1
|
Milosevic E, Novkovic M, Cenni V, Bavelloni A, Kojic S, Jasnic J. Molecular characterization of ANKRD1 in rhabdomyosarcoma cell lines: expression, localization, and proteasomal degradation. Histochem Cell Biol 2024; 161:435-444. [PMID: 38396247 DOI: 10.1007/s00418-024-02272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in children and adolescents. Respecting the age of the patients and the tumor aggressiveness, investigation of the molecular mechanisms of RMS tumorigenesis is directed toward the identification of novel therapeutic targets. To contribute to a better understanding of the molecular pathology of RMS, we investigated ankyrin repeat domain 1 (ANKRD1), designated as a potential marker for differential diagnostics. In this study, we used three RMS cell lines (SJRH30, RD, and HS-729) to assess its expression profile, intracellular localization, and turnover. They express wild-type ANKRD1, as judged by the sequencing of the open reading frame. Each cell line expressed a different amount of ANKRD1 protein, although the transcript level was similar. According to western blot analysis, ANKRD1 protein was expressed at detectable levels in the SJRH30 and RD cells (SJRH30 > RD), but not in the HS-729, even after immunoprecipitation. Immunocytochemistry revealed nuclear and cytoplasmic localization of ANKRD1 in all examined cell lines. Moreover, the punctate pattern of ANKRD1 staining in the nuclei of RD and HS-729 cells overlapped with coilin, indicating its association with Cajal bodies. We have shown that RMS cells are not able to overexpress ANKRD1 protein, which can be attributed to its proteasomal degradation. The unsuccessful attempt to overexpress ANKRD1 in RMS cells indicates the possibility that its overexpression may have detrimental effects for RMS cells and opens a window for further research into its role in RMS pathogenesis and for potential therapeutic targeting.
Collapse
Affiliation(s)
- Emilija Milosevic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia
| | - Mirjana Novkovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia
| | - Vittoria Cenni
- CNR Institute of Molecular Genetics "Luigi-Luca Cavalli-Sforza" Unit of Bologna, Via di Barbiano 1/10, 40136, Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS, Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Snezana Kojic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia.
| | - Jovana Jasnic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia.
| |
Collapse
|
2
|
Baran M, Miziak P, Stepulak A, Cybulski M. The Role of Sirtuin 6 in the Deacetylation of Histone Proteins as a Factor in the Progression of Neoplastic Disease. Int J Mol Sci 2023; 25:497. [PMID: 38203666 PMCID: PMC10779230 DOI: 10.3390/ijms25010497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
SIRT6 is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, predominantly located in the nucleus, that is involved in the processes of histone modification, DNA repair, cell cycle regulation, and apoptosis. Disturbances in SIRT6 expression levels have been observed in the development and progression of various types of cancer. Therefore, it is important to better understand the role of SIRT6 in biochemical pathways and assign it specific biological functions. This review aims to summarize the role of SIRT6 in carcinogenesis and tumor development. A better understanding of the factors influencing SIRT6 expression and its biological role in carcinogenesis may help to develop novel anti-cancer therapeutic strategies. Moreover, we discuss the anti-cancer effects and mechanism of action of small molecule SIRT6 modulators (both activators and inhibitors) in different types of cancer.
Collapse
Affiliation(s)
| | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (P.M.); (M.C.)
| | | |
Collapse
|
3
|
Wang J, Liu Z, Lu J, Zou J, Ye W, Li H, Gao S, Liu P. SIRT6 regulates endothelium-dependent relaxation by modulating nitric oxide synthase 3 (NOS3). Biochem Pharmacol 2023; 209:115439. [PMID: 36720357 DOI: 10.1016/j.bcp.2023.115439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/14/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND OBJECTIVE SIRT6, an NAD+-dependent protein deacetylase, is a key modulator of various biological functions. However, the precise role of SIRT6 in the regulation of endothelial function is still not fully understood. The current study sought to determine whether SIRT6 modulates NOS3 activity to regulate endothelium-dependent relaxations in the arterial wall and, if so, to investigate the potential underlying mechanism (s). METHODS ApoE-/- mice and Sprague-Dawley rats had their aortic rings isolated for a vascular reactivity assay. Endothelial cells were cultured before qRT-PCR, western blot, immunoprecipitation, NO bioavailability, and acetylation/deacetylation assays were performed. RESULTS SIRT6 expression was significantly reduced in the aorta of ApoE-/- mice fed a high-cholesterol diet, as was endothelium-dependent relaxation. Endothelial dysfunction could be corrected by delivering a SIRT6 overexpression construct via an adenovirus. In cultured endothelial cells, siRNA knockdown of SIRT6 decreased NOS3 catalytic activity, whereas adenoviral overexpression of SIRT6 increased NOS3-derived nitric oxide (NO) generation. SIRT6 interacted with and deacetylated human NOS3 at lysines 494, 497, and 504 of the calmodulin-binding domain, allowing calmodulin to bind to NOS3 and stimulate NOS3 activity. SIRT6 knockdown also reduced NOS3 expression by inhibiting Kruppel-Like Factor 2 (KLF2). CONCLUSIONS We identified SIRT6 as a new regulator of the activity of NOS3, with functional implications for endothelial-dependent relaxation.
Collapse
Affiliation(s)
- Jiaojiao Wang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiping Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jing Lu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiami Zou
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Weile Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Hong Li
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Si Gao
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; School of Medicine, Guangxi University of Science and Technology, No. 257 Liu-shi Road, Yufeng District, Liuzhou 545005, China
| | - Peiqing Liu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Sharma A, Mahur P, Muthukumaran J, Singh AK, Jain M. Shedding light on structure, function and regulation of human sirtuins: a comprehensive review. 3 Biotech 2023; 13:29. [PMID: 36597461 PMCID: PMC9805487 DOI: 10.1007/s13205-022-03455-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/25/2022] [Indexed: 01/01/2023] Open
Abstract
Sirtuins play an important role in signalling pathways associated with various metabolic regulations. They possess mono-ADP-ribosyltransferase or deacylase activity like demalonylase, deacetylase, depalmitoylase, demyristoylase and desuccinylase activity. Sirtuins are histone deacetylases which depends upon nicotinamide adenine dinucleotide (NAD) that deacetylate lysine residues. There are a total of seven human sirtuins that have been identified namely, SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6 and SIRT7. The subcellular location of mammalian sirtuins, SIRT1, SIRT6, and SIRT7 are in the nucleus; SIRT3, SIRT4, and SIRT5 are in mitochondria, and SIRT2 is in cytoplasm. Structurally sirtuins contains a N-terminal, a C-terminal and a Zn+ binding domain. The sirtuin family has been found to be crucial for maintaining lipid and glucose homeostasis, and also for regulating insulin secretion and sensitivity, DNA repair pathways, neurogenesis, inflammation, and ageing. Based on the literature, sirtuins are overexpressed and play an important role in tumorigenicity in various types of cancer such as non-small cell lung cancer, colorectal cancer, etc. In this review, we have discussed about the different types of human sirtuins along with their structural and functional features. We have also discussed about the various natural and synthetic regulators of sirtuin activities like resveratrol. Our overall study shows that the correct regulation of sirtuins can be a good target for preventing and treating various diseases for improving the human lifespan. To investigate the true therapeutic potential of sirtuin proteins and their efficacy in a variety of pathological diseases, a better knowledge of the link between the structure and function of sirtuin proteins would be necessary.
Collapse
Affiliation(s)
- Abhishek Sharma
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
| | - Pragati Mahur
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
| | - Amit Kumar Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
| |
Collapse
|
5
|
Human centenarian-associated SIRT6 mutants modulate hepatocyte metabolism and collagen deposition in multilineage hepatic 3D spheroids. GeroScience 2022; 45:1177-1196. [PMID: 36534275 PMCID: PMC9886743 DOI: 10.1007/s11357-022-00713-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), encompassing fatty liver and its progression into nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC), is one of the rapidly rising health concerns worldwide. SIRT6 is an essential nuclear sirtuin that regulates numerous pathological processes including insulin resistance and inflammation, and recently it has been implicated in the amelioration of NAFLD progression. SIRT6 overexpression protects from formation of fibrotic lesions. However, the underlying molecular mechanisms are not fully delineated. Moreover, new allelic variants of SIRT6 (N308K/A313S) were recently associated with the longevity in Ashkenazi Jews by improving genome maintenance and DNA repair, suppressing transposons and killing cancer cells. Whether these new SIRT6 variants play different or enhanced roles in liver diseases is currently unknown. In this study, we aimed to clarify how these new centenarian-associated SIRT6 genetic variants affect liver metabolism and associated diseases. We present evidence that overexpression of centenarian-associated SIRT6 variants dramatically altered the metabolomic and secretomic profiles of unchallenged immortalized human hepatocytes (IHH). Most amino acids were increased in the SIRT6 N308K/A313S overexpressing IHH when compared to IHH transfected with the SIRT6 wild-type sequence. Several unsaturated fatty acids and glycerophospholipids were increased, and ceramide tended to be decreased upon SIRT6 N308K/A313S overexpression. Furthermore, we found that overexpression of SIRT6 N308K/A313S in a 3D hepatic spheroid model formed by the co-culture of human immortalized hepatocytes (IHH) and hepatic stellate cells (LX2) inhibited collagen deposition and fibrotic gene expression in absence of metabolic or dietary challenges. Hence, our findings suggest that novel longevity associated SIRT6 N308K/A313S variants could favor the prevention of NASH by altering hepatocyte proteome and lipidome.
Collapse
|
6
|
Immunoprecipitation Using Mono-ADP-Ribosylation-Specific Antibodies. Methods Mol Biol 2022; 2609:135-146. [PMID: 36515834 DOI: 10.1007/978-1-0716-2891-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immunoprecipitation is an essential methodology for enriching and purifying targeted proteins and peptides for in-depth analysis by any number of further techniques, from Western blotting to mass spectrometry (MS). Historically, the posttranslational modification ADP-ribosylation (ADPr) has been studied mainly in its polymerized form (poly-ADPr), but recent studies support the abundance and physiological relevance of mono-ADPr. Here, we describe several approaches to enrich mono-ADP-ribosylated proteins and peptides using mono-ADPr-specific antibodies, which can be tailored to a desired target and mode of downstream analysis.
Collapse
|
7
|
Guo Z, Li P, Ge J, Li H. SIRT6 in Aging, Metabolism, Inflammation and Cardiovascular Diseases. Aging Dis 2022; 13:1787-1822. [PMID: 36465178 PMCID: PMC9662279 DOI: 10.14336/ad.2022.0413] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/13/2022] [Indexed: 07/28/2023] Open
Abstract
As an important NAD+-dependent enzyme, SIRT6 has received significant attention since its discovery. In view of observations that SIRT6-deficient animals exhibit genomic instability and metabolic disorders and undergo early death, SIRT6 has long been considered a protein of longevity. Recently, growing evidence has demonstrated that SIRT6 functions as a deacetylase, mono-ADP-ribosyltransferase and long fatty deacylase and participates in a variety of cellular signaling pathways from DNA damage repair in the early stage to disease progression. In this review, we elaborate on the specific substrates and molecular mechanisms of SIRT6 in various physiological and pathological processes in detail, emphasizing its links to aging (genomic damage, telomere integrity, DNA repair), metabolism (glycolysis, gluconeogenesis, insulin secretion and lipid synthesis, lipolysis, thermogenesis), inflammation and cardiovascular diseases (atherosclerosis, cardiac hypertrophy, heart failure, ischemia-reperfusion injury). In addition, the most recent advances regarding SIRT6 modulators (agonists and inhibitors) as potential therapeutic agents for SIRT6-mediated diseases are reviewed.
Collapse
Affiliation(s)
- Zhenyang Guo
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Simon M, Yang J, Gigas J, Earley EJ, Hillpot E, Zhang L, Zagorulya M, Tombline G, Gilbert M, Yuen SL, Pope A, Van Meter M, Emmrich S, Firsanov D, Athreya A, Biashad SA, Han J, Ryu S, Tare A, Zhu Y, Hudgins A, Atzmon G, Barzilai N, Wolfe A, Moody K, Garcia BA, Thomas DD, Robbins PD, Vijg J, Seluanov A, Suh Y, Gorbunova V. A rare human centenarian variant of SIRT6 enhances genome stability and interaction with Lamin A. EMBO J 2022; 41:e110393. [PMID: 36215696 PMCID: PMC9627671 DOI: 10.15252/embj.2021110393] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 02/02/2023] Open
Abstract
Sirtuin 6 (SIRT6) is a deacylase and mono-ADP ribosyl transferase (mADPr) enzyme involved in multiple cellular pathways implicated in aging and metabolism regulation. Targeted sequencing of SIRT6 locus in a population of 450 Ashkenazi Jewish (AJ) centenarians and 550 AJ individuals without a family history of exceptional longevity identified enrichment of a SIRT6 allele containing two linked substitutions (N308K/A313S) in centenarians compared with AJ control individuals. Characterization of this SIRT6 allele (centSIRT6) demonstrated it to be a stronger suppressor of LINE1 retrotransposons, confer enhanced stimulation of DNA double-strand break repair, and more robustly kill cancer cells compared with wild-type SIRT6. Surprisingly, centSIRT6 displayed weaker deacetylase activity, but stronger mADPr activity, over a range of NAD+ concentrations and substrates. Additionally, centSIRT6 displayed a stronger interaction with Lamin A/C (LMNA), which was correlated with enhanced ribosylation of LMNA. Our results suggest that enhanced SIRT6 function contributes to human longevity by improving genome maintenance via increased mADPr activity and enhanced interaction with LMNA.
Collapse
Affiliation(s)
- Matthew Simon
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Jiping Yang
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Jonathan Gigas
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Eric J Earley
- Biostatistics and Epidemiology, RTI International, Durham, NC, USA
| | - Eric Hillpot
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Lei Zhang
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Maria Zagorulya
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Greg Tombline
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Michael Gilbert
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samantha L Yuen
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Alexis Pope
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | | | - Stephan Emmrich
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Denis Firsanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Advait Athreya
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | - Jeehae Han
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Seungjin Ryu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Archana Tare
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yizhou Zhu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adam Hudgins
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gil Atzmon
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Paul D Robbins
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
9
|
Abbotto E, Scarano N, Piacente F, Millo E, Cichero E, Bruzzone S. Virtual Screening in the Identification of Sirtuins’ Activity Modulators. Molecules 2022; 27:molecules27175641. [PMID: 36080416 PMCID: PMC9457788 DOI: 10.3390/molecules27175641] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Sirtuins are NAD+-dependent deac(et)ylases with different subcellular localization. The sirtuins’ family is composed of seven members, named SIRT-1 to SIRT-7. Their substrates include histones and also an increasing number of different proteins. Sirtuins regulate a wide range of different processes, ranging from transcription to metabolism to genome stability. Thus, their dysregulation has been related to the pathogenesis of different diseases. In this review, we discussed the pharmacological approaches based on sirtuins’ modulators (both inhibitors and activators) that have been attempted in in vitro and/or in in vivo experimental settings, to highlight the therapeutic potential of targeting one/more specific sirtuin isoform(s) in cancer, neurodegenerative disorders and type 2 diabetes. Extensive research has already been performed to identify SIRT-1 and -2 modulators, while compounds targeting the other sirtuins have been less studied so far. Beside sections dedicated to each sirtuin, in the present review we also included sections dedicated to pan-sirtuins’ and to parasitic sirtuins’ modulators. A special focus is dedicated to the sirtuins’ modulators identified by the use of virtual screening.
Collapse
Affiliation(s)
- Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
- Correspondence:
| |
Collapse
|
10
|
Firnau MB, Brieger A. CK2 and the Hallmarks of Cancer. Biomedicines 2022; 10:1987. [PMID: 36009534 PMCID: PMC9405757 DOI: 10.3390/biomedicines10081987] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Casein kinase 2 (CK2) is commonly dysregulated in cancer, impacting diverse molecular pathways. CK2 is a highly conserved serine/threonine kinase, constitutively active and ubiquitously expressed in eukaryotes. With over 500 known substrates and being estimated to be responsible for up to 10% of the human phosphoproteome, it is of significant importance. A broad spectrum of diverse types of cancer cells has been already shown to rely on disturbed CK2 levels for their survival. The hallmarks of cancer provide a rationale for understanding cancer's common traits. They constitute the maintenance of proliferative signaling, evasion of growth suppressors, resisting cell death, enabling of replicative immortality, induction of angiogenesis, the activation of invasion and metastasis, as well as avoidance of immune destruction and dysregulation of cellular energetics. In this work, we have compiled evidence from the literature suggesting that CK2 modulates all hallmarks of cancer, thereby promoting oncogenesis and operating as a cancer driver by creating a cellular environment favorable to neoplasia.
Collapse
Affiliation(s)
| | - Angela Brieger
- Department of Internal Medicine I, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
11
|
Liu Y, Chen C, Wang X, Sun Y, Zhang J, Chen J, Shi Y. An Epigenetic Role of Mitochondria in Cancer. Cells 2022; 11:cells11162518. [PMID: 36010594 PMCID: PMC9406960 DOI: 10.3390/cells11162518] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are not only the main energy supplier but are also the cell metabolic center regulating multiple key metaborates that play pivotal roles in epigenetics regulation. These metabolites include acetyl-CoA, α-ketoglutarate (α-KG), S-adenosyl methionine (SAM), NAD+, and O-linked beta-N-acetylglucosamine (O-GlcNAc), which are the main substrates for DNA methylation and histone post-translation modifications, essential for gene transcriptional regulation and cell fate determination. Tumorigenesis is attributed to many factors, including gene mutations and tumor microenvironment. Mitochondria and epigenetics play essential roles in tumor initiation, evolution, metastasis, and recurrence. Targeting mitochondrial metabolism and epigenetics are promising therapeutic strategies for tumor treatment. In this review, we summarize the roles of mitochondria in key metabolites required for epigenetics modification and in cell fate regulation and discuss the current strategy in cancer therapies via targeting epigenetic modifiers and related enzymes in metabolic regulation. This review is an important contribution to the understanding of the current metabolic-epigenetic-tumorigenesis concept.
Collapse
Affiliation(s)
- Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xinye Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yihong Sun
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
- Correspondence: (J.C.); (Y.S.)
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China
- Correspondence: (J.C.); (Y.S.)
| |
Collapse
|
12
|
Yuan Z, Zeng Y, Tian Y, Wang S, Hong B, Yang M. SIRT6 serves as a polyhedron in glycolytic metabolism and ageing-related diseases. Exp Gerontol 2022; 162:111765. [DOI: 10.1016/j.exger.2022.111765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/04/2022]
|
13
|
Yang Y, Zhu M, Liang J, Wang H, Sun D, Li H, Chen L. SIRT6 mediates multidimensional modulation to maintain organism homeostasis. J Cell Physiol 2022; 237:3205-3221. [PMID: 35621134 DOI: 10.1002/jcp.30791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022]
Abstract
As a member of the silent information regulators (sirtuins) family, SIRT6 can regulate a variety of biological processes, including DNA repair, glucose and lipid metabolism, oxidative stress and lifespan, and so forth. SIRT6 maintains organism homeostasis in a variety of phenotypes by mediating epigenetic regulation and posttranslational modification of functional proteins. In this review, we outline the structural basis of SIRT6 enzyme activity and its mechanism of maintaining organism homeostasis in a variety of phenotypes, with an emphasis on the upstream that regulates SIRT6 expression and the downstream substrates. And how SIRT6 achieves multidimensional coordination to maintain organism homeostasis and even extend lifespan. We try to understand the regulatory mechanism of SIRT6 in different phenotypes from the perspective of protein interaction.
Collapse
Affiliation(s)
- Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Man Zhu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Hui Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China.,School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
14
|
Raghu S, Prabhashankar AB, Shivanaiah B, Tripathi E, Sundaresan NR. Sirtuin 6 Is a Critical Epigenetic Regulator of Cancer. Subcell Biochem 2022; 100:337-360. [PMID: 36301499 DOI: 10.1007/978-3-031-07634-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sirtuin 6 (SIRT6) is a member of the mammalian sirtuin family with deacetylase, deacylase, and mono-ADP-ribosyl-transferase activities. It is a multitasking chromatin-associated protein regulating different cellular and physiological functions in cells. Specifically, SIRT6 dysfunction is implicated in several aging-related human diseases, including cancer. Studies indicate that SIRT6 has a tumor-specific role, and it is considered a tumor suppressor as well as a tumor growth inducer, depending on the type of cancer. In this chapter, we review the role of SIRT6 in metabolism, genomic stability, and cancer. Further, we provide an insight into the interplay of the tumor-suppressing and oncogenic roles of SIRT6 in cancer. Additionally, we discuss the use of small-molecule SIRT6 modulators as potential therapeutics.
Collapse
Affiliation(s)
- Sukanya Raghu
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru, Karnataka, India
| | - Arathi Bangalore Prabhashankar
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru, Karnataka, India
| | - Bhoomika Shivanaiah
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru, Karnataka, India
| | - Ekta Tripathi
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bengaluru, India.
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru, Karnataka, India.
| | - Nagalingam Ravi Sundaresan
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru, Karnataka, India.
| |
Collapse
|
15
|
Cai Y, Zhao F. Fluvastatin suppresses the proliferation, invasion, and migration and promotes the apoptosis of endometrial cancer cells by upregulating Sirtuin 6 (SIRT6). Bioengineered 2021; 12:12509-12520. [PMID: 34927546 PMCID: PMC8810182 DOI: 10.1080/21655979.2021.2009415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fluvastatin, the first fully synthesized 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGCR) inhibitor, has been reported to inhibit the development and metastasis of multiple cancers. The present study aimed to explore the effects of fluvastatin on endometrial cancer (EC) as well as reveal its potential mechanism. After exposure to fluvastatin, the cell viability, proliferation, migration, and invasion of EC cells were measured by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2ʹ-deoxyuridine (EDU), wound healing, and invasion assays, respectively. The apoptosis and its related proteins of fluvastatin-treated EC cells were detected by TUNEL and Western blot, separately. In order to figure out the effects of SIRT6 silence on EC cells, a series of cellular activities were performed again. Fluvastatin suppressed the proliferation, migration, and invasion of EC cells, but induced the apoptosis. The expression of SIRT6 was elevated in EC cells upon fluvastatin exposure. After silencing SIRT6 in fluvastatin-treated EC cells, the proliferation, migration, and invasion were promoted whereas the apoptosis was decreased. To sum up, this study firstly evidenced that fluvastatin suppresses the proliferation, invasion, and migration and promotes the apoptosis of endometrial cancer cells by regulating SIRT6 expression.
Collapse
Affiliation(s)
- Yu Cai
- Gynecology Department, The Third People's Hospital of Da Lian, Da Lian, China
| | - Feng Zhao
- Obstetrics and Gynecology Department, Hankou Hospital, Wuhan, Hubei, China
| |
Collapse
|
16
|
Cai S, Fu S, Zhang W, Yuan X, Cheng Y, Fang J. SIRT6 silencing overcomes resistance to sorafenib by promoting ferroptosis in gastric cancer. Biochem Biophys Res Commun 2021; 577:158-164. [PMID: 34530350 DOI: 10.1016/j.bbrc.2021.08.080] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 02/09/2023]
Abstract
Sorafenib is a tyrosine kinase inhibitor that shows anti-tumour effects against various cancers including gastric cancer (GC). However, the clinical application of sorafenib is often hampered by drug resistance. Sirtuins 6 (SIRT6) is a member of the Sirtuin family of NAD (+)-dependent enzymes that are critically involved in various biological activities. This study presents that SIRT6 silencing overcomes sorafenib resistance by promoting ferroptosis, which is a novel form of cell death. Mechanistically, SIRT6 inhibition led to the inactivation of the Keap1/Nrf2 signalling pathway and downregulation of GPX4. The overexpression of GPX4 or activation of Keap1/Nrf2 reverses the effects of the downregulation of SIRT6 on sorafenib-induced ferroptosis. Thus, targeting the SIRT6/Keap1/Nrf2/GPX4 signalling pathway may be a potential strategy for overcoming sorafenib resistance in GC.
Collapse
Affiliation(s)
- Shunv Cai
- Department of Anaesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Shuang Fu
- Department of Anaesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Weikang Zhang
- Department of Anaesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Xiaohong Yuan
- Department of Anaesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Yun Cheng
- Department of Anaesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Jun Fang
- Department of Anaesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.
| |
Collapse
|
17
|
Tsai YC, Chen SL, Peng SL, Tsai YL, Chang ZM, Chang VHS, Ch’ang HJ. Upregulating sirtuin 6 ameliorates glycolysis, EMT and distant metastasis of pancreatic adenocarcinoma with krüppel-like factor 10 deficiency. Exp Mol Med 2021; 53:1623-1635. [PMID: 34702956 PMCID: PMC8569177 DOI: 10.1038/s12276-021-00687-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022] Open
Abstract
Krüppel-like factor 10 (KLF10) is a tumor suppressor in multiple cancers. In a murine model of spontaneous pancreatic adenocarcinoma (PDAC), additional KLF10 depletion accelerated distant metastasis. However, Klf10 knockout mice, which suffer from metabolic disorders, do not develop malignancy. The mechanisms of KLF10 in PDAC progression deserve further exploration. KLF10-depleted and KLF10-overexpressing PDAC cells were established to measure epithelial-mesenchymal transition (EMT), glycolysis, and migration ability. A murine model was established to evaluate the benefit of genetic or pharmacological manipulation in KLF10-depleted PDAC cells (PDACshKLF10). Correlations of KLF10 deficiency with rapid metastasis, elevated EMT, and glycolysis were demonstrated in resected PDAC tissues, in vitro assays, and murine models. We identified sirtuin 6 (SIRT6) as an essential mediator of KLF10 that modulates EMT and glucose homeostasis. Overexpressing SIRT6 reversed the migratory and glycolytic phenotypes of PDACshKLF10 cells. Linoleic acid, a polyunsaturated essential fatty acid, upregulated SIRT6 and prolonged the survival of mice injected with PDACshKLF10. Modulating HIF1α and NFκB revealed that EMT and glycolysis in PDAC cells were coordinately regulated upstream by KLF10/SIRT6 signaling. Our study demonstrated a novel KLF10/SIRT6 pathway that modulated EMT and glycolysis coordinately via NFκB and HIF1α. Activation of KLF10/SIRT6 signaling ameliorated the distant progression of PDAC.Clinical Trial Registration: ClinicalTrials.gov. identifier: NCT01666184.
Collapse
Affiliation(s)
- Yi-Chih Tsai
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Su-Liang Chen
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Shu-Ling Peng
- grid.412040.30000 0004 0639 0054Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ya-Li Tsai
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Zuong-Ming Chang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Vincent Hung-Shu Chang
- grid.412896.00000 0000 9337 0481Program for Translation Biology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ju Ch’ang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan ,grid.412896.00000 0000 9337 0481Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan ,grid.64523.360000 0004 0532 3255Department of Oncology, School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
18
|
Garcia-Venzor A, Toiber D. SIRT6 Through the Brain Evolution, Development, and Aging. Front Aging Neurosci 2021; 13:747989. [PMID: 34720996 PMCID: PMC8548377 DOI: 10.3389/fnagi.2021.747989] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
During an organism's lifespan, two main phenomena are critical for the organism's survival. These are (1) a proper embryonic development, which permits the new organism to function with high fitness, grow and reproduce, and (2) the aging process, which will progressively undermine its competence and fitness for survival, leading to its death. Interestingly these processes present various similarities at the molecular level. Notably, as organisms became more complex, regulation of these processes became coordinated by the brain, and failure in brain activity is detrimental in both development and aging. One of the critical processes regulating brain health is the capacity to keep its genomic integrity and epigenetic regulation-deficiency in DNA repair results in neurodevelopmental and neurodegenerative diseases. As the brain becomes more complex, this effect becomes more evident. In this perspective, we will analyze how the brain evolved and became critical for human survival and the role Sirt6 plays in brain health. Sirt6 belongs to the Sirtuin family of histone deacetylases that control several cellular processes; among them, Sirt6 has been associated with the proper embryonic development and is associated with the aging process. In humans, Sirt6 has a pivotal role during brain aging, and its loss of function is correlated with the appearance of neurodegenerative diseases such as Alzheimer's disease. However, Sirt6 roles during brain development and aging, especially the last one, are not observed in all species. It appears that during the brain organ evolution, Sirt6 has gained more relevance as the brain becomes bigger and more complex, observing the most detrimental effect in the brains of Homo sapiens. In this perspective, we part from the evolution of the brain in metazoans, the biological similarities between brain development and aging, and the relevant functions of Sirt6 in these similar phenomena to conclude with the evidence suggesting a more relevant role of Sirt6 gained in the brain evolution.
Collapse
Affiliation(s)
- Alfredo Garcia-Venzor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Debra Toiber
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
19
|
Poltronieri P, Miwa M, Masutani M. ADP-Ribosylation as Post-Translational Modification of Proteins: Use of Inhibitors in Cancer Control. Int J Mol Sci 2021; 22:10829. [PMID: 34639169 PMCID: PMC8509805 DOI: 10.3390/ijms221910829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Among the post-translational modifications of proteins, ADP-ribosylation has been studied for over fifty years, and a large set of functions, including DNA repair, transcription, and cell signaling, have been assigned to this post-translational modification (PTM). This review presents an update on the function of a large set of enzyme writers, the readers that are recruited by the modified targets, and the erasers that reverse the modification to the original amino acid residue, removing the covalent bonds formed. In particular, the review provides details on the involvement of the enzymes performing monoADP-ribosylation/polyADP-ribosylation (MAR/PAR) cycling in cancers. Of note, there is potential for the application of the inhibitors developed for cancer also in the therapy of non-oncological diseases such as the protection against oxidative stress, the suppression of inflammatory responses, and the treatment of neurodegenerative diseases. This field of studies is not concluded, since novel enzymes are being discovered at a rapid pace.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, CNR-ISPA, Via Monteroni, 73100 Lecce, Italy
| | - Masanao Miwa
- Nagahama Institute of Bio-Science and Technology, Nagahama 526-0829, Japan;
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine, CBMM, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| |
Collapse
|
20
|
Reciprocal interaction between SIRT6 and APC/C regulates genomic stability. Sci Rep 2021; 11:14253. [PMID: 34244565 PMCID: PMC8270898 DOI: 10.1038/s41598-021-93684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/21/2021] [Indexed: 11/20/2022] Open
Abstract
SIRT6 is an NAD+-dependent deacetylase that plays an important role in mitosis fidelity and genome stability. In the present study, we found that SIRT6 overexpression leads to mitosis defects and aneuploidy. We identified SIRT6 as a novel substrate of anaphase-promoting complex/cyclosome (APC/C), which is a master regulator of mitosis. Both CDH1 and CDC20, co-activators of APC/C, mediated SIRT6 degradation via the ubiquitination-proteasome pathway. Reciprocally, SIRT6 also deacetylated CDH1 at lysine K135 and promoted its degradation, resulting in an increase in APC/C-CDH1-targeted substrates, dysfunction in centrosome amplification, and chromosome instability. Our findings demonstrate the importance of SIRT6 for genome integrity during mitotic progression and reveal how SIRT6 and APC/C cooperate to drive mitosis.
Collapse
|
21
|
Liberale L, Gaul DS, Akhmedov A, Bonetti NR, Nageswaran V, Costantino S, Pahla J, Weber J, Fehr V, Vdovenko D, Semerano A, Giacalone G, Kullak-Ublick GA, Sessa M, Eriksson U, Paneni F, Ruschitzka F, Montecucco F, Beer JH, Lüscher TF, Matter CM, Camici GG. Endothelial SIRT6 blunts stroke size and neurological deficit by preserving blood-brain barrier integrity: a translational study. Eur Heart J 2021; 41:1575-1587. [PMID: 31603194 DOI: 10.1093/eurheartj/ehz712] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/01/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS Aging is an established risk factor for stroke; genes regulating longevity are implicated in the pathogenesis of ischaemic stroke where to date, therapeutic options remain limited. The blood-brain barrier (BBB) is crucially involved in ischaemia/reperfusion (I/R) brain injury thus representing an attractive target for developing novel therapeutic agents. Given the role of endothelial cells in the BBB, we hypothesized that the endothelial-specific expression of the recently described longevity gene SIRT6 may exhibit protective properties in stroke. METHODS AND RESULTS SIRT6 endothelial expression was reduced following stroke. Endothelial-specific Sirt6 knockout (eSirt6-/-) mice, as well as animals in which Sirt6 overexpression was post-ischaemically induced, underwent transient middle cerebral artery occlusion (tMCAO). eSirt6-/- animals displayed increased infarct volumes, mortality, and neurological deficit after tMCAO, as compared to control littermates. Conversely, post-ischaemic Sirt6 overexpression decreased infarct size and neurological deficit. Analysis of ischaemic brain sections revealed increased BBB damage and endothelial expression of cleaved caspase-3 in eSIRT6-/- mice as compared to controls. In primary human brain microvascular endothelial cells (HBMVECs), hypoxia/reoxygenation (H/R) reduced SIRT6 expression and SIRT6 silencing impaired the barrier function (transendothelial resistance) similar to what was observed in mice exposed to I/R. Further, SIRT6-silenced HBMVECs exposed to H/R showed reduced viability, increased cleaved caspase-3 expression and reduced activation of the survival pathway Akt. In ischaemic stroke patients, SIRT6 expression was higher in those with short-term neurological improvement as assessed by NIHSS scale and correlated with stroke outcome. CONCLUSION Endothelial SIRT6 exerts a protective role in ischaemic stroke by blunting I/R-mediated BBB damage and thus, it may represent an interesting novel therapeutic target to be explored in future clinical investigation.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland.,First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa 16132, Italy
| | - Daniel S Gaul
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland
| | - Nicole R Bonetti
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland.,Department of Internal Medicine, Cantonal Hospital of Baden, Im Ergel 1, Baden 5404, Switzerland
| | - Vanasa Nageswaran
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin 12203, Germany
| | - Sarah Costantino
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland
| | - Jürgen Pahla
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland
| | - Julien Weber
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Vera Fehr
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland
| | - Daria Vdovenko
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland
| | - Aurora Semerano
- Department of Neurology, San Raffaele Scientific Institute, via Olgettina 60, Milano 20132, Italy
| | - Giacomo Giacalone
- Department of Neurology, San Raffaele Scientific Institute, via Olgettina 60, Milano 20132, Italy
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Maria Sessa
- Department of Neurology, San Raffaele Scientific Institute, via Olgettina 60, Milano 20132, Italy
| | - Urs Eriksson
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland.,GZO Spital Wetzikon, Spitalstrasse 66, Wetzikon 8620, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, Zurich 8092, Switzerland.,Department of Research and Education, University Hospital Zurich, Rämistrasse 100, Zurich 8092, Switzerland
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, Zurich 8092, Switzerland
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, L.go R. Benzi 10, Genoa 16132, Italy.,First Clinic of Internal Medicine, Department of Internal Medicine, Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 viale Benedetto XV, Genoa 16132, Italy
| | - Jürg H Beer
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland.,Department of Internal Medicine, Cantonal Hospital of Baden, Im Ergel 1, Baden 5404, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland.,Royal Brompton and Harefield Hospitals, Imperial College, Dovehouse Street, London SW3 6LY, UK
| | - Christian M Matter
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, Zurich 8092, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, Zurich 8092, Switzerland.,Department of Research and Education, University Hospital Zurich, Rämistrasse 100, Zurich 8092, Switzerland.,Zurich Neuroscience Center, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| |
Collapse
|
22
|
So KY, Park BH, Oh SH. Cytoplasmic sirtuin 6 translocation mediated by p62 polyubiquitination plays a critical role in cadmium-induced kidney toxicity. Cell Biol Toxicol 2021; 37:193-207. [PMID: 32394328 DOI: 10.1007/s10565-020-09528-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022]
Abstract
Sirtuin 6 (Sirt6) is important for maintaining kidney homeostasis and function. Cd exposure increases the risk of developing kidney diseases. However, the role of Sirt6 in kidney disease mechanisms is unclear. Here, we evaluated the role of Sirt6 in Cd-induced kidney toxicity. After Cd exposure, p62/sequestosome-1 (SQSTM1), an autophagy substrate, accumulated in mouse kidney mesangial cells in monomeric and polyubiquitinated (polyUb) forms. Sirt6 accumulated in response to Cd treatment at concentrations below the half-maximal inhibitory concentration and decreased after 12 h of treatment. Sirt6 and p62 co-localized in the nucleus and redistributed to the cytosol after Cd treatment. Sirt6 was mainly present in nuclei-rich membrane fractions. Sirt6 interacted with p62. Ub, and microtubule-associated protein light chain 3 (LC3). Knockdown of p62 promoted Sirt6 nuclear accumulation and inhibited apoptosis. Sirt6 overexpression altered levels of polyUb-p62 and apoptosis. At earlier times during Cd treatment, polyubiquitination of p62 and apoptosis were reduced. Cytoplasmic translocation of Sirt6 occurred later, with increased polyubiquitination of p62 and apoptosis. Bafilomycin 1 (BaF1) treatment promoted cytosolic Sirt6 accumulation, increasing cell death. Silencing autophagy related 5 (Atg5) increased nuclear Sirt6 levels, reduced polyUb-p62, and inhibited cell death, indicating that autophagy was necessary for Sirt6 redistribution. Cd resistance was associated with reduced polyUb-p62 and persistent Sirt6 expression. Cd treatment in mice for 4 weeks promoted p62, Sirt6, and LC3-II accumulation, inducing apoptosis in kidney tissues. Overall, our findings show that polyUb-p62 targeted Sirt6 to autophagosomes, playing a crucial role in Cd-induced cell death and kidney damage.
Collapse
Affiliation(s)
- Keum-Young So
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju, 501-759, South Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Seon-Hee Oh
- School of Medicine, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju, 501-759, South Korea.
| |
Collapse
|
23
|
The Two-Faced Role of SIRT6 in Cancer. Cancers (Basel) 2021; 13:cancers13051156. [PMID: 33800266 PMCID: PMC7962659 DOI: 10.3390/cancers13051156] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Cancer therapy relies on the employment of different strategies aimed at inducing cancer cell death through different mechanisms, including DNA damage and apoptosis induction. One of the key regulators of these pathways is the epigenetic enzyme SIRT6, which has been shown to have a dichotomous function in cell fate determination and, consequently, cancer initiation and progression. In this review, we aim to summarize the current knowledge on the role of SIRT6 in cancer. We show that it can act as both tumor suppressor and promoter, even in the same cancer type, depending on the biological context. We then describe the most promising modulators of SIRT6 which, through enzyme activation or inhibition, may impair tumor growth. These molecules can also be used for the elucidation of SIRT6 function, thereby advancing the current knowledge on this crucial protein. Abstract Sirtuin 6 (SIRT6) is a NAD+-dependent nuclear deacylase and mono-ADP-ribosylase with a wide spectrum of substrates. Through its pleiotropic activities, SIRT6 modulates either directly or indirectly key processes linked to cell fate determination and oncogenesis such as DNA damage repair, metabolic homeostasis, and apoptosis. SIRT6 regulates the expression and activity of both pro-apoptotic (e.g., Bax) and anti-apoptotic factors (e.g., Bcl-2, survivin) in a context-depending manner. Mounting evidence points towards a double-faced involvement of SIRT6 in tumor onset and progression since the block or induction of apoptosis lead to opposite outcomes in cancer. Here, we discuss the features and roles of SIRT6 in the regulation of cell death and cancer, also focusing on recently discovered small molecule modulators that can be used as chemical probes to shed further light on SIRT6 cancer biology and proposed as potential new generation anticancer therapeutics.
Collapse
|
24
|
Liu G, Chen H, Liu H, Zhang W, Zhou J. Emerging roles of SIRT6 in human diseases and its modulators. Med Res Rev 2021; 41:1089-1137. [PMID: 33325563 PMCID: PMC7906922 DOI: 10.1002/med.21753] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
The biological functions of sirtuin 6 (SIRT6; e.g., deacetylation, defatty-acylation, and mono-ADP-ribosylation) play a pivotal role in regulating lifespan and several fundamental processes controlling aging such as DNA repair, gene expression, and telomeric maintenance. Over the past decades, the aberration of SIRT6 has been extensively observed in diverse life-threatening human diseases. In this comprehensive review, we summarize the critical roles of SIRT6 in the onset and progression of human diseases including cancer, inflammation, diabetes, steatohepatitis, arthritis, cardiovascular diseases, neurodegenerative diseases, viral infections, renal and corneal injuries, as well as the elucidation of the related signaling pathways. Moreover, we discuss the advances in the development of small molecule SIRT6 modulators including activators and inhibitors as well as their pharmacological profiles toward potential therapeutics for SIRT6-mediated diseases.
Collapse
Affiliation(s)
- Gang Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Hua Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| |
Collapse
|
25
|
Poltronieri P, Celetti A, Palazzo L. Mono(ADP-ribosyl)ation Enzymes and NAD + Metabolism: A Focus on Diseases and Therapeutic Perspectives. Cells 2021; 10:cells10010128. [PMID: 33440786 PMCID: PMC7827148 DOI: 10.3390/cells10010128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Mono(ADP-ribose) transferases and mono(ADP-ribosyl)ating sirtuins use NAD+ to perform the mono(ADP-ribosyl)ation, a simple form of post-translational modification of proteins and, in some cases, of nucleic acids. The availability of NAD+ is a limiting step and an essential requisite for NAD+ consuming enzymes. The synthesis and degradation of NAD+, as well as the transport of its key intermediates among cell compartments, play a vital role in the maintenance of optimal NAD+ levels, which are essential for the regulation of NAD+-utilizing enzymes. In this review, we provide an overview of the current knowledge of NAD+ metabolism, highlighting the functional liaison with mono(ADP-ribosyl)ating enzymes, such as the well-known ARTD10 (also named PARP10), SIRT6, and SIRT7. To this aim, we discuss the link of these enzymes with NAD+ metabolism and chronic diseases, such as cancer, degenerative disorders and aging.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, via Monteroni 7, 73100 Lecce, Italy
- Correspondence: (P.P.); (A.C.); (L.P.)
| | - Angela Celetti
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, Via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: (P.P.); (A.C.); (L.P.)
| | - Luca Palazzo
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, Via Tommaso de Amicis 95, 80145 Naples, Italy
- Correspondence: (P.P.); (A.C.); (L.P.)
| |
Collapse
|
26
|
Chen F, Ma X, Liu Y, Ma D, Gao X, Qian X. SIRT6 inhibits metastasis by suppressing SNAIL expression in nasopharyngeal carcinoma cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:63-74. [PMID: 33532024 PMCID: PMC7847487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck cancer with severe local invasion and early distant metastasis. SIRT6 serves as a critical modulator of the development and metastasis of multiple types of cancer; however, the roles and underlying mechanisms of SIRT6 in regulating NPC metastasis remain largely unknown. Here, the expression of SIRT6 in high metastatic 5-8F cells and low metastatic 6-10B cells was analyzed. SIRT6 expression was found to be negatively associated with the metastatic capability of NPC cells. Moreover, we identified that SIRT6 inhibited NPC cell metastasis through suppression of SNAIL expression. Mechanistically, we demonstrated that SIRT6 interacted with transcription factor p65 (NF-kB subunit) and deacetylated histone H3 lysine 9 (H3K9) and lysine 56 (H3K56) at the promoter of SNAIL, leading to reduced transcription of SNAIL. In summary, SIRT6 functions as a metastasis suppressor in NPC cells through epigenetic regulation of SNAIL gene expression.
Collapse
Affiliation(s)
- Feng Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityChina
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)China
- Research Institution of OtorhinolaryngologyNanjing 210008, Jiangsu, China
| | - Xiaofeng Ma
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)China
- Research Institution of OtorhinolaryngologyNanjing 210008, Jiangsu, China
| | - Yongze Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)China
- Research Institution of OtorhinolaryngologyNanjing 210008, Jiangsu, China
| | - Dengbin Ma
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)China
- Research Institution of OtorhinolaryngologyNanjing 210008, Jiangsu, China
| | - Xia Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityChina
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)China
- Research Institution of OtorhinolaryngologyNanjing 210008, Jiangsu, China
| | - Xiaoyun Qian
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)China
- Research Institution of OtorhinolaryngologyNanjing 210008, Jiangsu, China
| |
Collapse
|
27
|
Samant SA, Pillai VB, Gupta MP. Skeletal muscle-specific over-expression of the nuclear sirtuin SIRT6 blocks cancer-associated cachexia by regulating multiple targets. JCSM RAPID COMMUNICATIONS 2021; 4:40-56. [PMID: 34212132 PMCID: PMC8237231 DOI: 10.1002/rco2.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/14/2020] [Accepted: 09/16/2020] [Indexed: 06/13/2023]
Abstract
BACKGROUND During cancer cachexia, cytokines released from tumour cells can alter body's metabolism, which can lead to onset of this disease process. Biological basis of cachexia is multifactorial; hence, it is important to identify and modulate multiple targets to curtail the process of cachexia. Previously, we reported that the nuclear sirtuin, SIRT6, blocks expression of myostatin, a negative regulator of muscle growth, through modulation of the NF-κB signalling. This study was undertaken to test whether muscle-specific over-expression of SIRT6 can block the cancer-associated muscle wasting in vivo and to identify additional relevant targets of SIRT6, which can explain its ability to maintain muscle health. METHODS We generated a skeletal muscle-specific SIRT6 over-expressing transgenic mouse line (Sk.T6Tg) expressing SIRT6 at a moderate (two-fold to four-fold) level, compared with its control littermates. To generate a cancer-cachexia model, B16F10 mouse melanoma cells were injected subcutaneously in the flanks of mice. Gastrocnemius muscle tissues from non-tumour and tumour controls and Sk.T6Tg mice (n = 5-20) were analysed by histology, immunoblotting, and RT-qPCR. Plasma samples of mice were evaluated using cytokine arrays and ELISA in both non-tumour and tumour conditions. RESULTS Our results demonstrate dual benefits of muscle-specific moderate over-expression of SIRT6 in a mouse model of cancer-cachexia. In tumour-bearing mice, SIRT6 over-expression preserved muscle weight (P < 0.001) and fibre size (P < 0.005) as well as suppressed tumour growth (P < 0.05). SIRT6 over-expression significantly reduced myostatin expression and plasma free fatty acids levels but maintained plasma insulin levels in tumour-bearing mice. These positive effects of SIRT6 were associated with downregulation of the circulatory chemokine, CXCL10, and the myokine, WNT4. SIRT6 also upregulated expression of GLUT4, the major glucose transporter in the skeletal muscle. These results for the first time demonstrate that SIRT6 regulates multiple targets to limit tumour growth and cancer-associated muscle atrophy. CONCLUSION Given the multifactorial nature of cachexia, SIRT6, which concurrently controls multiple pathways, can be a valuable therapeutic target to overcome this debilitating syndrome.
Collapse
Affiliation(s)
- Sadhana A. Samant
- Department of SurgeryUniversity of Chicago5841 South Maryland AvenueChicagoIL60637USA
| | - Vinodkumar B. Pillai
- Department of SurgeryUniversity of Chicago5841 South Maryland AvenueChicagoIL60637USA
| | - Mahesh P. Gupta
- Department of SurgeryUniversity of Chicago5841 South Maryland AvenueChicagoIL60637USA
- Committee on Molecular Medicine and Pathology, Pritzker School of MedicineUniversity of ChicagoChicagoILUSA
| |
Collapse
|
28
|
SIRT6 as a key event linking P53 and NRF2 counteracts APAP-induced hepatotoxicity through inhibiting oxidative stress and promoting hepatocyte proliferation. Acta Pharm Sin B 2021; 11:89-99. [PMID: 33532182 PMCID: PMC7838028 DOI: 10.1016/j.apsb.2020.06.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 01/10/2023] Open
Abstract
Acetaminophen (APAP) overdose is the leading cause of drug-induced liver injury, and its prognosis depends on the balance between hepatocyte death and regeneration. Sirtuin 6 (SIRT6) has been reported to protect against oxidative stress-associated DNA damage. But whether SIRT6 regulates APAP-induced hepatotoxicity remains unclear. In this study, the protein expression of nuclear and total SIRT6 was up-regulated in mice liver at 6 and 48 h following APAP treatment, respectively. Sirt6 knockdown in AML12 cells aggravated APAP-induced hepatocyte death and oxidative stress, inhibited cell viability and proliferation, and downregulated CCNA1, CCND1 and CKD4 protein levels. Sirt6 knockdown significantly prevented APAP-induced NRF2 activation, reduced the transcriptional activities of GSTμ and NQO1 and the mRNA levels of Nrf2, Ho-1, Gstα and Gstμ. Furthermore, SIRT6 showed potential protein interaction with NRF2 as evidenced by co-immunoprecipitation (Co-IP) assay. Additionally, the protective effect of P53 against APAP-induced hepatocytes injury was Sirt6-dependent. The Sirt6 mRNA was significantly down-regulated in P53 -/- mice. P53 activated the transcriptional activity of SIRT6 and exerted interaction with SIRT6. Our results demonstrate that SIRT6 protects against APAP hepatotoxicity through alleviating oxidative stress and promoting hepatocyte proliferation, and provide new insights in the function of SIRT6 as a crucial docking molecule linking P53 and NRF2.
Collapse
Key Words
- AAV, adeno-associated virus
- ALF, acute liver failure
- ALT, serum alanine aminotransferase
- APAP, acetaminophen
- ARE, antioxidant response element
- AST, aspartate aminotransferase
- Acetaminophen
- BCA, bicinchoninic acid
- BrdU, bromodeoxyuridine
- CCK-8, cell counting kit-8
- CCNA1, cyclin A1
- CCND1, cyclin D1
- CDK4, cyclin-dependent kinase 4
- CYP450, cytochromes P450
- Co-IP, co-immunoprecipitation
- DCF, dichlorofluorescein
- Dox, doxorubicin
- ECL, electrochemiluminescence
- GSH, glutathione
- GSTα, glutathianone S-transferase α
- GSTμ, glutathione S-transferase μ
- H&E, hematoxylin and eosin
- H3K56ac, histone H3 Nε-acetyl-lysines 56
- H3K9ac, histone H3 Nε-acetyl-lysines 9
- HO-1, heme oxygenase-1
- Hepatotoxicity
- KEAP1, Kelch-like ECH-associated protein 1
- LDH, lactate dehydrogenase
- NAPQI, N-acetyl p-benzoquinone imine
- NQO1, NAD(P)H quinone dehydrogenase 1
- NRF2
- NRF2, nuclear factor erythroid 2-related factor 2
- P53
- ROS, reactive oxygen species
- SIRT6
- SIRT6, sirtuin 6
- siRNA, small interfering RNA
Collapse
|
29
|
Zhao L, Cao J, Hu K, He X, Yun D, Tong T, Han L. Sirtuins and their Biological Relevance in Aging and Age-Related Diseases. Aging Dis 2020; 11:927-945. [PMID: 32765955 PMCID: PMC7390530 DOI: 10.14336/ad.2019.0820] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Sirtuins, initially described as histone deacetylases and gene silencers in yeast, are now known to have many more functions and to be much more abundant in living organisms. The increasing evidence of sirtuins in the field of ageing and age-related diseases indicates that they may provide novel targets for treating diseases associated with aging and perhaps extend human lifespan. Here, we summarize some of the recent discoveries in sirtuin biology that clearly implicate the functions of sirtuins in the regulation of aging and age-related diseases. Furthermore, human sirtuins are considered promising therapeutic targets for anti-aging and ageing-related diseases and have attracted interest in scientific communities to develop small molecule activators or drugs to ameliorate a wide range of ageing disorders. In this review, we also summarize the discovery and development status of sirtuin-targeted drug and further discuss the potential medical strategies of sirtuins in delaying aging and treating age-related diseases.
Collapse
Affiliation(s)
- Lijun Zhao
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Jianzhong Cao
- 2Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kexin Hu
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Xiaodong He
- 2Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dou Yun
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Tanjun Tong
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Limin Han
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| |
Collapse
|
30
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
31
|
Abstract
IMPACT STATEMENT NAD is a central metabolite connecting energy balance and organismal growth with genomic integrity and function. It is involved in the development of malignancy and has a regulatory role in the aging process. These processes are mediated by a diverse series of enzymes whose common focus is either NAD's biosynthesis or its utilization as a redox cofactor or enzyme substrate. These enzymes include dehydrogenases, cyclic ADP-ribose hydrolases, mono(ADP-ribosyl)transferases, poly(ADP-ribose) polymerases, and sirtuin deacetylases. This article describes the manifold pathways that comprise NAD metabolism and promotes an increased awareness of how perturbations in these systems may be important in disease prevention and/or progression.
Collapse
Affiliation(s)
- John Wr Kincaid
- Department of Nutrition, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,151230Case Comprehensive Cancer Center, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nathan A Berger
- 151230Case Comprehensive Cancer Center, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biochemistry, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Genetics and Genome Sciences, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Medicine, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Center for Science, Health and Society, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
32
|
Chang AR, Ferrer CM, Mostoslavsky R. SIRT6, a Mammalian Deacylase with Multitasking Abilities. Physiol Rev 2020; 100:145-169. [PMID: 31437090 PMCID: PMC7002868 DOI: 10.1152/physrev.00030.2018] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022] Open
Abstract
Mammalian sirtuins have emerged in recent years as critical modulators of multiple biological processes, regulating cellular metabolism, DNA repair, gene expression, and mitochondrial biology. As such, they evolved to play key roles in organismal homeostasis, and defects in these proteins have been linked to a plethora of diseases, including cancer, neurodegeneration, and aging. In this review, we describe the multiple roles of SIRT6, a chromatin deacylase with unique and important functions in maintaining cellular homeostasis. We attempt to provide a framework for such different functions, for the ability of SIRT6 to interconnect chromatin dynamics with metabolism and DNA repair, and the open questions the field will face in the future, particularly in the context of putative therapeutic opportunities.
Collapse
Affiliation(s)
- Andrew R Chang
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts; and The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Christina M Ferrer
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts; and The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts; and The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
33
|
Sirtuins and SIRT6 in Carcinogenesis and in Diet. Int J Mol Sci 2019; 20:ijms20194945. [PMID: 31591350 PMCID: PMC6801518 DOI: 10.3390/ijms20194945] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Sirtuins are a highly conserved family of nicotinamide adenine dinucleotide (NAD)-dependent protein lysine modifying enzymes. They are key regulators for a wide variety of cellular and physiological processes such as cell proliferation, differentiation, DNA damage and stress response, genome stability, cell survival, metabolism, energy homeostasis, organ development and aging. Aging is one of the major risk factors of cancer, as many of the physiological mechanisms and pathologies associated with the aging process also contribute to tumor initiation, growth and/or metastasis. This review focuses on one the mammalian sirtuins, SIRT6, which has emerged as an important regulator of longevity and appears to have multiple biochemical functions that interfere with tumor development and may be useful in cancer prevention and for site-specific treatment. The recent evidence of the role of SIRT6 in carcinogenesis is also discussed, focusing on the potential use of SIRT6 modulators in cancer nanomedicine.
Collapse
|
34
|
Ding Y, Wu S, Huo Y, Chen X, Chai L, Wang Y, Wang X, Zhu G, Jiang W. Inhibition of Sirt6 suppresses tumor growth by inducing G1/S phase arrest in renal cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2526-2535. [PMID: 31934079 PMCID: PMC6949575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/23/2019] [Indexed: 06/10/2023]
Abstract
Sirt6 is a vital member of the Sirtuin family that plays a key role in cellular apoptosis, aging, DNA damage repair, telomere homeostasis and integrity, energy metabolism, glucose homeostasis, and gene regulation. In recent studies, Sirt6 is down-regulated in several cancers and predicted to be a tumor suppressor, but as a tumor oncogene in other cancers. In this study, we explored the specific role of Sirt6 in human renal cell carcinoma (RCC). We found that Sirt6 was up-expressed in renal tumor tissues and cells. Sirt6 silence in RCC led to G1/S phase arrest, a rise in apoptosis and a decrease in cell viability, as well as an enhancement of chemotherapeutic sensitivity. In conclusion, these findings suggest that Sirt6 acted as an oncogene in human RCC and it could be a potential target for RCC treatment.
Collapse
Affiliation(s)
- Yu Ding
- Research Core Facility, West China Hospital, Sichuan UniversityChengdu, Sichuan, PR China
| | - Sisi Wu
- Research Core Facility, West China Hospital, Sichuan UniversityChengdu, Sichuan, PR China
| | - Yuwei Huo
- Precision Medicine Center, West China Hospital, Sichuan UniversityChengdu, Sichuan, PR China
| | - Xuemei Chen
- Research Core Facility, West China Hospital, Sichuan UniversityChengdu, Sichuan, PR China
| | - Li Chai
- Research Core Facility, West China Hospital, Sichuan UniversityChengdu, Sichuan, PR China
| | - Yan Wang
- Research Core Facility, West China Hospital, Sichuan UniversityChengdu, Sichuan, PR China
| | - Xiangxiu Wang
- Research Core Facility, West China Hospital, Sichuan UniversityChengdu, Sichuan, PR China
| | - Guonian Zhu
- Research Core Facility, West China Hospital, Sichuan UniversityChengdu, Sichuan, PR China
| | - Wei Jiang
- Molecular Medicine Research Center, West China Hospital, Sichuan UniversityChengdu, Sichuan, PR China
| |
Collapse
|
35
|
Wu X, Tian H, Xue L, Wang L. SIRT6 abrogation promotes adrenocortical carcinoma through activation of NF-κB signaling. Mol Cell Biochem 2019; 458:1-10. [PMID: 30989475 DOI: 10.1007/s11010-019-03525-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/15/2019] [Indexed: 02/05/2023]
Abstract
As an uncommon malignancy in the adrenal gland, adrenocortical carcinoma (ACC) is characterized by thorny diagnosis and poor clinical outcome, necessitating innovative treatment strategies. Sirtuin 6 (SIRT6), a tumor suppressor, modulates aerobic glycolysis of malignant cells and has an impact on tumorigenesis. This study focused on investigating SIRT6 expression in ACC and how it generates cancer phenotypes. SIRT6 expression was inhibited in ACC tissues according to western blotting, real-time polymerase chain reaction, and immunohistochemistry. MTT assay, TUNEL assay, and flow cytometry were performed to evaluate the contribution of SIRT6 to cell invasion, proliferation, death, and migration. It was shown that SIRT6 knockdown promoted cell invasion, proliferation, and migration, and inhibited cell death. Moreover, it was found that SIRT6 knockdown upregulated TLR4 and reinforced phosphorylation of the nuclear transcription factor-kappa B (NF-κB) subunit p65 as well as inhibitor of nuclear factor kappa-B kinase. Additionally, SIRT6 knockdown significantly enhanced expression of calcitonin gene-related peptide as well as transient receptor potential vanilloid subtype 1. It also reinforced reactive oxygen species generation. Overall, our research findings demonstrate that SIRT6 serves as a tumor suppressor via regulation of the NF-κB pathway, which could offer an innovative strategy to treat ACC.
Collapse
Affiliation(s)
- Xueyi Wu
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Haoming Tian
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China.
| | - Long Xue
- Department of Intensive Medicine, Women and Children's Hospital of Sichuan Province, Chengdu, 610043, China
| | - Lizhi Wang
- Department of Eugenics, Women and Children's Hospital of Sichuan Province, Chengdu, 610043, China
| |
Collapse
|
36
|
Nicotine promotes neuron survival and partially protects from Parkinson's disease by suppressing SIRT6. Acta Neuropathol Commun 2018; 6:120. [PMID: 30409187 PMCID: PMC6223043 DOI: 10.1186/s40478-018-0625-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 12/27/2022] Open
Abstract
Parkinson’s disease is characterized by progressive death of dopaminergic neurons, leading to motor and cognitive dysfunction. Epidemiological studies consistently show that the use of tobacco reduces the risk of Parkinson’s. We report that nicotine reduces the abundance of SIRT6 in neuronal culture and brain tissue. We find that reduction of SIRT6 is partly responsible for neuroprotection afforded by nicotine. Additionally, SIRT6 abundance is greater in Parkinson’s patient brains, and decreased in the brains of tobacco users. We also identify SNPs that promote SIRT6 expression and simultaneously associate with an increased risk of Parkinson’s. Furthermore, brain-specific SIRT6 knockout mice are protected from MPTP-induced Parkinson’s, while SIRT6 overexpressing mice develop more severe pathology. Our data suggest that SIRT6 plays a pathogenic and pro-inflammatory role in Parkinson’s and that nicotine can provide neuroprotection by accelerating its degradation. Inhibition of SIRT6 may be a promising strategy to ameliorate Parkinson’s and neurodegeneration.
Collapse
|
37
|
Tian J, Yuan L. Sirtuin 6 inhibits colon cancer progression by modulating PTEN/AKT signaling. Biomed Pharmacother 2018; 106:109-116. [PMID: 29957460 DOI: 10.1016/j.biopha.2018.06.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 02/08/2023] Open
Abstract
Decreased expression of the tumor suppressor sirtuin 6 (SIRT6) protein plays a role in tumorigenesis. The aim of this study was to investigate the effects of SIRT6 and its underlying mechanism in colon cancer progression. As shown by immunohistochemistry, Western blotting, and the real-time polymerase chain reaction (RT-PCR), SIRT6 expression was down-regulated in colon cancer tissues and different colon cancer cell lines, and down-regulation of SIRT6 showed a negative correlation with the overall survival of colon cancer patients. To assess the effects of SIRT6 on cell proliferation, apoptosis, invasion, and migration, 3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, transwell, and wound healing assays were carried out, respectively. Results demonstrated that over-expression of SIRT6 inhibited cell proliferation, invasion, and migration and enhanced cell apoptosis. Co-immunoprecipitation (Co-IP) and Western blotting showed that up-regulation of SIRT6 increased the combined quantity of PTEN with SIRT6 proteins, and promoted the expression of PTEN and PIP2, as well as the stability of PTEN. SIRT6 also reduced the ubiquitination of PTEN and decreased protein levels of AKT1, phosphatidylinositol (3,4,5)-trisphosphate (PIP3), mTOR, cyclin d1, and c-myc. In addition, compared with cells over-expressed SIRT6, cell apoptosis was repressed and cell proliferation and tumorigenesis were enhanced in cells with SIRT6 over-expression and PTEN knockdown. In conclusion, the present study confirms that SIRT6 functions as a tumor suppressor gene in colon cancer by modulating PTEN/AKT signaling, which may provide a novel target for the treatment of colon cancer.
Collapse
Affiliation(s)
- Junhong Tian
- Department of Colorectal and Anal Surgery, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Leilei Yuan
- Department of Oncology, Jining No.1 People's Hospital, Jining, Shandong, 272000, China. 13905370037.@163.com
| |
Collapse
|
38
|
Olesen SV, Rajabi N, Svensson B, Olsen CA, Madsen AS. An NAD +-Dependent Sirtuin Depropionylase and Deacetylase (Sir2La) from the Probiotic Bacterium Lactobacillus acidophilus NCFM. Biochemistry 2018; 57:3903-3915. [PMID: 29863862 DOI: 10.1021/acs.biochem.8b00306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sirtuins, a group of NAD+-dependent deacylases, have emerged as the key connection between NAD+ metabolism and aging. This class of enzymes hydrolyzes a range of ε- N-acyllysine PTMs, and determining the repertoire of catalyzed deacylation reactions is of high importance to fully elucidate the roles of a given sirtuin. Here we have identified and produced two potential sirtuins from the probiotic bacterium Lactobacillus acidophilus NCFM. Screening more than 80 different substrates, covering 26 acyl groups on five peptide scaffolds, demonstrated that one of the investigated proteins, Sir2La, is a bona fide NAD+-dependent sirtuin, catalyzing hydrolysis of acetyl-, propionyl-, and butyryllysine. Further substantiating the identity of Sir2La as a sirtuin, known sirtuin inhibitors, nicotinamide and suramin, as well as a thioacetyllysine compound inhibit the deacylase activity in a concentration-dependent manner. On the basis of steady-state kinetics, Sir2La showed a slight preference for propionyllysine (Kpro) over acetyllysine (Kac). For nonfluorogenic peptide substrates, the preference is driven by a remarkably low KM (280 nM vs 700 nM, for Kpro and Kac, respectively), whereas kcat was similar (21 × 10-3 s-1). Moreover, while NAD+ is a prerequisite for Sir2La-mediated deacylation, Sir2La has a very high KM for NAD+ compared to the expected levels of the dinucleotide in L. acidophilus. Sir2La is the first sirtuin from Lactobacillales and of the Gram-positive bacterial subclass of sirtuins to be functionally characterized. The ability to hydrolyze propionyl- and butyryllysine emphasizes the relevance of further exploring the role of other short-chain acyl moieties as PTMs.
Collapse
Affiliation(s)
- Sita V Olesen
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - Nima Rajabi
- Center for Biopharmaceuticals, Faculty of Health and Medicinal Sciences , University of Copenhagen , DK-2100 Copenhagen , Denmark.,Department of Drug Design and Pharmacology , University of Copenhagen , DK-2100 Copenhagen , Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals, Faculty of Health and Medicinal Sciences , University of Copenhagen , DK-2100 Copenhagen , Denmark.,Department of Drug Design and Pharmacology , University of Copenhagen , DK-2100 Copenhagen , Denmark
| | - Andreas S Madsen
- Center for Biopharmaceuticals, Faculty of Health and Medicinal Sciences , University of Copenhagen , DK-2100 Copenhagen , Denmark.,Department of Drug Design and Pharmacology , University of Copenhagen , DK-2100 Copenhagen , Denmark
| |
Collapse
|
39
|
Liu W, Wu M, Du H, Shi X, Zhang T, Li J. SIRT6 inhibits colorectal cancer stem cell proliferation by targeting CDC25A. Oncol Lett 2018; 15:5368-5374. [PMID: 29552180 DOI: 10.3892/ol.2018.7989] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/19/2017] [Indexed: 12/25/2022] Open
Abstract
Silent information regulator 6 (SIRT6) is broadly considered as a tumor suppressor due to its function in the suppression of oncogene expression. However, the role of SIRT6 in colorectal cancer stem cells (CSCs) remains uncharacterized. In the present study, it was demonstrated that SIRT6 expression was reduced in colorectal CSCs. Overexpression of SIRT6 in colorectal CSCs did not induce cell apoptosis. However, SIRT6 significantly inhibited cell proliferation, colony formation and induced G0/G1 phase arrest in colorectal CSCs. In addition, SIRT6 repressed the expression of cell division cycle 25A (CDC25A), an oncogenic phosphatase. Chromatin immunoprecipitation experiments indicated that SIRT6 directly bound to the CDC25A promoter and decreased the acetylation level of histone H3 lysine 9. Altogether, these data indicated that SIRT6 inhibits colorectal cancer stem cell proliferation by targeting CDC25A.
Collapse
Affiliation(s)
- Wenguang Liu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China.,Department of Emergency Surgery, Linyi People's Hospital, Shandong University, Linyi, Shandong 276034, P.R. China
| | - Manwu Wu
- Genetics Department, Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Hechun Du
- Genetics Department, Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Xiaoliang Shi
- Genetics Department, Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Tao Zhang
- Genetics Department, Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Jie Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
40
|
Bai L, Lin G, Sun L, Liu Y, Huang X, Cao C, Guo Y, Xie C. Upregulation of SIRT6 predicts poor prognosis and promotes metastasis of non-small cell lung cancer via the ERK1/2/MMP9 pathway. Oncotarget 2018; 7:40377-40386. [PMID: 27777384 PMCID: PMC5130014 DOI: 10.18632/oncotarget.9750] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 05/20/2016] [Indexed: 12/16/2022] Open
Abstract
Sirtuin6 (SIRT6), a member of the sirtuins protein family, plays multiple complex roles in cancer. Here, we report that elevated SIRT6 expression was correlated with clinicopathological parameters such as T and N classification in non-small cell lung cancer (NSCLC) patient tumors. SIRT6 overexpression in NSCLC cell lines increased extracellular signal-regulated kinase (p-ERK)1/2 phosphorylation, activated matrix metalloproteinase 9 (MMP9) and promoted tumor cell migration and invasion. Upon treatment with a specific mitogen-activated protein kinase (MEK) 1/2 inhibitor, these effects were abolished. Our results demonstrate SIRT6 upregulation in NSCLC for the first time and suggest a functional role for SIRT6 in promoting migration and invasion through ERK1/2/MMP9 signaling. SIRT6 may serve as a potential therapeutic target in NSCLC and its utility as a prognostic indicator warrants further study.
Collapse
Affiliation(s)
- Lihong Bai
- Respiratory Department, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Gengpeng Lin
- Respiratory Department, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Longhua Sun
- Respiratory Department, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.,Respiratory Department, Nanchang Hospital of Integrative Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Yangli Liu
- Respiratory Department, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xinyan Huang
- Respiratory Department, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Chuangjie Cao
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yubiao Guo
- Respiratory Department, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Canmao Xie
- Respiratory Department, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
41
|
SIRT6 Suppresses Cancer Stem-like Capacity in Tumors with PI3K Activation Independently of Its Deacetylase Activity. Cell Rep 2017; 18:1858-1868. [PMID: 28228253 PMCID: PMC5329120 DOI: 10.1016/j.celrep.2017.01.065] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/22/2016] [Accepted: 01/25/2017] [Indexed: 12/26/2022] Open
Abstract
Cancer stem cells (CSCs) have high tumorigenic capacity. Here, we show that stem-like traits of specific human cancer cells are reduced by overexpression of the histone deacetylase sirtuin 6 (SIRT6). SIRT6-sensitive cancer cells bear mutations that activate phosphatidylinositol-3-kinase (PI3K) signaling, and overexpression of SIRT6 reduces growth, progression, and grade of breast cancer in a mouse model with PI3K activation. Tumor metabolomic and transcriptomic analyses reveal that SIRT6 overexpression dampens PI3K signaling and stem-like characteristics and causes metabolic rearrangements in this cancer model. Ablation of a PI3K activating mutation in otherwise isogenic cancer cells is sufficient to convert SIRT6-sensitive into SIRT6-insensitive cells. SIRT6 overexpression suppresses PI3K signaling at the transcriptional level and antagonizes tumor sphere formation independent of its histone deacetylase activity. Our data identify SIRT6 as a putative molecular target that hinders stemness of tumors with PI3K activation. Enhanced SIRT6 hinders stemness of human cancer cells with PI3K activation Enhanced SIRT6 rearranges metabolism of cancer cells with PI3K activation Enhanced SIRT6 reduces grade and progression of murine tumors with PI3K activation Anti-cancer-stemness action is independent of SIRT6 histone deacetylase activity
Collapse
|
42
|
The histone deacetylase SIRT6 blocks myostatin expression and development of muscle atrophy. Sci Rep 2017; 7:11877. [PMID: 28928419 PMCID: PMC5605688 DOI: 10.1038/s41598-017-10838-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/15/2017] [Indexed: 12/27/2022] Open
Abstract
Muscle wasting, also known as cachexia, is associated with many chronic diseases, which worsens prognosis of primary illness leading to enhanced mortality. Molecular basis of this metabolic syndrome is not yet completely understood. SIRT6 is a chromatin-bound member of the sirtuin family, implicated in regulating many cellular processes, ranging from metabolism, DNA repair to aging. SIRT6 knockout (SIRT6-KO) mice display loss of muscle, fat and bone density, typical characteristics of cachexia. Here we report that SIRT6 depletion in cardiac as well as skeletal muscle cells promotes myostatin (Mstn) expression. We also observed upregulation of other factors implicated in muscle atrophy, such as angiotensin-II, activin and Acvr2b, in SIRT6 depleted cells. SIRT6-KO mice showed degenerated skeletal muscle phenotype with significant fibrosis, an effect consistent with increased levels of Mstn. Additionally, we observed that in an in vivo model of cancer cachexia, Mstn expression coupled with downregulation of SIRT6. Furthermore, SIRT6 overexpression downregulated the cytokine (TNFα-IFNγ)-induced Mstn expression in C2C12 cells, and promoted myogenesis. From the ChIP assay, we found that SIRT6 controls Mstn expression by attenuating NF-κB binding to the Mstn promoter. Together, these data suggest a novel role for SIRT6 in maintaining muscle mass by controlling expression of atrophic factors like Mstn and activin.
Collapse
|
43
|
SIRT6 knockout cells resist apoptosis initiation but not progression: a computational method to evaluate the progression of apoptosis. Apoptosis 2017; 22:1336-1343. [DOI: 10.1007/s10495-017-1412-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Lin H, Hao Y, Zhao Z, Tong Y. Sirtuin 6 contributes to migration and invasion of osteosarcoma cells via the ERK1/2/MMP9 pathway. FEBS Open Bio 2017; 7:1291-1301. [PMID: 28904859 PMCID: PMC5586348 DOI: 10.1002/2211-5463.12265] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/08/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of sirtuin 6 (SIRT6) is actively involved in tumor progression. High levels of SIRT6 have been associated with hepatocellular carcinoma and non‐small cell lung cancer, and SIRT6 facilitates growth and metastasis of cancer cells. However, the clinical significance and biological function of SIRT6 are not known for osteosarcoma (OS). Here, we report that SIRT6 was notably overexpressed in OS tissues compared with non‐cancerous specimens. The high level of SIRT6 was prominently correlated with malignant clinical parameters and poor prognosis of OS patients. SIRT6 was also up‐regulated in OS cells. SIRT6 knockdown inhibited the invasion and migration of Saos‐2 and U2OS cells in vitro, while SIRT6 restoration increased these cellular biological behaviors in MG‐63 cells. Mechanistically, SIRT6 up‐regulated expression of matrix metallopeptidase 9 (MMP9) in OS cells. MMP9 restoration partially abolished the effects of SIRT6 knockdown on OS cells, with increased cell migration and invasion. MMP9 knockdown reduced migration and invasion of SIRT6‐overexpressing MG‐63 cells. Furthermore, SIRT6 positively modulated the levels of phosphorylated extracellular signal‐regulated kinases 1 and 2 (ERK1/2). PD098059 and PD0325901, inhibitors of mitogen‐activated protein kinase kinase (MEK), blocked the regulatory effects of SIRT6 on p‐ERK1/2 and MMP9 levels, suggesting that SIRT6 regulated MMP9 abundance probably through the MEK–ERK1/2 pathway. These results suggest that SIRT6 may act as a prognostic predictor and a drug target for OS patients.
Collapse
Affiliation(s)
- Hang Lin
- Department of Orthopedics Zhejiang Hospital Hangzhou China
| | - Yi Hao
- Department of Orthopedics Zhejiang Hospital Hangzhou China
| | - Zhengxu Zhao
- Department of Orthopedics Zhejiang Hospital Hangzhou China
| | - Yongjun Tong
- Department of Orthopedics Zhejiang Hospital Hangzhou China
| |
Collapse
|
45
|
Huang N, Liu Z, Zhu J, Cui Z, Li Y, Yu Y, Sun F, Pan Q, Yang Q. Sirtuin 6 plays an oncogenic role and induces cell autophagy in esophageal cancer cells. Tumour Biol 2017; 39:1010428317708532. [PMID: 28653878 DOI: 10.1177/1010428317708532] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sirtuin 6, a member of sirtuin family, is generally regarded as a tumor suppressor as it participates in suppressing hypoxia-inducible factor 1α and MYC transcription activity by deacetylating H3K9 (histone H3 lysine 9) and H3K56 (histone H3 lysine) at promoters of target genes, leading to the aerobic glycolysis inhibition and cell growth suppression. However, its expression has recently been reported to be highly elevated in a series of tumors, including prostate cancer, breast cancer, and non-small cell lung cancer, indicating that sirtuin 6 plays dual roles in tumorigenicity in a cell/tumor type-specific manner. To our knowledge, the biological roles of sirtuin 6 in esophageal cancer cells have still been underestimated. In the study, data from quantitative reverse transcriptase polymerase chain reaction-based assays and immunohistochemical assays revealed that sirtuin 6 was remarkably overexpressed in esophageal squamous tumor tissues. Moreover, its upregulation was closely related with clinical features, such as gender, pathology, tumor-node-metastasis, and cell differentiation. Subsequently, the biological tests showed that it promoted cell proliferation and induced the expression of Bcl2, a key anti-apoptotic factor, in esophageal carcinoma cells. Moreover, using the ratio of LC3II/I, a widely recognized autophagy biomarker, we showed that it apparently induced cell autophagy, which was further confirmed by the autophagy flux assays. In addition, results from western blotting assays and immunoprecipitation assays displayed that sirtuin 6 specifically interacted with ULK1 and positively regulated its activity by inhibiting its upstream factor mammalian target of rapamycin activity. In summary, our studies shed insights into the crucial functions of sirtuin 6 in esophageal carcinoma cells and provide evidence supporting sirtuin 6-based personalized therapies in esophageal carcinoma cell patients.
Collapse
Affiliation(s)
- Nan Huang
- 1 Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zhiwei Liu
- 2 Department of Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Jiabei Zhu
- 3 Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongqi Cui
- 1 Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yuguang Li
- 2 Department of Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Yongchun Yu
- 4 Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated With Shanghai TCM University, Shanghai, China
| | - Fenyong Sun
- 1 Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Qiuhui Pan
- 3 Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingyuan Yang
- 1 Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| |
Collapse
|
46
|
Garrido A, Djouder N. NAD + Deficits in Age-Related Diseases and Cancer. Trends Cancer 2017; 3:593-610. [PMID: 28780936 DOI: 10.1016/j.trecan.2017.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/08/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022]
Abstract
The phenomenon of aging has gained widespread attention in recent times. Although significant advances have been made to better understand aging and its related pathologies including cancer, there is not yet a clear mechanism explaining why diseases and cancer are inherent parts of the aging process. Finding a unifying equation that could bridge aging and its related diseases would allow therapeutic development and solve an immense human health problem to live longer and better. In this review, we discuss NAD+ reduction as the central mechanism that may connect aging to its related pathologies and cancer. NAD+ boosters would ensure and ameliorate health quality during aging.
Collapse
Affiliation(s)
- Amanda Garrido
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Spanish National Cancer Research Centre, CNIO, Madrid, Spain
| | - Nabil Djouder
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Spanish National Cancer Research Centre, CNIO, Madrid, Spain.
| |
Collapse
|
47
|
Zhou J, Wu A, Yu X, Zhu J, Dai H. SIRT6 inhibits growth of gastric cancer by inhibiting JAK2/STAT3 pathway. Oncol Rep 2017; 38:1059-1066. [DOI: 10.3892/or.2017.5753] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/12/2017] [Indexed: 11/06/2022] Open
|
48
|
Rahnasto-Rilla MK, McLoughlin P, Kulikowicz T, Doyle M, Bohr VA, Lahtela-Kakkonen M, Ferrucci L, Hayes M, Moaddel R. The Identification of a SIRT6 Activator from Brown Algae Fucus distichus. Mar Drugs 2017; 15:E190. [PMID: 28635654 PMCID: PMC5484140 DOI: 10.3390/md15060190] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/13/2017] [Accepted: 06/16/2017] [Indexed: 11/17/2022] Open
Abstract
Brown seaweeds contain many bioactive compounds, including polyphenols, polysaccharides, fucosterol, and fucoxantin. These compounds have several biological activities, including anti-inflammatory, hepatoprotective, anti-tumor, anti-hypertensive, and anti-diabetic activity, although in most cases their mechanisms of action are not understood. In this study, extracts generated from five brown algae (Fucus dichitus, Fucus vesiculosus (Linnaeus), Cytoseira tamariscofolia, Cytoseira nodacaulis, Alaria esculenta) were tested for their ability to activate SIRT6 resulting in H3K9 deacetylation. Three of the five macroalgal extracts caused a significant increase of H3K9 deacetylation, and the effect was most pronounced for F. dichitus. The compound responsible for this in vitro activity was identified by mass spectrometry as fucoidan.
Collapse
Affiliation(s)
- Minna K Rahnasto-Rilla
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
- School of Pharmacy, University of Eastern Finland, Kuopio FI-70210, Finland.
| | - Padraig McLoughlin
- Food Biosciences Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Tomasz Kulikowicz
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| | - Maire Doyle
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| | - Vilhelm A Bohr
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| | | | - Luigi Ferrucci
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| | - Maria Hayes
- Food Biosciences Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| |
Collapse
|
49
|
Chandrasekaran A, Idelchik MDPS, Melendez JA. Redox control of senescence and age-related disease. Redox Biol 2017; 11:91-102. [PMID: 27889642 PMCID: PMC5126126 DOI: 10.1016/j.redox.2016.11.005] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022] Open
Abstract
The signaling networks that drive the aging process, associated functional deterioration, and pathologies has captured the scientific community's attention for decades. While many theories exist to explain the aging process, the production of reactive oxygen species (ROS) provides a signaling link between engagement of cellular senescence and several age-associated pathologies. Cellular senescence has evolved to restrict tumor progression but the accompanying senescence-associated secretory phenotype (SASP) promotes pathogenic pathways. Here, we review known biological theories of aging and how ROS mechanistically control senescence and the aging process. We also describe the redox-regulated signaling networks controlling the SASP and its important role in driving age-related diseases. Finally, we discuss progress in designing therapeutic strategies that manipulate the cellular redox environment to restrict age-associated pathology.
Collapse
Affiliation(s)
- Akshaya Chandrasekaran
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA
| | | | - J Andrés Melendez
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA.
| |
Collapse
|
50
|
Mao Q, Gong X, Zhou C, Tu Z, Zhao L, Wang L, Wang X, Sun L, Xia J, Lian B, Chen J, Mu J, Yang D, Xie P. Up-regulation of SIRT6 in the hippocampus induced rats with depression-like behavior via the block Akt/GSK3β signaling pathway. Behav Brain Res 2017; 323:38-46. [DOI: 10.1016/j.bbr.2017.01.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 12/22/2022]
|