1
|
Song Y, Kwon JJ, Na HS, Kim SY, Shin SH, Chung J. High glucose condition aggravates inflammatory response induced by Porphyromonas gingivalis in THP-1 macrophages via autophagy inhibition. BMC Immunol 2024; 25:69. [PMID: 39415131 PMCID: PMC11484236 DOI: 10.1186/s12865-024-00655-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Porphyromonase gingivalis (P. gingivalis) is a type of bacteria that causes periodontitis, which is strongly correlated with systemic diseases such as diabetes. However, the effect of hyperglycemia on periodontitis are unclear. The present study examined the effects of high glucose levels on the response to P. gingivalis infection. RESULTS The expression of P. gingivalis-induced interleukin-1β (IL-1β) and inflammasomes increased as the glucose concentration increased. High glucose conditions suppressed P. gingivalis-induced autophagy in human acute monocytic leukemia cell line (THP-1) macrophages. Zingerone increased autophagy and alleviated P. gingivalis-induced inflammatory response in THP-1 macrophages under high glucose conditions. In addition, P. gingivalis- induced inflammation in bone marrow-derived macrophages of diabetic mice was higher than in wild-type mice, but a zingerone treatment decreased the levels. Alveolar bone loss due to a P. gingivalis infection was significantly higher in diabetic mice than in wild-type mice. CONCLUSIONS High-glucose conditions aggravated the inflammatory response to P. gingivalis infection by suppressing of autophagy, suggesting that autophagy induction could potentially to treat periodontitis in diabetes. Zingerone has potential use as a treatment for periodontal inflammation induced by P. gingivalis in diabetes patients.
Collapse
Affiliation(s)
- Yuri Song
- Oral Genomics Research Center, Pusan National University, Yangsan, Republic of Korea
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, 50162, Republic of Korea
| | - Jin-Ju Kwon
- Department of Dentistry, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Hee Sam Na
- Oral Genomics Research Center, Pusan National University, Yangsan, Republic of Korea
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, 50162, Republic of Korea
| | - Si Yeong Kim
- Oral Genomics Research Center, Pusan National University, Yangsan, Republic of Korea
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, 50162, Republic of Korea
| | - Sang-Hun Shin
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, Pusan National University Dental Hospital, Yangsan, 50162, Republic of Korea.
- Dental and Life Science Institute, Pusan National University, Busan, Republic of Korea.
| | - Jin Chung
- Oral Genomics Research Center, Pusan National University, Yangsan, Republic of Korea.
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, 50162, Republic of Korea.
| |
Collapse
|
2
|
Cao L, Wang XL, Chu T, Wang YW, Fan YQ, Chen YH, Zhu YW, Zhang J, Ji XY, Wu DD. Role of gasotransmitters in necroptosis. Exp Cell Res 2024; 442:114233. [PMID: 39216662 DOI: 10.1016/j.yexcr.2024.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Gasotransmitters are endogenous gaseous signaling molecules that can freely pass through cell membranes and transmit signals between cells, playing multiple roles in cell signal transduction. Due to extensive and ongoing research in this field, we have successfully identified many gasotransmitters so far, among which nitric oxide, carbon monoxide, and hydrogen sulfide are best studied. Gasotransmitters are implicated in various diseases related to necroptosis, such as cardiovascular diseases, inflammation, ischemia-reperfusion, infectious diseases, and neurological diseases. However, the mechanisms of their effects on necroptosis are not fully understood. This review focuses on endogenous gasotransmitter synthesis and metabolism and discusses their roles in necroptosis, aiming to offer new insights for the therapeutic approaches to necroptosis-associated diseases.
Collapse
Affiliation(s)
- Lei Cao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Xue-Li Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yong-Qi Fan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Hang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Jing Zhang
- Department of Stomatology, The First Affiliated Hospital of Henan University, Kaifeng, Henan, 475001, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Kaifeng, Henan, 475000, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
3
|
Zeng X, Sun J, Li F, Peng L, Zhang C, Jiang X, Zha L, Rathinasabapathy A, Ren J, Yu Z, Wang L, Liu X. Beclin 1 Haploinsufficiency Ameliorates High-Fat Diet-Induced Myocardial Injury via Inhibiting Alternative Mitophagy. Antioxid Redox Signal 2024; 40:906-925. [PMID: 38251672 PMCID: PMC11554424 DOI: 10.1089/ars.2023.0399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024]
Affiliation(s)
- Xiaofang Zeng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Sun
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Famei Li
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Liming Peng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Chenglong Zhang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaowei Jiang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lihuang Zha
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Anandharajan Rathinasabapathy
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Zaixin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Xiangwei Liu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Li J, Xie Y, Zheng S, He H, Wang Z, Li X, Jiao S, Liu D, Yang F, Zhao H, Li P, Sun Y. Targeting autophagy in diabetic cardiomyopathy: From molecular mechanisms to pharmacotherapy. Biomed Pharmacother 2024; 175:116790. [PMID: 38776677 DOI: 10.1016/j.biopha.2024.116790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a cardiac microvascular complication caused by metabolic disorders. It is characterized by myocardial remodeling and dysfunction. The pathogenesis of DCM is associated with abnormal cellular metabolism and organelle accumulation. Autophagy is thought to play a key role in the diabetic heart, and a growing body of research suggests that modulating autophagy may be a potential therapeutic strategy for DCM. Here, we have summarized the major signaling pathways involved in the regulation of autophagy in DCM, including Adenosine 5'-monophosphate-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), Forkhead box subfamily O proteins (FOXOs), Sirtuins (SIRTs), and PTEN-inducible kinase 1 (PINK1)/Parkin. Given the significant role of autophagy in DCM, we further identified natural products and chemical drugs as regulators of autophagy in the treatment of DCM. This review may help to better understand the autophagy mechanism of drugs for DCM and promote their clinical application.
Collapse
Affiliation(s)
- Jie Li
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, China
| | - Yingying Xie
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuwen Zheng
- Beijing University of Chinese Medicine School of Traditional Chinese Medicine, Beijing, China
| | - Haoming He
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhe Wang
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuexi Li
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Siqi Jiao
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Dong Liu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Furong Yang
- Beijing University of Chinese Medicine School of Traditional Chinese Medicine, Beijing, China
| | - Hailing Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
| | - Yihong Sun
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.
| |
Collapse
|
5
|
Huang SE, Hsu JH, Shiau BW, Liu YC, Wu BN, Dai ZK, Liu CP, Yeh JL. Optimizing myocardial cell protection with xanthine derivative KMUP-3 potentiates autophagy through the PI3K/Akt/eNOS axis. Basic Clin Pharmacol Toxicol 2024; 134:818-832. [PMID: 38583870 DOI: 10.1111/bcpt.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Autophagy can have either beneficial or detrimental effects on various heart diseases. Pharmacological interventions improve cardiac function, which is correlated with enhanced autophagy. To assess whether a xanthine derivative (KMUP-3) treatment coincides with enhanced autophagy while also providing cardio-protection, we investigated the hypothesis that KMUP-3 treatment activation of autophagy through PI3K/Akt/eNOS signalling offered cardioprotective properties. METHODS The pro-autophagic effect of KMUP-3 was performed in a neonatal rat model targeting cardiac fibroblasts and cardiomyocytes, and by assessing the impact of KMUP-3 treatment on cardiotoxicity, we used antimycin A-induced cardiomyocytes. RESULTS As determined by transmission electron microscopy observation, KMUP-3 enhanced autophagosome formation in cardiac fibroblasts. Furthermore, KMUP-3 significantly increased the expressions of autophagy-related proteins, LC3 and Beclin-1, both in a time- and dose-dependent manner; moreover, the pro-autophagy and nitric oxide enhancement effects of KMUP-3 were abolished by inhibitors targeting eNOS and PI3K in cardiac fibroblasts and cardiomyocytes. Notably, KMUP-3 ameliorated cytotoxic effects induced by antimycin A, demonstrating its protective autophagic response. CONCLUSION These findings enable the core pathway of PI3K/Akt/eNOS axis in KMUP-3-enhanced autophagy activation and suggest its principal role in safeguarding against cardiotoxicity.
Collapse
Affiliation(s)
- Shang-En Huang
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Bo-Wen Shiau
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Liu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | | | - Jwu-Lai Yeh
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Liu F, Zhao L, Wu T, Yu W, Li J, Wang W, Huang C, Diao Z, Xu Y. Targeting autophagy with natural products as a potential therapeutic approach for diabetic microangiopathy. Front Pharmacol 2024; 15:1364616. [PMID: 38659578 PMCID: PMC11039818 DOI: 10.3389/fphar.2024.1364616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
As the quality of life improves, the incidence of diabetes mellitus and its microvascular complications (DMC) continues to increase, posing a threat to people's health and wellbeing. Given the limitations of existing treatment, there is an urgent need for novel approaches to prevent and treat DMC. Autophagy, a pivotal mechanism governing metabolic regulation in organisms, facilitates the removal of dysfunctional proteins and organelles, thereby sustaining cellular homeostasis and energy generation. Anomalous states in pancreatic β-cells, podocytes, Müller cells, cardiomyocytes, and Schwann cells in DMC are closely linked to autophagic dysregulation. Natural products have the property of being multi-targeted and can affect autophagy and hence DMC progression in terms of nutrient perception, oxidative stress, endoplasmic reticulum stress, inflammation, and apoptosis. This review consolidates recent advancements in understanding DMC pathogenesis via autophagy and proposes novel perspectives on treating DMC by either stimulating or inhibiting autophagy using natural products.
Collapse
Affiliation(s)
- Fengzhao Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijuan Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfei Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jixin Li
- Xi yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenru Wang
- Xi yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chengcheng Huang
- Department of Endocrinology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Zhihao Diao
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunsheng Xu
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Liu Z, Annarapu G, Yazdani HO, Wang Q, Liu S, Luo JH, Yu YP, Ren B, Neal MD, Monga SP, Mota Alvidrez RI. Restoring glucose balance: Conditional HMGB1 knockdown mitigates hyperglycemia in a Streptozotocin induced mouse model. Heliyon 2024; 10:e23561. [PMID: 38187339 PMCID: PMC10770459 DOI: 10.1016/j.heliyon.2023.e23561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Diabetes mellitus (DM) poses a significant global health burden, with hyperglycemia being a primary contributor to complications and high morbidity associated with this disorder. Existing glucose management strategies have shown suboptimal effectiveness, necessitating alternative approaches. In this study, we explored the role of high mobility group box 1 (HMGB1) in hyperglycemia, a protein implicated in initiating inflammation and strongly correlated with DM onset and progression. We hypothesized that HMGB1 knockdown will mitigate hyperglycemia severity and enhance glucose tolerance. To test this hypothesis, we utilized a novel inducible HMGB1 knockout (iHMGB1 KO) mouse model exhibiting systemic HMGB1 knockdown. Hyperglycemic phenotype was induced using low dose streptozotocin (STZ) injections, followed by longitudinal glucose measurements and oral glucose tolerance tests to evaluate the effect of HMGB1 knockdown on glucose metabolism. Our findings showed a substantial reduction in glucose levels and enhanced glucose tolerance in HMGB1 knockdown mice. Additionally, we performed RNA sequencing analyses, which identified potential alternations in genes and molecular pathways within the liver and skeletal muscle tissue that may account for the in vivo phenotypic changes observed in hyperglycemic mice following HMGB1 knockdown. In conclusion, our present study delivers the first direct evidence of a causal relationship between systemic HMGB1 knockdown and hyperglycemia in vivo, an association that had remained unexamined prior to this research. This discovery positions HMGB1 knockdown as a potentially efficacious therapeutic target for addressing hyperglycemia and, by extension, the DM epidemic. Furthermore, we have revealed potential underlying mechanisms, establishing the essential groundwork for subsequent in-depth mechanistic investigations focused on further elucidating and harnessing the promising therapeutic potential of HMGB1 in DM management.
Collapse
Affiliation(s)
- Zeyu Liu
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Gowtham Annarapu
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hamza O. Yazdani
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Qinge Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jian-Hua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yan-Ping Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Baoguo Ren
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew D. Neal
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Satdarshan P. Monga
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Roberto Ivan Mota Alvidrez
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
8
|
Jahanbani S, Khaksari M, Bitaraf FS, Rahmati M, Foroughi K, Shayannia A. Effectiveness of Nicotinamide Phosphoribosyltransferase/Pre-B Cell Colony-enhancing Factor/Visfatin in preventing High Glucose-induced Neurotoxicity in an In-vitro Model of Diabetic Neuropathy. Basic Clin Neurosci 2023; 14:867-878. [PMID: 39070193 PMCID: PMC11273206 DOI: 10.32598/bcn.2021.2870.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/26/2021] [Accepted: 07/26/2021] [Indexed: 07/30/2024] Open
Abstract
Introduction Diabetic neuropathy is a well-known complication of diabetes. Recently, hyperglycemia-induced toxicity has been confirmed to participates in multiple cellular pathways typical for neural deterioration. Nicotinamide phosphoribosyltransferase/pre-b cell colony-enhancing factor (Nampt/PBEF)/visfatin is a novel endogenous ligand that some studies have shown its neuroprotective effects on neurodegenerative disease. Therefore, we hypothesized that visfatin may prevent high glucose (HG)-induced neurotoxicity by inhibiting apoptosis, autophagy, and reactive oxygen species (ROS) responses properly. Methods In this study, pheochromocytoma cell line 12 (PC12) cells were exposed to both HG concentrations (50, 75, 100, 125, 150 mM) and visfatin (50, 100, 150 ng/mL) at different time -points to determine the optimum time and dose of glucose and visfatin. To investigate the effects of visfatin on HG-induced damage in the PC12 diabetic neuropathy model, we examined ROS response, apoptosis, and autophagy using ROS detection kit, flow cytometry, and real-time PCR/Western blot, respectively. Results We determined that HG concentration significantly increased the ROS level and apoptosis of diabetic PC12 cells. However, visfatin treatment significantly decreased the ROS production (P<0.05) and apoptosis of diabetic PC12 cells (P<0.0001). Beclin-1 messenger ribonucleic acid (mRNA) level (P<0.05) and light chain 3 (Lc3)-II protein level (P<0.05) showed that the autophagy pathway is impaired by HG concentrations. Conclusion We concluded that visfatin can sufficiently decrease neural damage caused by ROS production and apoptosis under HG-induced toxicity. Highlights High glucose significantly increased the ROS level and apoptosis of diabetic PC12 cells;The autophagy pathway is impaired by high glucose;Nampt/PBEF/visfatin can significantly reduce neural damage caused by ROS production and apoptosis of diabetic PC12 cells. Plain Language Summary Diabetes mellitus is a metabolic disorder characterized by hyperglycemia resulting from a failure in insulin secretion, insulin action, or both. Visfatin (Nampt/PBEF) has insulin-mimetic effects. So far, no study has assessed its effects on diabetic neuropathy. Therefore, we examined the neuroprotective effects of visfatin on cell line 12 (PC12) against glucose-induced neurotoxicity. Based on the results, it was concluded that the Nampt/PBEF/visfatin can significantly reduce neural damage caused by production of reactive oxygen species and apoptosis of diabetic PC12 cell.
Collapse
Affiliation(s)
- Sarvin Jahanbani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mehdi Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Sadat Bitaraf
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Rahmati
- Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Kobra Foroughi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Asghar Shayannia
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
9
|
Titus AS, Sung EA, Zablocki D, Sadoshima J. Mitophagy for cardioprotection. Basic Res Cardiol 2023; 118:42. [PMID: 37798455 PMCID: PMC10556134 DOI: 10.1007/s00395-023-01009-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Mitochondrial function is maintained by several strictly coordinated mechanisms, collectively termed mitochondrial quality control mechanisms, including fusion and fission, degradation, and biogenesis. As the primary source of energy in cardiomyocytes, mitochondria are the central organelle for maintaining cardiac function. Since adult cardiomyocytes in humans rarely divide, the number of dysfunctional mitochondria cannot easily be diluted through cell division. Thus, efficient degradation of dysfunctional mitochondria is crucial to maintaining cellular function. Mitophagy, a mitochondria specific form of autophagy, is a major mechanism by which damaged or unnecessary mitochondria are targeted and eliminated. Mitophagy is active in cardiomyocytes at baseline and in response to stress, and plays an essential role in maintaining the quality of mitochondria in cardiomyocytes. Mitophagy is mediated through multiple mechanisms in the heart, and each of these mechanisms can partially compensate for the loss of another mechanism. However, insufficient levels of mitophagy eventually lead to mitochondrial dysfunction and the development of heart failure. In this review, we discuss the molecular mechanisms of mitophagy in the heart and the role of mitophagy in cardiac pathophysiology, with the focus on recent findings in the field.
Collapse
Affiliation(s)
- Allen Sam Titus
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Eun-Ah Sung
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA.
| |
Collapse
|
10
|
Zhao X, Bie LY, Pang DR, Li X, Yang LF, Chen DD, Wang YR, Gao Y. The role of autophagy in the treatment of type II diabetes and its complications: a review. Front Endocrinol (Lausanne) 2023; 14:1228045. [PMID: 37810881 PMCID: PMC10551182 DOI: 10.3389/fendo.2023.1228045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Type II diabetes mellitus (T2DM) is a chronic metabolic disease characterized by prolonged hyperglycemia and insulin resistance (IR). Its incidence is increasing annually, posing a significant threat to human life and health. Consequently, there is an urgent requirement to discover effective drugs and investigate the pathogenesis of T2DM. Autophagy plays a crucial role in maintaining normal islet structure. However, in a state of high glucose, autophagy is inhibited, resulting in impaired islet function, insulin resistance, and complications. Studies have shown that modulating autophagy through activation or inhibition can have a positive impact on the treatment of T2DM and its complications. However, it is important to note that the specific regulatory mechanisms vary depending on the target organ. This review explores the role of autophagy in the pathogenesis of T2DM, taking into account both genetic and external factors. It also provides a summary of reported chemical drugs and traditional Chinese medicine that target the autophagic pathway for the treatment of T2DM and its complications.
Collapse
Affiliation(s)
- Xuan Zhao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lu-Yao Bie
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dao-Ran Pang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Long-Fei Yang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan-Dan Chen
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue-Rui Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Gao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Golpasandi H, Rahimi MR, Ahmadi S, Łubkowska B, Cięszczyk P. Effects of Vitamin D3 Supplementation and Aerobic Training on Autophagy Signaling Proteins in a Rat Model Type 2 Diabetes Induced by High-Fat Diet and Streptozotocin. Nutrients 2023; 15:4024. [PMID: 37764807 PMCID: PMC10535215 DOI: 10.3390/nu15184024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of this study was to investigate the combined effects of vitamin D3 supplementation and aerobic training on regulating the autophagy process in rats with type 2 diabetic induced by a high-fat diet and streptozotocin. A total of 40 Wistar rats were divided into five groups: normal control (NC), diabetic control (DC), diabetic + aerobic training (DAT), diabetic + vitamin D3 (DVD), and diabetic + aerobic training + vitamin D3 (DVDAT). The rats underwent eight weeks of aerobic training with an intensity of 60% maximum running speed for one hour, along with weekly subcutaneous injections of 10,000 units of vitamin D3. The protein levels of different autophagy markers were assessed in the left ventricular heart tissue. The results showed that the protein levels of AMPK, pAMPK, mTOR, and pmTOR were significantly lower in the DC group compared to the NC group. Conversely, the levels of ULK, Beclin-1, LC3II, Fyco, and Cathepsin D proteins were significantly higher in the DC group. However, the interventions of aerobic training and vitamin D3 supplementation, either individually or in combination, led to increased levels of AMPK, pAMPK, mTOR, and pmTOR, and decreased levels of ULK, Beclin-1, LC3II, Fyco, and Cathepsin D (p < 0.05). Additionally, the aerobic capacity in the DAT and DVDAT groups was significantly higher compared to the NC, DC, and DVD groups (p < 0.05). These findings suggest that type 2 diabetes is associated with excessive autophagy in the left ventricle. However, after eight weeks of vitamin D3 supplementation and aerobic training, a significant reduction in excessive autophagy was observed in rats with type 2 diabetes.
Collapse
Affiliation(s)
- Hadi Golpasandi
- Department of Exercise Physiology, University of Kurdistan, Sanandaj 66177-15175, Iran;
| | | | - Slahadin Ahmadi
- Department of Physiology and Pharmacology, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj 66186-34683, Iran;
| | - Beata Łubkowska
- Faculty of Health and Life Sciences, Gdansk University of Physical Education and Sport, Gorskiego 1, 80-336 Gdansk, Poland; (B.Ł.); (P.C.)
| | - Paweł Cięszczyk
- Faculty of Health and Life Sciences, Gdansk University of Physical Education and Sport, Gorskiego 1, 80-336 Gdansk, Poland; (B.Ł.); (P.C.)
| |
Collapse
|
12
|
Bielawska M, Warszyńska M, Stefańska M, Błyszczuk P. Autophagy in Heart Failure: Insights into Mechanisms and Therapeutic Implications. J Cardiovasc Dev Dis 2023; 10:352. [PMID: 37623365 PMCID: PMC10456056 DOI: 10.3390/jcdd10080352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Autophagy, a dynamic and complex process responsible for the clearance of damaged cellular components, plays a crucial role in maintaining myocardial homeostasis. In the context of heart failure, autophagy has been recognized as a response mechanism aimed at counteracting pathogenic processes and promoting cellular health. Its relevance has been underscored not only in various animal models, but also in the human heart. Extensive research efforts have been dedicated to understanding the significance of autophagy and unravelling its complex molecular mechanisms. This review aims to consolidate the current knowledge of the involvement of autophagy during the progression of heart failure. Specifically, we provide a comprehensive overview of published data on the impact of autophagy deregulation achieved by genetic modifications or by pharmacological interventions in ischemic and non-ischemic models of heart failure. Furthermore, we delve into the intricate molecular mechanisms through which autophagy regulates crucial cellular processes within the three predominant cell populations of the heart: cardiomyocytes, cardiac fibroblasts, and endothelial cells. Finally, we emphasize the need for future research to unravel the therapeutic potential associated with targeting autophagy in the management of heart failure.
Collapse
Affiliation(s)
- Magdalena Bielawska
- Department of Clinical Immunology, Jagiellonian University Medical College, University Children’s Hospital, Wielicka 265, 30-663 Cracow, Poland; (M.B.)
| | - Marta Warszyńska
- Department of Clinical Immunology, Jagiellonian University Medical College, University Children’s Hospital, Wielicka 265, 30-663 Cracow, Poland; (M.B.)
| | - Monika Stefańska
- Department of Clinical Immunology, Jagiellonian University Medical College, University Children’s Hospital, Wielicka 265, 30-663 Cracow, Poland; (M.B.)
| | - Przemysław Błyszczuk
- Department of Clinical Immunology, Jagiellonian University Medical College, University Children’s Hospital, Wielicka 265, 30-663 Cracow, Poland; (M.B.)
- Department of Rheumatology, University Hospital Zurich, University of Zurich, 8952 Schlieren, Switzerland
| |
Collapse
|
13
|
Van J, Hahn Y, Silverstein B, Li C, Cai F, Wei J, Katiki L, Mehta P, Livatova K, DelPozzo J, Kobayashi T, Huang Y, Kobayashi S, Liang Q. Metformin Inhibits Autophagy, Mitophagy and Antagonizes Doxorubicin-Induced Cardiomyocyte Death. INTERNATIONAL JOURNAL OF DRUG DISCOVERY AND PHARMACOLOGY 2023; 2:37-51. [PMID: 38487671 PMCID: PMC10939033 DOI: 10.53941/ijddp.0201004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The antidiabetic drug metformin has been shown to reduce cardiac injury under various pathological conditions, including anticancer drug doxorubicin (DOX)-induced cardiotoxicity, which makes metformin a prime candidate for repurposing. However, the mechanisms that mediate the cardioprotective effects of metformin remain highly controversial. In this study, we tested a prevailing hypothesis that metformin activates autophagy/mitophagy to reduce DOX cardiotoxicity. FVB/N mice and H9C2 cardiac myoblasts were treated with metformin, respectively. Autophagy/mitophagy was determined by Western blot analysis of microtubule-associated protein light chain 3, form-II (LC3-II), a well-established marker of autophagic vesicles. Although metformin had minimal effects on basal LC3-II levels, it significantly inhibited the accumulation of LC3-II levels by the lysosomal protease inhibitors pepstatin A and E64d in both total cell lysates and mitochondrial fractions. Also, dual fluorescent autophagy/mitophagy reporters demonstrated that metformin slowed the degradation rate of autophagic cargos or mitochondrial fragments in the lysosomes. These surprising results suggest that metformin inhibits rather than stimulates autophagy/mitophagy, sharply contrasting the popular belief. In addition, metformin diminished DOX-induced autophagy/mitophagy as well as cardiomyocyte death. Together, these results suggest that the cardioprotective effects of metformin against DOX cardiotoxicity may be mediated by its ability to inhibit autophagy and mitophagy, although the underlying molecular mechanisms remain to be determined.
Collapse
Affiliation(s)
- Jennifer Van
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Younghee Hahn
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Brett Silverstein
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Cairong Li
- Clinical Medical College, Hubei University of Science and Technology, Xianning 332306, China
| | - Fei Cai
- Clinical Medical College, Hubei University of Science and Technology, Xianning 332306, China
| | - Jia Wei
- Department of Cardiology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, China
| | - Lokesh Katiki
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Puja Mehta
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Katherine Livatova
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Jaclyn DelPozzo
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Tamayo Kobayashi
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Yuan Huang
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Satoru Kobayashi
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Qiangrong Liang
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| |
Collapse
|
14
|
Ushakov A, Ivanchenko V, Gagarina A. Heart Failure And Type 2 Diabetes Mellitus: Neurohumoral, Histological And Molecular Interconnections. Curr Cardiol Rev 2023; 19:e170622206132. [PMID: 35718961 PMCID: PMC10201898 DOI: 10.2174/1573403x18666220617121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
Heart failure (HF) is a global healthcare burden and a leading cause of morbidity and mortality worldwide. Type 2 diabetes mellitus (T2DM) appears to be one of the major risk factors that significantly worsen HF prognosis and increase the risk of fatal cardiovascular outcomes. Despite a great knowledge of pathophysiological mechanisms involved in HF development and progression, hospitalization rates in patients with HF and concomitant T2DM remain elevated. In this review, we discuss the complex interplay between systemic neurohumoral regulation and local cardiac mechanisms participating in myocardial remodeling and HF development in T2DM with special attention to cardiomyocyte energy metabolism, mitochondrial function and calcium metabolism, cardiomyocyte hypertrophy and death, extracellular matrix remodeling.
Collapse
Affiliation(s)
- A. Ushakov
- Department of Internal Medicine 1, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - V. Ivanchenko
- Department of Internal Medicine 1, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - A. Gagarina
- Department of Internal Medicine 1, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| |
Collapse
|
15
|
Ferdinandy P, Andreadou I, Baxter GF, Bøtker HE, Davidson SM, Dobrev D, Gersh BJ, Heusch G, Lecour S, Ruiz-Meana M, Zuurbier CJ, Hausenloy DJ, Schulz R. Interaction of Cardiovascular Nonmodifiable Risk Factors, Comorbidities and Comedications With Ischemia/Reperfusion Injury and Cardioprotection by Pharmacological Treatments and Ischemic Conditioning. Pharmacol Rev 2023; 75:159-216. [PMID: 36753049 PMCID: PMC9832381 DOI: 10.1124/pharmrev.121.000348] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/07/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Preconditioning, postconditioning, and remote conditioning of the myocardium enhance the ability of the heart to withstand a prolonged ischemia/reperfusion insult and the potential to provide novel therapeutic paradigms for cardioprotection. While many signaling pathways leading to endogenous cardioprotection have been elucidated in experimental studies over the past 30 years, no cardioprotective drug is on the market yet for that indication. One likely major reason for this failure to translate cardioprotection into patient benefit is the lack of rigorous and systematic preclinical evaluation of promising cardioprotective therapies prior to their clinical evaluation, since ischemic heart disease in humans is a complex disorder caused by or associated with cardiovascular risk factors and comorbidities. These risk factors and comorbidities induce fundamental alterations in cellular signaling cascades that affect the development of ischemia/reperfusion injury and responses to cardioprotective interventions. Moreover, some of the medications used to treat these comorbidities may impact on cardioprotection by again modifying cellular signaling pathways. The aim of this article is to review the recent evidence that cardiovascular risk factors as well as comorbidities and their medications may modify the response to cardioprotective interventions. We emphasize the critical need for taking into account the presence of cardiovascular risk factors as well as comorbidities and their concomitant medications when designing preclinical studies for the identification and validation of cardioprotective drug targets and clinical studies. This will hopefully maximize the success rate of developing rational approaches to effective cardioprotective therapies for the majority of patients with multiple comorbidities. SIGNIFICANCE STATEMENT: Ischemic heart disease is a major cause of mortality; however, there are still no cardioprotective drugs on the market. Most studies on cardioprotection have been undertaken in animal models of ischemia/reperfusion in the absence of comorbidities; however, ischemic heart disease develops with other systemic disorders (e.g., hypertension, hyperlipidemia, diabetes, atherosclerosis). Here we focus on the preclinical and clinical evidence showing how these comorbidities and their routine medications affect ischemia/reperfusion injury and interfere with cardioprotective strategies.
Collapse
Affiliation(s)
- Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Ioanna Andreadou
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gary F Baxter
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Hans Erik Bøtker
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Sean M Davidson
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Dobromir Dobrev
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Bernard J Gersh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gerd Heusch
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Sandrine Lecour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Marisol Ruiz-Meana
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Coert J Zuurbier
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Derek J Hausenloy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| |
Collapse
|
16
|
Bayazidi MG, Rahbarghazi R, Rezabakhsh A, Rezaie J, Hassanpour M, Ahmadi M. Type 2 diabetes mellitus induced autophagic response within pulmonary tissue in the rat model. BIOIMPACTS : BI 2023; 13:43-50. [PMID: 36817001 PMCID: PMC9923816 DOI: 10.34172/bi.2022.22183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 11/06/2022]
Abstract
Introduction: The current experiment aimed to address the impact of type 2 diabetes mellitus on autophagy status in the rat pulmonary tissue. Methods: In this study, 20 male Wistar rats were randomly allocated into two groups as follows: control and diabetic groups. To induce type 2 diabetes mellitus, rats received a combination of streptozotocin (STZ) and a high-fat diet. After confirmation of diabetic condition, rats were maintained for 8 weeks and euthanized for further analyses. The pathological changes were assessed using H&E staining. We also measured transforming growth factor-β (TGF-β), bronchoalveolar lavage fluid (BALF), and tumor necrosis factor-α (TNF-α) in the lungs using ELISA and real-time PCR analyses, respectively. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were monitored in diabetic lungs to assess oxidative status. We also measured the expression of becline-1, LC3, and P62 to show autophagic response under diabetic conditions. Using immunofluorescence staining, protein levels of LC3 was also monitored. Results: H&E staining showed pathological changes in diabetic rats coincided with the increase of TNF-α (~1.4-fold) and TGF-β (~1.3-fold) compared to those in the normal rats (P<0.05). The levels of MDA (5.6 ± 0.4 versus 6.4 ± 0.27 nM/mg protein) were increased while SOD (4.2 ± 0.28 versus 3.8 ± 0.13 U/mL) activity decreased in the diabetic rats (P<0.05). Real-time polymerase chain reaction (PCR) analysis showed the up-regulation of Becline-1 (~1.35-fold) and LC3 (~2-fold) and down-regulation of P62 (~0.8-fold) (P<0.05), showing incomplete autophagic flux. We noted the increase of LC3+ cells in diabetic condition compared to that in the control samples. Conclusion: The prolonged diabetic condition could inhibit the normal activity of autophagy flux, thereby increasing pathological outcomes.
Collapse
Affiliation(s)
- Mohammad Ghader Bayazidi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mehdi Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Corresponding author: Mahdi Ahmadi,
| |
Collapse
|
17
|
Insulin and IGF-1 elicit robust transcriptional regulation to modulate autophagy in astrocytes. Mol Metab 2022; 66:101647. [PMID: 36503893 PMCID: PMC9731889 DOI: 10.1016/j.molmet.2022.101647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Insulin is a principal metabolic hormone. It regulates a plethora of metabolic pathways in peripheral tissues. The highly homologous insulin-like growth factor 1 (IGF-1), on the other hand, is important for development and growth. Recent studies have shown that insulin and IGF-1 signaling plays fundamental roles in the brain. Loss of insulin or IGF-1 receptors in astrocytes leads to altered glucose handling, mitochondrial metabolism, neurovascular coupling, and behavioral abnormalities in mice. Here, we aim to investigate molecular mechanisms by which insulin and IGF-1 signaling regulates astrocyte functions. METHODS IR-flox and IRKO primary astrocytes were treated with 100 nM insulin or IGF-1 for 6 h, and their transcriptomes were analyzed. Astrocytes with either IR deletion, IGF1R deletion or both were used to examine receptor-dependent transcriptional regulations using qPCR. Additional immunoblotting and confocal imaging studies were performed to functionally validate pathways involved in protein homeostasis. RESULTS Using next-generation RNA sequencing, we show that insulin significantly regulates the expression of over 1,200 genes involved in multiple functional processes in primary astrocytes. Insulin-like growth factor 1 (IGF-1) triggers a similar robust transcriptional regulation in astrocytes. Thus, over 50% of the differentially expressed genes are regulated by both ligands. As expected, these commonly regulated genes are highly enriched in pathways involved in lipid and cholesterol biosynthesis. Additionally, insulin and IGF-1 induce the expression of genes involved in ribosomal biogenesis, while suppressing the expression of genes involved in autophagy, indicating a common role of insulin and IGF-1 on protein homeostasis in astrocytes. Insulin-dependent suppression of autophagy genes, including p62, Ulk1/2, and several Atg genes, is blunted only when both IR and IGF1R are deleted. CONCLUSIONS In summary, insulin and IGF-1 potently suppress autophagy in astrocytes through transcriptional regulation. Both IR and IGF1R can elicit ligand-dependent transcriptional suppression of autophagy. These results demonstrate an important role of astrocytic insulin/IGF-1 signaling on proteostasis. Impairment of this regulation in insulin resistance and diabetes may contribute to neurological complications related to diabetes.
Collapse
|
18
|
Mengstie MA, Abebe EC, Teklemariam AB, Mulu AT, Teshome AA, Zewde EA, Muche ZT, Azezew MT. Molecular and cellular mechanisms in diabetic heart failure: Potential therapeutic targets. Front Endocrinol (Lausanne) 2022; 13:947294. [PMID: 36120460 PMCID: PMC9478122 DOI: 10.3389/fendo.2022.947294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/12/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes Mellitus (DM) is a worldwide health issue that can lead to a variety of complications. DM is a serious metabolic disorder that causes long-term microvascular and macro-vascular complications, as well as the failure of various organ systems. Diabetes-related cardiovascular diseases (CVD) including heart failure cause significant morbidity and mortality worldwide. Concurrent hypertensive heart disease and/or coronary artery disease have been thought to be the causes of diabetic heart failure in DM patients. However, heart failure is extremely common in DM patients even in the absence of other risk factors such as coronary artery disease and hypertension. The occurrence of diabetes-induced heart failure has recently received a lot of attention. Understanding how diabetes increases the risk of heart failure and how it mediates major cellular and molecular alteration will aid in the development of therapeutics to prevent these changes. Hence, this review aimed to summarize the current knowledge and most recent findings in cellular and molecular mechanisms of diabetes-induced heart failure.
Collapse
Affiliation(s)
- Misganaw Asmamaw Mengstie
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Endeshaw Chekol Abebe
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Awgichew Behaile Teklemariam
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Anemut Tilahun Mulu
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Assefa Agegnehu Teshome
- Department of Anatomy, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Edgeit Abebe Zewde
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Zelalem Tilahun Muche
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Muluken Teshome Azezew
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
19
|
Function and regulation of ULK1: From physiology to pathology. Gene 2022; 840:146772. [PMID: 35905845 DOI: 10.1016/j.gene.2022.146772] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/03/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022]
Abstract
The expression of ULK1, a core protein of autophagy, is closely related to autophagic activity. Numerous studies have shown that pathological abnormal expression of ULK1 is associated with various human diseases such as neurological disorders, infections, cardiovascular diseases, liver diseases and cancers. In addition, new advances in the regulation of ULK1 have been identified. Furthermore, targeting ULK1 as a therapeutic strategy for diseases is gaining attention as new corresponding activators or inhibitors are being developed. In this review, we describe the structure and regulation of ULK1 as well as the current targeted activators and inhibitors. Moreover, we highlight the pathological disorders of ULK1 expression and its critical role in human diseases.
Collapse
|
20
|
Kötter S, Krüger M. Protein Quality Control at the Sarcomere: Titin Protection and Turnover and Implications for Disease Development. Front Physiol 2022; 13:914296. [PMID: 35846001 PMCID: PMC9281568 DOI: 10.3389/fphys.2022.914296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Sarcomeres are mainly composed of filament and signaling proteins and are the smallest molecular units of muscle contraction and relaxation. The sarcomere protein titin serves as a molecular spring whose stiffness mediates myofilament extensibility in skeletal and cardiac muscle. Due to the enormous size of titin and its tight integration into the sarcomere, the incorporation and degradation of the titin filament is a highly complex task. The details of the molecular processes involved in titin turnover are not fully understood, but the involvement of different intracellular degradation mechanisms has recently been described. This review summarizes the current state of research with particular emphasis on the relationship between titin and protein quality control. We highlight the involvement of the proteasome, autophagy, heat shock proteins, and proteases in the protection and degradation of titin in heart and skeletal muscle. Because the fine-tuned balance of degradation and protein expression can be disrupted under pathological conditions, the review also provides an overview of previously known perturbations in protein quality control and discusses how these affect sarcomeric proteins, and titin in particular, in various disease states.
Collapse
|
21
|
Soluble Epoxide Hydrolase Inhibition Protected against Diabetic Cardiomyopathy through Inducing Autophagy and Reducing Apoptosis Relying on Nrf2 Upregulation and Transcription Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3773415. [PMID: 35378826 PMCID: PMC8976467 DOI: 10.1155/2022/3773415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/03/2022] [Accepted: 02/22/2022] [Indexed: 01/06/2023]
Abstract
Background Many patients with diabetes die from diabetic cardiomyopathy (DCM); however, effective strategies for the prevention or treatment of DCM have not yet been clarified. Methods Leptin receptor-deficient (db/db) mice were treated with either the soluble epoxide hydrolase (sEH) inhibitor AUDA or vehicle alone. A virus carrying Nrf2 shRNA was used to manipulate Nrf2 expression in db/db mice. Cardiac structures and functions were analyzed using echocardiography and hemodynamic examinations. Primary cardiomyocytes cultured under high glucose and high fat (HGHF) conditions were used to conduct in vitro loss-of-function assays after culture in the presence or absence of AUDA (1 μM). Fluorescence microscopy-based detection of mCherry-GFP-LC3 was performed to assess autophagic flux. Results The sEH inhibitor AUDA significantly attenuated ventricular remodeling and ameliorated cardiac dysfunction in db/db mice. Interestingly, AUDA upregulated Nrf2 expression and promoted its nuclear translocation in db/db mice and the HGHF-treated cardiomyocytes. Additionally, AUDA increased autophagy and decreased apoptosis in db/db mice heart. Furthermore, the administration of AUDA promoted autophagic flux and elevated LC3-II protein level in the presence of bafilomycin A1. However, AUDA-induced autophagy was abolished, and the antiapoptotic effect was partially inhibited upon Nrf2 knockdown. Conclusion Our findings suggest that the sEH inhibitor AUDA attenuates cardiac remodeling and dysfunction in DCM via increasing autophagy and reducing apoptosis, which is relevant to activate Nrf2 signaling pathway.
Collapse
|
22
|
Ma K, Li Y, Dong X, Guo J. AMPK-mediated autophagy modulates the inflammatory cytokine expression in intestinal epithelial cells induced by high glucose. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221106506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction: The homeostasis of intestinal epithelial cells (IECs) is disrupted in diabetes, leading to functional changes of the gastrointestinal tract and increasing the risk of diabetic enteropathy. Methods: The aim of this study is to explore the effect of autophagy on the expression of inflammatory factors under high glucose in vitro. The effect of glucose at different concentrations (5, 10, 30 and 50 Mm) on IEC-6 cells was analyzed. Dorsomorphin (AMPK antagonist) and GSK621 (AMPK agonist) were used to examine the relationship between the autophagy and the AMPK/ULK1 signaling pathway in IEC-6 cells. Results: Our results showed that the high glucose significantly inhibited the growth of IECs, and induced more shrinkage and necrosis of cells. Autophagy was inhibited by high glucose. Furthermore, the levels of cytokines, including IL-22, INF-γ, NOS2, and TNF-α, were significantly increased, which were positively correlated with glucose concentration. Additionally, we confirmed that Dorsomorphin down-regulated the expression of p-AMPK and autophagy protein compared with GSK621. Similar, cellular immunofluorescence also detected low autophagy expression. However, GSK621 and Rapamycin increased the level of autophagy and down-regulated the secretion of pro-inflammatory factors compared with Dorsomorphin. Conclusion: Therefore, our results demonstrate that AMPK mediated autophagy may regulate levels of inflammation in IECs and improve cell survival under high glucose.
Collapse
Affiliation(s)
- Kun Ma
- Department of Pediatrics, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yun Li
- Department of Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaolin Dong
- Department of General medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingjing Guo
- Department of General medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
23
|
Wang P, Huang Y, Ren J, Rong Y, Fan L, Zhang P, Zhang X, Xi J, Mao S, Su M, Zhang B, Bao GH, Wu F. Large-leaf yellow tea attenuates high glucose-induced vascular endothelial cells injury by up-regulating autophagy and down-regulating oxidative stress. Food Funct 2022; 13:1890-1905. [DOI: 10.1039/d1fo03405g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vascular endothelial cells injury induced by high glucose (HG) plays an important role in the occurrence and development of diabetic vascular complications. Yellow tea has a protective effect on vascular...
Collapse
|
24
|
Wang X, Zhang Y, Li Y, Tang M, Deng Q, Mao J, Du L. Estrogen Regulates Glucose Metabolism in Cattle Neutrophils Through Autophagy. Front Vet Sci 2021; 8:773514. [PMID: 34912878 PMCID: PMC8666889 DOI: 10.3389/fvets.2021.773514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Hypoglycemia resulting from a negative energy balance (NEB) in periparturient cattle is the major reason for a reduced glycogen content in polymorphonuclear neutrophils (PMNs). The lack of glycogen induces PMNs dysfunction and is responsible for the high incidence of perinatal diseases. The perinatal period is accompanied by dramatic changes in sex hormones levels of which estrogen (17β-estradiol, E2) has been shown to be closely associated with PMNs function. However, the precise regulatory mechanism of E2 on glucose metabolism in cattle PMNs has not been elucidated. Cattle PMNs were cultured in RPMI 1640 with 2.5 (LG), 5.5 (NG) and 25 (HG) mM glucose and E2 at 20 (EL), 200 (EM) and 450 (EH) pg/mL. We found that E2 maintained PMNs viability in different glucose conditions, and promoted glycogen synthesis by inhibiting PFK1, G6PDH and GSK-3β activity in LG while enhancing PFK1 and G6PDH activity and inhibiting GSK-3β activity in HG. E2 increased the ATP content in LG but decreased it in HG. This indicated that the E2-induced increase/decrease of ATP content may be independent of glycolysis and the pentose phosphate pathway (PPP). Further analysis showed that E2 promoted the activity of hexokinase (HK) and GLUT1, GLUT4 and SGLT1 expression in LG, while inhibiting GLUT1, GLUT4 and SGLT1 expression in HG. Finally, we found that E2 increased LC3, ATG5 and Beclin1 expression, inhibited p62 expression, promoting AMPK-dependent autophagy in LG, but with the opposite effect in HG. Moreover, E2 increased the Bcl-2/Bax ratio and decreased the apoptosis rate of PMNs in LG but had the opposite effect in HG. These results showed that E2 could promote AMPK-dependent autophagy and inhibit apoptosis in response to glucose-deficient environments. This study elucidated the detailed mechanism by which E2 promotes glycogen storage through enhancing glucose uptake and retarding glycolysis and the PPP in LG. Autophagy is essential for providing ATP to maintain the survival and immune potential of PMNs. These results provided significant evidence for further understanding the effects of E2 on PMNs immune potential during the hypoglycemia accompanying perinatal NEB in cattle.
Collapse
Affiliation(s)
- Xinbo Wang
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Yuming Zhang
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Yansong Li
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Mingyu Tang
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Qinghua Deng
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Jingdong Mao
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Liyin Du
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| |
Collapse
|
25
|
Tong M, Saito T, Zhai P, Oka SI, Mizushima W, Nakamura M, Ikeda S, Shirakabe A, Sadoshima J. Alternative Mitophagy Protects the Heart Against Obesity-Associated Cardiomyopathy. Circ Res 2021; 129:1105-1121. [PMID: 34724805 DOI: 10.1161/circresaha.121.319377] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RATIONALE Obesity-associated cardiomyopathy characterized by hypertrophy and mitochondrial dysfunction. Mitochondrial quality control mechanisms, including mitophagy, are essential for the maintenance of cardiac function in obesity-associated cardiomyopathy. However, autophagic flux peaks at around 6 weeks of high-fat diet (HFD) consumption and declines thereafter. OBJECTIVE We investigated whether mitophagy is activated during the chronic phase of cardiomyopathy associated with obesity (obesity cardiomyopathy) after general autophagy is downregulated and, if so, what the underlying mechanism and the functional significance are. METHODS AND RESULTS Mice were fed either a normal diet or a HFD (60 kcal% fat). Mitophagy, evaluated using Mito-Keima, was increased after 3 weeks of HFD consumption and continued to increase after conventional mechanisms of autophagy were inactivated, at least until 24 weeks. HFD consumption time-dependently upregulated both Ser555-phosphorylated Ulk1 (unc-51 like kinase 1) and Rab9 (Ras-related protein Rab-9) in the mitochondrial fraction. Mitochondria were sequestrated by Rab9-positive ring-like structures in cardiomyocytes isolated from mice after 20 weeks of HFD consumption, consistent with the activation of alternative mitophagy. Increases in mitophagy induced by HFD consumption for 20 weeks were abolished in cardiac-specific ulk1 knockout mouse hearts, in which both diastolic and systolic dysfunction were exacerbated. Rab9 S179A knock-in mice, in which alternative mitophagy is selectively suppressed, exhibited impaired mitophagy and more severe cardiac dysfunction than control mice following HFD consumption for 20 weeks. Overexpression of Rab9 in the heart increased mitophagy and protected against cardiac dysfunction during HFD consumption. HFD-induced activation of Rab9-dependent mitophagy was accompanied by upregulation of TFE3 (transcription factor binding to IGHM enhancer 3), which plays an essential role in transcriptional activation of mitophagy. CONCLUSIONS Ulk1-Rab9-dependent alternative mitophagy is activated during the chronic phase of HFD consumption and serves as an essential mitochondrial quality control mechanism, thereby protecting the heart against obesity cardiomyopathy.
Collapse
Affiliation(s)
- Mingming Tong
- Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School (M.T., T.S., P.Z., S.-i.O., W.M., M.N., S.I., A.S., J.S.)
| | - Toshiro Saito
- Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School (M.T., T.S., P.Z., S.-i.O., W.M., M.N., S.I., A.S., J.S.).,Yamaguchi University Graduate School of Medicine, Japan (T.S.)
| | - Peiyong Zhai
- Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School (M.T., T.S., P.Z., S.-i.O., W.M., M.N., S.I., A.S., J.S.)
| | - Shin-Ichi Oka
- Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School (M.T., T.S., P.Z., S.-i.O., W.M., M.N., S.I., A.S., J.S.)
| | - Wataru Mizushima
- Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School (M.T., T.S., P.Z., S.-i.O., W.M., M.N., S.I., A.S., J.S.).,Graduate School of Medicine, Hokkaido University, Japan (W.M.)
| | - Michinari Nakamura
- Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School (M.T., T.S., P.Z., S.-i.O., W.M., M.N., S.I., A.S., J.S.)
| | - Shohei Ikeda
- Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School (M.T., T.S., P.Z., S.-i.O., W.M., M.N., S.I., A.S., J.S.).,International University of Health and Welfare Hospital, Japan (S.I.)
| | - Akihiro Shirakabe
- Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School (M.T., T.S., P.Z., S.-i.O., W.M., M.N., S.I., A.S., J.S.).,Nippon Medical School Chiba Hokusoh Hospital, Japan (A.S.)
| | - Junichi Sadoshima
- Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School (M.T., T.S., P.Z., S.-i.O., W.M., M.N., S.I., A.S., J.S.)
| |
Collapse
|
26
|
Yang Y, Xiang P, Chen Q, Luo Y, Wang H, Li H, Yang L, Hu C, Zhang J, Li Y, Xia H, Chen Z, Yang J. The imbalance of PGD2-DPs pathway is involved in the type 2 diabetes brain injury by regulating autophagy. Int J Biol Sci 2021; 17:3993-4004. [PMID: 34671214 PMCID: PMC8495389 DOI: 10.7150/ijbs.60149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022] Open
Abstract
Prostaglandin D2 (PGD2) is the most abundant prostaglandin in the brain, but its involvement in brain damage caused by type 2 diabetes (T2D) has not been reported. In the present study, we found that increased PGD2 content is related to the inhibition of autophagy, which aggravates brain damage in T2D, and may be involved in the imbalanced expression of the corresponding PGD2 receptors DP1 and DP2. We demonstrated that DP2 inhibited autophagy and promotedT2D-induced brain damage by activating the PI3K/AKT/mTOR pathway, whereas DP1enhanced autophagy and amelioratedT2D brain damage by activating the cAMP/PKA pathway. In a T2D rat model, DP1 expression was decreased, and DP2 expression was increased; therefore, the imbalance in PGD2-DPs may be involved in T2D brain damage through the regulation of autophagy. However, there have been no reports on whether PKA can directly inhibit mTOR. The PKA catalytic subunit (PKA-C) has three subtypes (α, β and γ), and γ is not expressed in the brain. Subsequently, we suggested that PKA could directly interact with mTOR through PKA-C(α) and PKA-C(β). Our results suggest that the imbalance in PGD2-DPs is related to changes in autophagy levels in T2D brain damage, and PGD2 is involved in T2D brain damage by promoting autophagy via DP1-PKA/mTOR and inhibiting autophagy via DP2-PI3K/AKT/mTOR.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China.,Department of Pharmacology, Chongqing Health Center for Women and Children Chongqing 400016, China
| | - Pu Xiang
- Department of pharmacy,Dianjiang People's Hospital of Chongqing, Dianjiang, Chongqing 408300, China
| | - Qi Chen
- Pharmacy department of GuiZhou Provincial People,s Hospital, Guiyang 550000, China
| | - Ying Luo
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hong Wang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Huan Li
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Lu Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Congli Hu
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Jiahua Zhang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yuke Li
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hui Xia
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Zhihao Chen
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| |
Collapse
|
27
|
Wu X, Zhang T, Lyu P, Chen M, Ni G, Cheng H, Xu G, Li X, Wang L, Shang H. Traditional Chinese Medication Qiliqiangxin Attenuates Diabetic Cardiomyopathy via Activating PPARγ. Front Cardiovasc Med 2021; 8:698056. [PMID: 34336956 PMCID: PMC8322738 DOI: 10.3389/fcvm.2021.698056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Diabetic cardiomyopathy is the primary complication associated with diabetes mellitus and also is a major cause of death and disability. Limited pharmacological therapies are available for diabetic cardiomyopathy. Qiliqiangxin (QLQX), a Chinese medication, has been proven to be beneficial for heart failure patients. However, the role and the underlying protective mechanisms of QLQX in diabetic cardiomyopathy remain largely unexplored. Methods: Primary neonatal rat cardiomyocytes (NRCMs) were treated with glucose (HG, 40 mM) to establish the hyperglycemia-induced apoptosis model in vitro. Streptozotocin (STZ, 50 mg/kg/day for 5 consecutive days) was intraperitoneally injected into mice to establish the diabetic cardiomyopathy model in vivo. Various analyses including qRT-PCR, western blot, immunofluorescence [terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining] histology (hematoxylin-eosin and Masson's trichrome staining), and cardiac function (echocardiography) were performed in these mice. QLQX (0.5 μg/ml in vitro and 0.5 g/kg/day in vivo) was used in this study. Results: QLQX attenuated hyperglycemia-induced cardiomyocyte apoptosis via activating peroxisome proliferation-activated receptor γ (PPARγ). In vivo, QLQX treatment protected mice against STZ-induced cardiac dysfunction and pathological remodeling. Conclusions: QLQX attenuates diabetic cardiomyopathy via activating PPARγ.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Lyu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengli Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gehui Ni
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiling Cheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guie Xu
- Cardiac Regeneration and Ageing Lab, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Institute of Cardiovascular Sciences, Shanghai University, Shanghai, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lijun Wang
- Cardiac Regeneration and Ageing Lab, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Institute of Cardiovascular Sciences, Shanghai University, Shanghai, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
28
|
Naguib M, Tarabay A, ElSaraf N, Rashed L, ElMeligy A. Beclin1 circulating level as predictor of carotid intima-media thickness in patients with type 2 diabetes mellitus. Medicine (Baltimore) 2021; 100:e26630. [PMID: 34260553 PMCID: PMC8284749 DOI: 10.1097/md.0000000000026630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/23/2021] [Indexed: 11/27/2022] Open
Abstract
Type 2 diabetes (T2DM) represents a major risk factor for atherosclerosis that is the underlying cause of most cardiovascular diseases. Identifying reliable predictive biomarkers are needed to improve the long-term outcome in diabetic patients. Autophagy plays a pivotal role in the pathogenesis of atherosclerosis. Beclin1 is a key regulatory protein of autophagy and has been localized in human atherosclerotic lesions. However, the relation of serum level of Beclin1 and atherosclerosis in patients with diabetes has not been clarified yet.To assess the relationship between serum level of Beclin1 and carotid intima-media thickness (CIMT) in patients with T2DM.In this case-control study participants were recruited from tertiary care hospitals in Egypt. The study enrolled 50 patients with T2DM and 25 healthy subjects between January, 2019 and January, 2020. Age, gender, and body mass index were recorded for all subjects. Laboratory works up including glycated hemoglobin, lipid panel, and serum Beclin1 (by enzyme-linked immunosorbent assay) were measured. CIMT was assessed by color Doppler. Comparisons between patients and the control group were done using analysis of variance and Chi-square test. Correlations between CIMT and Beclin1 level and different variables were done using the Pearson correlation coefficient. Receiver operator characteristic curve was constructed with the area under curve analysis performed to detect the best cutoff value of Beclin1 for detection of CIMT > 0.05 cm.The level of Beclin1 in the patient group was significantly lower compared with that in the control group (1.28 ± 0.51 vs 5.24 ± 1.22 ng/dL, P < .001). The level of Beclin1 apparently decreased in the higher CIMT group in T2DM patients. Serum Beclin1 levels were negatively correlated with CIMT (r = -0.762; P < .001), low-density lipoprotein-cholesterol (r = -0.283; P = .04), and triglycerides (r = -0.350; P = .01) but positively correlated with high-density lipoprotein-cholesterol (r = 0.491; P < .001) in patients with T2DM. Beclin1 level >2.2 ng/dL was an accurate predictor of CIMT >0.05 cm with an area under the curve value of 0.997, 93.9% sensitivity, and 100% specificity.Beclin1 levels were negatively correlated with atherosclerotic load in patients with T2DM and it may be considered as a promising diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Mervat Naguib
- Diabetes and Endocrinology Unite, Faculty of Medicine Kasr Al-Ainy Hospital, Cairo University, Egypt
- Internal Medicine Department, Faculty of Medicine Kasr Al-Ainy Hospital, Cairo University, Egypt
| | - Aya Tarabay
- Diabetes and Endocrinology Unite, Faculty of Medicine Kasr Al-Ainy Hospital, Cairo University, Egypt
- Internal Medicine Department, Faculty of Medicine Kasr Al-Ainy Hospital, Cairo University, Egypt
| | - Nashwa ElSaraf
- Internal Medicine Department, Faculty of Medicine Kasr Al-Ainy Hospital, Cairo University, Egypt
| | - Lila Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Egypt
| | - Amr ElMeligy
- Diabetes and Endocrinology Unite, Faculty of Medicine Kasr Al-Ainy Hospital, Cairo University, Egypt
- Internal Medicine Department, Faculty of Medicine Kasr Al-Ainy Hospital, Cairo University, Egypt
| |
Collapse
|
29
|
Dewanjee S, Vallamkondu J, Kalra RS, John A, Reddy PH, Kandimalla R. Autophagy in the diabetic heart: A potential pharmacotherapeutic target in diabetic cardiomyopathy. Ageing Res Rev 2021; 68:101338. [PMID: 33838320 DOI: 10.1016/j.arr.2021.101338] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/24/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
Association of diabetes with an elevated risk of cardiac failure has been clinically evident. Diabetes potentiates diastolic and systolic cardiac failure following the myocardial infarction that produces the cardiac muscle-specific microvascular complication, clinically termed as diabetic cardiomyopathy. Elevated susceptibility of diabetic cardiomyopathy is primarily caused by the generation of free radicals in the hyperglycemic milieu, compromising the myocardial contractility and normal cardiac functions with increasing redox insult, impaired mitochondria, damaged organelles, apoptosis, and cardiomyocytes fibrosis. Autophagy is essentially involved in the recycling/clearing the damaged organelles, cytoplasmic contents, and aggregates, which are frequently produced in cardiomyocytes. Although autophagy plays a vital role in maintaining the cellular homeostasis in diligent cardiac tissues, this process is frequently impaired in the diabetic heart. Given its clinical significance, accumulating evidence largely showed the functional aspects of autophagy in diabetic cardiomyopathy, elucidating its intricate protective and pathogenic outcomes. However, etiology and molecular readouts of these contrary autophagy activities in diabetic cardiomyopathy are not yet comprehensively assessed and translated. In this review, we attempted to assess the role of autophagy and its adaptations in the diabetic heart. To delineate the molecular consequences of these events, we provided detailed insights into the autophagy regulation pieces of machinery including the mTOR/AMPK, TFEB/ZNSCAN3, FOXOs, SIRTs, PINK1/Parkin, Nrf2, miRNAs, and others in the diabetic cardiomyopathy. Given the clinical significance of autophagy in the diabetic heart, we further discussed the potential pharmacotherapeutic strategies towards targeting autophagy. Taken together, the present report meticulously assessed autophagy, its adaptations, and molecular regulations in diabetic cardiomyopathy and reviewed the current autophagy-targeting strategies.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | | | - Rajkumar Singh Kalra
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Higashi 1-1-1, Tsukuba, 305 8565, Japan.
| | - Albin John
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal, 506007, Telangana, India; Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, 50000, Telangana, India.
| |
Collapse
|
30
|
Mibefradil Alleviates High-Glucose-induced Cardiac Hypertrophy by Inhibiting PI3K/Akt/mTOR-mediated Autophagy. J Cardiovasc Pharmacol 2021; 76:246-254. [PMID: 32433360 DOI: 10.1097/fjc.0000000000000844] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cardiac hypertrophy causes heart failure and is associated with hyperglycemia in patients with diabetes mellitus. Mibefradil, which acts as a T-type calcium channel blocker, exerts beneficial effects in patients with heart failure. In this study, we explored the effects and mechanism of mibefradil on high-glucose-induced cardiac hypertrophy in H9c2 cells. H9c2 cells were incubated in a high-glucose medium and then treated with different concentrations of mibefradil in the presence or absence of the Akt inhibitor MK2206 or mTOR inhibitor rapamycin. Cell size was evaluated through immunofluorescence, and mRNA expression of cardiac hypertrophy markers (atrial natriuretic peptide, brain natriuretic peptide, and β-myosin heavy chain) was assessed by using quantitative real-time polymerase chain reaction. Changes in the expression of p-PI3K, p-Akt, and p-mTOR were evaluated using Western blotting, and autophagosome formation was detected using transmission electron microscopy. Our results indicate that mibefradil reduced the size of H9c2 cells, decreased mRNA expression of atrial natriuretic peptide, brain natriuretic peptide, and β-myosin heavy chain, and decreased the level of autophagic flux. However, MK2206 and rapamycin induced autophagy and reversed the effects of mibefradil on high-glucose-induced H9c2 cells. In conclusion, mibefradil ameliorated high-glucose-induced cardiac hypertrophy by activating the PI3K/Akt/mTOR pathway and inhibiting excessive autophagy. Our study shows that mibefradil can be used therapeutically to ameliorate cardiac hypertrophy in patients with diabetes mellitus.
Collapse
|
31
|
Autophagy attenuates high glucose-induced oxidative injury to lens epithelial cells. Biosci Rep 2021; 40:222411. [PMID: 32186721 PMCID: PMC7109002 DOI: 10.1042/bsr20193006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/24/2020] [Accepted: 03/17/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose: Autophagic dysfunction and abnormal oxidative stress are associated with cataract. The purpose of the present study was to investigate the changes of cellular autophagy and oxidative stress and their association in lens epithelial cells (LECs) upon exposure to high glucose. Methods: Autophagy and oxidative stress-related changes were detected in streptozotocin-induced Type 1 diabetic mice and normal mouse LECs incubated in high glucose conditions. Rapamycin at a concentration of 100 nm/l or 50 μM chloroquine was combined for analysis of the relationship between autophagy and oxidative stress. The morphology of LECs during autophagy was observed by transmission electron microscopy. The expressions of autophagy markers (LC3B and p62) were identified, as well as the key factors of oxidative stress (SOD2 and CAT) and mitochondrial reactive oxygen species (ROS) generation. Results: Transmission electron microscopy indicated an altered autophagy activity in diabetic mouse lens tissues with larger autophagosomes and multiple mitochondria. Regarding the expressions, LC3B was elevated, p62 was decreased first and then increased, and SOD2 and CAT were increased before a decrease during 4 months of follow-up in diabetic mice and 72 h of culture under high glucose for mouse LECs. Furthermore, rapamycin promoted the expressions of autophagy markers but alleviated those of oxidative stress markers, whereas chloroquine antagonized autophagy but enhanced oxidative stress by elevating ROS generation in LECs exposed to high glucose. Conclusions: The changes in autophagy and oxidative stress were fluctuating in the mouse LECs under constant high glucose conditions. Autophagy might attenuate high glucose-induced oxidative injury to LECs.
Collapse
|
32
|
Jiang K, Xu Y, Wang D, Chen F, Tu Z, Qian J, Xu S, Xu Y, Hwa J, Li J, Shang H, Xiang Y. Cardioprotective mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of autosis. Protein Cell 2021; 13:336-359. [PMID: 33417139 PMCID: PMC9008115 DOI: 10.1007/s13238-020-00809-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/25/2022] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce cardiovascular mortality in patients with diabetes mellitus but the protective mechanism remains elusive. Here we demonstrated that the SGLT2 inhibitor, Empagliflozin (EMPA), suppresses cardiomyocytes autosis (autophagic cell death) to confer cardioprotective effects. Using myocardial infarction (MI) mouse models with and without diabetes mellitus, EMPA treatment significantly reduced infarct size, and myocardial fibrosis, thereby leading to improved cardiac function and survival. In the context of ischemia and nutritional glucose deprivation where autosis is already highly stimulated, EMPA directly inhibits the activity of the Na+/H+ exchanger 1 (NHE1) in the cardiomyocytes to regulate excessive autophagy. Knockdown of NHE1 significantly rescued glucose deprivation-induced autosis. In contrast, overexpression of NHE1 aggravated the cardiomyocytes death in response to starvation, which was effectively rescued by EMPA treatment. Furthermore, in vitro and in vivo analysis of NHE1 and Beclin 1 knockout mice validated that EMPA’s cardioprotective effects are at least in part through downregulation of autophagic flux. These findings provide new insights for drug development, specifically targeting NHE1 and autosis for ventricular remodeling and heart failure after MI in both diabetic and non-diabetic patients.
Collapse
Affiliation(s)
- Kai Jiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yue Xu
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Dandan Wang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Feng Chen
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zizhuo Tu
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jie Qian
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Sheng Xu
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, 200237, China
| | - John Hwa
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
33
|
Kobayashi S, Zhao F, Zhang Z, Kobayashi T, Huang Y, Shi B, Wu W, Liang Q. Mitochondrial Fission and Mitophagy Coordinately Restrict High Glucose Toxicity in Cardiomyocytes. Front Physiol 2020; 11:604069. [PMID: 33362579 PMCID: PMC7758327 DOI: 10.3389/fphys.2020.604069] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/16/2020] [Indexed: 11/15/2022] Open
Abstract
Hyperglycemia-induced mitochondrial dysfunction plays a key role in the pathogenesis of diabetic cardiomyopathy. Injured mitochondrial segments are separated by mitochondrial fission and eliminated by autophagic sequestration and subsequent degradation in the lysosome, a process termed mitophagy. However, it remains poorly understood how high glucose affects the activities of, and the relationship between, mitochondrial fission and mitophagy in cardiomyocytes. In this study, we determined the functional roles of mitochondrial fission and mitophagy in hyperglycemia-induced cardiomyocyte injury. High glucose (30 mM, HG) reduced mitochondrial connectivity and particle size and increased mitochondrial number in neonatal rat ventricular cardiomyocytes, suggesting an enhanced mitochondrial fragmentation. SiRNA knockdown of the pro-fission factor dynamin-related protein 1 (DRP1) restored mitochondrial size but did not affect HG toxicity, and Mdivi-1, a DRP1 inhibitor, even increased HG-induced cardiomyocyte injury, as shown by superoxide production, mitochondrial membrane potential and cell death. However, DRP1 overexpression triggered mitochondrial fragmentation and mitigated HG-induced cardiomyocyte injury, suggesting that the increased mitochondrial fission is beneficial, rather than detrimental, to cardiomyocytes cultured under HG conditions. This is in contrast to the prevailing hypothesis that mitochondrial fragmentation mediates or contributes to HG cardiotoxicity. Meanwhile, HG reduced mitophagy flux as determined by the difference in the levels of mitochondria-associated LC3-II or the numbers of mitophagy foci indicated by the novel dual fluorescent reporter mt-Rosella in the absence and presence of the lysosomal inhibitors. The ability of HG to induce mitochondrial fragmentation and inhibit mitophagy was reproduced in adult mouse cardiomyocytes. Overexpression of Parkin, a positive regulator of mitophagy, or treatment with CCCP, a mitochondrial uncoupler, induced mitophagy and attenuated HG-induced cardiomyocyte death, while Parkin knockdown had opposite effects, suggesting an essential role of mitophagy in cardiomyocyte survival under HG conditions. Strikingly, Parkin overexpression increased mitochondrial fragmentation, while DRP1 overexpression accelerated mitophagy flux, demonstrating a reciprocal activation loop that controls mitochondrial fission and mitophagy. Thus, strategies that promote the mutual positive interaction between mitochondrial fission and mitophagy while simultaneously maintain their levels within the physiological range would be expected to improve mitochondrial health, alleviating hyperglycemic cardiotoxicity.
Collapse
Affiliation(s)
- Satoru Kobayashi
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Fengyi Zhao
- Department of Endocrinology, The First affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ziying Zhang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tamayo Kobayashi
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Yuan Huang
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Bingyin Shi
- Department of Endocrinology, The First affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Weihua Wu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiangrong Liang
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY, United States
| |
Collapse
|
34
|
Kaur N, Raja R, Ruiz-Velasco A, Liu W. Cellular Protein Quality Control in Diabetic Cardiomyopathy: From Bench to Bedside. Front Cardiovasc Med 2020; 7:585309. [PMID: 33195472 PMCID: PMC7593653 DOI: 10.3389/fcvm.2020.585309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heart failure is a serious comorbidity and the most common cause of mortality in diabetes patients. Diabetic cardiomyopathy (DCM) features impaired cellular structure and function, culminating in heart failure; however, there is a dearth of specific clinical therapy for treating DCM. Protein homeostasis is pivotal for the maintenance of cellular viability under physiological and pathological conditions, particularly in the irreplaceable cardiomyocytes; therefore, it is tightly regulated by a protein quality control (PQC) system. Three evolutionarily conserved molecular processes, the unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and autophagy, enhance protein turnover and preserve protein homeostasis by suppressing protein translation, degrading misfolded or unfolded proteins in cytosol or organelles, disposing of damaged and toxic proteins, recycling essential amino acids, and eliminating insoluble protein aggregates. In response to increased cellular protein demand under pathological insults, including the diabetic condition, a coordinated PQC system retains cardiac protein homeostasis and heart performance, on the contrary, inappropriate PQC function exaggerates cardiac proteotoxicity with subsequent heart dysfunction. Further investigation of the PQC mechanisms in diabetes propels a more comprehensive understanding of the molecular pathogenesis of DCM and opens new prospective treatment strategies for heart disease and heart failure in diabetes patients. In this review, the function and regulation of cardiac PQC machinery in diabetes mellitus, and the therapeutic potential for the diabetic heart are discussed.
Collapse
Affiliation(s)
- Namrita Kaur
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Rida Raja
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrea Ruiz-Velasco
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Wei Liu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
35
|
Liu C, Ma X, Zhuang J, Liu L, Sun C. Cardiotoxicity of doxorubicin-based cancer treatment: What is the protective cognition that phytochemicals provide us? Pharmacol Res 2020; 160:105062. [DOI: 10.1016/j.phrs.2020.105062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
|
36
|
Wang Q, Li R, Xiao Z, Hou C. Lycopene attenuates high glucose-mediated apoptosis in MPC5 podocytes by promoting autophagy via the PI3K/AKT signaling pathway. Exp Ther Med 2020; 20:2870-2878. [PMID: 32765784 PMCID: PMC7401945 DOI: 10.3892/etm.2020.8999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/29/2020] [Indexed: 12/19/2022] Open
Abstract
Podocyte injury serves an important role during the progression of diabetic nephropathy (DN), and lycopene (Lyc) may display a potential protective effect against DN progression. The effects of Lyc on high glucose (HG)-induced podocyte apoptosis and the underlying mechanisms are not completely understood; therefore, the present study aimed to investigate the effects of Lyc on HG-induced MPC5 podocyte apoptosis and the underlying mechanism. In the present study, MPC5 podocytes were exposed to HG and different doses of Lyc. MPC5 podocyte viability and apoptosis were assessed by performing the MTT assay and flow cytometry, respectively. To explore the effects of Lyc on the PI3K/AKT signaling pathway and autophagy, LY294002 (LY) and 3-methyladenine (3-MA) were used as PI3K and autophagy inhibitors, respectively. The expression levels of nephrin, podocin, apoptosis-related proteins (Bax, Bcl-2 and cleaved caspase-3), autophagy-related proteins [Beclin-1 and microtubule associated protein 1 light chain 3 (LC3)II/LC3I] and certain key proteins involved in the PI3K/AKT signaling pathway were measured via western blotting. The results suggested that Lyc reversed the inhibitory effect of HG on cell viability, and the protein expression levels of nephrin and podocin, as well as the promoting effect of HG on MPC5 podocyte apoptosis. In addition, under HG conditions, Lyc upregulated the phosphorylation levels of PI3K and AKT, and reduced HG- and LY-mediated MPC5 podocyte apoptosis. Moreover, Lyc further increased HG-induced protein expression levels of Beclin-1 and LC3II/LC3I, and attenuated LY-mediated inhibition of HG-induced MPC5 podocyte autophagy. In addition, the effects of Lyc on HG-mediated MPC5 podocyte apoptosis were alleviated by 3-MA. Therefore, the present study suggested that Lyc may protect against HG-induced MPC5 podocyte apoptosis by promoting autophagy activity via activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Qingfen Wang
- Department of Nephrology, Binzhou People's Hospital, Binzhou, Shandong 255610, P.R. China
| | - Rui Li
- Department of Nephrology, Binzhou People's Hospital, Binzhou, Shandong 255610, P.R. China
| | - Zhi Xiao
- Department of Nephrology, Binzhou People's Hospital, Binzhou, Shandong 255610, P.R. China
| | - Cun Hou
- Department of Nephrology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
37
|
Abstract
Autosis is an autophagy-dependent, nonapoptotic, and non-necrotic form of cell death that is characterized by unique morphological and biochemical features, including the presence of ballooning of perinuclear space (PNS) and sensitivity to cardiac glycosides, respectively. Autotic cell death may be initiated by excessive accumulation of autophagosomes rather than lysosomal degradation. Autosis is stimulated during the late phase of reperfusion after a period of ischemia in the heart when up-regulation of rubicon in the presence of continuous autophagosome production induces massive accumulation of autophagosomes. Suppression of autosis, which may reduce death of cardiomyocytes during the late phase of reperfusion, in combination with inhibition of apoptosis and necrosis targeting the early phase of injury, may enhance the effectiveness of treatment for I/R injury in the heart.
Excessive autophagy induces a defined form of cell death called autosis, which is characterized by unique morphological features, including ballooning of perinuclear space and biochemical features, including sensitivity to cardiac glycosides. Autosis is observed during the late phase of reperfusion after a period of ischemia and contributes to myocardial injury. This review discusses unique features of autosis, the involvement of autosis in myocardial injury, and the molecular mechanism of autosis. Because autosis promotes myocardial injury under some conditions, a better understanding of autosis may lead to development of novel interventions to protect the heart against myocardial stress.
Collapse
Key Words
- ATG, autophagy-related
- ATPase, adenosine triphosphatase
- ER, endoplasmic reticulum
- HIV, human immunodeficiency virus
- I/R, ischemia-reperfusion
- LBR, lamin B receptor
- Na+,K+–adenosine triphosphatase
- PI3K, phosphatidylinositol 3 kinase
- PNS, perinuclear space
- Tat, transactivation of transcription
- autophagic cell death
- autophagic flux
- autosis
- beclin 1
- rubicon
Collapse
|
38
|
De Marañon AM, Iannantuoni F, Abad-Jiménez Z, Canet F, Díaz-Pozo P, López-Domènech S, Jover A, Morillas C, Mariño G, Apostolova N, Rocha M, Victor VM. Relationship between PMN-endothelium interactions, ROS production and Beclin-1 in type 2 diabetes. Redox Biol 2020; 34:101563. [PMID: 32416353 PMCID: PMC7226867 DOI: 10.1016/j.redox.2020.101563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes is closely related to oxidative stress and cardiovascular diseases. In this study, we hypothesized that polymorphonuclear leukocytes (PMN)-endothelium interactions and autophagy are associated. We evaluated PMN-endothelial interactions, ROS production and autophagy parameters in 47 type 2 diabetic patients and 57 control subjects. PMNs from type 2 diabetic patients exhibited slower rolling velocity (p < 0.001), higher rolling flux (p < 0.001) and adhesion (p < 0.001) in parallel to higher levels of total (p < 0.05) and mitochondrial ROS (p < 0.05). When the protein expression of autophagy markers was analysed, an increase of Beclin-1 (p < 0.05), LC3I (p < 0.05), LC3II (p < 0.01) and LC3II/LC3I ratio (p < 0.05) was observed. Several correlations between ROS and leukocyte-endothelium parameters were found. Interestingly, in control subjects, an increase of Beclin-1 levels was accompanied by a decrease in the number of rolling (r = 0.561) and adhering PMNs (r = 0.560) and a rise in the velocity of the rolling PMNs (r = 0.593). In contrast, in the type 2 diabetic population, a rise in Beclin-1 levels was related to an increase in the number of rolling (r = 0.437), and adhering PMNs (r = 0.467). These results support the hypothesis that PMN-endothelium interactions, ROS levels and formation of autophagosomes, especially Beclin-1 levels, are enhanced in type 2 diabetes.
Collapse
Affiliation(s)
- Aranzazu M De Marañon
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Francesca Iannantuoni
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Zaida Abad-Jiménez
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Francisco Canet
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Pedro Díaz-Pozo
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Sandra López-Domènech
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Ana Jover
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Carlos Morillas
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Guillermo Mariño
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011, Oviedo, Spain
| | - Nadezda Apostolova
- CIBERehd - Department of Pharmacology, University of Valencia, Valencia, Spain
| | - Milagros Rocha
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; CIBERehd - Department of Pharmacology, University of Valencia, Valencia, Spain.
| | - Victor M Victor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; CIBERehd - Department of Pharmacology, University of Valencia, Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
39
|
Kobayashi S, Patel J, Zhao F, Huang Y, Kobayashi T, Liang Q. Novel Dual-Fluorescent Mitophagy Reporter Reveals a Reduced Mitophagy Flux in Type 1 Diabetic Mouse Heart. J Osteopath Med 2020; 120:446-455. [PMID: 32598458 DOI: 10.7556/jaoa.2020.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
CONTEXT Patients with diabetes are susceptible to heart failure. Defective mitochondria can cause cardiac damage. Mitochondrial autophagy or mitophagy is a quality control mechanism that eliminates dysfunctional mitochondria through lysosome degradation. Mitophagy is essential for maintaining a pool of healthy mitochondria for normal cardiac function. However, the effect of diabetes on the functional status of cardiac mitophagy remains unclear. OBJECTIVE To determine and compare cardiac mitophagy flux between diabetic and nondiabetic mice. METHODS Using a novel dual fluorescent mitophagy reporter termed mt-Rosella, we labeled and traced mitochondrial fragments that are sequestered by the autophagosome and delivered to and degraded in the lysosome. RESULTS Mitophagic activity was reduced in high-glucose-treated cardiomyocytes and in the heart tissue of type 1 diabetic mice. CONCLUSIONS Mitophagy was impaired in the heart of diabetic mice, suggesting that restoring or accelerating mitophagy flux may be a useful strategy to reduce cardiac injury caused by diabetes.
Collapse
|
40
|
Zhao G, Zhang X, Wang H, Chen Z. Beta carotene protects H9c2 cardiomyocytes from advanced glycation end product-induced endoplasmic reticulum stress, apoptosis, and autophagy via the PI3K/Akt/mTOR signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:647. [PMID: 32566584 PMCID: PMC7290636 DOI: 10.21037/atm-20-3768] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Diabetic cardiomyopathy (DCM), which is associated with many pathological processes, commonly occurs when advanced glycation end products (AGEs) are present. β-carotene (BC) is a well-known vitamin A precursor that is found in many fruits and vegetables. BC can reduce the risk of cancer and cardiovascular disease. This study aimed to investigate the effect of BC on AGE-induced myocardial injury in vitro. Methods Cell viability test was used to select 40 µM concentrations of BC to treat AGE-induced H2c9 cells. The cell apoptosis was detected by flow cytometry. Western blotting was used to measure the protein expression levels of Bcl-2-associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), cleaved caspase-3, activating transcription factor 4 (ATF4), glucose-regulated protein 78 (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), beclin 1, p62,microtubule-associated protein 1 light chain 3 (LC3), phosphorylated PI3K (p-PI3K), phosphorylated Akt (p-AKT), and phosphorylated mTOR (p-mTOR). Enzyme-linked immunosorbent assay (ELISA) was performed to measure the levels of lactate dehydrogenase (LDH) and cardiac troponin-1 (cTn-I). Reactive oxygen species (ROS) was detected by flow cytometry. The levels of malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) were used to determine MDA kits, SOD assay kit and GSH-Px kit, respectively. Results BC significantly inhibited AGE-induced cell death and apoptosis in H9c2 cells. BC had a suppressive effect on intracellular ROS production and antioxidative enzyme reduction. Moreover, BC decreased hyperactive endoplasmic reticulum (ER) stress and autophagy in H9c2 cells. Furthermore, BC exerted a cardioprotective effect in AGE-induced H9c2 cells via the activation of the PI3K/Akt/mTOR signaling pathway. Conclusions BC exhibited a cardioprotective effect AGE-induced apoptosis. Our study provides a foundation for further study into the potential value of BC for treating DCM or other heart diseases.
Collapse
Affiliation(s)
- Guochang Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoling Zhang
- Department of Surgery, the First Affiliated Hospital of Xinxiang Medical College, Xinxiang 453100, China
| | - Hui Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zheng Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
41
|
Pang Z, Wang T, Li Y, Wang L, Yang J, Dong H, Li S. Liraglutide ameliorates COCl2-induced oxidative stress and apoptosis in H9C2 cells via regulating cell autophagy. Exp Ther Med 2020; 19:3716-3722. [PMID: 32346436 PMCID: PMC7185156 DOI: 10.3892/etm.2020.8630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/13/2020] [Indexed: 11/18/2022] Open
Abstract
Protective effects of liraglutide on H9C2 cells cultured using CoCl2 and its mechanism of action were investigated. Hypoxia model was established using CoCl2-treated H9C2 cells. With liraglutide as the treatment factor, apoptosis, changes in nitric oxide (NO) and reactive oxygen species (ROS) activity, mitochondrial membrane potential and change in cell autophagy level were detected via Hoechst staining, enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR) and western blotting (WB), respectively. Liraglutide ameliorated the CoCl2-induced decrease in H9C2 cell viability, the increases in cytotoxicity and percentage of apoptotic cells as well as oxidative stress in cells. Moreover, it stimulated the elevation of cell autophagy level. However, the protective effects of liraglutide on H9C2 cells were attenuated remarkably after adding the cell autophagy inhibitor. Liraglutide can ameliorate the CoCl2-induced oxidative stress and apoptosis in H9C2 cells via regulating cell autophagy.
Collapse
Affiliation(s)
- Zhanqi Pang
- Department of Cardiology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Tao Wang
- Department of Cardiology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Yawen Li
- Department of Cardiology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Lin Wang
- Department of Cardiology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Jian Yang
- Department of Cardiology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - He Dong
- Department of Cardiology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Shijun Li
- Department of Cardiology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| |
Collapse
|
42
|
Bhattacharya D, Dutta M, Mukhopadhyay M, Bhattacharyya M, Chowdhury S, Karmakar P. The protective role of metformin in autophagic status in peripheral blood mononuclear cells of type 2 diabetic patients. Cell Biol Int 2020; 44:1628-1639. [PMID: 32237184 DOI: 10.1002/cbin.11355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 11/11/2022]
Abstract
Autophagy plays an important role in the pathophysiology of type 2 diabetes (T2D). Metformin is the most common antidiabetic drug. The main objective of this study was to explore the molecular mechanism of metformin in starvation-induced autophagy in peripheral blood mononuclear cells (PBMCs) of type 2 diabetic patients. PBMCs were isolated from 10 diabetic patients and 7 non-diabetic healthy volunteers. The autophagic puncta and markers were measured with the help of monodansylcadaverine staining and western blot. Additionally, transmission electron microscopy was also performed. No significant changes were observed in the initial autophagy marker protein levels in PBMCs of T2D after metformin treatment though diabetic PBMCs showed a high level of phospho-mammalian target of rapamycin, p62 and reduced expression of phospho-AMP-activated protein kinase and lysosomal membrane-associated protein 2, indicating a defect in autophagy. Also, induction of autophagy by tunicamycin resulted in apoptosis in diabetic PBMCs as observed by caspase-3 cleavage and reduced expression of Bcl2. Inhibition of autophagy by bafilomycin rendered consistent expression of p62 indicating a defect in the final process of autophagy. Further, electron microscopic studies also confirmed massive vacuole overload and a sign of apoptotic cell death in PBMCs of diabetic patients, whereas metformin treatment reduced the number of autophagic vacuoles perhaps by lysosomal fusion. Thus, our results indicate that defective autophagy in T2D is associated with the fusion process of lysosomes which could be overcome by metformin.
Collapse
Affiliation(s)
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-NICED, Kolkata, West Bengal, India
| | - Mainak Mukhopadhyay
- Department of Biotechnology, JIS University, Agarpara, Kolkata, West Bengal, India
| | | | - Subhankar Chowdhury
- Department of Endocrinology & Metabolism, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India
| |
Collapse
|
43
|
Electroacupuncture Relieves Suppression of Autophagy in Interstitial Cells of Cajal of Diabetic Gastroparesis Rats. Can J Gastroenterol Hepatol 2020; 2020:7920715. [PMID: 32211350 PMCID: PMC7060882 DOI: 10.1155/2020/7920715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The incidence of diabetic gastroparesis (DGP) is mainly blamed to abnormity of interstitial cells of Cajal (ICCs). Autophagy could degrade damaged proteins and organelles to keep intracellular homeostasis, and it could directly influence structure and number of cells. In this study, we aimed to figure out the relationship between DGP and autophagy of ICCs. METHODS Sixty Sprague-Dawley (SD) rats were randomly divided into normal control group (NC, 10) and modeling group (50). Rats in the modeling group were injected 2% streptozotocin (STZ) and fed with high-glucose and high-fat diet for 8 weeks in order to establish DGP rat model. After modeling, 30 successfully modeled rats were randomly selected and separated into diabetic gastroparesis group (DGP, 10), GDP rats with electroacupuncture group (EA, 10), and GDP rats with metoclopramide group (MP, 10). When the intervention was completed, blood glucose was measured by ONE TOUCH glucometer and gastrointestinal propulsive rate was detected through measuring optical density. Autophagosomes were observed under transmission electron microscope (TEM). The expression of LC3 protein and P62 protein was measured by Western blot. When ICCs were transfected with GFP-RFP-LC3 plasmid, autophagy flux was observed by laser scanning confocal microscope. RESULTS (1) After intervention, compared with blood glucose of rats in the NC group, all of the DGP, EA, and MP groups were remarkably increased (P < 0.01); compared with the DGP group, the blood glucose of the EA and MP groups was decreased greatly (P < 0.01); compared with the DGP group, the blood glucose of the EA and MP groups was decreased greatly (P < 0.01); compared with the DGP group, the blood glucose of the EA and MP groups was decreased greatly (P < 0.01); compared with the DGP group, the blood glucose of the EA and MP groups was decreased greatly (P < 0.01); compared with the DGP group, the blood glucose of the EA and MP groups was decreased greatly (P < 0.01); compared with the DGP group, the blood glucose of the EA and MP groups was decreased greatly (P < 0.01); compared with the DGP group, the blood glucose of the EA and MP groups was decreased greatly (P < 0.01); compared with the DGP group, the blood glucose of the EA and MP groups was decreased greatly (P < 0.01); compared with the DGP group, the blood glucose of the EA and MP groups was decreased greatly (P < 0.01); compared with the DGP group, the blood glucose of the EA and MP groups was decreased greatly (P < 0.01); compared with the DGP group, the blood glucose of the EA and MP groups was decreased greatly (P < 0.01); compared with the DGP group, the blood glucose of the EA and MP groups was decreased greatly (P < 0.01); compared with the DGP group, the blood glucose of the EA and MP groups was decreased greatly (P < 0.01); compared with the DGP group, the blood glucose of the EA and MP groups was decreased greatly (P < 0.01); compared with the DGP group, the blood glucose of the EA and MP groups was decreased greatly (P < 0.01). (2) Compared with gastrointestinal propulsive rate of rats in the NC group, no matter gastric emptying rate or intestinal propulsive rate, the EA and MP groups were significantly reduced (P < 0.01); compared with the NC group, gastric emptying rate and intestinal propulsive rate in the EA group were obviously decreased (P < 0.05, P < 0.01); compared with the DGP group, the EA and MP groups were increased significantly (P < 0.01). (3) Compared with the NC group, intensity of RFP and GFP in the DGP group was obviously increased (P < 0.05, P < 0.01), in other words, the DGP group accompanying suppression of autophagy; compared with the DGP group, intensity of RFP and GFP in the EA group was decreased significantly (P < 0.05, P < 0.01). (4) There was no autophagosome in the NC group, and an autophagosome existed in the DGP group. Both EA and MP groups found autophagy. (5) When coming to LC3 II/LC3 I, compared with the NC group, the ratio was enhanced in the DGP and EA groups (P < 0.01, P < 0.05); compared with the DGP group, LC3 II/LC3 I was dramatically decreased in the MP and EA groups (P < 0.01). (6) As the substrate of degradation, the expression of P62 in the other three groups was significantly increased (P < 0.01) compared with the NC group; compared with the DGP group, the amount of P62 in the EA and MP groups was reduced greatly (P < 0.01). CONCLUSION The impaired autophagy flux in ICCs is the pathological basis of diabetic gastroparesis, blaming to fusion dysfunction of autophagosome and lysosome and electroacupuncture (EA) could ease the suppression of autophagy to improve gastric motility.
Collapse
|
44
|
Hyperglycemia-induced cardiomyocyte death is mediated by lysosomal membrane injury and aberrant expression of cathepsin D. Biochem Biophys Res Commun 2019; 523:239-245. [PMID: 31862139 DOI: 10.1016/j.bbrc.2019.12.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/10/2019] [Indexed: 11/24/2022]
Abstract
Hyperglycemia is an independent risk factor for diabetic heart failure. However, the mechanisms that mediate hyperglycemia-induced cardiac damage remain poorly understood. Previous studies have shown an association between lysosomal dysfunction and diabetic heart injury. The present study examined if mimicking hyperglycemia in cultured cardiomyocytes could induce lysosomal membrane permeabilization (LMP), leading to the release of lysosome enzymes and subsequent cell death. High glucose (HG) reduced the number of lysosomes with acidic pH as shown by a fluorescent pH indicator. Also, HG induced lysosomal membrane injury as shown by an accumulation of Galectin3-RFP puncta, which was accompanied by the leakage of cathepsin D (CTSD), an aspartic protease that normally resides within the lysosomal lumen. Furthermore, CTSD expression was increased in HG-cultured cardiomyocytes and in the hearts of 2 mouse models of type 1 diabetes. Either CTSD knockdown with siRNA or inhibition of CTSD activity by pepstatin A markedly diminished HG-induced cardiomyocyte death, while CTSD overexpression exaggerated HG-induced cell death. Together, these results suggested that HG increased CTSD expression, induced LMP and triggered CTSD release from the lysosomes, which collectively contributed to HG-induced cardiomyocyte injury.
Collapse
|
45
|
Oxidative Stress in Cell Death and Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9030563. [PMID: 31781356 PMCID: PMC6875219 DOI: 10.1155/2019/9030563] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/11/2019] [Indexed: 01/10/2023]
Abstract
ROS functions as a second messenger and modulates multiple signaling pathways under the physiological conditions. However, excessive intracellular ROS causes damage to the molecular components of the cell, which promotes the pathogenesis of various human diseases. Cardiovascular diseases are serious threats to human health with extremely high rates of morbidity and mortality. Dysregulation of cell death promotes the pathogenesis of cardiovascular diseases and is the clinical target during the disease treatment. Numerous studies show that ROS production is closely linked to the cell death process and promotes the occurrence and development of the cardiovascular diseases. In this review, we summarize the regulation of intracellular ROS, the roles of ROS played in the development of cardiovascular diseases, and the programmed cell death induced by intracellular ROS. We also focus on anti-ROS system and the potential application of anti-ROS strategy in the treatment of cardiovascular diseases.
Collapse
|
46
|
Cai L, Jeong YW, Hyun SH, Yu IJ, Hwang WS, Jeon Y. Trehalose supplementation during porcine oocytes in vitro maturation improves the developmental capacity of parthenotes. Theriogenology 2019; 141:91-97. [PMID: 31521883 DOI: 10.1016/j.theriogenology.2019.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/20/2019] [Accepted: 09/05/2019] [Indexed: 01/29/2023]
Abstract
Autophagy is a critical process in early mammalian embryogenesis. Mammalian target of rapamycin (mTOR) inhibitors are major regulators of autophagy. However, mTOR plays a vital role in major signaling pathways controlling cell growth and metabolism; thus, more secure autophagy activation methods should be considered. The present study investigated the effects of supplementary trehalose, a novel mTOR-independent autophagy enhancer, on oocyte maturation and embryonic development after parthenogenetic activation (PA). Trehalose treatment during in vitro maturation (IVM) did not affect the nuclear maturation rates of oocytes. Oocytes treated with 25 mM trehalose during IVM had a significantly higher (P < 0.05) blastocyst formation rate (64.2%) after PA compared to that in control oocytes (52.0%). Blastocyst quality was also improved in the trehalose-treated group. The total cell numbers for blastocyst formation and expanded blastocyst formation were significantly increased in the trehalose-treated group (52.2% and 27.7%, respectively) compared to those in the control group (36.9% and 11.0%, respectively). Trehalose treatment led to the increased expression of LC3, an autophagy marker, in metaphase II oocytes and 4-cell stage embryos. Gene expression analysis revealed that the expression of several autophagy related genes (LAMP2, pATG5, and LC3) increased, while the Bax/Bcl2 ratio and pro-apoptotic Bak transcript levels were decreased in the trehalose-treated group. In conclusion, these results indicate that treatment with trehalose during IVM improved the developmental potential of porcine embryos by down-regulation of pro-apoptotic genes and up-regulation of autophagy-related genes and marker. Trehalose may be useful for the large-scale production of high-quality porcine blastocysts in vitro.
Collapse
Affiliation(s)
- Lian Cai
- Sooam Biotech Research Foundation, Seoul, 08359, Republic of Korea; Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yeon-Woo Jeong
- Sooam Biotech Research Foundation, Seoul, 08359, Republic of Korea
| | - Sang-Hwan Hyun
- Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Il-Jeoung Yu
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Woo-Suk Hwang
- Sooam Biotech Research Foundation, Seoul, 08359, Republic of Korea
| | - Yubyeol Jeon
- Sooam Biotech Research Foundation, Seoul, 08359, Republic of Korea; Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
47
|
Bai X, Yang X, Jia X, Rong Y, Chen L, Zeng T, Deng X, Li W, Wu G, Wang L, Li Y, Zhang J, Xiong Z, Xiong L, Wang Y, Zhu L, Zhao Y, Jin S. CAV1-CAVIN1-LC3B-mediated autophagy regulates high glucose-stimulated LDL transcytosis. Autophagy 2019; 16:1111-1129. [PMID: 31448673 DOI: 10.1080/15548627.2019.1659613] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a recognized high-risk factor for the development of atherosclerosis, in which macroautophagy/autophagy is emerging to play essential roles. The retention of low-density lipoprotein (LDL) particles in subendothelial space following transcytosis across the endothelium is the initial step of atherosclerosis. Here, we identified that high glucose could promote atherosclerosis by stimulating transcytosis of LDL. By inhibiting AMPK-MTOR-PIK3C3 pathway, high glucose suppresses the CAV-CAVIN-LC3B-mediated autophagic degradation of CAV1; therefore, more CAV1 is accumulated in the cytosol and utilized to form more caveolae in the cell membrane and facilitates the LDL transcytosis across endothelial cells. For a proof of concept, higher levels of lipids were accumulated in the subendothelial space of umbilical venous walls from pregnant women with gestational diabetes mellitus (GDM), compared to those of pregnant women without GDM. Our results reveal that high glucose stimulates LDL transcytosis by a novel CAV1-CAVIN1-LC3B signaling-mediated autophagic degradation pathway. ABBREVIATIONS 3-MA: 3-methyladenine; ACTB: actin beta; AMPK: AMP-activated protein kinase; Bafi: bafilomycin A1; CAV1: caveolin-1; CAVIN1: caveolae associated protein 1; CSD: the CAV1 scaffolding domain; GDM: gestational diabetes mellitus; IMD: intramembrane domain; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule- associated protein 1 light chain 3; MFI: mean fluorescence intensity; MTOR: mechanistic target of rapamycin kinase; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; SQSTM1/p62: sequestosome 1.
Collapse
Affiliation(s)
- Xiangli Bai
- Department of endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China.,Department of laboratory medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Xiaoyan Yang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Xiong Jia
- Department of endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Yueguang Rong
- Department of Pathogenic biology, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Lulu Chen
- Department of endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Tianshu Zeng
- Department of endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Xiuling Deng
- Department of endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Wenjing Li
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Guangjie Wu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Ling Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Ye Li
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Jing Zhang
- Department of laboratory medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Zhifan Xiong
- Department of endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Liang Xiong
- Department of laboratory medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Yumei Wang
- Department of nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Lin Zhu
- Department of endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Ying Zhao
- Department of endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Si Jin
- Department of endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China.,Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| |
Collapse
|
48
|
Pires KM, Torres NS, Buffolo M, Gunville R, Schaaf C, Davis K, Selzman CH, Gottlieb RA, Boudina S. Suppression of Cardiac Autophagy by Hyperinsulinemia in Insulin Receptor-Deficient Hearts Is Mediated by Insulin-Like Growth Factor Receptor Signaling. Antioxid Redox Signal 2019; 31:444-457. [PMID: 31088290 PMCID: PMC6653796 DOI: 10.1089/ars.2018.7640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aims: Autophagy is a catabolic process required for the maintenance of cardiac health. Insulin and insulin-like growth factor 1 (IGF-1) are potent inhibitors of autophagy and as such, one would predict that autophagy will be increased in the insulin-resistant/diabetic heart. However, autophagy is rather decreased in the hearts of diabetic/insulin-resistant mice. The aim of this study is to determine the contribution of IGF-1 receptor signaling to autophagy suppression in insulin receptor (IR)-deficient hearts. Results: Absence of IRs in the heart was associated with reduced autophagic flux, and further inhibition of autophagosome clearance reduced survival, impaired contractile function, and enhanced myocyte loss. Contrary to the in vivo setting, isolated cardiomyocytes from IR-deficient hearts exhibited unrestrained autophagy in the absence of insulin, whereas addition of insulin was able to suppress autophagy. To investigate the mechanisms involved in the maintenance of the responsiveness to insulin in IR-deficient hearts, we generated mice lacking both IRs and one copy of the IGF-1 receptor (IGF-1R) in cardiac cells and showed that these mice had increased autophagy. Innovation and Conclusion: This study unveils a new mechanism by which IR-deficient hearts can still respond to insulin to suppress autophagy, in part, through activation of IGF-1R signaling. This is a highly significant observation because it is the first to show that systemic hyperinsulinemia can suppress autophagy in IR-deficient hearts through IGF-1R signaling.
Collapse
Affiliation(s)
- Karla Maria Pires
- 1 Department of Nutrition and Integrative Physiology, Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Natalia S Torres
- 2 Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, Utah
| | - Marcio Buffolo
- 1 Department of Nutrition and Integrative Physiology, Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - River Gunville
- 1 Department of Nutrition and Integrative Physiology, Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Christin Schaaf
- 3 Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Kathryn Davis
- 2 Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, Utah
| | - Craig H Selzman
- 3 Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Roberta A Gottlieb
- 4 The Smidt Heart Institute, Cedars-Sinai Heart Institute, Los Angeles, California
| | - Sihem Boudina
- 1 Department of Nutrition and Integrative Physiology, Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
49
|
Shen Z, Chen Q, Jin T, Wang M, Ying H, Lu J, Wang M, Zhang W, Qiu F, Jin C, Zhao Y, Fu G. Theaflavin 3,3'-digallate reverses the downregulation of connexin 43 and autophagy induced by high glucose via AMPK activation in cardiomyocytes. J Cell Physiol 2019; 234:17999-18016. [PMID: 30847932 DOI: 10.1002/jcp.28432] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/03/2019] [Accepted: 02/14/2019] [Indexed: 12/16/2022]
Abstract
Theaflavin 3,3'-digallate (TF3), is reported to protect cardiomyocytes from lipotoxicity and reperfusion injury. However, the role of TF3 in the protection of high-glucose injury is still poorly understood. This study investigated the protective effects of TF3 on gap junctions and autophagy in neonatal cardiomyocytes (NRCMs). NRCMs preincubated with high glucose were coincubated with TF3. The expression of connexins and autophagy-related proteins was determined. The functioning of gap-junctional intercellular communication (GJIC) was measured by a dye transfer assay. Adenosine monophosphate-activated protein kinase (AMPK) activity was determined by western blot. Moreover, AMPK was activated with aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) or inhibited by AMPKα small interfering RNA (siRNA) to explore the role of AMPK in the modulation of connexin 43 (Cx43) and autophagy. Meanwhile, autophagy was activated or blocked to observe the change in Cx43 expression. It was found that the protein expression of Cx43 and autophagy-related proteins was increased in a TF3 dose- and time-dependent manner under high glucose. TF3 also recovered the reduced GJIC function induced by high glucose concentrations. TF3 activated phosphorylated AMPK in a time-dependent way. AMPKα siRNA abrogated the protection of TF3, while AICAR showed similar results compared to the TF3 treatment. Meanwhile, autophagy activation caused decreased Cx43, while cotreatment with baf A1 enhanced Cx43 expression further compared with the TF3 treatment alone under high glucose. We concluded that TF3 partly reversed the inhibition of Cx43 expression and autophagy induced by high glucose in NRCMs, partly by restoring AMPK activity. Inhibition of autophagy might be protective by preserving Cx43 expression in NRCMs stimulated by high glucose.
Collapse
Affiliation(s)
- Zhida Shen
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qi Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tingting Jin
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meihui Wang
- Department of Cardiology Basic Research, Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hangying Ying
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiangting Lu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ming Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenbin Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fuyu Qiu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chongying Jin
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanbo Zhao
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
50
|
Kar S, Kambis TN, Mishra PK. Hydrogen sulfide-mediated regulation of cell death signaling ameliorates adverse cardiac remodeling and diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2019; 316:H1237-H1252. [PMID: 30925069 PMCID: PMC6620689 DOI: 10.1152/ajpheart.00004.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
The death of cardiomyocytes is a precursor for the cascade of hypertrophic and fibrotic remodeling that leads to cardiomyopathy. In diabetes mellitus (DM), the metabolic environment of hyperglycemia, hyperlipidemia, and oxidative stress causes cardiomyocyte cell death, leading to diabetic cardiomyopathy (DMCM), an independent cause of heart failure. Understanding the roles of the cell death signaling pathways involved in the development of cardiomyopathies is crucial to the discovery of novel targeted therapeutics and biomarkers for DMCM. Recent evidence suggests that hydrogen sulfide (H2S), an endogenous gaseous molecule, has cardioprotective effects against cell death. However, very little is known about signaling by which H2S and its downstream targets regulate myocardial cell death in the DM heart. This review focuses on H2S in the signaling of apoptotic, autophagic, necroptotic, and pyroptotic cell death in DMCM and other cardiomyopathies, abnormalities in H2S synthesis in DM, and potential H2S-based therapeutic strategies to mitigate myocardial cell death to ameliorate DMCM.
Collapse
Affiliation(s)
- Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
- Department of Anesthesiology, University of Nebraska Medical Center , Omaha, Nebraska
| |
Collapse
|