Duan S, Ferreira-Paim K, Leemon D, Meyer W. Rearing and Maintenance of Galleria mellonella and Its Application to Study Fungal Virulence. J Fungi (Basel) 2020; 6:jof6030130. [PMID: 32784766 PMCID: PMC7558789 DOI: 10.3390/jof6030130] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Galleria mellonella larvae have been widely used as alternative non-mammalian models for the study of fungal virulence and pathogenesis. The larvae can be acquired in small volumes from worm farms, pet stores, or other independent suppliers commonly found in the United States and parts of Europe. However, in countries with no or limited commercial availability, the process of shipping these larvae can cause them stress, resulting in decreased or altered immunity. Furthermore, the conditions used to rear these larvae including diet, humidity, temperature, and maintenance procedures vary among the suppliers. Variation in these factors can affect the response of G. mellonella larvae to infection, thereby decreasing the reproducibility of fungal virulence experiments. There is a critical need for standardized procedures and incubation conditions for rearing G. mellonella to produce quality, unstressed larvae with the least genetic variability. In order to standardize these procedures, cost-effective protocols for the propagation and maintenance of G. mellonella larvae using an artificial diet, which has been successfully used in our own laboratory, requiring minimal equipment and expertise, are herein described. Examples for the application of this model in fungal pathogenicity and gene knockout studies as feasible alternatives for traditionally used animal models are also provided.
Collapse
Affiliation(s)
- Carolina Firacative
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Westmead 2145, NSW, Australia; (C.F.); (A.K.); (S.D.); (K.F.-P.)
- Studies in Translational Microbiology and Emerging Diseases Research Group (MICROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogota 111221, Colombia
| | - Aziza Khan
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Westmead 2145, NSW, Australia; (C.F.); (A.K.); (S.D.); (K.F.-P.)
| | - Shuyao Duan
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Westmead 2145, NSW, Australia; (C.F.); (A.K.); (S.D.); (K.F.-P.)
| | - Kennio Ferreira-Paim
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Westmead 2145, NSW, Australia; (C.F.); (A.K.); (S.D.); (K.F.-P.)
- Infectious Disease Department, Triangulo Mineiro Federal University, Uberaba 38025-440, Brazil
| | - Diana Leemon
- Agri Science Queensland, Department of Agriculture and Fisheries and Forestry, Brisbane 4102, QLD, Australia;
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Westmead 2145, NSW, Australia; (C.F.); (A.K.); (S.D.); (K.F.-P.)
- Correspondence: ; Tel.: +61-2-86273430
| |
Collapse
|
19
|
Stączek S, Zdybicka-Barabas A, Pleszczyńska M, Wiater A, Cytryńska M. Aspergillus niger α-1,3-glucan acts as a virulence factor by inhibiting the insect phenoloxidase system. J Invertebr Pathol 2020; 171:107341. [DOI: 10.1016/j.jip.2020.107341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/24/2022]
|
20
|
Larva of greater wax moth Galleria mellonella is a suitable alternative host for the fish pathogen Francisella noatunensis subsp. orientalis. BMC Microbiol 2020; 20:8. [PMID: 31918661 PMCID: PMC6953311 DOI: 10.1186/s12866-020-1695-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/31/2019] [Indexed: 12/26/2022] Open
Abstract
Background Francisella noatunensis subsp. orientalis (Fno) is the etiological agent of francisellosis in cultured warm water fish, such as tilapia. Antibiotics are administered to treat the disease but a better understanding of Fno infection biology will inform improved treatment and prevention measures. However, studies with native hosts are costly and considerable benefits would derive from access to a practical alternative host. Here, larvae of Galleria mellonella were assessed for suitability to study Fno virulence. Results Larvae were killed by Fno in a dose-dependent manner but the insects could be rescued from lethal doses of bacteria by antibiotic therapy. Infection progression was assessed by histopathology (haematoxylin and eosin staining, Gram Twort and immunohistochemistry) and enumeration of bacteria recovered from the larval haemolymph on selective agar. Fno was phagocytosed and could survive intracellularly, which is consistent with observations in fish. Virulence of five Fno isolates showed strong agreement between G. mellonella and red Nile tilapia hosts. Conclusions This study shows that an alternative host, G. mellonella, can be applied to understand Fno infections, which will assist efforts to identify solutions to piscine francisellosis thus securing the livelihoods of tilapia farmers worldwide and ensuring the production of this important food source.
Collapse
|
21
|
Seoane PI, May RC. Vomocytosis: What we know so far. Cell Microbiol 2019; 22:e13145. [PMID: 31730731 DOI: 10.1111/cmi.13145] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 01/10/2023]
Abstract
Vomocytosis, or nonlytic exocytosis, has been reported for Cryptococcus neoformans since 2006. Since then, the repertoire of vomocytosing pathogens and host cells has increased and so have the molecular components linked to vomocytosis occurrence. Nonetheless, the mechanism underlying this phenomenon, whether it is triggered by the host or the pathogen, and how it affects disease progression are still unresolved. This review contains a summary of the main findings regarding vomocytosis and the outstanding questions puzzling scientists to this day.
Collapse
Affiliation(s)
- Paula I Seoane
- Laboratory of Host and Pathogen Interactions, Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Robin C May
- Laboratory of Host and Pathogen Interactions, Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
22
|
Lacharme-Lora L, Owen SV, Blundell R, Canals R, Wenner N, Perez-Sepulveda B, Fong WY, Gilroy R, Wigley P, Hinton JCD. The use of chicken and insect infection models to assess the virulence of African Salmonella Typhimurium ST313. PLoS Negl Trop Dis 2019; 13:e0007540. [PMID: 31348776 PMCID: PMC6685681 DOI: 10.1371/journal.pntd.0007540] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/07/2019] [Accepted: 06/11/2019] [Indexed: 11/18/2022] Open
Abstract
Over recent decades, Salmonella infection research has predominantly relied on murine infection models. However, in many cases the infection phenotypes of Salmonella pathovars in mice do not recapitulate human disease. For example, Salmonella Typhimurium ST313 is associated with enhanced invasive infection of immunocompromised people in Africa, but infection of mice and other animal models with ST313 have not consistently reproduced this invasive phenotype. The introduction of alternative infection models could help to improve the quality and reproducibility of pathogenesis research by facilitating larger-scale experiments. To investigate the virulence of S. Typhimurium ST313 in comparison with ST19, a combination of avian and insect disease models were used. We performed experimental infections in five lines of inbred and one line of outbred chickens, as well as in the alternative chick embryo and Galleria mellonella wax moth larvae models. This extensive set of experiments identified broadly similar patterns of disease caused by the African and global pathovariants of Salmonella Typhimurium in the chicken, the chicken embryo and insect models. A comprehensive analysis of all the chicken infection experiments revealed that the African ST313 isolate D23580 had a subtle phenotype of reduced levels of organ colonisation in inbred chickens, relative to ST19 strain 4/74. ST313 isolate D23580 also caused reduced mortality in chicken embryos and insect larvae, when compared with ST19 4/74. We conclude that these three infection models do not reproduce the characteristics of the systemic disease caused by S. Typhimurium ST313 in humans. Salmonella Typhimurium ST313 is associated with systemic infection in human populations in sub-Saharan Africa, and contrasts with the related pathovariant ST19 which causes gastrointestinal disease worldwide. Although the systemic pathology associated with ST313 infection in humans has been comprehensively documented in clinical and epidemiological studies, such pathology has been inconsistently reproduced in animal models of infection. Animal models that reliably recapitulate ST313 infection in humans are needed to study the biological mechanisms underpinning the systemic disease caused by ST313. In this study we performed extensive infection experiments, using several defined and alternative animal infection models to look for robust phenotypes that differentiate infection by S. Typhimurium ST313 from ST19. Large sample sizes and multivariate statistical analysis of infection data for inbred chicken lines allowed us to detect small but consistent differences between the strains. Overall, S. Typhimurium ST313 was associated with a reduced infection burden and pathology relative to ST19. This subtle phenotype may reflect the limitation of animal models to accurately represent infection by pathogens that have adapted to specific host phenotypes, for example, immunodeficiency in humans. Our study demonstrates the challenge of using animal models to differentiate closely-related bacterial pathovariants, and shows that inter-pathovar differences detected in animal models of infection often do not reflect clinical differences in humans at the level of disease mechanism.
Collapse
Affiliation(s)
- Lizeth Lacharme-Lora
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Siân V. Owen
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richard Blundell
- Department of Veterinary Pathology and Public Health, Institute of Veterinary Science, University of Liverpool, United Kingdom
| | - Rocío Canals
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nicolas Wenner
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Blanca Perez-Sepulveda
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Wai Yee Fong
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Rachel Gilroy
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Paul Wigley
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Jay C. D. Hinton
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Maryam M, Fu MS, Alanio A, Camacho E, Goncalves DS, Faneuff EE, Grossman NT, Casadevall A, Coelho C. The enigmatic role of fungal annexins: the case of Cryptococcus neoformans. MICROBIOLOGY-SGM 2019; 165:852-862. [PMID: 31140968 DOI: 10.1099/mic.0.000815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Annexins are multifunctional proteins that bind to phospholipid membranes in a calcium-dependent manner. Annexins play a myriad of critical and well-characterized roles in mammals, ranging from membrane repair to vesicular secretion. The role of annexins in the kingdoms of bacteria, protozoa and fungi have been largely overlooked. The fact that there is no known homologue of annexins in the yeast model organism Saccharomyces cerevisiae may contribute to this gap in knowledge. However, annexins are found in most medically important fungal pathogens, with the notable exception of Candida albicans. In this study we evaluated the function of the one annexin gene in Cryptococcus neoformans, a causative agent of cryptococcosis. This gene CNAG_02415, is annotated in the C. neoformans genome as a target of calcineurin through its transcription factor Crz1, and we propose to update its name to cryptococcal annexin, AnnexinC1. C. neoformans strains deleted for AnnexinC1 revealed no difference in survival after exposure to various chemical stressors relative to wild-type strain, as well as no major alteration in virulence or mating. The only alteration observed in strains deleted for AnnexinC1 was a small increase in the titan cells' formation in vitro. The preservation of annexins in many different fungal species suggests an important function, and therefore the lack of a strong phenotype for annexin-deficient C. neoformans indicates either the presence of redundant genes that can compensate for the absence of AnnexinC1 function or novel functions not revealed by standard assays of cell function and pathogenicity.
Collapse
Affiliation(s)
- Maria Maryam
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore MD, USA
| | - Man Shun Fu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore MD, USA
| | - Alexandre Alanio
- Institut Pasteur, Molecular Mycology Unit, CNRS UMR2000, Université Paris Diderot, Sorbonne Paris Cité ; Laboratoire de Parasitologie-Mycologie, Hôpital Saint-Louis, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore MD, USA
| | - Emma Camacho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore MD, USA
| | - Diego S Goncalves
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore MD, USA.,Universidade Federal Fluminense, Rio Janeiro, Brazil
| | - Eden E Faneuff
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore MD, USA.,Department of Biological Sciences, California State Polytechnic University, Pomona CA, USA
| | - Nina T Grossman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore MD, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore MD, USA
| | - Carolina Coelho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore MD, USA.,College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.,Medical Research Council Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Aberdeen AB252ZD, UK
| |
Collapse
|
24
|
Immune Response of Galleria mellonella against Human Fungal Pathogens. J Fungi (Basel) 2018; 5:jof5010003. [PMID: 30587801 PMCID: PMC6463112 DOI: 10.3390/jof5010003] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 01/20/2023] Open
Abstract
In many aspects, the immune response against pathogens in insects is similar to the innate immunity in mammals. This has caused a strong interest in the scientific community for the use of this model in research of host⁻pathogen interactions. In recent years, the use of Galleria mellonella larvae, an insect belonging to the Lepidoptera order, has emerged as an excellent model to study the virulence of human pathogens. It is a model that offers many advantages; for example, it is easy to handle and establish in every laboratory, the larvae have a low cost, and they tolerate a wide range of temperatures, including human temperature 37 °C. The immune response of G. mellonella is innate and is divided into a cellular component (hemocytes) and humoral component (antimicrobial peptides, lytic enzymes, and peptides and melanin) that work together against different intruders. It has been shown that the immune response of this insect has a great specificity and has the ability to distinguish between different classes of microorganisms. In this review, we delve into the different components of the innate immune response of Galleria mellonella, and how these components manifest in the infection of fungal pathogens including Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans, and Histoplasma capsulatum.
Collapse
|
25
|
Pereira TC, de Barros PP, Fugisaki LRDO, Rossoni RD, Ribeiro FDC, de Menezes RT, Junqueira JC, Scorzoni L. Recent Advances in the Use of Galleria mellonella Model to Study Immune Responses against Human Pathogens. J Fungi (Basel) 2018; 4:jof4040128. [PMID: 30486393 PMCID: PMC6308929 DOI: 10.3390/jof4040128] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022] Open
Abstract
The use of invertebrates for in vivo studies in microbiology is well established in the scientific community. Larvae of Galleria mellonella are a widely used model for studying pathogenesis, the efficacy of new antimicrobial compounds, and immune responses. The immune system of G. mellonella larvae is structurally and functionally similar to the innate immune response of mammals, which makes this model suitable for such studies. In this review, cellular responses (hemocytes activity: phagocytosis, nodulation, and encapsulation) and humoral responses (reactions or soluble molecules released in the hemolymph as antimicrobial peptides, melanization, clotting, free radical production, and primary immunization) are discussed, highlighting the use of G. mellonella as a model of immune response to different human pathogenic microorganisms.
Collapse
Affiliation(s)
- Thais Cristine Pereira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Luciana Ruano de Oliveira Fugisaki
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Felipe de Camargo Ribeiro
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Raquel Teles de Menezes
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| |
Collapse
|
26
|
Trevijano-Contador N, de Oliveira HC, García-Rodas R, Rossi SA, Llorente I, Zaballos Á, Janbon G, Ariño J, Zaragoza Ó. Cryptococcus neoformans can form titan-like cells in vitro in response to multiple signals. PLoS Pathog 2018; 14:e1007007. [PMID: 29775477 PMCID: PMC5959073 DOI: 10.1371/journal.ppat.1007007] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Cryptococcus neoformans is an encapsulated pathogenic yeast that can change the size of the cells during infection. In particular, this process can occur by enlarging the size of the capsule without modifying the size of the cell body, or by increasing the diameter of the cell body, which is normally accompanied by an increase of the capsule too. This last process leads to the formation of cells of an abnormal enlarged size denominated titan cells. Previous works characterized titan cell formation during pulmonary infection but research on this topic has been hampered due to the difficulty to obtain them in vitro. In this work, we describe in vitro conditions (low nutrient, serum supplemented medium at neutral pH) that promote the transition from regular to titan-like cells. Moreover, addition of azide and static incubation of the cultures in a CO2 enriched atmosphere favored cellular enlargement. This transition occurred at low cell densities, suggesting that the process was regulated by quorum sensing molecules and it was independent of the cryptococcal serotype/species. Transition to titan-like cell was impaired by pharmacological inhibition of PKC signaling pathway. Analysis of the gene expression profile during the transition to titan-like cells showed overexpression of enzymes involved in carbohydrate metabolism, as well as proteins from the coatomer complex, and related to iron metabolism. Indeed, we observed that iron limitation also induced the formation of titan cells. Our gene expression analysis also revealed other elements involved in titan cell formation, such as calnexin, whose absence resulted in appearance of abnormal large cells even in regular rich media. In summary, our work provides a new alternative method to investigate titan cell formation devoid the bioethical problems that involve animal experimentation. Cryptococcus neoformans is a fungal pathogen that has a significant incidence in HIV+ patients in particular, in Sub-saharan Africa, Asia and South America. This yeast poses an excellent model to investigate fungal virulence because it develops many strategies to adapt to the host and evade the immune response. One of the adaptation mechanisms involves the formation of Titan Cells, which are yeast of an abnormal large size. However, research on these cells has been limited to in vivo studies (mainly in mice) because they were not reproducibly found in vitro. In this work, we describe several conditions that induce the appearance of cells that mimic titan cells, and that we denominated as titan-like cells. The main factor that induced titan-like cells was the addition of serum to nutrient limited media. This has allowed to easily performing new approaches to characterize several signaling pathways involved in their development. We found that the formation of these cells is regulated by quorum sensing molecules, and that pathways such as cAMP and PKC regulate the process of cellular enlargement. We have also performed transcriptomic analysis, which led to the identification of new genes that could be involved in the process. This work will open different research lines that will contribute to the elucidation of the role of these cells during infection and on the development of cryptococcal disease.
Collapse
Affiliation(s)
- Nuria Trevijano-Contador
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Haroldo Cesar de Oliveira
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brazil
| | - Rocío García-Rodas
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Suélen Andreia Rossi
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Irene Llorente
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ángel Zaballos
- Genomics Unit, Core Scientific Services, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Guilhem Janbon
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Óscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- * E-mail:
| |
Collapse
|
27
|
Kochi Y, Matsumoto Y, Sekimizu K, Kaito C. Two-spotted cricket as an animal infection model of human pathogenic fungi. Drug Discov Ther 2017; 11:259-266. [PMID: 29081438 DOI: 10.5582/ddt.2017.01052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Invertebrate infection models that can be evaluated at human body temperature are limited. In this study, we utilized the two-spotted cricket, a heat-tolerant insect, as an animal infection model of human pathogenic fungi. Injection of human pathogenic fungi, including Candida albicans, Candida glabrata, and Cryptococcus neoformans killed crickets within 48 h at both 27˚C and 37˚C. The median lethal dose values (LD50 values) of C. albicans and C. glabrata against crickets were decreased at 37˚C compared to that at 27˚C, whereas the LD50 value of C. neoformans was not different between 27˚C and 37˚C. Heat-killed cells of the three different fungi also killed crickets, but the LD50 value of the heat-killed cells was higher than 5-fold that of live fungal cells in the respective species. C. neoformans gene-knockout strains of cna1, gpa1, and pka1, which are required for virulence in mammals, had greater LD50 values than the parent strain in crickets. These findings suggest that the two-spotted cricket is a valuable infection model of human pathogenic fungi that can be used to evaluate fungal virulence at variable temperatures, including 37˚C, and that the killing abilities of C. albicans and C. glabrata against animals are increased at 37˚C.
Collapse
Affiliation(s)
- Yuto Kochi
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | | | | | - Chikara Kaito
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
28
|
Rizzo J, Albuquerque PC, Wolf JM, Nascimento R, Pereira MD, Nosanchuk JD, Rodrigues ML. Analysis of multiple components involved in the interaction between Cryptococcus neoformans and Acanthamoeba castellanii. Fungal Biol 2017; 121:602-614. [PMID: 28606355 DOI: 10.1016/j.funbio.2017.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/29/2022]
Abstract
Cryptococcus neoformans is an environmental fungus that can cause lethal meningoencephalitis in immunocompromised individuals. The mechanisms by which environmental microbes become pathogenic to mammals are still obscure, but different studies suggest that fungal virulence evolved from selection imposed by environmental predators. The soil-living Acanthamoeba castellanii is a well-known predator of C. neoformans. In this work, we evaluated the participation of C. neoformans virulence-associated structures in the interaction of fungal cells with A. castellanii. Fungal extracellular vesicles (EVs) and the polysaccharide glucuronoxylomannan (GXM) were internalized by A. castellanii with no impact on the viability of amoebal cells. EVs, but not free GXM, modulated antifungal properties of A. castellanii by inducing enhanced yeast survival. Phagocytosis of C. neoformans by amoebal cells and the pathogenic potential in a Galleria mellonella model were not affected by EVs, but previous interactions with A. castellanii rendered fungal cells more efficient in killing this invertebrate host. This observation was apparently associated with marked amoeba-induced changes in surface architecture and increased resistance to both oxygen- and nitrogen-derived molecular species. Our results indicate that multiple components with the potential to impact pathogenesis are involved in C. neoformans environmental interactions.
Collapse
Affiliation(s)
- Juliana Rizzo
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Bioquímica Médica (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila C Albuquerque
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julie M Wolf
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Renata Nascimento
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos D Pereira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joshua D Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Marcio L Rodrigues
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
29
|
Barnoy S, Gancz H, Zhu Y, Honnold CL, Zurawski DV, Venkatesan MM. The Galleria mellonella larvae as an in vivo model for evaluation of Shigella virulence. Gut Microbes 2017; 8:335-350. [PMID: 28277944 PMCID: PMC5570432 DOI: 10.1080/19490976.2017.1293225] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Shigella spp. causing bacterial diarrhea and dysentery are human enteroinvasive bacterial pathogens that are orally transmitted through contaminated food and water and cause bacillary dysentery. Although natural Shigella infections are restricted to humans and primates, several smaller animal models are used to analyze individual steps in pathogenesis. No animal model fully duplicates the human response and sustaining the models requires expensive animals, costly maintenance of animal facilities, veterinary services and approved animal protocols. This study proposes the development of the caterpillar larvae of Galleria mellonella as a simple, inexpensive, informative, and rapid in-vivo model for evaluating virulence and the interaction of Shigella with cells of the insect innate immunity. Virulent Shigella injected through the forelegs causes larvae death. The mortality rates were dependent on the Shigella strain, the infectious dose, and the presence of the virulence plasmid. Wild-type S. flexneri 2a, persisted and replicated within the larvae, resulting in haemocyte cell death, whereas plasmid-cured mutants were rapidly cleared. Histology of the infected larvae in conjunction with fluorescence, immunofluorescence, and transmission electron microscopy indicate that S. flexneri reside within a vacuole of the insect haemocytes that ultrastructurally resembles vacuoles described in studies with mouse and human macrophage cell lines. Some of these bacteria-laden vacuoles had double-membranes characteristic of autophagosomes. These results suggest that G. mellonella larvae can be used as an easy-to-use animal model to understand Shigella pathogenesis that requires none of the time and labor-consuming procedures typical of other systems.
Collapse
Affiliation(s)
- Shoshana Barnoy
- Department of Enteric Infections, Bacterial Diseases Branch (BDB), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Hanan Gancz
- Wound Infections Department, BDB, Walter Reed Army Institute of Research, Silver Spring Maryland, USA
| | - Yuewei Zhu
- Department of Enteric Infections, Bacterial Diseases Branch (BDB), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Cary L. Honnold
- Department of Pathology, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Daniel V. Zurawski
- Wound Infections Department, BDB, Walter Reed Army Institute of Research, Silver Spring Maryland, USA
| | - Malabi M. Venkatesan
- Department of Enteric Infections, Bacterial Diseases Branch (BDB), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA,CONTACT Malabi M. Venkatesan Chief, Dept. of Enteric Infections, Bacterial Diseases Branch, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD. 20910
| |
Collapse
|
30
|
Sangalli-Leite F, Scorzoni L, Alves de Paula E Silva AC, da Silva JDF, de Oliveira HC, de Lacorte Singulani J, Gullo FP, Moraes da Silva R, Regasini LO, Siqueira da Silva DH, da Silva Bolzani V, Fusco-Almeida AM, Soares Mendes-Giannini MJ. Synergistic effect of pedalitin and amphotericin B against Cryptococcus neoformans by in vitro and in vivo evaluation. Int J Antimicrob Agents 2016; 48:504-511. [PMID: 27742203 DOI: 10.1016/j.ijantimicag.2016.07.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/13/2016] [Accepted: 07/30/2016] [Indexed: 11/26/2022]
Abstract
Cryptococcosis is an opportunistic fungal infection responsible for high morbidity and mortality in immunocompromised patients. Combination of antifungal substances is a promising way to increase the percentage of successful treatment. Pedalitin (PED) is a natural substance obtained from Pterogyne nitens. The aim of this study was to verify the efficacy of PED alone and in combination with amphotericin B (AmB) in vitro and in vivo against Cryptococcus spp. In the in vitro assay, minimum inhibitory concentrations (MICs) of 0.125 mg/L for AmB and 3.9 mg/L for PED were found when the substances were tested alone, whilst in the combination treatment the active concentration of both decreased, with MICs of 0.03 mg/L for AmB and 1 mg/L for PED. In the survival assay, fungal burden study and histopathological assays it was possible to study the efficacy of the substances alone and in combination. The efficacy of combination therapy was considered better than monotherapy as evaluated in a Galleria mellonella model and a murine model. Thus, the combination of PED and AmB is an interesting alternative for anticryptococcal fungal treatment. Moreover, a correlation was observed between the invertebrate and murine models for this antifungal treatment combination.
Collapse
Affiliation(s)
- Fernanda Sangalli-Leite
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista (UNESP), Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, Brazil
| | - Liliana Scorzoni
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista (UNESP), Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, Brazil
| | - Ana Carolina Alves de Paula E Silva
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista (UNESP), Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, Brazil
| | - Julhiany de Fátima da Silva
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista (UNESP), Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, Brazil
| | - Haroldo Cesar de Oliveira
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista (UNESP), Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, Brazil
| | - Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista (UNESP), Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, Brazil
| | - Fernanda Patrícia Gullo
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista (UNESP), Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, Brazil
| | - Rosangela Moraes da Silva
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista (UNESP), Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, Brazil
| | | | | | | | - Ana Marisa Fusco-Almeida
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista (UNESP), Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, Brazil
| | - Maria José Soares Mendes-Giannini
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista (UNESP), Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, Brazil.
| |
Collapse
|
31
|
Cell Wall Changes in Amphotericin B-Resistant Strains from Candida tropicalis and Relationship with the Immune Responses Elicited by the Host. Antimicrob Agents Chemother 2016; 60:2326-35. [PMID: 26833156 DOI: 10.1128/aac.02681-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/26/2016] [Indexed: 11/20/2022] Open
Abstract
We have morphologically characterizedCandida tropicalisisolates resistant to amphotericin B (AmB). These isolates present an enlarged cell wall compared to isolates of regular susceptibility. This correlated with higher levels of β-1,3-glucan in the cell wall but not with detectable changes in chitin content. In line with this, AmB-resistant strains showed reduced susceptibility to Congo red. Moreover, mitogen-activated protein kinases (MAPKs) involved in cell integrity were already activated during regular growth in these strains. Finally, we investigated the response elicited by human blood cells and found that AmB-resistant strains induced a stronger proinflammatory response than susceptible strains. In agreement, AmB-resistant strains also induced stronger melanization ofGalleria mellonellalarvae, indicating that the effect of alterations of the cell wall on the immune response is conserved in different types of hosts. Our results suggest that resistance to AmB is associated with pleiotropic mechanisms that might have important consequences, not only for the efficacy of the treatment but also for the immune response elicited by the host.
Collapse
|
32
|
Benaducci T, Sardi JDCO, Lourencetti NMS, Scorzoni L, Gullo FP, Rossi SA, Derissi JB, de Azevedo Prata MC, Fusco-Almeida AM, Mendes-Giannini MJS. Virulence of Cryptococcus sp. Biofilms In Vitro and In Vivo using Galleria mellonella as an Alternative Model. Front Microbiol 2016; 7:290. [PMID: 27014214 PMCID: PMC4783715 DOI: 10.3389/fmicb.2016.00290] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/23/2016] [Indexed: 12/26/2022] Open
Abstract
Cryptococcus neoformans and C. gattii are fungal pathogens that are most commonly found in infections of the central nervous system, which cause life-threatening meningoencephalitis and can grow as a biofilm. Biofilms are structures conferring protection and resistance of microorganism to the antifungal drugs. This study compared the virulence of planktonic and biofilm cells of C. neoformans and C. gattii in Galleria mellonella model, as well as, the quantification of gene transcripts LAC1, URE1, and CAP59 by real time PCR. All three of the genes showed significantly increased expressions in the biofilm conditions for two species of Cryptococcus, when compared to planktonic cells. C. neoformans and C. gattii cells in the biofilm forms were more virulent than the planktonic cells in G. mellonella. This suggests that the biofilm conditions may contribute to the virulence profile. Our results contribute to a better understanding of the agents of cryptococcosis in the host-yeast aspects of the interaction.
Collapse
Affiliation(s)
- Tatiane Benaducci
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | - Janaina de C O Sardi
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | - Natalia M S Lourencetti
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | - Liliana Scorzoni
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | - Fernanda P Gullo
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | - Suélen A Rossi
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | - Jaqueline B Derissi
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | | | - Ana M Fusco-Almeida
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| |
Collapse
|
33
|
DeLeon-Rodriguez CM, Casadevall A. Cryptococcus neoformans: Tripping on Acid in the Phagolysosome. Front Microbiol 2016; 7:164. [PMID: 26925039 PMCID: PMC4756110 DOI: 10.3389/fmicb.2016.00164] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/01/2016] [Indexed: 01/10/2023] Open
Abstract
Cryptococcus neoformans (Cn) is a basidiomycetous pathogenic yeast that is a frequent cause of meningoencephalitis in immunocompromised individuals. Cn is a facultative intracellular pathogen in mammals, insects and amoeba. Cn infection occurs after inhalation of spores or desiccated cells from the environment. After inhalation Cn localizes to the lungs where it can be phagocytosed by alveolar macrophages. Cn is surrounded by a polysaccharide capsule that helps the fungus survive in vivo by interfering with phagocytosis, quenching free radical bursts and shedding polysaccharides that negatively modulates the immune system. After phagocytosis, Cn resides within the phagosome that matures to become a phagolysosome, a process that results in the acidification of the phagolysosomal lumen. Cn replicates at a higher rate inside macrophages than in the extracellular environment, possibly as a result that the phagosomal pH is near that optimal for growth. Cn increases the phagolysosomal pH and modulates the dynamics of Rab GTPases interaction with the phagolysosome. Chemical manipulation of the phagolysosomal pH with drugs can result in direct and indirect killing of Cn and reduced non-lytic exocytosis. Phagolysosomal membrane damage after Cn infection occurs both in vivo and in vitro, and is required for Cn growth and survival. Macrophage treatment with IFN-γ reduces the phagolysosomal damage and increases intracellular killing of Cn. Studies on mice and humans show that treatment with IFN-γ can improve host control of the disease. However, the mechanism by which Cn mediates phagolysosomal membrane damage remains unknown but likely candidates are phospholipases and mechanical damage from an enlarging capsule. Here we review Cn intracellular interaction with a particular emphasis on phagosomal interactions and develop the notion that the extent of damage of the phagosomal membrane is a key determinant of the outcome of the Cn-macrophage interaction.
Collapse
Affiliation(s)
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, BronxNY, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, BaltimoreMD, USA
| |
Collapse
|
34
|
Rossi SA, Trevijano-Contador N, Scorzoni L, Mesa-Arango AC, de Oliveira HC, Werther K, de Freitas Raso T, Mendes-Giannini MJS, Zaragoza O, Fusco-Almeida AM. Impact of Resistance to Fluconazole on Virulence and Morphological Aspects of Cryptococcus neoformans and Cryptococcus gattii Isolates. Front Microbiol 2016; 7:153. [PMID: 26909069 PMCID: PMC4754443 DOI: 10.3389/fmicb.2016.00153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/29/2016] [Indexed: 01/12/2023] Open
Abstract
Cryptococcus sp. are responsible for around 1 million cases of meningitis every year. Fluconazole (FLU) is commonly used in the treatment of cryptococcosis, mainly in immunocompromised patients and the resistance is usually reported after long periods of treatment. In this study, the morphological characterization and virulence profile of FLU-susceptible and FLU-resistant clinical and environmental isolates of C. neoformans and C. gattii were performed both in vitro and in vivo using the Galleria mellonella model. FLU-susceptible isolates from C. neoformans were significantly more virulent than the FLU-resistant isolates. FLU-susceptible C. gattii isolates showed a different virulence profile from C. neoformans isolates where only the environmental isolate, CL, was more virulent compared with the resistant isolates. Cell morphology and capsule size were analyzed and the FLU-resistant isolates did not change significantly compared with the most sensitive isolates. Growth at 37°C was also evaluated and in both species, the resistant isolates showed a reduced growth at this temperature, indicating that FLU resistance can affect their growth. Based on the results obtained is possible suggest that FLU resistance can influence the morphology of the isolates and consequently changed the virulence profiles. The most evident results were observed for C. neoformans showing that the adaptation of isolates to antifungal selective pressure influenced the loss of virulence.
Collapse
Affiliation(s)
- Suélen A Rossi
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clíncas São Paulo, Brazil
| | - Nuria Trevijano-Contador
- Centro Nacional de Microbiologia, Unidad de Micologia, Instituto de Salud Carlos III, Majadahonda Madrid, Spain
| | - Liliana Scorzoni
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clíncas São Paulo, Brazil
| | | | - Haroldo C de Oliveira
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clíncas São Paulo, Brazil
| | - Karin Werther
- Faculdade de Medicina Veterinária e Zootecnia, USP - Universidade de São Paulo, Departamento de Patologia São Paulo, Brazil
| | - Tânia de Freitas Raso
- Faculdade de Medicina Veterinária e Zootecnia, USP - Universidade de São Paulo, Departamento de Patologia São Paulo, Brazil
| | - Maria J S Mendes-Giannini
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clíncas São Paulo, Brazil
| | - Oscar Zaragoza
- Centro Nacional de Microbiologia, Unidad de Micologia, Instituto de Salud Carlos III, Majadahonda Madrid, Spain
| | - Ana M Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clíncas São Paulo, Brazil
| |
Collapse
|
35
|
Galleria mellonella: An invertebrate model to study pathogenicity in correctly defined fungal species. Fungal Biol 2016; 120:288-95. [DOI: 10.1016/j.funbio.2015.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 11/18/2022]
|
36
|
Marcos CM, da Silva JDF, de Oliveira HC, Assato PA, Singulani JDL, Lopez AM, Tamayo DP, Hernandez-Ruiz O, McEwen JG, Mendes-Giannini MJS, Fusco-Almeida AM. Decreased expression of 14-3-3 in Paracoccidioides brasiliensis confirms its involvement in fungal pathogenesis. Virulence 2015; 7:72-84. [PMID: 26646480 PMCID: PMC4994830 DOI: 10.1080/21505594.2015.1122166] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/05/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022] Open
Abstract
The interaction between the fungal pathogen Paracoccidioides brasiliensis and host cells is usually mediated by specific binding events between adhesins on the fungal surface and receptors on the host extracellular matrix or cell surface. One molecule implicated in the P. brasiliensis-host interaction is the 14-3-3 protein. The 14-3-3 protein belongs to a family of conserved regulatory molecules that are expressed in all eukaryotic cells and are involved in diverse cellular functions. Here, we investigated the relevance of the 14-3-3 protein to the virulence of P. brasiliensis. Using antisense RNA technology and Agrobacterium tumefaciens-mediated transformation, we generated a 14-3-3-silenced strain (expression reduced by ˜55%). This strain allowed us to investigate the interaction between 14-3-3 and the host and to correlate the functions of P. brasiliensis 14-3-3 with cellular features, such as morphological characteristics and virulence, that are important for pathogenesis.
Collapse
Affiliation(s)
- Caroline Maria Marcos
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Julhiany de Fátima da Silva
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Haroldo Cesar de Oliveira
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Patrícia Akemi Assato
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Angela Maria Lopez
- Unidad de Biología Celular y Molecular; Corporación para Investigaciones Biológicas (CIB) - Medellín, Colombia
| | - Diana Patricia Tamayo
- Unidad de Biología Celular y Molecular; Corporación para Investigaciones Biológicas (CIB) - Medellín, Colombia
| | - Orville Hernandez-Ruiz
- Unidad de Biología Celular y Molecular; Corporación para Investigaciones Biológicas (CIB) - Medellín, Colombia
- Escuela de Microbiología; Universidad de Antioquia; Medellín, Colombia
| | - Juan G McEwen
- Unidad de Biología Celular y Molecular; Corporación para Investigaciones Biológicas (CIB) - Medellín, Colombia
- Facultad de Medicina; Universidad de Antioquia; Medellín, Colombia
| | - Maria José Soares Mendes-Giannini
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Ana Marisa Fusco-Almeida
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| |
Collapse
|
37
|
Scorzoni L, de Paula e Silva ACA, Singulani JDL, Leite FS, de Oliveira HC, Moraes da Silva RA, Fusco-Almeida AM, Mendes-Giannini MJS. Comparison of virulence between Paracoccidioides brasiliensis and Paracoccidioides lutzii using Galleria mellonella as a host model. Virulence 2015; 6:766-76. [PMID: 26552324 PMCID: PMC4826127 DOI: 10.1080/21505594.2015.1085277] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 10/22/2022] Open
Abstract
Paracoccidioidomycosis is a systemic mycosis, endemic in Latin America. The etiologic agents of this mycosis are composed of 2 species: Paracoccidioides brasiliensis and P. lutzii. Murine animal models are the gold standard for in vivo studies; however, ethical, economical and logistical considerations limit their use. Galleria mellonella is a suitable model for in vivo studies of fungal infections. In this study, we compared the virulence of P. brasiliensis and P. lutzii in G. mellonella model. The deaths of larvae infected with P. brasiliensis or P. lutzii were similar, and both species were able to reduce the number of hemocytes, which were estimated by microscopy and flow cytometer. Additionally, the phagocytosis percentage was similar for both species, but when we analyze hemocyte-Paracoccidioides spp. interaction using flow cytometer, P. lutzii showed higher interactions with hemocytes. The gene expression of gp43 as well as this protein was higher for P. lutzii, and this expression may contribute to a greater adherence to hemocytes. These results helped us evaluate the behavior of Paracoccidioides spp in G. mellonella, which is a convenient model for investigating the host-Paracoccidioides spp. interaction.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Ana Carolina Alves de Paula e Silva
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Fernanda Sangalli Leite
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Haroldo Cesar de Oliveira
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Rosangela Aparecida Moraes da Silva
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Ana Marisa Fusco-Almeida
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Maria José Soares Mendes-Giannini
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| |
Collapse
|
38
|
Abstract
Enzymes play key roles in fungal pathogenesis. Manipulation of enzyme expression or activity can significantly alter the infection process, and enzyme expression profiles can be a hallmark of disease. Hence, enzymes are worthy targets for better understanding pathogenesis and identifying new options for combatting fungal infections. Advances in genomics, proteomics, transcriptomics, and mass spectrometry have enabled the identification and characterization of new fungal enzymes. This review focuses on recent developments in the virulence-associated enzymes from Cryptococcus neoformans. The enzymatic suite of C. neoformans has evolved for environmental survival, but several of these enzymes play a dual role in colonizing the mammalian host. We also discuss new therapeutic and diagnostic strategies that could be based on the underlying enzymology.
Collapse
|
39
|
García-Barbazán I, Trevijano-Contador N, Rueda C, de Andrés B, Pérez-Tavárez R, Herrero-Fernández I, Gaspar ML, Zaragoza O. The formation of titan cells in Cryptococcus neoformans depends on the mouse strain and correlates with induction of Th2-type responses. Cell Microbiol 2015; 18:111-24. [PMID: 26243235 DOI: 10.1111/cmi.12488] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/20/2015] [Accepted: 07/11/2015] [Indexed: 01/10/2023]
Abstract
Cryptococcus neoformans is a pathogenic yeast that can form titan cells in the lungs, which are fungal cells of abnormal enlarged size. Little is known about the factors that trigger titan cells. In particular, it is not known how the host environment influences this transition. In this work, we describe the formation of titan cells in two mouse strains, CD1 and C57BL/6J. We found that the proportion of C. neoformans titan cells was significantly higher in C57BL/6J mice than in CD1. This higher proportion of titan cells was associated with a higher dissemination of the yeasts to the brain. Histology sections demonstrated eosinophilia in infected animals, although it was significantly lower in the CD1 mice which presented infiltration of lymphocytes. Both mouse strains presented infiltration of granulocytes, but the amount of eosinophils was higher in C57BL/6J. CD1 mice showed a significant accumulation of IFN-γ, TNF-α and IL17, while C57BL/BL mice had an increase in the anti-inflammatory cytokine IL-4. IgM antibodies to the polysaccharide capsule and total IgE were more abundant in the sera from C57BL/6J, confirming that these animals present a Th2-type response. We conclude that titan cell formation in C. neoformans depends, not only on microbe factors, but also on the host environment.
Collapse
Affiliation(s)
- Irene García-Barbazán
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, Majadahonda, Madrid, 28220, Spain
| | - Nuria Trevijano-Contador
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, Majadahonda, Madrid, 28220, Spain
| | - Cristina Rueda
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, Majadahonda, Madrid, 28220, Spain
| | - Belén de Andrés
- Immunobiology Unit, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, Majadahonda, Madrid, 28220, Spain
| | - Raquel Pérez-Tavárez
- Histology Unit, Functional Unit for Research in Chronic Diseases, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, Majadahonda, Madrid, 28220, Spain
| | - Inés Herrero-Fernández
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, Majadahonda, Madrid, 28220, Spain
| | - María Luisa Gaspar
- Immunobiology Unit, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, Majadahonda, Madrid, 28220, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, Majadahonda, Madrid, 28220, Spain
| |
Collapse
|
40
|
Affiliation(s)
- Helene C Eisenman
- a Department of Natural Sciences ; Baruch College and Graduate Center ; The City University of New York ; New York , NY USA
| |
Collapse
|