1
|
Palomino-Vizcaino G, Bañuelos-Villegas EG, Alvarez-Salas LM. The Natural History of Cervical Cancer and the Case for MicroRNAs: Is Human Papillomavirus Infection the Whole Story? Int J Mol Sci 2024; 25:12991. [PMID: 39684702 PMCID: PMC11641362 DOI: 10.3390/ijms252312991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that negatively regulate gene expression. MiRNAs regulate fundamental biological processes and have significant roles in several pathologies, including cancer. Cervical cancer is the best-known example of a widespread human malignancy with a demonstrated viral etiology. Infection with high-risk human papillomavirus (hrHPV) has been shown to be a causative factor for cervical carcinogenesis. Despite the occurrence of prophylactic vaccines, highly sensitive HPV diagnostics, and innovative new therapies, cervical cancer remains a main cause of death in developing countries. The relationship between hrHPV infection and cervical cancer depends on the integration of viral DNA to the host genome, disrupting the viral regulator E2 and the continuous production of the viral E6 and E7 proteins, which are necessary to acquire and maintain a transformed phenotype but insufficient for malignant cervical carcinogenesis. Lately, miRNAs, the tumor microenvironment, and immune evasion have been found to be major players in cervical carcinogenesis after hrHPV infection. Many miRNAs have been widely reported as deregulated in cervical cancer. Here, the relevance of miRNA in HPV-mediated transformation is critically reviewed in the context of the natural history of hrHPV infection and cervical cancer.
Collapse
Affiliation(s)
- Giovanni Palomino-Vizcaino
- Facultad de Ciencias de la Salud, Unidad Valle de las Palmas, Campus Tijuana, Universidad Autónoma de Baja California, Tijuana 21500, Mexico;
| | - Evelyn Gabriela Bañuelos-Villegas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., México City 07360, Mexico;
| | - Luis Marat Alvarez-Salas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., México City 07360, Mexico;
| |
Collapse
|
2
|
Prykhozhij SV, Ban K, Brown ZL, Kobar K, Wajnberg G, Fuller C, Chacko S, Lacroix J, Crapoulet N, Midgen C, Shlien A, Malkin D, Berman JN. A dataset of transcriptomic effects of camptothecin treatment on early zebrafish embryos. Data Brief 2024; 57:111041. [PMID: 39554546 PMCID: PMC11565048 DOI: 10.1016/j.dib.2024.111041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 11/19/2024] Open
Abstract
Zebrafish (Danio rerio) are a good model for cancer research including studies on chemotherapy treatments. We treated wild-type and miR-34a deletion mutant zebrafish embryos at 24 h post-fertilization with 1 µM of the topoisomerase I inhibitor, camptothecin (CPT), for 4 h to catalogue gene expression changes induced by this DNA damage treatment and to understand if these changes are influenced by loss of miR-34a. The 4 sample groups of 3 independent biological samples consisting of 30 embryos each were analyzed by RNA-sequencing using the recently updated zebrafish transcriptome annotation based on GRCz11, which enabled a more complete and sensitive read mapping and gene assignment than standard annotations. Using this gene expression estimates dataset as the primary resource, we performed a differentially expressed gene (DEG) analysis based on treatment as loss of miR-34a had minimal effects on CPT-induced expression changes. The DEGs were analyzed for Gene Ontology and KEGG pathway terms. Enriched terms and pathways among up-regulated genes were mostly related to stress, cell death, cell cycle regulation, transcriptional regulation, cell signalling, developmental processes and synthesis of retinol and steroid hormones. By contrast, down-regulated genes were most strongly associated with genes involved in key developmental processes, adhesion molecules, as well as some transport and metabolic pathways, together suggesting a "developmental shutdown". We also identified interferon-regulated genes and p53 target genes activated or inhibited by DNA damage due to topoisomerase I inhibition, suggesting that they are important components of the response to this type of DNA damage in zebrafish embryos.
Collapse
Affiliation(s)
- Sergey V. Prykhozhij
- Children's Hospital of Eastern Ontario (CHEO) Research Institute and University of Ottawa, Ottawa, ON, Canada
| | - Kevin Ban
- Children's Hospital of Eastern Ontario (CHEO) Research Institute and University of Ottawa, Ottawa, ON, Canada
| | - Zane L. Brown
- Dalhousie University Medical School, Halifax, NS, Canada
| | - Kim Kobar
- Children's Hospital of Eastern Ontario (CHEO) Research Institute and University of Ottawa, Ottawa, ON, Canada
| | - Gabriel Wajnberg
- Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, Moncton, NB, Canada
| | - Charlotte Fuller
- HHS McMaster University Medical Centre, Division of Medical Microbiology, Hamilton, ON, Canada
| | - Simi Chacko
- Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, Moncton, NB, Canada
| | - Jacynthe Lacroix
- Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, Moncton, NB, Canada
| | - Nicolas Crapoulet
- Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, Moncton, NB, Canada
| | - Craig Midgen
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- IWK Health Centre, Halifax, NS, Canada
| | - Adam Shlien
- Genetics and Genome Biology Program, Division of Hematology/Oncology, The Hospital for Sick Children, PGCRL, Toronto, ON, Canada
| | - David Malkin
- Genetics and Genome Biology Program, Division of Hematology/Oncology, The Hospital for Sick Children, PGCRL, Toronto, ON, Canada
- Departments of Pediatrics and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jason N. Berman
- Children's Hospital of Eastern Ontario (CHEO) Research Institute and University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
3
|
Ehrmann AS, Zadro A, Tausch E, Schneider C, Stilgenbauer S, Mertens D. The NOTCH1 and miR-34a signaling network is affected by TP53 alterations in CLL. Leuk Lymphoma 2024; 65:1941-1953. [PMID: 39161195 DOI: 10.1080/10428194.2024.2392839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
In chronic lymphocytic leukemia (CLL), TP53 mutations or deletions on chromosome 17p lead to adverse prognosis and reduced levels of miR-34a, which targets NOTCH1. Also, hyperactivated NOTCH1 signaling is crucial for CLL progression. Here we explored the interaction between p53, miR-34a, and NOTCH1 in CLL. We investigated the effect of p53 and miR-34a on NOTCH1 signaling and expression in CLL cells with altered TP53. Our results indicate that miR-34a reduces NOTCH1 3' UTR activity but might not be a mediator between p53 signaling and NOTCH1. p53 activation increases miR-34a expression and NOTCH1 protein levels, correlating with decreased NOTCH1 and miR-34a levels in primary CLL cells with TP53 alterations. Some samples with high NOTCH1 levels presented increased BCL-2, suggesting an anti-apoptotic mechanism of a potentially direct p53-NOTCH1 relation in CLL. This study deepens the understanding of the p53-miR-34a-NOTCH1 signaling network, providing insights that could guide future therapeutic strategies for CLL.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- MicroRNAs/genetics
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Signal Transduction
- Mutation
- Gene Expression Regulation, Leukemic
- 3' Untranslated Regions
- Cell Line, Tumor
- Apoptosis/genetics
- RNA Interference
Collapse
Affiliation(s)
- Alena Sophie Ehrmann
- Division of CLL, Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
- Mechanisms of Leukemogenesis (B061), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alex Zadro
- Division of CLL, Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Eugen Tausch
- Division of CLL, Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
- Comprehensive Cancer Center Ulm (CCCU), University Hospital of Ulm, Ulm, Germany
| | - Christof Schneider
- Division of CLL, Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
- Comprehensive Cancer Center Ulm (CCCU), University Hospital of Ulm, Ulm, Germany
| | - Stephan Stilgenbauer
- Division of CLL, Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
- Comprehensive Cancer Center Ulm (CCCU), University Hospital of Ulm, Ulm, Germany
| | - Daniel Mertens
- Division of CLL, Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
- Mechanisms of Leukemogenesis (B061), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Demyashkin G, Parshenkov M, Koryakin S, Skovorodko P, Shchekin V, Yakimenko V, Uruskhanova Z, Ugurchieva D, Pugacheva E, Ivanov S, Shegay P, Kaprin A. Targeting Oxidative Stress: The Potential of Vitamin C in Protecting against Liver Damage after Electron Beam Therapy. Biomedicines 2024; 12:2195. [PMID: 39457507 PMCID: PMC11504655 DOI: 10.3390/biomedicines12102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Radiation-induced liver disease (RILD) is a severe complication arising from radiotherapy, particularly when treating abdominal malignancies such as hepatocellular carcinoma. The liver's critical role in systemic metabolism and its proximity to other abdominal organs make it highly susceptible to radiation-induced damage. This vulnerability significantly limits the maximum safe therapeutic dose of radiation, thereby constraining the overall efficacy of radiotherapy. Among the various modalities, electron beam therapy has gained attention due to its ability to precisely target tumors while minimizing exposure to surrounding healthy tissues. However, despite its advantages, the long-term impacts of electron beam exposure on liver tissue remain inadequately understood, particularly concerning chronic injury and fibrosis driven by sustained oxidative stress. Objectives: to investigate the molecular and cellular mechanisms underlying the radioprotective effects of vitamin C in a model of radiation-induced liver disease. Methods: Male Wistar rats (n = 120) were randomly assigned to four groups: control, fractionated local electron irradiation (30 Gy), pre-treatment with vitamin C before irradiation, and vitamin C alone. The study evaluated the effects of electron beam radiation and vitamin C on liver tissue through a comprehensive approach, including biochemical analysis of serum enzymes (ALT, AST, ALP, and bilirubin), cytokine levels (IL-1β, IL-6, IL-10, and TNF-α), and oxidative stress markers (MDA and SOD). Histological and morphometric analyses were conducted on liver tissue samples collected at 7, 30, 60, and 90 days, which involved standard staining techniques and advanced imaging, including light and electron microscopy. Gene expression of Bax, Bcl-2, and caspase-3 was analyzed using real-time PCR. Results: The present study demonstrated that fractional local electron irradiation led to significant reductions in body weight and liver mass, as well as marked increases in biochemical markers of liver damage (ALT, AST, ALP, and bilirubin), inflammatory cytokines (IL-1β, IL-6, and TNF-α), and oxidative stress markers (MDA) in the irradiated group. These changes were accompanied by substantial histopathological alterations, including hepatocyte degeneration, fibrosis, and disrupted microvascular circulation. Pre-treatment with vitamin C partially mitigated these effects, reducing the severity of the liver damage, oxidative stress, and inflammation, and preserving a more favorable balance between hepatocyte proliferation and apoptosis. Overall, the results highlight the potential protective role of vitamin C in reducing radiation-induced liver injury, although the long-term benefits require further investigation. Conclusions: The present study highlights vitamin C's potential as a radioprotective agent against electron beam-induced liver damage. It effectively reduced oxidative stress, apoptosis, and inflammation, particularly in preventing the progression of radiation-induced liver fibrosis. These findings suggest that vitamin C could enhance radiotherapy outcomes by minimizing liver damage, warranting further exploration into its broader clinical applications.
Collapse
Affiliation(s)
- Grigory Demyashkin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Mikhail Parshenkov
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Sergey Koryakin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
| | - Polina Skovorodko
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Vladimir Shchekin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Vladislav Yakimenko
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Zhanna Uruskhanova
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Dali Ugurchieva
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Ekaterina Pugacheva
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Sergey Ivanov
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
| | - Petr Shegay
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
| | - Andrey Kaprin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya str. 6, 117198 Moscow, Russia
| |
Collapse
|
5
|
Hashem M, Mohandesi Khosroshahi E, Aliahmady M, Ghanei M, Soofi Rezaie Y, alsadat Jafari Y, rezaei F, Khodaparast eskadehi R, Kia Kojoori K, jamshidian F, Nabavi N, Rashidi M, Hasani Sadi F, Taheriazam A, Entezari M. Non-coding RNA transcripts, incredible modulators of cisplatin chemo-resistance in bladder cancer through operating a broad spectrum of cellular processes and signaling mechanism. Noncoding RNA Res 2024; 9:560-582. [PMID: 38515791 PMCID: PMC10955558 DOI: 10.1016/j.ncrna.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 03/23/2024] Open
Abstract
Bladder cancer (BC) is a highly frequent neoplasm in correlation with significant rate of morbidity, mortality, and cost. The onset of BC is predominantly triggered by environmental and/or occupational exposures to carcinogens, such as tobacco. There are two distinct pathways by which BC can be developed, including non-muscle-invasive papillary tumors (NMIBC) and non-papillary (or solid) muscle-invasive tumors (MIBC). The Cancer Genome Atlas project has further recognized key genetic drivers of MIBC along with its subtypes with particular properties and therapeutic responses; nonetheless, NMIBC is the predominant BC presentation among the suffering individuals. Radical cystoprostatectomy, radiotherapy, and chemotherapy have been verified to be the common therapeutic interventions in metastatic tumors, among which chemotherapeutics are more conventionally utilized. Although multiple chemo drugs have been broadly administered for BC treatment, cisplatin is reportedly the most effective chemo drug against the corresponding malignancy. Notwithstanding, tumor recurrence is usually occurred following the consumption of cisplatin regimens, particularly due to the progression of chemo-resistant trait. In this framework, non-coding RNAs (ncRNAs), as abundant RNA transcripts arise from the human genome, are introduced to serve as crucial contributors to tumor expansion and cisplatin chemo-resistance in bladder neoplasm. In the current review, we first investigated the best-known ncRNAs, i.e. microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), correlated with cisplatin chemo-resistance in BC cells and tissues. We noticed that these ncRNAs could mediate the BC-related cisplatin-resistant phenotype through diverse cellular processes and signaling mechanisms, reviewed here. Eventually, diagnostic and prognostic potential of ncRNAs, as well as their therapeutic capabilities were highlighted in regard to BC management.
Collapse
Affiliation(s)
- Mehrdad Hashem
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Melika Aliahmady
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Morvarid Ghanei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin Soofi Rezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin alsadat Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ramtin Khodaparast eskadehi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kimia Kia Kojoori
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - faranak jamshidian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farzaneh Hasani Sadi
- General Practitioner, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Hong J, Sim D, Lee BH, Sarangthem V, Park RW. Multifunctional elastin-like polypeptide nanocarriers for efficient miRNA delivery in cancer therapy. J Nanobiotechnology 2024; 22:293. [PMID: 38802812 PMCID: PMC11131307 DOI: 10.1186/s12951-024-02559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The exogenous delivery of miRNA to mimic and restore miRNA-34a activity in various cancer models holds significant promise in cancer treatment. Nevertheless, its effectiveness is often impeded by challenges, including a short half-life, propensity for off-target accumulation, susceptibility to inactivation by blood-based enzymes, concerns regarding patient safety, and the substantial cost associated with scaling up. As a means of overcoming these barriers, we propose the development of miRNA-loaded Tat-A86 nanoparticles by virtue of Tat-A86's ability to shield the loaded agent from external environmental factors, reducing degradation and inactivation, while enhancing circulation time and targeted accumulation. RESULTS Genetically engineered Tat-A86, featuring 16 copies of the interleukin-4 receptor (IL-4R)-binding peptide (AP1), Tat for tumor penetration, and an elastin-like polypeptide (ELP) for presenting target ligands and ensuring stability, served as the basis for this delivery system. Comparative groups, including Tat-E60 and A86, were employed to discern differences in binding and penetration. The designed ELP-based nanoparticle Tat-A86 effectively condensed miRNA, forming stable nanocomplexes under physiological conditions. The miRNA/Tat-A86 formulation bound specifically to tumor cells and facilitated stable miRNA delivery into them, effectively inhibiting tumor growth. The efficacy of miRNA/Tat-A86 was further evaluated using three-dimensional spheroids of lewis lung carcinoma (LLC) as in vitro model and LLC tumor-bearing mice as an in vivo model. It was found that miRNA/Tat-A86 facilitates effective cell killing by markedly improving miRNA penetration, leading to a substantial reduction in the size of LLC spheroids. Compared to other controls, Tat-A86 demonstrated superior efficacy in suppressing the growth of 3D cellular aggregates. Moreover, at equivalent doses, miRNA-34a delivered by Tat-A86 inhibited the growth of LLC cells in allograft mice. CONCLUSIONS Overall, these studies demonstrate that Tat-A86 nanoparticles can deliver miRNA systemically, overcoming the basic hurdles impeding miRNA delivery by facilitating both miRNA uptake and stability, ultimately leading to improved therapeutic effects.
Collapse
Affiliation(s)
- Jisan Hong
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea
| | - Dahye Sim
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea
| | - Byung-Heon Lee
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea
| | - Vijaya Sarangthem
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea.
| | - Rang-Woon Park
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea.
| |
Collapse
|
7
|
Gao W, Zhou J, Morshedi M. MicroRNA-34 and gastrointestinal cancers: a player with big functions. Cancer Cell Int 2024; 24:163. [PMID: 38725047 PMCID: PMC11084024 DOI: 10.1186/s12935-024-03338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
It is commonly assumed that gastrointestinal cancer is the most common form of cancer across the globe and is the leading contributor to cancer-related death. The intricate mechanisms underlying the growth of GI cancers have been identified. It is worth mentioning that both non-coding RNAs (ncRNAs) and certain types of RNA, such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs), can have considerable impact on the development of gastrointestinal (GI) cancers. As a tumour suppressor, in the group of short non-coding regulatory RNAs is miR-34a. miR-34a silences multiple proto-oncogenes at the post-transcriptional stage by targeting them, which inhibits all physiologically relevant cell proliferation pathways. However, it has been discovered that deregulation of miR-34a plays important roles in the growth of tumors and the development of cancer, including invasion, metastasis, and the tumor-associated epithelial-mesenchymal transition (EMT). Further understanding of miR-34a's molecular pathways in cancer is also necessary for the development of precise diagnoses and effective treatments. We outlined the most recent research on miR-34a functions in GI cancers in this review. Additionally, we emphasize the significance of exosomal miR-34 in gastrointestinal cancers.
Collapse
Affiliation(s)
- Wei Gao
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
| | - Jianping Zhou
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China.
| | - Mohammadamin Morshedi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Prykhozhij SV, Ban K, Brown ZL, Kobar K, Wajnberg G, Fuller C, Chacko S, Lacroix J, Crapoulet N, Midgen C, Shlien A, Malkin D, Berman JN. miR-34a is a tumor suppressor in zebrafish and its expression levels impact metabolism, hematopoiesis and DNA damage. PLoS Genet 2024; 20:e1011290. [PMID: 38805544 PMCID: PMC11166285 DOI: 10.1371/journal.pgen.1011290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 06/11/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024] Open
Abstract
Li-Fraumeni syndrome is caused by inherited TP53 tumor suppressor gene mutations. MicroRNA miR-34a is a p53 target and modifier gene. Interestingly, miR-34 triple-null mice exhibit normal p53 responses and no overt cancer development, but the lack of miR-34 promotes tumorigenesis in cancer-susceptible backgrounds. miR-34 genes are highly conserved and syntenic between zebrafish and humans. Zebrafish miR-34a and miR-34b/c have similar expression timing in development, but miR-34a is more abundant. DNA damage by camptothecin led to p53-dependent induction of miR-34 genes, while miR-34a mutants were adult-viable and had normal DNA damage-induced apoptosis. Nevertheless, miR-34a-/- compound mutants with a gain-of-function tp53R217H/ R217H or tp53-/- mutants were more cancer-prone than tp53 mutants alone, confirming the tumor-suppressive function of miR-34a. Through transcriptomic comparisons at 28 hours post-fertilization (hpf), we characterized DNA damage-induced transcription, and at 8, 28 and 72 hpf we determined potential miR-34a-regulated genes. At 72 hpf, loss of miR-34a enhanced erythrocyte levels and up-regulated myb-positive hematopoietic stem cells. Overexpression of miR-34a suppressed its reporter mRNA, but not p53 target induction, and sensitized injected embryos to camptothecin but not to γ-irradiation.
Collapse
Affiliation(s)
- Sergey V. Prykhozhij
- Children’s Hospital of Eastern Ontario (CHEO) Research Institute and University of Ottawa, Ottawa, Ontario, Canada
| | - Kevin Ban
- Children’s Hospital of Eastern Ontario (CHEO) Research Institute and University of Ottawa, Ottawa, Ontario, Canada
| | - Zane L. Brown
- Dalhousie University Medical School, Halifax, Nova Scotia, Canada
| | - Kim Kobar
- Children’s Hospital of Eastern Ontario (CHEO) Research Institute and University of Ottawa, Ottawa, Ontario, Canada
| | - Gabriel Wajnberg
- Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, 35 Providence Street, Moncton, NB, Canada
| | - Charlotte Fuller
- HHS McMaster University Medical Centre, Division of Medical Microbiology, Hamilton, Ontario, Canada
| | - Simi Chacko
- Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, Moncton, New Brunswick, Canada
| | - Jacynthe Lacroix
- Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, Moncton, New Brunswick, Canada
| | - Nicolas Crapoulet
- Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, Moncton, New Brunswick, Canada
| | - Craig Midgen
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Adam Shlien
- Genetics and Genome Biology Program, The Hospital for Sick Children, PGCRL, Toronto, Ontario, Canada
| | - David Malkin
- Genetics and Genome Biology Program, The Hospital for Sick Children, PGCRL, Toronto, Ontario, Canada
- Departments of Pediatrics and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jason N. Berman
- Children’s Hospital of Eastern Ontario (CHEO) Research Institute and University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Daniel Thomas S, Vijayakumar K, John L, Krishnan D, Rehman N, Revikumar A, Kandel Codi JA, Prasad TSK, S S V, Raju R. Machine Learning Strategies in MicroRNA Research: Bridging Genome to Phenome. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:213-233. [PMID: 38752932 DOI: 10.1089/omi.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
MicroRNAs (miRNAs) have emerged as a prominent layer of regulation of gene expression. This article offers the salient and current aspects of machine learning (ML) tools and approaches from genome to phenome in miRNA research. First, we underline that the complexity in the analysis of miRNA function ranges from their modes of biogenesis to the target diversity in diverse biological conditions. Therefore, it is imperative to first ascertain the miRNA coding potential of genomes and understand the regulatory mechanisms of their expression. This knowledge enables the efficient classification of miRNA precursors and the identification of their mature forms and respective target genes. Second, and because one miRNA can target multiple mRNAs and vice versa, another challenge is the assessment of the miRNA-mRNA target interaction network. Furthermore, long-noncoding RNA (lncRNA)and circular RNAs (circRNAs) also contribute to this complexity. ML has been used to tackle these challenges at the high-dimensional data level. The present expert review covers more than 100 tools adopting various ML approaches pertaining to, for example, (1) miRNA promoter prediction, (2) precursor classification, (3) mature miRNA prediction, (4) miRNA target prediction, (5) miRNA- lncRNA and miRNA-circRNA interactions, (6) miRNA-mRNA expression profiling, (7) miRNA regulatory module detection, (8) miRNA-disease association, and (9) miRNA essentiality prediction. Taken together, we unpack, critically examine, and highlight the cutting-edge synergy of ML approaches and miRNA research so as to develop a dynamic and microlevel understanding of human health and diseases.
Collapse
Affiliation(s)
- Sonet Daniel Thomas
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Krithika Vijayakumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Levin John
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Deepak Krishnan
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
- Kerala Genome Data Centre, Kerala Development and Innovation Strategic Council, Thiruvananthapuram, Kerala, India
| | - Jalaluddin Akbar Kandel Codi
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | | | - Vinodchandra S S
- Department of Computer Science, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| |
Collapse
|
10
|
Soliman AM, Kodous AS, Al-Sherif DA, Ghorab MM. Quinazoline sulfonamide derivatives targeting MicroRNA-34a/MDM4/p53 apoptotic axis with radiosensitizing activity. Future Med Chem 2024; 16:929-948. [PMID: 38661115 PMCID: PMC11221547 DOI: 10.4155/fmc-2023-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
Aim: New quinazoline benzenesulfonamide hybrids 4a-n were synthesized to determine their cytotoxicity and effect on the miR-34a/MDM4/p53 apoptotic pathway. Materials & methods: Cytotoxicity against hepatic, breast, lung and colon cancer cell lines was estimated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: Compound 4d was the most potent against HepG2 and MCF-7 cancer cells, with potential apoptotic activity verified by a significant upregulation of miR-34a and p53 gene expressions. The apoptotic effect of 4d was further investigated and showed downregulation of miR-21, VEGF, STAT3 and MDM4 gene expression. Conclusion: The anticancer and apoptotic activities of 4d were enhanced post irradiation by a single dose of 8 Gy γ-radiation. Docking analysis demonstrated a valuable affinity of 4d toward VEGFR2 and MDM4 active sites.
Collapse
Affiliation(s)
- Aiten M Soliman
- Drug Radiation Research Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Ahmad S Kodous
- Radiation Biology Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Diana A Al-Sherif
- Technology of Radiology and Medical Imaging, Faculty of Applied Medical Sciences, 6th of October University, Giza 12585, Egypt
| | - Mostafa M Ghorab
- Drug Radiation Research Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| |
Collapse
|
11
|
Martinsen E, Jinnurine T, Subramani S, Rogne M. Advances in RNA therapeutics for modulation of 'undruggable' targets. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:249-294. [PMID: 38458740 DOI: 10.1016/bs.pmbts.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Over the past decades, drug discovery utilizing small pharmacological compounds, fragment-based therapeutics, and antibody therapy have significantly advanced treatment options for many human diseases. However, a major bottleneck has been that>70% of human proteins/genomic regions are 'undruggable' by the above-mentioned approaches. Many of these proteins constitute essential drug targets against complex multifactorial diseases like cancer, immunological disorders, and neurological diseases. Therefore, alternative approaches are required to target these proteins or genomic regions in human cells. RNA therapeutics is a promising approach for many of the traditionally 'undruggable' targets by utilizing methods such as antisense oligonucleotides, RNA interference, CRISPR/Cas-based genome editing, aptamers, and the development of mRNA therapeutics. In the following chapter, we will put emphasis on recent advancements utilizing these approaches against challenging drug targets, such as intranuclear proteins, intrinsically disordered proteins, untranslated genomic regions, and targets expressed in inaccessible tissues.
Collapse
Affiliation(s)
| | | | - Saranya Subramani
- Pioneer Research AS, Oslo Science Park, Oslo, Norway; Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | - Marie Rogne
- Pioneer Research AS, Oslo Science Park, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
12
|
Torimura A, Kanei S, Shimizu Y, Baba T, Uotani R, Sasaki SI, Nagase D, Inoue Y, Ochiya T, Miyazaki D. Profiling miRNAs in tear extracellular vesicles: a pilot study with implications for diagnosis of ocular diseases. Jpn J Ophthalmol 2024; 68:70-81. [PMID: 37947908 DOI: 10.1007/s10384-023-01028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE To estimate the roles of extracellular vesicles (EVs) in tears and to determine whether their profiles are associated with the type of ocular disease. STUDY DESIGN Cross-sectional study. METHODS Tear EVs were extracted from 14 healthy participants and from 21 patients with retinal diseases (age-related macular degeneration [AMD] or diabetic macular edema [DME]). The surface marker expression of tear EVs was examined, and microRNAs (miRNAs) were extracted and profiled by use of real-time PCR array. The stability of the expression of the miRNAs was determined, and their functions were assessed by network analyses. Classification accuracy was evaluated by use of a random forest classifier and k-fold cross-validation. RESULTS The miRNAs that were highly expressed in tear EVs were miR-323-3p, miR-548a-3p, and miR-516a-5p. The most stably expressed miRNAs independent of diseases were miR-520h and miR-146b-3p. The primary networks of the highly stably expressed endogenous miRNAs were annotated as regulation of organismal injury and abnormalities. The highly expressed miRNAs for severe retinal disease were miR-151-5p for AMD and miR-422a for DME, suggesting potential roles of tear EVs in liquid biopsy. Nine miRNAs (miR-25, miR-30d, miR-125b, miR-132, miR-150, miR-184, miR-342-3p, miR-378, and miR-518b) were identified as distinguishing individuals with AMD from healthy individuals with a classification accuracy of 91.9%. CONCLUSIONS The finding that tear EVs contain characteristic miRNA species indicates that they may help in maintaining homeostasis and serve as a potential tool for disease diagnosis.
Collapse
Affiliation(s)
- Airu Torimura
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Saki Kanei
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Yumiko Shimizu
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Takashi Baba
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Ryu Uotani
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Shin-Ichi Sasaki
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Daisuke Nagase
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Yoshitsugu Inoue
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Dai Miyazaki
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan.
| |
Collapse
|
13
|
Zhou KZ, Wu PF, Ling XZ, Zhang J, Wang QF, Zhang XC, Xue Q, Zhang T, Han W, Zhang GX. miR-460b-5p promotes proliferation and differentiation of chicken myoblasts and targets RBM19 gene. Poult Sci 2024; 103:103231. [PMID: 37980764 PMCID: PMC10685028 DOI: 10.1016/j.psj.2023.103231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/20/2023] [Indexed: 11/21/2023] Open
Abstract
The meat production of broilers is crucial to economic benefits of broiler industries, while the slaughter performance of broilers is directly determined by skeletal muscle development. Hence, the broiler breeding for growth traits shows a great importance. As a kind of small noncoding RNA, microRNA (miRNA) can regulate the expression of multiple genes and perform a wide range of regulation in organisms. Currently, more and more studies have confirmed that miRNAs are closely associated with skeletal muscle development of chickens. Based on our previous miR-seq analysis (accession number: PRJNA668199), miR-460b-5p was screened as one of the key miRNAs probably involved in the growth regulation of chickens. However, the regulatory effect of miR-460b-5p on the development of chicken skeletal muscles is still unclear. Therefore, miR-460b-5p was further used for functional validation at the cellular level in this study. The expression pattern of miR-460b-5p was investigated in proliferation and differentiation stages of chicken primary myoblasts. It was showed that the expression level of miR-460b-5p gradually decreased from the proliferation stage (GM 50%) to the lowest at 24 h of differentiation. As differentiation proceeded, miR-460b-5p expression increased significantly, reaching the highest and stabilizing at 72 h and 96 h of differentiation. Through mRNA quantitative analysis of proliferation marker genes, CCK-8 and Edu assays, miR-460b-5p was found to significantly facilitate the transition of myoblasts from G1 to S phase and promote chicken myoblast proliferation. mRNA and protein quantitative analysis of differentiation marker genes, as well as the indirect immunofluorescence results of myotubes, revealed that miR-460b-5p significantly stimulated myotube development and promote chicken myoblast differentiation. In addition, the target relationship was validated for miR-460b-5p according to the dual-luciferase reporter assay and mRNA quantitative analysis, which indicates that miR-460b-5p was able to regulate RBM19 expression by specifically binding to the 3' UTR of RBM19. In summary, miR-460b-5p has positive regulatory effects on the proliferation and differentiation of chicken myoblasts, and RBM19 is a target gene of miR-460b-5p.
Collapse
Affiliation(s)
- Kai-Zhi Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Peng-Fei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xuan-Ze Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Jin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Qi-Fan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xin-Chao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Qian Xue
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Gen-Xi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China.
| |
Collapse
|
14
|
Zhou Y, Nakajima R, Shirasawa M, Fikriyanti M, Zhao L, Iwanaga R, Bradford AP, Kurayoshi K, Araki K, Ohtani K. Expanding Roles of the E2F-RB-p53 Pathway in Tumor Suppression. BIOLOGY 2023; 12:1511. [PMID: 38132337 PMCID: PMC10740672 DOI: 10.3390/biology12121511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
The transcription factor E2F links the RB pathway to the p53 pathway upon loss of function of pRB, thereby playing a pivotal role in the suppression of tumorigenesis. E2F fulfills a major role in cell proliferation by controlling a variety of growth-associated genes. The activity of E2F is controlled by the tumor suppressor pRB, which binds to E2F and actively suppresses target gene expression, thereby restraining cell proliferation. Signaling pathways originating from growth stimulative and growth suppressive signals converge on pRB (the RB pathway) to regulate E2F activity. In most cancers, the function of pRB is compromised by oncogenic mutations, and E2F activity is enhanced, thereby facilitating cell proliferation to promote tumorigenesis. Upon such events, E2F activates the Arf tumor suppressor gene, leading to activation of the tumor suppressor p53 to protect cells from tumorigenesis. ARF inactivates MDM2, which facilitates degradation of p53 through proteasome by ubiquitination (the p53 pathway). P53 suppresses tumorigenesis by inducing cellular senescence or apoptosis. Hence, in almost all cancers, the p53 pathway is also disabled. Here we will introduce the canonical functions of the RB-E2F-p53 pathway first and then the non-classical functions of each component, which may be relevant to cancer biology.
Collapse
Affiliation(s)
- Yaxuan Zhou
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Rinka Nakajima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Mashiro Shirasawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Mariana Fikriyanti
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Lin Zhao
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Ritsuko Iwanaga
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Andrew P. Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Keigo Araki
- Department of Morphological Biology, Ohu University School of Dentistry, 31-1 Misumido Tomitamachi, Koriyama, Fukushima 963-8611, Japan;
| | - Kiyoshi Ohtani
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| |
Collapse
|
15
|
Wu Y, Luo J, Xu B. Network Pharmacology and Bioinformatics Study of Geniposide Regulating Oxidative Stress in Colorectal Cancer. Int J Mol Sci 2023; 24:15222. [PMID: 37894904 PMCID: PMC10607277 DOI: 10.3390/ijms242015222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to identify the mechanism of geniposide regulating oxidative stress in colorectal cancer (CRC) through network pharmacology and bioinformatics analysis. Targets of geniposide, oxidative stress-related targets and targets related to CRC were applied from databases. The hub genes for geniposide regulating oxidative stress in CRC were identified with the protein-protein interaction (PPI) network. Furthermore, we applied Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment to analyze the hub genes from a macro perspective. We verified the hub genes by molecular docking, GEPIA, HPA and starBase database. We identified five hub genes: IL1B, GSK3B, NOS3, RELA and CDK4. GO analysis results suggested that the anti-colorectal cancer effect of geniposide by regulating oxidative stress is possibly related to the influence of multiple biological processes, including response to temperature stimulus, response to alkaloid, nitric oxide biosynthetic process, nitric oxide metabolic process, reactive nitrogen species metabolic process, cellular response to peptide, etc. KEGG enrichment analysis results indicated that the PI3K-Akt signaling pathway, IL-17 signaling pathway, p53 signaling pathway, NF-κB signaling pathway and NOD-like receptor signaling pathway are likely to be the significant pathways. Molecular docking results showed that the geniposide had a good binding activity with the hub genes. This study demonstrates that geniposide can regulate oxidative stress in CRC, and induction of oxidative stress is one of the possible mechanisms of anti-recurrence and metastasis effects of geniposide against CRC.
Collapse
Affiliation(s)
| | | | - Baojun Xu
- Guangdong Provincial Key Laboratory IRADS, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
16
|
Asberger J, Berner K, Bicker A, Metz M, Jäger M, Weiß D, Kreutz C, Juhasz-Böss I, Mayer S, Ge I, Erbes T. In Vitro microRNA Expression Profile Alterations under CDK4/6 Therapy in Breast Cancer. Biomedicines 2023; 11:2705. [PMID: 37893081 PMCID: PMC10604872 DOI: 10.3390/biomedicines11102705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Breast cancer is the most common type of cancer worldwide. Cyclin-dependent kinase inhibition is one of the backbones of metastatic breast cancer therapy. However, there are a significant number of therapy failures. This study evaluates the biomarker potential of microRNAs for the prediction of a therapy response under cyclin-dependent kinase inhibition. METHODS This study comprises the analysis of intracellular and extracellular microRNA-expression-level alterations of 56 microRNAs under palbociclib mono as well as combination therapy with letrozole. Breast cancer cell lines BT-474, MCF-7 and HS-578T were analyzed using qPCR. RESULTS A palbociclib-induced microRNA signature could be detected intracellularly as well as extracellularly. Intracellular miR-10a, miR-15b, miR-21, miR-23a and miR-23c were constantly regulated in all three cell lines, whereas let-7b, let-7d, miR-15a, miR-17, miR-18a, miR-20a, miR-191 and miR301a_3p were regulated only in hormone-receptor-positive cells. Extracellular miR-100, miR-10b and miR-182 were constantly regulated across all cell lines, whereas miR-17 was regulated only in hormone-receptor-positive cells. CONCLUSIONS Because they are secreted and significantly upregulated in the microenvironment of tumor cells, miRs-100, -10b and -182 are promising circulating biomarkers that can be used to predict or detect therapy responses under CDK inhibition. MiR-10a, miR-15b, miR-21, miR-23a and miR-23c are potential tissue-based biomarkers.
Collapse
Affiliation(s)
- Jasmin Asberger
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Anna Bicker
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Obstetrics and Gynecology, St. Josefs-Hospital Wiesbaden, 65189 Wiesbaden, Germany
| | - Marius Metz
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daniela Weiß
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Clemens Kreutz
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Institute of Medical Biometry and Statistics, Medical Center – University of Freiburg, 79104 Freiburg, Germany
| | - Ingolf Juhasz-Böss
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sebastian Mayer
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Gynaecology and Obstetrics, Hospital Krumbach, 86381 Krumbach, Germany
| | - Isabell Ge
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Obstetrics and Gynaecology, University Hospital of Basel, 4056 Basel, Switzerland
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Gynaecology and Obstetrics, Diako Mannheim, 68135 Mannheim, Germany
| |
Collapse
|
17
|
Wójtowicz A, Molcan T, Lukasik K, Żebrowska E, Pawlina-Tyszko K, Gurgul A, Szmatoła T, Bugno-Poniewierska M, Ferreira-Dias G, Skarzynski DJ, Szóstek-Mioduchowska A. The potential role of miRNAs and regulation of their expression in the development of mare endometrial fibrosis. Sci Rep 2023; 13:15938. [PMID: 37743390 PMCID: PMC10518347 DOI: 10.1038/s41598-023-42149-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023] Open
Abstract
Mare endometrial fibrosis (endometrosis), is one of the main causes of equine infertility. Despite the high prevalence, both ethology, pathogenesis and the nature of its progression remain poorly understood. Recent studies have shown that microRNAs (miRNAs) are important regulators in multiple cellular processes and functions under physiological and pathological circumstances. In this article, we reported changes in miRNA expression at different stages of endometrosis and the effect of transforming growth factor (TGF)-β1 on the expression of the most dysregulated miRNAs. We identified 1, 26, and 5 differentially expressed miRNAs (DEmiRs), in categories IIA (mild fibrosis), IIB (moderate fibrosis), and III (severe fibrosis) groups compared to category I (no fibrosis) endometria group, respectively (Padjusted < 0.05, log2FC ≥ 1.0/log2FC ≤ - 1.0). This study indicated the potential involvement of miRNAs in the regulation of the process associated to the development and progression of endometrosis. The functional enrichment analysis revealed, that DEmiRs target genes involved in the mitogen-activated protein kinases, Hippo, and phosphoinositide-3-kinase (PI3K)-Akt signalling pathways, focal adhesion, and extracellular matrix-receptor interaction. Moreover, we demonstrated that the most potent profibrotic cytokine-TGF-β1-downregulated novel-eca-miR-42 (P < 0.05) expression in fibroblasts derived from endometria at early-stage endometrosis (category IIA).
Collapse
Affiliation(s)
- Anna Wójtowicz
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Tomasz Molcan
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Karolina Lukasik
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Ewelina Żebrowska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Cracow, Poland
| | - Artur Gurgul
- Department of Animal Reproduction, Anatomy and Genomics, The University of Agriculture in Krakow, Cracow, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Cracow, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Cracow, Poland
| | - Monika Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, The University of Agriculture in Krakow, Cracow, Poland
| | - Graca Ferreira-Dias
- Faculty of Veterinary Medicine, CIISA - Center for Interdisciplinary Research in Animal Health, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Dariusz J Skarzynski
- Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Anna Szóstek-Mioduchowska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
18
|
Kan Changez MI, Mubeen M, Zehra M, Samnani I, Abdul Rasool A, Mohan A, Wara UU, Tejwaney U, Kumar V. Role of microRNA in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH): a comprehensive review. J Int Med Res 2023; 51:3000605231197058. [PMID: 37676968 PMCID: PMC10492500 DOI: 10.1177/03000605231197058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver condition that affects people who do not overconsume alcohol. Uncertainties exist over how microRNAs (miRNAs) in the blood and liver relate to NAFLD. The aim of this narrative review was to investigate the role of miRNAs in the onset and progression of non-alcoholic steatohepatitis (NASH) from NAFLD, and explore their potential as diagnostic tools and treatment targets for NAFLD patients. Liver miRNA-34a levels were found to accurately represent the degree of liver damage, with lower levels suggesting more damage. In patients with NAFLD and severe liver fibrosis, higher levels of miRNA-193a-5p and miRNA-378d were found. Moreover, miRNA-34a, miRNA-122, and miRNA-192 levels might aid in differentiating NASH from NAFLD. Similar to this, miRNA-21 and miRNA-27 levels in rats were able to distinguish between steatosis and steatohepatitis. High-fat diets enhanced the expression of 15 distinct miRNAs in rats, and there were substantial differences in the miRNA expression patterns between obese and lean people. The results from the present review imply that miRNA microarrays and sequencing may be helpful diagnostic tools, and miRNAs may be a possible treatment target for patients with NAFLD.
Collapse
Affiliation(s)
- Mah I Kan Changez
- Department of Medicine, Quetta Institute of Medical Sciences, Quetta, Pakistan
| | - Maryam Mubeen
- Department of Medicine, Punjab Medical College, Faisalabad, Pakistan
| | - Monezahe Zehra
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Inara Samnani
- Department of Medicine, Karachi Medical & Dental College, Karachi, Pakistan
| | | | - Anmol Mohan
- Department of Medicine, Karachi Medical & Dental College, Karachi, Pakistan
| | - Um Ul Wara
- Department of Medicine, Karachi Medical & Dental College, Karachi, Pakistan
| | - Usha Tejwaney
- Department of Pharmacy, Valley Health System, New Jersey, USA
| | - Vikash Kumar
- Department of Internal Medicine, The Brooklyn Hospital Center, New York City, NY, USA
| |
Collapse
|
19
|
Vu T, Fowler A, McCarty N. Comprehensive Analysis of the Prognostic Significance of the TRIM Family in the Context of TP53 Mutations in Cancers. Cancers (Basel) 2023; 15:3792. [PMID: 37568609 PMCID: PMC10417774 DOI: 10.3390/cancers15153792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The p53 protein is an important tumor suppressor, and TP53 mutations are frequently associated with poor prognosis in various cancers. Mutations in TP53 result in a loss of p53 function and enhanced expression of cell cycle genes, contributing to the development and progression of cancer. Meanwhile, several tripartite motif (TRIM) proteins are known to regulate cell growth and cell cycle transition. However, the prognostic values between TP53 and TRIM family genes in cancer are unknown. In this study, we analyzed the relationship between the TP53 mutations and TRIM family proteins and evaluated the prognostic significance of TRIM family proteins in cancer patients with P53 mutations. Our findings identified specific TRIM family members that are upregulated in TP53 mutant tumors and are associated with the activation of genes related to a cell-cycle progression in the context of TP53 mutations.
Collapse
Affiliation(s)
- Trung Vu
- Center for Stem Cell and Regenerative Disease, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, Houston, TX 77030, USA;
| | - Annaliese Fowler
- The Department of Biomedical Engineering at Texas A&M University, Houston, TX 77030, USA;
| | - Nami McCarty
- The Department of Biomedical Engineering at Texas A&M University, Houston, TX 77030, USA;
| |
Collapse
|
20
|
Gujrati H, Ha S, Wang BD. Deregulated microRNAs Involved in Prostate Cancer Aggressiveness and Treatment Resistance Mechanisms. Cancers (Basel) 2023; 15:3140. [PMID: 37370750 PMCID: PMC10296615 DOI: 10.3390/cancers15123140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer and the second leading cause of cancer deaths among American men. Complex genetic and epigenetic mechanisms are involved in the development and progression of PCa. MicroRNAs (miRNAs) are short noncoding RNAs that regulate protein expression at the post-transcriptional level by targeting mRNAs for degradation or inhibiting protein translation. In the past two decades, the field of miRNA research has rapidly expanded, and emerging evidence has revealed miRNA dysfunction to be an important epigenetic mechanism underlying a wide range of diseases, including cancers. This review article focuses on understanding the functional roles and molecular mechanisms of deregulated miRNAs in PCa aggressiveness and drug resistance based on the existing literature. Specifically, the miRNAs differentially expressed (upregulated or downregulated) in PCa vs. normal tissues, advanced vs. low-grade PCa, and treatment-responsive vs. non-responsive PCa are discussed. In particular, the oncogenic and tumor-suppressive miRNAs involved in the regulation of (1) the synthesis of the androgen receptor (AR) and its AR-V7 splice variant, (2) PTEN expression and PTEN-mediated signaling, (3) RNA splicing mechanisms, (4) chemo- and hormone-therapy resistance, and (5) racial disparities in PCa are discussed and summarized. We further provide an overview of the current advances and challenges of miRNA-based biomarkers and therapeutics in clinical practice for PCa diagnosis/prognosis and treatment.
Collapse
Affiliation(s)
- Himali Gujrati
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Siyoung Ha
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
21
|
Iqbal MJ, Javed Z, Sadia H, Mehmood S, Akbar A, Zahid B, Nadeem T, Roshan S, Varoni EM, Iriti M, Gürer ES, Sharifi-Rad J, Calina D. Targeted therapy using nanocomposite delivery systems in cancer treatment: highlighting miR34a regulation for clinical applications. Cancer Cell Int 2023; 23:84. [PMID: 37149609 PMCID: PMC10164299 DOI: 10.1186/s12935-023-02929-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023] Open
Abstract
The clinical application of microRNAs in modern therapeutics holds great promise to uncover molecular limitations and conquer the unbeatable castle of cancer metastasis. miRNAs play a decisive role that regulating gene expression at the post-transcription level while controlling both the stability and translation capacity of mRNAs. Specifically, miR34a is a master regulator of the tumor suppressor gene, cancer progression, stemness, and drug resistance at the cell level in p53-dependent and independent signaling. With changing, trends in nanotechnology, in particular with the revolution in the field of nanomedicine, nano drug delivery systems have emerged as a prominent strategy in clinical practices coupled with miR34a delivery. Recently, it has been observed that forced miR34a expression in human cancer cell lines and model organisms limits cell proliferation and metastasis by targeting several signaling cascades, with various studies endorsing that miR34a deregulation in cancer cells modulates apoptosis and thus requires targeted nano-delivery systems for cancer treatment. In this sense, the present review aims to provide an overview of the clinical applications of miR34a regulation in targeted therapy of cancer.
Collapse
Affiliation(s)
| | - Zeeshan Javed
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | - Sajid Mehmood
- Department of Biochemistry, Islam Medical and Dental College, Sialkot, Pakistan
| | - Ali Akbar
- Department of Microbiology, University of Balochistan Quetta, Quetta, Pakistan
| | - Benish Zahid
- Department of Pathobiology, KBCMA, CVAS, Sub Campus University of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Tariq Nadeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sadia Roshan
- Department of Zoology, University of Gujrat, Gujrat, Pakistan
| | - Elena Maria Varoni
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania.
| |
Collapse
|
22
|
Guo QR, Zhou WM, Zhang GB, Deng ZF, Chen XZ, Sun FY, Lei XP, Yan YY, Zhang JY. Jaceosidin inhibits the progression and metastasis of NSCLC by regulating miR-34c-3p/Integrin α2β1 axis. Heliyon 2023; 9:e16158. [PMID: 37215793 PMCID: PMC10199265 DOI: 10.1016/j.heliyon.2023.e16158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Non-coding RNAs are crucial for cancer progression, among which miR-34c-3p has been demonstrated to be a tumor suppressor in non-small cell lung cancer (NSCLC). In this study, we attempt to identify flavonoids that can up-regulate miR-34c-3p expression, evaluate the anticancer activity of the flavonoids and explore its underlying mechanism in NSCLC cells. Six flavonoids were screened by RT-qPCR and we found that jaceosidin significantly increased miR-34c-3p expression in A549 cells. We found that jaceosidin inhibited the proliferation, migration and invasion of A549 and H1975 cells in a dose-relevant manner, indicated by cell counting kit (CCK-8) assay, wound healing assay, transwell assay and EdU assay, we observed that jaceosidin inhibited the proliferation, migration and invasion of A549 and H1975 cells in a dose-relevant manner. Further research suggested that miR-34c-3p bound to the transcriptome of integrin α2β1 and then inhibited its expression, leading to the inhibitory effect on the migration and invasion of NSCLC. Our study sheds some light on anti-tumor of jaceosidin and provides a potential lead compound for NSCLC therapy.
Collapse
Affiliation(s)
- Qiao-ru Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wen-min Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guo-bin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhuo-fen Deng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xin-zhu Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Fang-yun Sun
- Ministry of Education Engineering Research Center of Tibetan Medicine Detection Technology, Xizang Minzu University, 712082, China
| | - Xue-ping Lei
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yan-yan Yan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
- School of Medicine, Shanxi Datong University, Datong, 037009, PR China
| | - Jian-ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
23
|
Verstappe J, Berx G. A role for partial epithelial-to-mesenchymal transition in enabling stemness in homeostasis and cancer. Semin Cancer Biol 2023; 90:15-28. [PMID: 36773819 DOI: 10.1016/j.semcancer.2023.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
Stem cells have self-renewal capacities and the ability to give rise to differentiated cells thereby sustaining tissues during homeostasis and injury. This structural hierarchy extends to tumours which harbor stem-like cells deemed cancer stem cells that propagate the tumour and drive metastasis and relapse. The process of epithelial-to-mesenchymal transition (EMT), which plays an important role in development and cancer cell migration, was shown to be correlated with stemness in both homeostasis and cancer indicating that stemness can be acquired and is not necessarily an intrinsic trait. Nowadays it is experimentally proven that the activation of an EMT program does not necessarily drive cells towards a fully mesenchymal phenotype but rather to hybrid E/M states. This review offers the latest advances in connecting the EMT status and stem-cell state of both non-transformed and cancer cells. Recent literature clearly shows that hybrid EMT states have a higher probability of acquiring stem cell traits. The position of a cell along the EMT-axis which coincides with a stem cell-like state is known as the stemness window. We show how the original EMT-state of a cell dictates the EMT/MET inducing programmes required to reach stemness. Lastly we present the mechanism of stemness regulation and the regulatory feedback loops which position cells at a certain EMT state along the EMT axis.
Collapse
Affiliation(s)
- Jeroen Verstappe
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
24
|
Kong M, Peng Y, Qiu L. Oligochitosan-based nanovesicles for nonalcoholic fatty liver disease treatment via the FXR/miR-34a/SIRT1 regulatory loop. Acta Biomater 2023; 164:435-446. [PMID: 37040811 DOI: 10.1016/j.actbio.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently a common chronic liver disease worldwide. By now, however, there isn't any FDA-approved specific drug for NAFLD treatment. It has been noticed that farnesoid X receptor (FXR), miR-34a and Sirtuin1 (SIRT1) is related to the occurrence and development of NAFLD. A oligochitosan-derivated nanovesicle (UBC) with esterase responsive degradability was designed to co-encapsulate FXR agonist (obeticholic acid, OCA) and miR-34a antagomir (anta-miR-34a) into the hydrophobic membrane and the center aqueous lumen of nanovesicles, respectively, by dialysis method. The action of UBC/OCA/anta-miR-34a loop on the regulation of lipid deposition via nanovesicles was evaluated on high-fat HepG2 cells and HFD-induced mice. The obtained dual drug-loaded nanovesicles UBC/OCA/anta-miR-34a could enhance the cellular uptake and intracellular release of OCA and anta-miR-34a, leading to the reduced lipid deposition in high-fat HepG2 cells. In NAFLD mice models, UBC/OCA/anta-miR-34a achieved the best curative effect on the recovery of body weight and hepatic function. Meanwhile, in vitro and vivo experiments validated that UBC/OCA/anta-miR-34a effectively activated the expression level of SIRT1 by enhancing the FXR/miR-34a/SIRT1 regulatory loop. This study provides a promising strategy for constructing oligochitosan-derivated nanovesicles to co-deliver OCA and anta-miR-34a for NAFLD treatment. STATEMENT OF SIGNIFICANCE: This study proposed a strategy to construct oligochitosan-derivated nanovesicles to co-deliver obeticholic acid and miR-34a antagomir for NAFLD treatment. Based on the FXR/miR-34a/SIRT1 action loop, this nanovesicle effectively exerted a synergetic effect of OCA and anta-miR-34a to significantly regulate lipid deposition and recover liver function in NAFLD mice.
Collapse
Affiliation(s)
- Mengjie Kong
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yan Peng
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liyan Qiu
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
25
|
Unravelling the tripartite interactions among Hepatitis E virus RNA, miR-140 and hnRNP K: Running title: Interactions between HEV-RNA, miR-140 and hnRNP K. J Mol Biol 2023; 435:168050. [PMID: 36933825 DOI: 10.1016/j.jmb.2023.168050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
In the present investigation, we have identified the functional significance of the highly conserved miR-140 binding site on the Hepatitis E Virus (HEV) genome. Multiple sequence alignment of the viral genome sequences along with RNA folding prediction indicated that the putative miR-140 binding site has significant conservation for sequence and secondary RNA structure among HEV genotypes. Site-directed mutagenesis and reporter assays indicated that an intact sequence of the miR-140 binding site is essential for HEV translation. Provision of mutant miR-140 oligos carrying same mutation as on mutant HEV successfully rescued mutant HEV replication. In vitro cell-based assays with modified oligos proved that host factor-miR-140 is a critical requirement for HEV replication. Biotinylated RNA pulldown and RNA immunoprecipitation assays proved that the predicted secondary RNA structure of the miR-140 binding site allows the recruitment of hnRNP K, which is a key protein of the HEV replication complex. We predicted the model from the obtained results that the miR-140 binding site can serve as a platform for recruitment of hnRNP K and other proteins of HEV replication complex only in the presence of miR-140.
Collapse
|
26
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 289] [Impact Index Per Article: 144.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
27
|
Zhou YJ, Tang Y, Liu SJ, Zeng PH, Qu L, Jing QC, Yin WJ. Radiation-induced liver disease: beyond DNA damage. Cell Cycle 2023; 22:506-526. [PMID: 36214587 PMCID: PMC9928481 DOI: 10.1080/15384101.2022.2131163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022] Open
Abstract
Radiation-induced liver disease (RILD), also known as radiation hepatitis, is a serious side effect of radiotherapy (RT) for hepatocellular carcinoma. The therapeutic dose of RT can damage normal liver tissue, and the toxicity that accumulates around the irradiated liver tissue is related to numerous physiological and pathological processes. RILD may restrict treatment use or eventually deteriorate into liver fibrosis. However, the research on the mechanism of radiation-induced liver injury has seen little progress compared with that on radiation injury in other tissues, and no targeted clinical pharmacological treatment for RILD exists. The DNA damage response caused by ionizing radiation plays an important role in the pathogenesis and development of RILD. Therefore, in this review, we systematically summarize the molecular and cellular mechanisms involved in RILD. Such an analysis is essential for preventing the occurrence and development of RILD and further exploring the potential treatment of this disease.
Collapse
Affiliation(s)
- Ying Jie Zhou
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yun Tang
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Si Jian Liu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Peng Hui Zeng
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Qu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qian Cheng Jing
- The Affiliated Changsha Central Hospital, Department of Otolaryngology Head and Neck Surgery,Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Wen Jun Yin
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory, Changsha Central Hospital, University of South China, Changsha, Hunan, China
| |
Collapse
|
28
|
Saito S, Ohno SI, Harada Y, Kanno Y, Kuroda M. MiR-34a induces myofibroblast differentiation from renal fibroblasts. Clin Exp Nephrol 2023; 27:411-418. [PMID: 36808381 DOI: 10.1007/s10157-023-02329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/07/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND Renal fibrosis is the common outcome of progressive kidney diseases. To avoid dialysis, the molecular mechanism of renal fibrosis must be explored further. MicroRNAs play key roles in renal fibrosis. MiR-34a is a transcriptional target of p53, which regulates the cell cycle and apoptosis. Previous studies demonstrated that miR-34a promotes renal fibrosis. However, the distinct roles of miR-34a in renal fibrosis have not been fully elucidated. Here, we identified the roles of miR-34a in renal fibrosis. METHOD We first analyzed p53 and miR-34a expression in kidney tissues in s UUO (unilateral ureteral obstruction) mouse model. Then, to confirm the effects of miR-34a in vitro, we transfected a miR-34a mimic into a kidney fibroblast cell line (NRK-49F) and analyzed. RESULTS We found that the expression of p53 and miR-34a was upregulated after UUO. Furthermore, after transfection of the miR-34a mimic into kidney fibroblasts, the expression of α-SMA was upregulated dramatically. In addition, α-SMA upregulation was greater upon transfection of the miR-34a mimic than upon treatment with TGF-β1. Moreover, high expression of Acta2 was maintained despite sufficient removal of the miR-34a mimic by changing the medium 4 times during the 9-day culture. After transfection of the miR-34a mimic into kidney fibroblasts, we did not detect phospho-SMAD2/3 by immunoblotting analysis. CONCLUSION Our study revealed that miR-34a induces myofibroblast differentiation from renal fibroblasts. Moreover, the miR-34a-induced upregulation of α-SMA was independent of the TGF-β/SMAD signaling pathway. In conclusion, our study indicated that the p53/miR-34a axis promotes the development of renal fibrosis.
Collapse
Affiliation(s)
- Suguru Saito
- Department of Nephrology, Tokyo Medical University, Tokyo, Japan
| | - Shin-Ichiro Ohno
- Deparatment of Molecular Pathology, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| | - Yuichirou Harada
- Deparatment of Molecular Pathology, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Yoshihiko Kanno
- Department of Nephrology, Tokyo Medical University, Tokyo, Japan
| | - Masahiko Kuroda
- Deparatment of Molecular Pathology, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| |
Collapse
|
29
|
Atic AI, Thiele M, Munk A, Dalgaard LT. Circulating miRNAs associated with nonalcoholic fatty liver disease. Am J Physiol Cell Physiol 2023; 324:C588-C602. [PMID: 36645666 DOI: 10.1152/ajpcell.00253.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are secreted from cells as either protein-bound or enclosed in extracellular vesicles. Circulating liver-derived miRNAs are modifiable by weight-loss or insulin-sensitizing treatments, indicating that they could be important biomarker candidates for diagnosis, monitoring, and prognosis in nonalcoholic liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Unfortunately, the noninvasive diagnosis of NASH and fibrosis remains a key challenge, which limits case finding. Current diagnostic guidelines, therefore, recommend liver biopsies, with risks of pain and bleeding for the patient and substantial healthcare costs. Here, we summarize mechanisms of RNA secretion and review circulating RNAs associated with NAFLD and NASH for their biomarker potential. Few circulating miRNAs are consistently associated with NAFLD/NASH: miR-122, miR-21, miR-34a, miR-192, miR-193, and the miR-17-92 miRNA-cluster. The hepatocyte-enriched miRNA-122 is consistently increased in NAFLD and NASH but decreased in liver cirrhosis. Circulating miR-34a, part of an existing diagnostic algorithm for NAFLD, and miR-21 are consistently increased in NAFLD and NASH. MiR-192 appears to be prominently upregulated in NASH compared with NAFDL, whereas miR-193 was reported to distinguish NASH from fibrosis. Various members of miRNA cluster miR-17-92 are reported to be associated with NAFLD and NASH, although with less consistency. Several other circulating miRNAs have been reported to be associated with fatty liver in a few studies, indicating the existence of more circulating miRNAs with relevant as diagnostic markers for NAFLD or NASH. Thus, circulating miRNAs show potential as biomarkers of fatty liver disease, but more information about phenotype specificity and longitudinal regulation is needed.
Collapse
Affiliation(s)
- Amila Iriskic Atic
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Novo Nordisk A/S, Obesity Research, Måløv, Denmark
| | - Maja Thiele
- Department of Gastroenterology and Hepatology, Center for Liver Research, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
30
|
Rokavec M, Huang Z, Hermeking H. Meta-analysis of miR-34 target mRNAs using an integrative online application. Comput Struct Biotechnol J 2022; 21:267-274. [PMID: 36582442 PMCID: PMC9764205 DOI: 10.1016/j.csbj.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/16/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Members of the microRNA-34/miR-34 family are induced by the p53 tumor suppressor and themselves possess tumor suppressive properties, as they inhibit the translation of mRNAs that encode proteins involved in processes, such as proliferation, migration, invasion, and metastasis. Here we performed a comprehensive integrative meta-analysis of multiple computational and experimental miR-34 related datasets and developed tools to identify and characterize novel miR-34 targets. A miR-34 target probability score was generated for every mRNA to estimate the likelihood of representing a miR-34 target. Experimentally validated miR-34 targets were strongly enriched among mRNAs with the highest scores providing a proof of principle for our analysis. We integrated the results from the meta-analysis in a user-friendly METAmiR34TARGET website (www.metamir34target.com/) that allows to graphically represent the meta-analysis results for every mRNA. Moreover, the website harbors a screen function, which allows to select multiple miR-34-related criteria/analyses and cut-off values to facilitate the stringent and comprehensive prediction of relevant miR-34 targets in expression data obtained from cell lines and tumors/tissues. Furthermore, information on more than 200 miR-34 target mRNAs, that have been experimentally validated so far, has been integrated in the web-tool. The website and datasets provided here should facilitate further investigation into the mechanisms of tumor suppression by the p53/miR-34 connection and identification of potential cancer drug targets.
Collapse
Affiliation(s)
- Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Germany,Corresponding authors at: Experimental and Molecular Pathology, Institute of Pathology Ludwig-Maximilians-University Munich, Thalkirchner Strasse 36, D-80337 Munich, Germany.
| | - Zekai Huang
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Germany,German Cancer Consortium (DKTK), Partner Site Munich, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany,Corresponding authors at: Experimental and Molecular Pathology, Institute of Pathology Ludwig-Maximilians-University Munich, Thalkirchner Strasse 36, D-80337 Munich, Germany.
| |
Collapse
|
31
|
Yuen JG, Fesler A, Hwang GR, Chen LB, Ju J. Development of 5-FU-modified tumor suppressor microRNAs as a platform for novel microRNA-based cancer therapeutics. Mol Ther 2022; 30:3450-3461. [PMID: 35933584 PMCID: PMC9637772 DOI: 10.1016/j.ymthe.2022.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
MicroRNA (miRNAs) are pleiotropic post-transcriptional modulators of gene expression. Their inherently pleiotropic nature makes miRNAs strong candidates for the development of cancer therapeutics, yet despite their potential, there remains a challenge to deliver nucleic acid-based therapies into cancer cells. We developed a novel approach to modify miRNAs by replacing the uracil bases with 5-fluorouracil (5-FU) in the guide strand of tumor suppressor miRNAs, thereby combining the therapeutic effect of 5-FU with tumor-suppressive effect of miRNAs to create a potent, multi-targeted therapeutic molecule without altering its native RNAi function. To demonstrate the general applicability of this approach to other tumor-suppressive miRNAs, we screened a panel of 12 novel miRNA mimetics in several cancer types, including leukemia, breast, gastric, lung, and pancreatic cancer. Our results show that 5-FU-modified miRNA mimetics have increased potency (low nanomolar range) in inhibiting cancer cell proliferation and that these mimetics can be delivered into cancer cells without delivery vehicle both in vitro and in vivo, thus representing significant advancements in the development of therapeutic miRNAs for cancer. This work demonstrates the potential of fluoropyrimidine modifications that can be broadly applicable and may serve as a platform technology for future miRNA and nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- John G Yuen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Ga-Ram Hwang
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lan-Bo Chen
- Curamir Therapeutics Inc., Woburn, MA 01801, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Curamir Therapeutics Inc., Woburn, MA 01801, USA.
| |
Collapse
|
32
|
Fariha A, Hami I, Tonmoy MIQ, Akter S, Al Reza H, Bahadur NM, Rahaman MM, Hossain MS. Cell cycle associated miRNAs as target and therapeutics in lung cancer treatment. Heliyon 2022; 8:e11081. [PMID: 36303933 PMCID: PMC9593298 DOI: 10.1016/j.heliyon.2022.e11081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/17/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is the primary cause of cancer related deaths worldwide. Limited therapeutic options and resistance to existing drugs are the major hindrances to the clinical success of this cancer. In the past decade, several studies showed the role of microRNA (miRNA) driven cell cycle regulation in lung cancer progression. Therefore, these small nucleotide molecules could be utilized as promising tools in lung cancer therapy. In this review, we highlighted the recent advancements in lung cancer therapy using cell cycle linked miRNAs. By highlighting the roles of the specific cell cycle core regulators affiliated miRNAs in lung cancer, we further outlined how these miRNAs can be explored in early diagnosis and treatment strategies to prevent lung cancer. With the provided information from our review, more medical efforts can ensure a potential breakthrough in miRNA-based lung cancer therapy.
Collapse
Affiliation(s)
- Atqiya Fariha
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Ithmam Hami
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Shahana Akter
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Hasan Al Reza
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Mizanur Rahaman
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh,Corresponding author.
| | - Md Shahadat Hossain
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh,Corresponding author.
| |
Collapse
|
33
|
Zhao Y, Dhani S, Zhivotovsky B. Unveiling caspase-2 regulation by non-coding RNAs. Cell Death Dis 2022; 13:834. [PMID: 36171196 PMCID: PMC9519946 DOI: 10.1038/s41419-022-05270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/23/2023]
Abstract
Non-coding RNAs (ncRNAs) are a group of RNA molecules, such as small nucleolar RNAs, circular RNAs (circRNAs), microRNAs (miRNAs) and long-noncoding RNAs (ncRNAs), that do not encode proteins. Although their biofunctions are not well-understood, many regulatory ncRNAs appear to be highly involved in regulating the transcription and translation of several genes that have essential biological roles including cell differentiation, cell death, metabolism, tumorigenesis and so on. A growing number of studies have revealed the associations between dysregulated ncRNAs and caspases involved in cell death in numerous human diseases. As one of the initiator and executor caspases, caspase-2 is the most evolutionally conserved caspase in mammals, exerting both apoptotic and non-apoptotic functions. A great deal of studies has shown the involvement of caspase-2 as a tumor suppressor in multiple oncogene-driven cancers, and yet a comprehensive understanding of its biological roles remains largely unknown. In this review, we highlight a compilation of studies focused on the interaction between caspase-2 and miRNAs/lncRNAs in the context of different diseases in order to deepen our knowledge on the regulatory biofunctions of caspase-2 and, furthermore, provide more insight into understanding the role that ncRNAs/caspase-2 axis plays in the development of human diseases.
Collapse
Affiliation(s)
- Yun Zhao
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Shanel Dhani
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden.
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
34
|
Liu F, Bouznad N, Kaller M, Shi X, König J, Jaeckel S, Hermeking H. Csf1r mediates enhancement of intestinal tumorigenesis caused by inactivation of Mir34a. Int J Biol Sci 2022; 18:5415-5437. [PMID: 36147476 PMCID: PMC9461672 DOI: 10.7150/ijbs.75503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
The CSF1 receptor (CSF1R) encoding mRNA represents a direct target of miR-34a. However, the in vivo relevance of the suppression of CSF1R by miR-34a for intestinal tumor suppression mediated by the p53/miR-34a pathway has remained unknown. Here, ApcMin/+ mice with intestinal-epithelial cell (IEC)-specific deletions of Mir34a showed increased formation of adenomas and decreased survival, whereas deletion of Csf1r decreased adenoma formation and increased survival. In adenomas deletion of Mir34a enhanced proliferation, STAT3 signaling, infiltration with fibroblasts, immune cells and microbes, and tumor stem cell abundance and decreased apoptosis. Deletion of Csf1r had the opposite effects. In addition, homeostasis of intestinal secretory and stem cells, and tumoroid formation were affected in opposite directions by deletion of Mir34a and CSF1R. Concomitant deletion of Csf1r and Mir34a neutralized the effects of the single deletions. mRNAs containing Mir34a seed-matching sites, which encode proteins related to EMT (epithelial-mesenchymal transition), stemness and Wnt signaling, were enriched after Mir34a inactivation in adenomas and derived tumoroids. Netrin-1/Ntn1 and Transgelin/Tagln were characterized as direct targets of Mir34a and Csf1r signaling. Mir34a-inactivation related expression signatures were associated with CMS4/CRISB+D, stage 4 CRCs and poor patient survival. In tumoroids the loss of Mir34a conferred resistance to 5-FU which was mediated by Csf1r. This study provides genetic evidence for a requirement of Mir34a-mediated Csf1r suppression for intestinal stem/secretory cell homeostasis and tumor suppression, and suggests that therapeutic targeting of CSF1R may be effective for the treatment of CRCs with defects in the p53/miR-34a pathway.
Collapse
Affiliation(s)
- Fangteng Liu
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Nassim Bouznad
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Xiaolong Shi
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Janine König
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Stephanie Jaeckel
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany.,German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|
35
|
Panoramic view of microRNAs in regulating cancer stem cells. Essays Biochem 2022; 66:345-358. [PMID: 35996948 DOI: 10.1042/ebc20220007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/17/2022]
Abstract
Cancer stem cells (CSCs) are a subgroup of tumor cells, possessing the abilities of self-renewal and generation of heterogeneous tumor cell lineages. They are believed to be responsible for tumor initiation, metastasis, as well as chemoresistance in human malignancies. MicroRNAs (miRNAs) are small noncoding RNAs that play essential roles in various cellular activities including CSC initiation and CSC-related properties. Mature miRNAs with ∼22 nucleotides in length are generated from primary miRNAs via its precursors by miRNA-processing machinery. Extensive studies have demonstrated that mature miRNAs modulate CSC initiation and stemness features by regulating multiple pathways and targeting stemness-related factors. Meanwhile, both miRNA precursors and miRNA-processing machinery can also affect CSC properties, unveiling a new insight into miRNA function. The present review summarizes the roles of mature miRNAs, miRNA precursors, and miRNA-processing machinery in regulating CSC properties with a specific focus on the related molecular mechanisms, and also outlines the potential application of miRNAs in cancer diagnosis, predicting prognosis, as well as clinical therapy.
Collapse
|
36
|
Singh G, Sharma SK, Singh SK. miR-34a negatively regulates cell cycle factor Cdt2/DTL in HPV infected cervical cancer cells. BMC Cancer 2022; 22:777. [PMID: 35840896 PMCID: PMC9288023 DOI: 10.1186/s12885-022-09879-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
MicroRNAs have emerged as an important regulator of cell cycle and various other cellular processes. Aberration in microRNAs has been linked with development of several cancers and other diseases but still very little is known about the mechanism by which they regulate these cellular events. High risk human papilloma virus (HR HPV) is the causative agent of 99% of cervical cancer cases which attenuates multiple tumor suppressors and checkpoint factors of the host cell. The viral proteins also stabilize many oncogenic factors, including an essential cell cycle regulator Cdt2/DTL which in turn promotes cell transformation and proliferation. In this study, we report that a micro-RNA, miR-34a by suppressing HPV E6 protein, destabilizes Cdt2/DTL protein level in HPV infected cervical cancer cell lines. Destabilization of Cdt2 stabilizes pro-apoptotic and onco-suppressor proteins like p21 and Set8 and suppresses cell proliferation, invasion and migration capabilities of the HPV positive cervical cancer cells. Overexpression of either HPV E6 or Cdt2 genes along with miR-34a restored back the suppressed proliferation rate. This study is the first-ever report to show that miR-34a regulates cell cycle factor Cdt2 by suppressing viral E6 protein level, thus opening up the possibility of exploring miR-34a as a specific therapy for cervical cancer treatment.
Collapse
Affiliation(s)
- Garima Singh
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP-221005, India
| | - Sonika Kumari Sharma
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP-221005, India
| | - Samarendra Kumar Singh
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP-221005, India.
| |
Collapse
|
37
|
Zhao M, Qi Q, Liu S, Huang R, Shen J, Zhu Y, Chai J, Zheng H, Wu H, Liu H. MicroRNA-34a: A Novel Therapeutic Target in Fibrosis. Front Physiol 2022; 13:895242. [PMID: 35795649 PMCID: PMC9250967 DOI: 10.3389/fphys.2022.895242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/30/2022] [Indexed: 12/26/2022] Open
Abstract
Fibrosis can occur in many organs, and severe cases leading to organ failure and death. No specific treatment for fibrosis so far. In recent years, microRNA-34a (miR-34a) has been found to play a role in fibrotic diseases. MiR-34a is involved in the apoptosis, autophagy and cellular senescence, also regulates TGF-β1/Smad signal pathway, and negatively regulates the expression of multiple target genes to affect the deposition of extracellular matrix and regulate the process of fibrosis. Some studies have explored the efficacy of miR-34a-targeted therapies for fibrotic diseases. Therefore, miR-34a has specific potential for the treatment of fibrosis. This article reviews the important roles of miR-34a in fibrosis and provides the possibility for miR-34a as a novel therapeutic target in fibrosis.
Collapse
Affiliation(s)
- Min Zhao
- Department of Acupuncture-Moxibustion, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Qi
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Shimin Liu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Rong Huang
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Shen
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Zhu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Jing Chai
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Handan Zheng
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Huangan Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Huangan Wu, ; Huirong Liu,
| | - Huirong Liu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Huangan Wu, ; Huirong Liu,
| |
Collapse
|
38
|
The Complex Interaction between P53 and miRNAs Joins New Awareness in Physiological Stress Responses. Cells 2022; 11:cells11101631. [PMID: 35626668 PMCID: PMC9139524 DOI: 10.3390/cells11101631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 12/14/2022] Open
Abstract
This review emphasizes the important role of cross-talk between P53 and microRNAs in physiological stress signaling. P53 responds to stress in a variety of ways ranging from activating survival-promotion pathways to triggering programmed cell death to eliminate damaged cells. In physiological stress generated by any external or internal condition that challenges cell homeostasis, P53 exerts its function as a transcription factor for target genes or by regulating the expression and maturation of a class of small non-coding RNA molecules (miRNAs). The miRNAs control the level of P53 through direct control of P53 or through indirect control of P53 by targeting its regulators (such as MDMs). In turn, P53 controls the expression level of miRNAs targeted by P53 through the regulation of their transcription or biogenesis. This elaborate regulatory scheme emphasizes the relevance of miRNAs in the P53 network and vice versa.
Collapse
|
39
|
Mockly S, Houbron É, Seitz H. A rationalized definition of general tumor suppressor microRNAs excludes miR-34a. Nucleic Acids Res 2022; 50:4703-4712. [PMID: 35474387 PMCID: PMC9071449 DOI: 10.1093/nar/gkac277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
While several microRNAs (miRNAs) have been proposed to act as tumor suppressors, a consensual definition of tumor suppressing miRNAs is still missing. Similarly to coding genes, we propose that tumor suppressor miRNAs must show evidence of genetic or epigenetic inactivation in cancers, and exhibit an anti-tumorigenic (e.g., anti-proliferative) activity under endogenous expression levels. Here we observe that this definition excludes the most extensively studied tumor suppressor candidate miRNA, miR-34a. In analyzable cancer types, miR-34a does not appear to be down-regulated in primary tumors relatively to normal adjacent tissues. Deletion of miR-34a is occasionally found in human cancers, but it does not seem to be driven by an anti-tumorigenic activity of the miRNA, since it is not observed upon smaller, miR-34a-specific alterations. Its anti-proliferative action was observed upon large, supra-physiological transfection of synthetic miR-34a in cultured cells, and our data indicates that endogenous miR-34a levels do not have such an effect. Our results therefore argue against a general tumor suppressive function for miR-34a, providing an explanation to the lack of efficiency of synthetic miR-34a administration against solid tumors.
Collapse
Affiliation(s)
- Sophie Mockly
- Institut de Génétique Humaine, UMR 9002 CNRS and university of Montpellier, Montpellier, France
| | - Élisabeth Houbron
- Institut de Génétique Humaine, UMR 9002 CNRS and university of Montpellier, Montpellier, France
| | - Hervé Seitz
- Institut de Génétique Humaine, UMR 9002 CNRS and university of Montpellier, Montpellier, France
| |
Collapse
|
40
|
Kiang JG, Cannon G, Olson MG, Smith JT, Anderson MN, Zhai M, Umali MV, Ho K, Ho C, Cui W, Xiao M. Female Mice are More Resistant to the Mixed-Field (67% Neutron + 33% Gamma) Radiation-Induced Injury in Bone Marrow and Small Intestine than Male Mice due to Sustained Increases in G-CSF and the Bcl-2/Bax Ratio and Lower miR-34a and MAPK Activation. Radiat Res 2022; 198:120-133. [PMID: 35452510 DOI: 10.1667/rade-21-00201.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/04/2022] [Indexed: 11/03/2022]
Abstract
In nuclear and radiological incidents, overexposure to ionizing radiation is life-threatening. It is evident that radiation depletes blood cells and increases circulating cytokine/chemokine concentrations as well as mortality. While microglia cells of female mice have been observed to be less damaged by radiation than in male mice, it is unclear whether sex affects physio-pathological responses in the bone marrow (BM) and gastrointestinal system (GI). We exposed B6D2F1 male and female mice to 0, 1.5, 3, or 6 Gy with mixed-field radiation containing 67% neutron and 33% gamma at a dose rate of 0.6 Gy/min. Blood and tissues were collected on days 1, 4, and 7 postirradiation. Radiation increased cytokines/chemokines in the femurs and ilea of female and male mice in a dose-dependent manner. Cytokines and chemokines reached a peak on day 4 and declined on day 7 with the exception of G-CSF which continued to increase on day 7 in female mice but not in male mice. MiR-34a (a Bcl-2 inhibitor), G-CSF (a miR-34a inhibitor), MAPK activation (pro-cell death), and citrulline (a biomarker of entro-epithelial proliferation), active caspase-3 (a biomarker of apoptosis) and caspase-1activated gasdermin D (a pyroptosis biomarker) were measured in the sternum, femur BM and ileum. Sternum histopathology analysis with H&E staining and femur BM cell counts as well as Flt-3L showed that BM cellularity was not as diminished in females, with males showing a 50% greater decline on day 7 postirradiation, mainly mediated by pyroptosis as indicated by increased gasdermin D in femur BM samples. Ileum injury, such as villus height and crypt depth, was also 43% and 30%, respectively, less damaged in females than in males. The severity of injury in both sexes was consistent with the citrulline and active caspase-3 measurements as well as active caspase-1 and gasdermin D measurements, suggesting apoptosis and pyroptosis occurred. On day 7, G-CSF in the ileum of female mice continued to be elevated by sevenfold, whereas G-CSF in the ileum of male mice returned to baseline. Furthermore, G-CSF is known to inhibit miR-34a expression, which in ileum on day 1 displayed a 3- to 4-fold increase in female mice after mixed-field (67% neutron + 33% gamma) irradiation, as compared to a 5- to 9-fold increase in male mice. Moreover, miR-34a blocked Bcl-2 expression. Mixed-field (60% neutron + 33% gamma) radiation induced more Bcl-2 in females than in males. On day 7, AKT activation was found in the ileums of females and males. However, MAPK activation including ERK, JNK, and p38 showed no changes in the ileum of females (by 0-fold; P > 0.05), whereas the MAPK activation was increased in the ileum of males (by 100-fold; P < 0.05). Taken together, the results suggest that organ injury from mixed-field (67% neutron + 33% gamma) radiation is less severe in females than in males, likely due to increased G-CSF, less MAPK activation, low miR-34a and increased Bcl-2/Bax ratio.
Collapse
Affiliation(s)
- Juliann G Kiang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Georgetta Cannon
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Matthew G Olson
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joan T Smith
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Min Zhai
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - M Victoria Umali
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Kevin Ho
- Department of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Connie Ho
- School of Medicine, University of California, Los Angeles, California
| | - Wanchang Cui
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Mang Xiao
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
41
|
Busbee PB, Bam M, Yang X, Abdulla OA, Zhou J, Ginsberg JPJ, Aiello AE, Uddin M, Nagarkatti M, Nagarkatti PS. Dysregulated TP53 Among PTSD Patients Leads to Downregulation of miRNA let-7a and Promotes an Inflammatory Th17 Phenotype. Front Immunol 2022; 12:815840. [PMID: 35058939 PMCID: PMC8763839 DOI: 10.3389/fimmu.2021.815840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder and patients diagnosed with PTSD often express other comorbid health issues, particularly autoimmune and inflammatory disorders. Our previous reports investigating peripheral blood mononuclear cells (PBMCs) from PTSD patients showed that these patients exhibit an increased inflammatory T helper (Th) cell phenotype and widespread downregulation of microRNAs (miRNAs), key molecules involved in post-transcriptional gene regulation. A combination of analyzing prior datasets on gene and miRNA expression of PBMCs from PTSD and Control samples, as well as experiments using primary PBMCs collected from human PTSD and Controls blood, was used to evaluate TP53 expression, DNA methylation, and miRNA modulation on Th17 development. In the current report, we note several downregulated miRNAs were linked to tumor protein 53 (TP53), also known as p53. Expression data from PBMCs revealed that compared to Controls, PTSD patients exhibited decreased TP53 which correlated with an increased inflammatory Th17 phenotype. Decreased expression of TP53 in the PTSD population was shown to be associated with an increase in DNA methylation in the TP53 promotor region. Lastly, the most significantly downregulated TP53-associated miRNA, let-7a, was shown to negatively regulate Th17 T cells. Let-7a modulation in activated CD4+ T cells was shown to influence Th17 development and function, via alterations in IL-6 and IL-17 production, respectively. Collectively, these studies reveal that PTSD patients could be susceptible to inflammation by epigenetic dysregulation of TP53, which alters the miRNA profile to favor a proinflammatory Th17 phenotype.
Collapse
Affiliation(s)
- Philip B Busbee
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Marpe Bam
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Xiaoming Yang
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Osama A Abdulla
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Juhua Zhou
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Jay Paul Jack Ginsberg
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States.,Departments of Psychophysiology, Clinical Psychology, and Research Office, Saybrook University, Pasadena, CA, United States
| | - Allison E Aiello
- Department of Epidemiology, University of North Carolina (UNC) Gillings School of Global Public Health, University of North Carolina, Mcgavran-Greenberg Hall, Chapel Hill, NC, United States
| | - Monica Uddin
- Genomics Program, University of South Florida College of Public Health, Tampa, FL, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
42
|
Zogg H, Singh R, Ro S. Current Advances in RNA Therapeutics for Human Diseases. Int J Mol Sci 2022; 23:ijms23052736. [PMID: 35269876 PMCID: PMC8911101 DOI: 10.3390/ijms23052736] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Following the discovery of nucleic acids by Friedrich Miescher in 1868, DNA and RNA were recognized as the genetic code containing the necessary information for proper cell functioning. In the years following these discoveries, vast knowledge of the seemingly endless roles of RNA have become better understood. Additionally, many new types of RNAs were discovered that seemed to have no coding properties (non-coding RNAs), such as microRNAs (miRNAs). The discovery of these new RNAs created a new avenue for treating various human diseases. However, RNA is relatively unstable and is degraded fairly rapidly once administered; this has led to the development of novel delivery mechanisms, such as nanoparticles to increase stability as well as to prevent off-target effects of these molecules. Current advances in RNA-based therapies have substantial promise in treating and preventing many human diseases and disorders through fixing the pathology instead of merely treating the symptomology similarly to traditional therapeutics. Although many RNA therapeutics have made it to clinical trials, only a few have been FDA approved thus far. Additionally, the results of clinical trials for RNA therapeutics have been ambivalent to date, with some studies demonstrating potent efficacy, whereas others have limited effectiveness and/or toxicity. Momentum is building in the clinic for RNA therapeutics; future clinical care of human diseases will likely comprise promising RNA therapeutics. This review focuses on the current advances of RNA therapeutics and addresses current challenges with their development.
Collapse
|
43
|
De Tomi E, Campagnari R, Orlandi E, Cardile A, Zanrè V, Menegazzi M, Gomez-Lira M, Gotte G. Upregulation of miR-34a-5p, miR-20a-3p and miR-29a-3p by Onconase in A375 Melanoma Cells Correlates with the Downregulation of Specific Onco-Proteins. Int J Mol Sci 2022; 23:ijms23031647. [PMID: 35163570 PMCID: PMC8835754 DOI: 10.3390/ijms23031647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Onconase (ONC) is an amphibian secretory ribonuclease displaying cytostatic and cytotoxic activities against many mammalian tumors, including melanoma. ONC principally damages tRNA species, but also other non-coding RNAs, although its precise targets are not known. We investigated the ONC ability to modulate the expression of 16 onco-suppressor microRNAs (miRNAs) in the A375 BRAF-mutated melanoma cell line. RT-PCR and immunoblots were used to measure the expression levels of miRNAs and their regulated proteins, respectively. In silico study was carried out to verify the relations between miRNAs and their mRNA targets. A375 cell transfection with miR-20a-3p and miR-34a-5p mimics or inhibitors was performed. The onco-suppressors miR-20a-3p, miR-29a-3p and miR-34a-5p were highly expressed in 48-h ONC-treated A375 cells. The cytostatic effect of ONC in A375 cells was mechanistically explained by the sharp inhibition of cyclins D1 and A2 expression level, as well as by downregulation of retinoblastoma protein and cyclin-dependent-kinase-2 activities. Remarkably, the expression of kinases ERK1/2 and Akt, as well as of the hypoxia inducible factor-1α, was inhibited by ONC. All these proteins control pro-survival pathways. Finally, many crucial proteins involved in migration, invasion and metastatic potential were downregulated by ONC. Results obtained from transfection of miR-20a-3p and miR-34a-5p inhibitors in the presence of ONC show that these miRNAs may participate in the antitumor effects of ONC in the A375 cell line. In conclusion, we identified many intracellular downregulated proteins involved in melanoma cell proliferation, metabolism and progression. All mRNAs coding these proteins may be targets of miR-20a-3p, miR-29a-3p and/or miR-34a-5p, which are in turn upregulated by ONC. Data suggest that several known ONC anti-proliferative and anti-metastatic activities in A375 melanoma cells might depend on the upregulation of onco-suppressor miRNAs. Notably, miRNAs stability depends on the upstream regulation by long-non-coding-RNAs or circular-RNAs that can, in turn, be damaged by ONC ribonucleolytic activity.
Collapse
Affiliation(s)
- Elisa De Tomi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Elisa Orlandi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Alessia Cardile
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Valentina Zanrè
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
- Correspondence:
| | - Macarena Gomez-Lira
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| |
Collapse
|
44
|
Supic G, Stefik D, Ivkovic N, Sami A, Zeljic K, Jovic S, Kozomara R, Vojvodic D, Stosic S. Prognostic impact of miR-34b/c DNA methylation, gene expression, and promoter polymorphism in HPV-negative oral squamous cell carcinomas. Sci Rep 2022; 12:1296. [PMID: 35079080 PMCID: PMC8789922 DOI: 10.1038/s41598-022-05399-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022] Open
Abstract
Micro RNAs (miRNAs) have a key role in gene expression regulation in cancer. The aim of the current study is to evaluate the prognostic value of miR-34b/c promoter hypermethylation, gene expression, and polymorphism in HPV-negative oral squamous cell carcinomas (OSCC). MiR-34b/c promoter hypermethylation and pre-miR-34b/c polymorphism rs4938723 were evaluated in tumor tissues of 148 patients, and miR-34b expression in 123 HPV-negative OSCC. For risk assessment, the control group was comprised of 175 healthy individuals. MiR-34b/c promoter hypermethylation was determined by methylation-specific PCR. Gene expression, genotyping and HPV screening was assessed by Q-PCR. The data from our hospital cohort indicated that miR-34b/c DNA methylation was associated with nodal status (p = 0.048), and predicted the shorter overall survival of HPV-negative OSCC patients (p = 0.008). Down-regulated miR-34b/c expression was associated with smoking (p = 0.047), alcohol use (p = 0.009), stage (p = 0.025), recurrences (p = 0.000), and a poor survival (p = 0.00029). Median values of miR-34b expression were significantly lower in advanced stages III/IV as opposed to stage I/II, p = 0.006, and in nodal positive vs negative patients (p = 0.045). TCGA data also indicated that tumors with stage I-III expressed significantly higher levels of miR-34b, compared to tumors with stage IV (p = 0.035), Low miR-34b/c expression was associated with poor survival in smokers (p = 0.001) and patients with tongue carcinomas (p = 0.00003), and TCGA analysis confirmed these findings although miR-34b expression and miR-34b/c methylation were not associated with survival outcome in the whole TCGA cohort. A significant negative miR-34b/c expression-methylation correlation was observed in our hospital cohort (p = 0.017) and in TCGA cohort. Pre-miR-34b/c polymorphism was not associated with oral cancer risk. Our findings indicate that miR-34b/c hypermethylation and low miR-34b expression could promote the progression and predict the poor prognosis for HPV-negative OSCC, which suggests miR-34b/c as a promising biomarker and therapeutic target for OSCC in the future.
Collapse
Affiliation(s)
- Gordana Supic
- Faculty of Medicine, Military Medical Academy, University of Defense, Belgrade, Serbia.
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11002, Belgrade, Serbia.
| | - Debora Stefik
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11002, Belgrade, Serbia
| | - Nemanja Ivkovic
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11002, Belgrade, Serbia
| | - Ahmad Sami
- Cellular and Molecular Radiation Oncology Laboratory, Department of Radiation Oncology, Universitaetsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katarina Zeljic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Sasa Jovic
- Faculty of Medicine, Military Medical Academy, University of Defense, Belgrade, Serbia
- Clinic for Maxillofacial Surgery, Military Medical Academy, Belgrade, Serbia
| | - Ruzica Kozomara
- Faculty of Medicine, Military Medical Academy, University of Defense, Belgrade, Serbia
- Clinic for Maxillofacial Surgery, Military Medical Academy, Belgrade, Serbia
| | - Danilo Vojvodic
- Faculty of Medicine, Military Medical Academy, University of Defense, Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11002, Belgrade, Serbia
| | - Srboljub Stosic
- Faculty of Medicine, Military Medical Academy, University of Defense, Belgrade, Serbia
- Clinic for Maxillofacial Surgery, Military Medical Academy, Belgrade, Serbia
| |
Collapse
|
45
|
Spectrum of microRNAs and their target genes in cancer: intervention in diagnosis and therapy. Mol Biol Rep 2022; 49:6827-6846. [PMID: 35031927 DOI: 10.1007/s11033-021-07040-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022]
Abstract
Till date, several groups have studied the mechanism of microRNA (miRNA) biogenesis, processing, stability, silencing, and their dysregulation in cancer. The miRNA coding genes recurrently go through abnormal amplification, deletion, transcription, and epigenetic regulation in cancer. Some miRNAs function as tumor promoters while few others are tumor suppressors based on the transcriptional regulation of target genes. A review of miRNAs and their target genes in a wide range of cancers is attempted in this article, which may help in the development of new diagnostic tools and intervention therapies. The contribution of miRNAs for drug sensitivity or resistance in cancer therapy and opportunities of miRNAs in cancer prognosis or diagnosis and therapy is also presented in detail.
Collapse
|
46
|
AM22, a novel synthetic microRNA, inhibits the proliferation of colorectal cancer cells by targeting core binding factor subunit β (CBFB). Invest New Drugs 2022; 40:469-477. [PMID: 34985594 DOI: 10.1007/s10637-021-01208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
Our previous studies have revealed the important roles of the nonseed regions of microRNAs (miRNAs) in gene regulation, which provided novel insight into the development of miRNA analogs for cancer therapy. Here, we altered each nucleotide in the nonseed region of miR-34a and obtained novel synthetic miRNA analogs. Among them, AM22, with a base alteration from G to C at the 17th nucleotide of miR-34a, showed extensive antiproliferative activity against several colorectal tumor cell lines and achieved effective inhibition of core binding factor subunit β (CBFB) expression. Subsequent investigations demonstrated that AM22 directly targeted CBFB by binding to its 3'-untranslated region (3'-UTR). Inhibition of CBFB showed obvious antiproliferative activity on HCT-116 and SW620 cells. Furthermore, the antiproliferative effects of AM22 on these cells were also measured in xenograft mouse models. In conclusion, this study identified AM22 as a potential antitumor miRNA by targeting CBFB and provided a new design approach for miRNA-based cancer treatment by changing the nonseed region of miRNA.
Collapse
|
47
|
Kaller M, Hünten S, Siemens H, Hermeking H. Analysis of the p53/microRNA Network in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:187-228. [DOI: 10.1007/978-3-031-08356-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Okeke C, Silas U, Nnodu O, Clementina O. HSC and miRNA Regulation with Implication for Foetal Haemoglobin Induction in Beta Haemoglobinopathies. Curr Stem Cell Res Ther 2022; 17:339-347. [PMID: 35189805 DOI: 10.2174/1574888x17666220221104711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
Sickle cell disease (SCD) is one of the most common haemoglobinopathies worldwide, with up to 70 % of global SCD annual births occurring in sub-Saharan Africa. Reports have shown that 50 to 80 % of affected children in these countries die annually. Efforts geared towards understanding and controlling HbF production in SCD patients could lead to strategies for effective control of globin gene expression and therapeutic approaches that could be beneficial to individuals with haemoglobinopathies. Hemopoietic stem cells (HSCs) are characterized by a specific miRNA signature in every state of differentiation. The role of miRNAs has become evident both in the maintenance of the "stemness" and in the early induction of differentiation by modulation of the expression of the master pluripotency genes and during early organogenesis. miRNAs are extra regulatory mechanisms in hematopoietic stem cells (HSCs) via influencing transcription profiles together with transcript stability. miRNAs have been reported to be used to reprogram primary somatic cells toward pluripotency. Their involvement in cell editing holds the potential for therapy for many genetic diseases. This review provides a snapshot of miRNA involvement in cell fate decisions, haemoglobin induction pathway, and their journey as some emerge prime targets for therapy in beta haemoglobinopathies.
Collapse
Affiliation(s)
- Chinwe Okeke
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Nsukka, Nigeria
| | - Ufele Silas
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Nsukka, Nigeria
| | - Obiageli Nnodu
- Department of Haematology, College of Medicine, University of Abuja, Abuja Nigeria
| | - Odoh Clementina
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
49
|
Macharia LW, Muriithi W, Heming CP, Nyaga DK, Aran V, Mureithi MW, Ferrer VP, Pane A, Filho PN, Moura-Neto V. The genotypic and phenotypic impact of hypoxia microenvironment on glioblastoma cell lines. BMC Cancer 2021; 21:1248. [PMID: 34798868 PMCID: PMC8605580 DOI: 10.1186/s12885-021-08978-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Glioblastoma is a fatal brain tumour with a poor patient survival outcome. Hypoxia has been shown to reprogram cells towards a stem cell phenotype associated with self-renewal and drug resistance properties. Activation of hypoxia-inducible factors (HIFs) helps in cellular adaptation mechanisms under hypoxia. Similarly, miRNAs are known to be dysregulated in GBM have been shown to act as critical mediators of the hypoxic response and to regulate key processes involved in tumorigenesis. METHODS Glioblastoma (GBM) cells were exposed to oxygen deprivation to mimic a tumour microenvironment and different cell aspects were analysed such as morphological changes and gene expression of miRNAs and survival genes known to be associated with tumorigenesis. RESULTS It was observed that miR-128a-3p, miR-34-5p, miR-181a/b/c, were down-regulated in 6 GBM cell lines while miR-17-5p and miR-221-3p were upregulated when compared to a non-GBM control. When the same GBM cell lines were cultured under hypoxic microenvironment, a further 4-10-fold downregulation was observed for miR-34-5p, miR-128a-3p and 181a/b/c while a 3-6-fold upregulation was observed for miR-221-3p and 17-5p for most of the cells. Furthermore, there was an increased expression of SOX2 and Oct4, GLUT-1, VEGF, Bcl-2 and survivin, which are associated with a stem-like state, increased metabolism, altered angiogenesis and apoptotic escape, respectively. CONCLUSION This study shows that by mimicking a tumour microenvironment, miRNAs are dysregulated, stemness factors are induced and alteration of the survival genes necessary for the cells to adapt to the micro-environmental factors occurs. Collectively, these results might contribute to GBM aggressiveness.
Collapse
Affiliation(s)
- Lucy Wanjiku Macharia
- Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro - (PPGAP-UFRJ), Rio de Janeiro, Brazil
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil
| | - Wanjiru Muriithi
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil
- Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB-UFRJ), Rio de Janeiro, Brazil
| | - Carlos Pilotto Heming
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil
- Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB-UFRJ), Rio de Janeiro, Brazil
| | - Dennis Kirii Nyaga
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil
- Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Veronica Aran
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil
| | | | - Valeria Pereira Ferrer
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil
| | - Attilio Pane
- Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB-UFRJ), Rio de Janeiro, Brazil
| | - Paulo Niemeyer Filho
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil
| | - Vivaldo Moura-Neto
- Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro - (PPGAP-UFRJ), Rio de Janeiro, Brazil.
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil.
| |
Collapse
|
50
|
Herichová I, Tesáková B, Kršková L, Olexová L. Food reward induction of rhythmic clock gene expression in the prefrontal cortex of rats is accompanied by changes in miR-34a-5p expression. Eur J Neurosci 2021; 54:7476-7492. [PMID: 34735028 DOI: 10.1111/ejn.15518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022]
Abstract
The current study is focused on mechanisms by which the peripheral circadian oscillator in the prefrontal cortex (PFC) participates in food reward-induced activity. The experimental group of male Wistar rats was trained to receive a food reward with a low hedonic and caloric value. Afterwards, animals were exposed to a 5 h phase advance. Experimental animals could access a small food reward as they had been accustomed to, while control rats were exposed to the same phase shift without access to a food reward. When synchronisation to a new light:dark cycle was accompanied by intake of food reward, animals exerted more exact phase shift compared to the controls. In rats with access to a food reward, a rhythm in dopamine receptors types 1 and 2 in the PFC was detected. Rhythmic clock gene expression was induced in the PFC of rats when a food reward was provided together with a phase shift. The per2 and clock genes are predicted targets of miR-34a-5p. The precursor form of miR-34a-5p (pre-miR-34a-5p) showed a daily rhythm in expression in the PFC of the control and experimental groups. On the other hand, the mature form of miR-34a-5p exerted an inverted rhythm compared to pre-miR-34a-5p and negative correlation with per and clock genes expression only in the PFC of rewarded rats. A difference in the pattern of mature and pre-miR-34a-5p values was not related to expression of enzymes drosha, dicer and dgcr8. A role of the clock genes and miR-34a-5p in reward-facilitated synchronisation has been hypothesised.
Collapse
Affiliation(s)
- Iveta Herichová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Barbora Tesáková
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Lucia Kršková
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Lucia Olexová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|