1
|
Peterson JM, Smith TA, Rock EP, Magnani JL. Selectins in Biology and Human Disease: Opportunity in E-selectin Antagonism. Cureus 2024; 16:e61996. [PMID: 38983984 PMCID: PMC11232095 DOI: 10.7759/cureus.61996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2024] [Indexed: 07/11/2024] Open
Abstract
Selectins are cell adhesion proteins discovered in the 1980s. As C-type lectins, selectins contain an essential calcium ion in the ligand-binding pocket and recognize the isomeric tetrasaccharides sialyl Lewisx (sLex) and sialyl Lewisa (sLea). Three selectins, E-selectin, P-selectin, and L-selectin, play distinct, complementary roles in inflammation, hematopoiesis, and tumor biology. They have been implicated in the pathology of diverse inflammatory disorders, and several selectin antagonists have been tested clinically. E-selectin plays a unique role in leukocyte activation, making it an attractive target for intervention, for example, in sickle cell disease (SCD). This review summarizes selectin biology and pathology, structure and ligand binding, and selectin antagonists that have reached clinical testing with an emphasis on E-selectin.
Collapse
Affiliation(s)
| | | | - Edwin P Rock
- Development, GlycoMimetics, Inc., Rockville, USA
| | - John L Magnani
- Research and Development, GlycoTech Corporation, Rockville, USA
| |
Collapse
|
2
|
Amoabediny Z, Mittal A, Guin S, Buffone A. Let's Get Rolling: Precise Control of Microfluidic Assay Conditions to Recapitulate Selectin-Mediated Rolling Interactions of the Leukocyte Adhesion Cascade. Curr Protoc 2024; 4:e1022. [PMID: 38578028 PMCID: PMC11003720 DOI: 10.1002/cpz1.1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The leukocyte adhesion cascade governs the recruitment of circulating immune cells from the vasculature to distal sites. The initial adhesive interactions between cell surface ligands displaying sialyl-LewisX (sLeX) and endothelial E- and P-selectins serve to slow the cells down enough to interact more closely with the surface, polarize, and exit into the tissues. Therefore, precise microfluidic assays are critical in modeling how well immune cells can interact and "roll" on selectins to slow down enough to complete further steps of the cascade. Here, we present a systematic protocol for selectin mediated rolling on recombinant surfaces and endothelial cell monolayers on polyacrylamide gels of varying stiffness. We also describe step-by-step the protocol for setting up and performing the experiment and how to analyze and present the data collected. This protocol serves to simplify and detail the procedure needed to investigate the initial selectin-mediated interactions of immune cells with the vasculature. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparing dishes for cell rolling experiments Basic Protocol 2: Fabrication of polyacrylamide gels for cell rolling experiments Alternate Protocol 1: Protein conjugation with N6 linker Alternate Protocol 2: HUVEC culturing for monolayers Basic Protocol 3: Conducting cell rolling experiments on polyacrylamide gels Basic Protocol 4: ImageJ analysis of cell rolling movies Basic Protocol 5: Quantification of Fc site density on a surface (e.g., for Fc chimeras).
Collapse
Affiliation(s)
- Zeinab Amoabediny
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07103
| | - Aman Mittal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07103
| | - Subham Guin
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07103
| | - Alexander Buffone
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07103
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07103
| |
Collapse
|
3
|
Zhu Y, Neelamegham S. Knockout studies using CD34+ hematopoietic cells suggest that CD44 is a physiological human neutrophil E-selectin ligand. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553923. [PMID: 37645985 PMCID: PMC10462143 DOI: 10.1101/2023.08.18.553923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The recruitment of peripheral blood neutrophils at sites of inflammation involves a multistep cascade, starting with E- and P-selectin expressed on the inflamed vascular endothelium binding sialofucosylated glycans on leukocytes. As the glycoconjugate biosynthesis pathways in different cells are distinct, the precise carbohydrate ligands of selectins varies both across species, and between different immune cell populations in a given species. To study this aspect in human neutrophils, we developed a protocol to perform CRISPR/Cas9 gene-editing on CD34+ hHSCs (human hematopoietic stem/progenitor cells) as they are differentiated towards neutrophil lineage. This protocol initially uses a cocktail of SCF (stem-cell factor), IL-3 (interleukin-3) and FLT-3L (FMS-like tyrosine kinase 3 ligand) to expand the stem/progenitor cells followed by directed differentiation to neutrophils using G-CSF (granulocyte colony-stimulating factor). Microfluidics based assays were performed on a confocal microscope platform to characterize the rolling phenotype of each edited cell type in mixed populations. These studies demonstrated that CD44, but not CD43, is a major E-selectin ligand on human neutrophils. The loss of function results were validated by developing sialofucosylated recombinant CD44. This glycosylated protein supported both robust E-selectin binding in a cell-free assay, and it competitively blocked neutrophil adhesion to E-selectin on inflamed endothelial cells. Together, the study establishes important methods to study human neutrophil biology and determines that sialoflucosylated-CD44 is a physiological human E-selectin ligand.
Collapse
Affiliation(s)
- Yuqi Zhu
- Department of Chemical and Biological Engineering, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260
- Department of Biomedical Engineering, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260
- Department of Medicine School of Engineering and Applies Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260
| |
Collapse
|
4
|
Chen L, Luo W, Wang Y, Song X, Li S, Wu J, Sun L. Directional homing of glycosylation-modified bone marrow mesenchymal stem cells for bone defect repair. J Nanobiotechnology 2021; 19:228. [PMID: 34332597 PMCID: PMC8325817 DOI: 10.1186/s12951-021-00969-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND One of the greatest challenges for tissue-engineered bone is the low survival rate of locally grafted cells. The cell homing technology can effectively increase the number of these grafted cells, therefore, enhancing the repair of bone defects. Here we explore the effect of fucosylation modification on the directional homing of bone marrow mesenchymal stem cells (BMSCs) and their ability to repair bone defects. RESULTS Glycosylated BMSCs expressed high levels of the Sialyl Lewis-X (sLeX) antigen, which enabled the cells to efficiently bind to E- and P-selectins and to home to bone defect sites in vivo. Micro-CT and histological staining results confirmed that mice injected with FuT7-BMSCs showed an improved repair of bone defects compared to unmodified BMSCs. CONCLUSIONS The glycosylation modification of BMSCs has significantly enhanced their directional homing ability to bone defect sites, therefore, promoting bone repair. Our results suggest that glycosylation-modified BMSCs can be used as the source of the cells for the tissue-engineered bone and provide a new approach for the treatment of bone defects.
Collapse
Affiliation(s)
- Long Chen
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 550000, Guizhou, People's Republic of China
| | - Wei Luo
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 550000, Guizhou, People's Republic of China
| | - Yuanzheng Wang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 550000, Guizhou, People's Republic of China
| | - Xiongbo Song
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 550000, Guizhou, People's Republic of China
| | - Senlei Li
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 550000, Guizhou, People's Republic of China
| | - Jun Wu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China.
| | - Li Sun
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 550000, Guizhou, People's Republic of China.
| |
Collapse
|
5
|
Morikis VA, Hernandez AA, Magnani JL, Sperandio M, Simon SI. Targeting Neutrophil Adhesive Events to Address Vaso-Occlusive Crisis in Sickle Cell Patients. Front Immunol 2021; 12:663886. [PMID: 33995392 PMCID: PMC8113856 DOI: 10.3389/fimmu.2021.663886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophils are essential to protect the host against invading pathogens but can promote disease progression in sickle cell disease (SCD) by becoming adherent to inflamed microvascular networks in peripheral tissue throughout the body. During the inflammatory response, leukocytes extravasate from the bloodstream using selectin adhesion molecules and migrate to sites of tissue insult through activation of integrins that are essential for combating pathogens. However, during vaso-occlusion associated with SCD, neutrophils are activated during tethering and rolling on selectins upregulated on activated endothelium that line blood vessels. Recently, we reported that recognition of sLex on L-selectin by E-selectin during neutrophil rolling initiates shear force resistant catch-bonds that facilitate tethering to endothelium and activation of integrin bond clusters that anchor cells to the vessel wall. Evidence indicates that blocking this important signaling cascade prevents the congestion and ischemia in microvasculature that occurs from neutrophil capture of sickled red blood cells, which are normally deformable ellipses that flow easily through small blood vessels. Two recently completed clinical trials of therapies targeting selectins and their effect on neutrophil activation in small blood vessels reveal the importance of mechanoregulation that in health is an immune adaption facilitating rapid and proportional leukocyte adhesion, while sustaining tissue perfusion. We provide a timely perspective on the mechanism underlying vaso-occlusive crisis (VOC) with a focus on new drugs that target selectin mediated integrin adhesive bond formation.
Collapse
Affiliation(s)
- Vasilios A. Morikis
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, United States
| | - Alfredo A. Hernandez
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, United States
| | | | - Markus Sperandio
- Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine Biomedical Center, Ludwig Maximilians University, Walter Brendel Center, Munich, Germany
| | - Scott I. Simon
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, United States
| |
Collapse
|
6
|
Krautter F, Iqbal AJ. Glycans and Glycan-Binding Proteins as Regulators and Potential Targets in Leukocyte Recruitment. Front Cell Dev Biol 2021; 9:624082. [PMID: 33614653 PMCID: PMC7890243 DOI: 10.3389/fcell.2021.624082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Leukocyte recruitment is a highly controlled cascade of interactions between proteins expressed by the endothelium and circulating leukocytes. The involvement of glycans and glycan-binding proteins in the leukocyte recruitment cascade has been well-characterised. However, our understanding of these interactions and their regulation has expanded substantially in recent years to include novel lectins and regulatory pathways. In this review, we discuss the role of glycans and glycan-binding proteins, mediating the interactions between endothelium and leukocytes both directly and indirectly. We also highlight recent findings of key enzymes involved in glycosylation which affect leukocyte recruitment. Finally, we investigate the potential of glycans and glycan binding proteins as therapeutic targets to modulate leukocyte recruitment and transmigration in inflammation.
Collapse
Affiliation(s)
- Franziska Krautter
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
Abstract
Mucosal-associated invariant T (MAIT) cells have been attracting increasing attention over the last few years as a potent unconventional T cell subset. Three factors largely account for this emerging interest. Firstly, these cells are abundant in humans, both in circulation and especially in some tissues such as the liver. Secondly is the discovery of a ligand that has uncovered their microbial targets, and also allowed for the development of tools to accurately track the cells in both humans and mice. Finally, it appears that the cells not only have a diverse range of functions but also are sensitive to a range of inflammatory triggers that can enhance or even bypass T cell receptor–mediated signals—substantially broadening their likely impact in health and disease. In this review we discuss how MAIT cells display antimicrobial, homeostatic, and amplifier roles in vivo, and how this may lead to protection and potentially pathology.
Collapse
Affiliation(s)
- Nicholas M. Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Headington, Oxford OX3 9DU, United Kingdom
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Headington, Oxford OX3 9DU, United Kingdom
- NIHR Biomedical Research Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
8
|
I-branched carbohydrates as emerging effectors of malignant progression. Proc Natl Acad Sci U S A 2019; 116:13729-13737. [PMID: 31213534 DOI: 10.1073/pnas.1900268116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cell surface carbohydrates, termed "glycans," are ubiquitous posttranslational effectors that can tune cancer progression. Often aberrantly displayed or found at atypical levels on cancer cells, glycans can impact essentially all progressive steps, from malignant transformation to metastases formation. Glycans are structural entities that can directly bind promalignant glycan-binding proteins and help elicit optimal receptor-ligand activity of growth factor receptors, integrins, integrin ligands, lectins, and other type-1 transmembrane proteins. Because glycans play an integral role in a cancer cell's malignant activity and are frequently uniquely expressed, preclinical studies on the suitability of glycans as anticancer therapeutic targets and their promise as biomarkers of disease progression continue to intensify. While sialylation and fucosylation have predominated the focus of cancer-associated glycan modifications, the emergence of blood group I antigens (or I-branched glycans) as key cell surface moieties capable of modulating cancer virulence has reenergized investigations into the role of the glycome in malignant progression. I-branched glycans catalyzed principally by the I-branching enzyme GCNT2 are now indicated in several malignancies. In this Perspective, the putative role of GCNT2/I-branching in cancer progression is discussed, including exciting insights on how I-branches can potentially antagonize the cancer-promoting activity of β-galactose-binding galectins.
Collapse
|
9
|
Weil BR, Neelamegham S. Selectins and Immune Cells in Acute Myocardial Infarction and Post-infarction Ventricular Remodeling: Pathophysiology and Novel Treatments. Front Immunol 2019; 10:300. [PMID: 30873166 PMCID: PMC6400985 DOI: 10.3389/fimmu.2019.00300] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/05/2019] [Indexed: 12/21/2022] Open
Abstract
The glycosciences aim to understand the impact of extracellular and intracellular carbohydrate structures on biological function. These glycans primarily fall into three major groups: lipid-linked carbohydrates that are referred to as glycosphingolipids or simply glycolipids; relatively short carbohydrate chains that are often O- or N-linked to proteins yielding common glycoproteins; and extended linear polymeric carbohydrate structures that are referred to as glycosaminoglycans (GAGs). Whereas, the impact of such carbohydrate structures has been extensively examined in cancer biology, their role in acute and chronic heart disease is less studied. In this context, a growing body of evidence indicates that glycans play an important role in immune mediated cell recruitment to damaged heart tissue to initiate wound healing and repair after injury. This is particularly important following ischemia and reperfusion that occurs in the heart in the setting of acute myocardial infarction. Here, immune system-mediated repair of the damaged myocardium plays a critical role in determining post-infarction ventricular remodeling, cardiac function, and patient outcome. Further, alterations in immune cell activity can promote the development of heart failure. The present review summarizes our current understanding of the phases of immune-mediated repair following myocardial infarction. It discusses what is known regarding glycans in mediating the recruitment of circulating immune cells during the early inflammatory stage of post-infarction repair, with focus on the selectin family of adhesion molecules. It offers future directions for research aimed at utilizing our knowledge of mechanisms underlying immune cell recruitment to either modulate leukocyte recruitment to the injured tissue or enhance the targeted delivery of biologic therapeutics such as stem cells in an attempt to promote repair of the damaged heart.
Collapse
Affiliation(s)
- Brian R Weil
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Sriram Neelamegham
- Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, United States.,Department of Chemical & Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
10
|
Morikis VA, Simon SI. Neutrophil Mechanosignaling Promotes Integrin Engagement With Endothelial Cells and Motility Within Inflamed Vessels. Front Immunol 2018; 9:2774. [PMID: 30546362 PMCID: PMC6279920 DOI: 10.3389/fimmu.2018.02774] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/12/2018] [Indexed: 12/24/2022] Open
Abstract
Neutrophils are the most motile of mammalian cells, a feature that enables them to protect the host against the rapid spread of pathogens from tissue into the circulatory system. A critical process is the recruitment of neutrophils to inflamed endothelium within post-capillary venules. This occurs through cooperation between at least four families of adhesion molecules and G-protein coupled signaling receptors. These adhesion molecules convert the drag force induced by blood flow acting on the cell surface into bond tension that resists detachment. A common feature of selectin-glycoprotein tethering and integrin-ICAM bond formation is the mechanics by which force acting on these specific receptor-ligand pairs influences their longevity, strength, and topographic organization on the plasma membrane. Another distinctly mechanical aspect of neutrophil guidance is the capacity of adhesive bonds to convert external mechanical force into internal biochemical signals through the transmission of force from the outside-in at focal sites of adhesive traction on inflamed endothelium. Within this region of the plasma membrane, we denote the inflammatory synapse, Ca2+ release, and intracellular signaling provide directional cues that guide actin assembly and myosin driven motive force. This review provides an overview of how bond formation and outside-in signaling controls neutrophil recruitment and migration relative to the hydrodynamic shear force of blood flow.
Collapse
Affiliation(s)
- Vasilios A Morikis
- Simon Lab, Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Scott I Simon
- Simon Lab, Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Lee CH, Zhang HH, Singh SP, Koo L, Kabat J, Tsang H, Singh TP, Farber JM. C/EBPδ drives interactions between human MAIT cells and endothelial cells that are important for extravasation. eLife 2018; 7:32532. [PMID: 29469805 PMCID: PMC5869018 DOI: 10.7554/elife.32532] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/21/2018] [Indexed: 12/14/2022] Open
Abstract
Many mediators and regulators of extravasation by bona fide human memory-phenotype T cells remain undefined. Mucosal-associated invariant T (MAIT) cells are innate-like, antibacterial cells that we found excelled at crossing inflamed endothelium. They displayed abundant selectin ligands, with high expression of FUT7 and ST3GAL4, and expressed CCR6, CCR5, and CCR2, which played non-redundant roles in trafficking on activated endothelial cells. MAIT cells selectively expressed CCAAT/enhancer-binding protein delta (C/EBPδ). Knockdown of C/EBPδ diminished expression of FUT7, ST3GAL4 and CCR6, decreasing MAIT cell rolling and arrest, and consequently the cells' ability to cross an endothelial monolayer in vitro and extravasate in mice. Nonetheless, knockdown of C/EBPδ did not affect CCR2, which was important for the step of transendothelial migration. Thus, MAIT cells demonstrate a program for extravasastion that includes, in part, C/EBPδ and C/EBPδ-regulated genes, and that could be used to enhance, or targeted to inhibit T cell recruitment into inflamed tissue.
Collapse
Affiliation(s)
- Chang Hoon Lee
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Hongwei H Zhang
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Satya P Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Lily Koo
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Hsinyi Tsang
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Tej Pratap Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Joshua M Farber
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|
12
|
Ivetic A. A head-to-tail view of L-selectin and its impact on neutrophil behaviour. Cell Tissue Res 2018; 371:437-453. [PMID: 29353325 PMCID: PMC5820395 DOI: 10.1007/s00441-017-2774-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023]
Abstract
L-selectin is a type I transmembrane cell adhesion molecule expressed on most circulating leukocytes, including neutrophils. Engagement of L-selectin with endothelial-derived ligands initiates neutrophil tethering and rolling behaviour along luminal walls of post-capillary venules, constituting the first step of the multi-step adhesion cascade. There is a large body of evidence to suggest that signalling downstream of L-selectin can influence neutrophil behaviour: adhesion, migration and priming. This review will cover aspects of L-selectin form and function and introduce the “triad of L-selectin regulation”, highlighting the inextricable links between adhesion, signalling and ectodomain shedding and also highlighting the cytosolic proteins that interconnect them. Recent advances in how L-selectin impacts priming, transendothelial migration (TEM) and cell polarity will also be discussed.
Collapse
Affiliation(s)
- Aleksandar Ivetic
- BHF Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, James Black Centre 125, Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
13
|
Price TT, Burness ML, Sivan A, Warner MJ, Cheng R, Lee CH, Olivere L, Comatas K, Magnani J, Kim Lyerly H, Cheng Q, McCall CM, Sipkins DA. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci Transl Med 2017; 8:340ra73. [PMID: 27225183 DOI: 10.1126/scitranslmed.aad4059] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/22/2016] [Indexed: 11/02/2022]
Abstract
Breast cancer metastatic relapse can occur years after therapy, indicating that disseminated breast cancer cells (BCCs) have a prolonged dormant phase before becoming proliferative. A major site of disease dissemination and relapse is bone, although the critical signals that allow circulating BCCs to identify bone microvasculature, enter tissue, and tether to the microenvironment are poorly understood. Using real-time in vivo microscopy of bone marrow (BM) in a breast cancer xenograft model, we show that dormant and proliferating BCCs occupy distinct areas, with dormant BCCs predominantly found in E-selectin- and stromal cell-derived factor 1 (SDF-1)-rich perisinusoidal vascular regions. We use highly specific inhibitors of E-selectin and C-X-C chemokine receptor type 4 (CXCR4) (SDF-1 receptor) to demonstrate that E-selectin and SDF-1 orchestrate opposing roles in BCC trafficking. Whereas E-selectin interactions are critical for allowing BCC entry into the BM, the SDF-1/CXCR4 interaction anchors BCCs to the microenvironment, and its inhibition induces mobilization of dormant micrometastases into circulation. Homing studies with primary BCCs also demonstrate that E-selectin regulates their entry into bone through the sinusoidal niche, and immunohistochemical staining of patient BMs shows dormant micrometastatic disease adjacent to SDF-1(+) vasculature. These findings shed light on how BCCs traffic within the host, and suggest that simultaneous blockade of CXCR4 and E-selectin in patients could molecularly excise dormant micrometastases from the protective BM environment, preventing their emergence as relapsed disease.
Collapse
Affiliation(s)
- Trevor T Price
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, NC 27707, USA
| | - Monika L Burness
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ayelet Sivan
- Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Matthew J Warner
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, NC 27707, USA
| | - Renee Cheng
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, NC 27707, USA
| | - Clara H Lee
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, NC 27707, USA
| | - Lindsey Olivere
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, NC 27707, USA
| | - Karrie Comatas
- Department of Surgery, Duke University, Durham, NC 27707, USA
| | | | - H Kim Lyerly
- Department of Surgery, Duke University, Durham, NC 27707, USA
| | - Qing Cheng
- Department of Surgery, Duke University, Durham, NC 27707, USA
| | - Chad M McCall
- Department of Pathology, Duke University, Durham, NC 27707, USA
| | - Dorothy A Sipkins
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, NC 27707, USA.
| |
Collapse
|
14
|
Selectin catch-bonds mechanotransduce integrin activation and neutrophil arrest on inflamed endothelium under shear flow. Blood 2017; 130:2101-2110. [PMID: 28811304 DOI: 10.1182/blood-2017-05-783027] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/03/2017] [Indexed: 12/27/2022] Open
Abstract
E-selectin extends from the plasma membrane of inflamed endothelium and serves to capture leukocytes from flowing blood via long-lived catch-bonds that support slow leukocyte rolling under shear stress. Its ligands are glycosylated with the tetrasaccharide sialyl Lewisx (sLex), which contributes to bond affinity and specificity. E-selectin-mediated rolling transmits signals into neutrophils that trigger activation of high-affinity β2-integrins necessary for transition to shear-resistant adhesion and transendothelial migration. Rivipansel is a glycomimetic drug that inhibits E-selectin-mediated vaso-occlusion induced by integrin-dependent sickle-red blood cell-leukocyte adhesion. How Rivipansel antagonizes ligand recognition by E-selectin and blocks outside-in signaling of integrin-mediated neutrophil arrest while maintaining rolling immune-surveillance is unknown. Here, we demonstrate that sLex expressed on human L-selectin is preferentially bound by E-selectin and, on ligation, initiates secretion of MRP8/14 that binds TLR4 to elicit the extension of β2-integrin to an intermediate affinity state. Neutrophil rolling over E-selectin at precise shear stress transmits tension and catch-bond formation with L-selectin via sLex, resulting in focal clusters that deliver a distinct signal to upshift β2-integrins to a high-affinity state. Rivipansel effectively blocked formation of selectin catch-bonds, revealing a novel mechanotransduction circuit that rapidly converts extended β2-integrins to high-affinity shear-resistant bond clusters with intracellular adhesion molecule 1 on inflamed endothelium.
Collapse
|
15
|
Sackstein R, Schatton T, Barthel SR. T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy. J Transl Med 2017; 97:669-697. [PMID: 28346400 PMCID: PMC5446300 DOI: 10.1038/labinvest.2017.25] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/17/2017] [Accepted: 01/22/2017] [Indexed: 12/13/2022] Open
Abstract
Advances in cancer immunotherapy have offered new hope for patients with metastatic disease. This unfolding success story has been exemplified by a growing arsenal of novel immunotherapeutics, including blocking antibodies targeting immune checkpoint pathways, cancer vaccines, and adoptive cell therapy (ACT). Nonetheless, clinical benefit remains highly variable and patient-specific, in part, because all immunotherapeutic regimens vitally hinge on the capacity of endogenous and/or adoptively transferred T-effector (Teff) cells, including chimeric antigen receptor (CAR) T cells, to home efficiently into tumor target tissue. Thus, defects intrinsic to the multi-step T-cell homing cascade have become an obvious, though significantly underappreciated contributor to immunotherapy resistance. Conspicuous have been low intralesional frequencies of tumor-infiltrating T-lymphocytes (TILs) below clinically beneficial threshold levels, and peripheral rather than deep lesional TIL infiltration. Therefore, a Teff cell 'homing deficit' may arguably represent a dominant factor responsible for ineffective immunotherapeutic outcomes, as tumors resistant to immune-targeted killing thrive in such permissive, immune-vacuous microenvironments. Fortunately, emerging data is shedding light into the diverse mechanisms of immune escape by which tumors restrict Teff cell trafficking and lesional penetrance. In this review, we scrutinize evolving knowledge on the molecular determinants of Teff cell navigation into tumors. By integrating recently described, though sporadic information of pivotal adhesive and chemokine homing signatures within the tumor microenvironment with better established paradigms of T-cell trafficking under homeostatic or infectious disease scenarios, we seek to refine currently incomplete models of Teff cell entry into tumor tissue. We further summarize how cancers thwart homing to escape immune-mediated destruction and raise awareness of the potential impact of immune checkpoint blockers on Teff cell homing. Finally, we speculate on innovative therapeutic opportunities for augmenting Teff cell homing capabilities to improve immunotherapy-based tumor eradication in cancer patients, with special focus on malignant melanoma.
Collapse
Affiliation(s)
- Robert Sackstein
- Department of Dermatology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Harvard Skin Disease Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Program of Excellence in Glycosciences, Harvard Medical School, 77 Avenue Louis Pasteur, Rm 671, Boston, MA 02115, USA
| | - Tobias Schatton
- Department of Dermatology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Harvard Skin Disease Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA,Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Steven R. Barthel
- Department of Dermatology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Harvard Skin Disease Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA,Correspondence to: Dr. Steven R. Barthel, Harvard Institutes of Medicine, Rm. 673B, 77 Avenue Louis Pasteur, Boston, MA 02115;
| |
Collapse
|
16
|
Using CRISPR-Cas9 to quantify the contributions of O-glycans, N-glycans and Glycosphingolipids to human leukocyte-endothelium adhesion. Sci Rep 2016; 6:30392. [PMID: 27458028 PMCID: PMC4960646 DOI: 10.1038/srep30392] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/30/2016] [Indexed: 01/20/2023] Open
Abstract
There is often interest in dissecting the relative contributions of the N-glycans, O-glycans and glycosphingolipids (GSLs) in regulating complex biological traits like cell signaling, adhesion, development and metastasis. To address this, we developed a CRISPR-Cas9 toolkit to selectively truncate each of these commonly expressed glycan-types. Here, O-glycan biosynthesis was truncated by knocking-out Core 1 β3Gal-T Specific Molecular Chaperone (COSMC), N-glycans by targeting the β1,2 GlcNAc-transferase (MGAT1) and GSLs by deleting UDP-glucose ceramide glucosyltransferase (UGCG). These reagents were applied to reveal the glycoconjugates regulating human myeloid cell adhesion to selectins under physiological shear-flow observed during inflammation. These functional studies show that leukocyte rolling on P- and L-selectin is ablated in cells lacking O-glycans, with N-glycan truncation also increasing cell rolling velocity on L-selectin. All three glycan families contributed to E-selectin dependent cell adhesion with N-glycans contributing to all aspects of the leukocyte adhesion cascade, O-glycans only being important during initial recruitment, and GSLs stabilizing slow cell rolling and the transition to firm arrest. Overall, the genome editing tools developed here may be broadly applied in studies of cellular glycosylation.
Collapse
|
17
|
Mondal N, Stolfa G, Antonopoulos A, Zhu Y, Wang SS, Buffone A, Atilla-Gokcumen GE, Haslam SM, Dell A, Neelamegham S. Glycosphingolipids on Human Myeloid Cells Stabilize E-Selectin-Dependent Rolling in the Multistep Leukocyte Adhesion Cascade. Arterioscler Thromb Vasc Biol 2016; 36:718-27. [PMID: 26868209 DOI: 10.1161/atvbaha.115.306748] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/01/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Recent studies suggest that the E-selectin ligands expressed on human leukocytes may differ from those in other species, particularly mice. To elaborate on this, we evaluated the impact of glycosphingolipids expressed on human myeloid cells in regulating E-selectin-mediated cell adhesion. APPROACH AND RESULTS A series of modified human cell lines and primary neutrophils were created by targeting UDP-Glucose Ceramide Glucosyltransferase using either lentivirus-delivered shRNA or CRISPR-Cas9-based genome editing. Enzymology and mass spectrometry confirm that the modified cells had reduced or abolished glucosylceramide biosynthesis. Glycomics profiling showed that UDP-Glucose Ceramide Glucosyltransferase disruption also increased prevalence of bisecting N-glycans and reduced overall sialoglycan expression on leukocyte N- and O-glycans. Microfluidics-based flow chamber studies demonstrated that both the UDP-Glucose Ceramide Glucosyltransferase knockouts and knockdowns display ≈60% reduction in leukocyte rolling and firm adhesion on E-selectin bearing stimulated endothelial cells, without altering cell adhesion to P-selectin. Consistent with the concept that the glycosphingolipids support slow rolling and the transition to firm arrest, inhibiting UDP-Glucose Ceramide Glucosyltransferase activity resulted in frequent leukocyte detachment events, skipping motion, and reduced diapedesis across the endothelium. Cells bearing truncated O- and N-glycans also sustained cell rolling on E-selectin, although their ability to be recruited from free fluid flow was diminished. CONCLUSIONS Glycosphingolipids likely contribute to human myeloid cell adhesion to E-selectin under fluid shear, particularly the transition of rolling cells to firm arrest.
Collapse
Affiliation(s)
- Nandini Mondal
- From the Department of Chemical and Biological Engineering (N.M., G.S., Y.Z., S.-S.W., A.B., S.N.), Department of Chemistry (G.E.A.-G.), and The NY State Center for Excellence in Bioinformatics and Life Sciences (S.N.), State University of New York, Buffalo; and Department of Life Sciences, Imperial College London, London, UK (A.A., S.M.H., A.D.)
| | - Gino Stolfa
- From the Department of Chemical and Biological Engineering (N.M., G.S., Y.Z., S.-S.W., A.B., S.N.), Department of Chemistry (G.E.A.-G.), and The NY State Center for Excellence in Bioinformatics and Life Sciences (S.N.), State University of New York, Buffalo; and Department of Life Sciences, Imperial College London, London, UK (A.A., S.M.H., A.D.)
| | - Aristotelis Antonopoulos
- From the Department of Chemical and Biological Engineering (N.M., G.S., Y.Z., S.-S.W., A.B., S.N.), Department of Chemistry (G.E.A.-G.), and The NY State Center for Excellence in Bioinformatics and Life Sciences (S.N.), State University of New York, Buffalo; and Department of Life Sciences, Imperial College London, London, UK (A.A., S.M.H., A.D.)
| | - Yuqi Zhu
- From the Department of Chemical and Biological Engineering (N.M., G.S., Y.Z., S.-S.W., A.B., S.N.), Department of Chemistry (G.E.A.-G.), and The NY State Center for Excellence in Bioinformatics and Life Sciences (S.N.), State University of New York, Buffalo; and Department of Life Sciences, Imperial College London, London, UK (A.A., S.M.H., A.D.)
| | - Shuen-Shiuan Wang
- From the Department of Chemical and Biological Engineering (N.M., G.S., Y.Z., S.-S.W., A.B., S.N.), Department of Chemistry (G.E.A.-G.), and The NY State Center for Excellence in Bioinformatics and Life Sciences (S.N.), State University of New York, Buffalo; and Department of Life Sciences, Imperial College London, London, UK (A.A., S.M.H., A.D.)
| | - Alexander Buffone
- From the Department of Chemical and Biological Engineering (N.M., G.S., Y.Z., S.-S.W., A.B., S.N.), Department of Chemistry (G.E.A.-G.), and The NY State Center for Excellence in Bioinformatics and Life Sciences (S.N.), State University of New York, Buffalo; and Department of Life Sciences, Imperial College London, London, UK (A.A., S.M.H., A.D.)
| | - G Ekin Atilla-Gokcumen
- From the Department of Chemical and Biological Engineering (N.M., G.S., Y.Z., S.-S.W., A.B., S.N.), Department of Chemistry (G.E.A.-G.), and The NY State Center for Excellence in Bioinformatics and Life Sciences (S.N.), State University of New York, Buffalo; and Department of Life Sciences, Imperial College London, London, UK (A.A., S.M.H., A.D.)
| | - Stuart M Haslam
- From the Department of Chemical and Biological Engineering (N.M., G.S., Y.Z., S.-S.W., A.B., S.N.), Department of Chemistry (G.E.A.-G.), and The NY State Center for Excellence in Bioinformatics and Life Sciences (S.N.), State University of New York, Buffalo; and Department of Life Sciences, Imperial College London, London, UK (A.A., S.M.H., A.D.)
| | - Anne Dell
- From the Department of Chemical and Biological Engineering (N.M., G.S., Y.Z., S.-S.W., A.B., S.N.), Department of Chemistry (G.E.A.-G.), and The NY State Center for Excellence in Bioinformatics and Life Sciences (S.N.), State University of New York, Buffalo; and Department of Life Sciences, Imperial College London, London, UK (A.A., S.M.H., A.D.)
| | - Sriram Neelamegham
- From the Department of Chemical and Biological Engineering (N.M., G.S., Y.Z., S.-S.W., A.B., S.N.), Department of Chemistry (G.E.A.-G.), and The NY State Center for Excellence in Bioinformatics and Life Sciences (S.N.), State University of New York, Buffalo; and Department of Life Sciences, Imperial College London, London, UK (A.A., S.M.H., A.D.).
| |
Collapse
|
18
|
Lo CY, Weil BR, Palka BA, Momeni A, Canty JM, Neelamegham S. Cell surface glycoengineering improves selectin-mediated adhesion of mesenchymal stem cells (MSCs) and cardiosphere-derived cells (CDCs): Pilot validation in porcine ischemia-reperfusion model. Biomaterials 2015; 74:19-30. [PMID: 26433489 DOI: 10.1016/j.biomaterials.2015.09.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/20/2022]
Abstract
Promising results are emerging in clinical trials focused on stem cell therapy for cardiology applications. However, the low homing and engraftment of the injected cells to target tissue continues to be a problem. Cellular glycoengineering can address this limitation by enabling the targeting of stem cells to sites of vascular injury/inflammation. Two such glycoengineering methods are presented here: i. The non-covalent incorporation of a P-selectin glycoprotein ligand-1 (PSGL-1) mimetic 19Fc[FUT7(+)] via lipid-protein G fusion intermediates that intercalate onto the cell surface, and ii. Over-expression of the α(1,3)fucosyltransferse FUT7 in cells. Results demonstrate the efficient coupling of 19Fc[FUT7(+)] onto both cardiosphere-derived cells (CDCs) and mesenchymal stem cells (MSCs), with coupling being more efficient when using protein G fused to single-tailed palmitic acid rather than double-tailed DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine). This non-covalent cellular modification was mild since cell proliferation and stem-cell marker expression was unaltered. Whereas coupling using 19Fc[FUT7(+)] enhanced cell capture on recombinant P-selectin or CHO-P cell surfaces, α(1,3)fucosylation was necessary for robust binding to E-selectin and inflamed endothelial cells under shear. Pilot studies confirm the safety and homing efficacy of the modified stem cells to sites of ischemia-reperfusion in the porcine heart. Overall, glycoengineering with physiological selectin-ligands may enhance stem cell engraftment.
Collapse
Affiliation(s)
- Chi Y Lo
- Department of Chemical and Biological Engineering, The State University of New York, 906 Furnas Hall, Buffalo, NY 14260, USA; Department of Anesthesiology, The State University of New York, 252 Farber Hall, Buffalo, NY 14214, USA; Division of Cardiovascular Medicine, The State University of New York, Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Brian R Weil
- Division of Cardiovascular Medicine, The State University of New York, Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Beth A Palka
- Division of Cardiovascular Medicine, The State University of New York, Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Arezoo Momeni
- Department of Chemical and Biological Engineering, The State University of New York, 906 Furnas Hall, Buffalo, NY 14260, USA
| | - John M Canty
- Division of Cardiovascular Medicine, The State University of New York, Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY 14203, USA; VA Western New York Health Care System, Buffalo, NY 14215, USA
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, The State University of New York, 906 Furnas Hall, Buffalo, NY 14260, USA; The NY State Center for Excellence in Bioinformatics and Life Sciences, The State University of New York, 701 Ellicott St., Buffalo, NY 14203, USA.
| |
Collapse
|
19
|
ST3Gal-4 is the primary sialyltransferase regulating the synthesis of E-, P-, and L-selectin ligands on human myeloid leukocytes. Blood 2014; 125:687-96. [PMID: 25498912 DOI: 10.1182/blood-2014-07-588590] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The precise glycosyltransferase enzymes that mediate selectin-ligand biosynthesis in human leukocytes are unknown. This knowledge is important because selectin-mediated cell tethering and rolling is a critical component of both normal immune response and various vascular disorders. We evaluated the role of 3 α(2,3)sialyltransferases, ST3Gal-3, -4, and -6, which act on the type II N-Acetyllactosamine structure (Galβ1,4GlcNAc) to create sialyl Lewis-X (sLe(X)) and related sialofucosylated glycans on human leukocytes of myeloid lineage. These genes were either silenced using lentiviral short hairpin RNA (shRNA) or functionally ablated using the clustered regularly interspaced short palindromic repeat/Cas9 technology. The results show that ST3Gal-4, but not ST3Gal-3 or -6, is the major sialyltransferase regulating the biosynthesis of E-, P-, and L-selectin ligands in humans. Reduction in ST3Gal-4 activity lowered cell-surface HECA-452 epitope expression by 75% to 95%. Glycomics profiling of knockouts demonstrate an almost complete loss of the sLe(X) epitope on both leukocyte N- and O-glycans. In cell-adhesion studies, ST3Gal-4 knockdown/knockout cells displayed 90% to 100% reduction in tethering and rolling density on all selectins. ST3Gal-4 silencing in neutrophils derived from human CD34(+) hematopoietic stem cells also resulted in 80% to 90% reduction in cell adhesion to all selectins. Overall, a single sialyltransferase regulates selectin-ligand biosynthesis in human leukocytes, unlike mice where multiple enzymes contribute to this function.
Collapse
|