1
|
Zhu M, Fang Y, Sun Y, Li S, Yu J, Xiong B, Wen C, Zhou B, Huang B, Yin H, Xu H. Sonogenetics in the Treatment of Chronic Diseases: A New Method for Cell Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407373. [PMID: 39488795 DOI: 10.1002/advs.202407373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Sonogenetics is an innovative technology that integrates ultrasound with genetic editing to precisely modulate cellular activities in a non-invasive manner. This method entails introducing and activating mechanosensitive channels on the cell membrane of specific cells using gene delivery vectors. When exposed to ultrasound, these channels can be manipulated to open or close, thereby impacting cellular functions. Sonogenetics is currently being used extensively in the treatment of various chronic diseases, including Parkinson's disease, vision restoration, and cancer therapy. This paper provides a comprehensive review of key components of sonogenetics and focuses on evaluating its prospects and potential challenges in the treatment of chronic disease.
Collapse
Affiliation(s)
- Mingrui Zhu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yan Fang
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yikang Sun
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Shaoyue Li
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Jifeng Yu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Bing Xiong
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Congjian Wen
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Boyang Zhou
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Bin Huang
- Zhejiang Hospital, Hangzhou, 310013, P. R. China
| | - Haohao Yin
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Huixiong Xu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| |
Collapse
|
2
|
Gokulu IS, Banta S. Enzyme Engineering by Force: DNA Springs for the Modulation of Biocatalytic Trajectories. ACS Synth Biol 2024; 13:2600-2610. [PMID: 39110689 DOI: 10.1021/acssynbio.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The engineering of enzymatic activity generally involves alteration of the protein primary sequences, which introduce structural changes that give rise to functional improvements. Mechanical forces have been used to interrogate protein biophysics, leading to deep mechanistic insights in single-molecule studies. Here, we use simple DNA springs to apply small pulling forces to perturb the active site of a thermostable alcohol dehydrogenase. Methods were developed to enable the study of different spring lengths and spring orientations under bulk catalysis conditions. Tension applied across the active site expanded the binding pocket volume and shifted the preference of the enzyme for longer chain-length substrates, which could be tuned by altering the spring length and the resultant applied force. The substrate specificity changes did not occur when the DNA spring was either severed or rotated by ∼90°. These findings demonstrate an alternative approach in protein engineering, where active site architectures can be dynamically and reversibly remodeled using applied mechanical forces.
Collapse
Affiliation(s)
- Ipek Simay Gokulu
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
3
|
Mim MS, Kumar N, Levis M, Unger MF, Miranda G, Gazzo D, Robinett T, Zartman JJ. Piezo regulates epithelial topology and promotes precision in organ size control. Cell Rep 2024; 43:114398. [PMID: 38935502 DOI: 10.1016/j.celrep.2024.114398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Mechanosensitive Piezo channels regulate cell division, cell extrusion, and cell death. However, systems-level functions of Piezo in regulating organogenesis remain poorly understood. Here, we demonstrate that Piezo controls epithelial cell topology to ensure precise organ growth by integrating live-imaging experiments with pharmacological and genetic perturbations and computational modeling. Notably, the knockout or knockdown of Piezo increases bilateral asymmetry in wing size. Piezo's multifaceted functions can be deconstructed as either autonomous or non-autonomous based on a comparison between tissue-compartment-level perturbations or between genetic perturbation populations at the whole-tissue level. A computational model that posits cell proliferation and apoptosis regulation through modulation of the cutoff tension required for Piezo channel activation explains key cell and tissue phenotypes arising from perturbations of Piezo expression levels. Our findings demonstrate that Piezo promotes robustness in regulating epithelial topology and is necessary for precise organ size control.
Collapse
Affiliation(s)
- Mayesha Sahir Mim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nilay Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Megan Levis
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Maria F Unger
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gabriel Miranda
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - David Gazzo
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Trent Robinett
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
4
|
Bonsignore G, Martinotti S, Ranzato E. Wound Repair and Ca 2+ Signalling Interplay: The Role of Ca 2+ Channels in Skin. Cells 2024; 13:491. [PMID: 38534335 DOI: 10.3390/cells13060491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
The process of wound healing is intricate and tightly controlled, involving a number of different cellular and molecular processes. Numerous cellular functions, especially those related to wound healing, depend critically on calcium ions (Ca2+). Ca2+ channels are proteins involved in signal transduction and communication inside cells that allow calcium ions to pass through cell membranes. Key Ca2+ channel types involved in wound repair are described in this review.
Collapse
Affiliation(s)
- Gregorio Bonsignore
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, 15121 Alessandria, Italy
| | - Simona Martinotti
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, 15121 Alessandria, Italy
- SSD Laboratori di Ricerca-DAIRI, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Elia Ranzato
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, 15121 Alessandria, Italy
- SSD Laboratori di Ricerca-DAIRI, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| |
Collapse
|
5
|
Abbonante V, Karkempetzaki AI, Leon C, Krishnan A, Huang N, Di Buduo CA, Cattaneo D, Ward CMT, Matsuura S, Guinard I, Weber J, De Acutis A, Vozzi G, Iurlo A, Ravid K, Balduini A. Newly identified roles for PIEZO1 mechanosensor in controlling normal megakaryocyte development and in primary myelofibrosis. Am J Hematol 2024; 99:336-349. [PMID: 38165047 PMCID: PMC10922533 DOI: 10.1002/ajh.27184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Mechanisms through which mature megakaryocytes (Mks) and their progenitors sense the bone marrow extracellular matrix to promote lineage differentiation in health and disease are still partially understood. We found PIEZO1, a mechanosensitive cation channel, to be expressed in mouse and human Mks. Human mutations in PIEZO1 have been described to be associated with blood cell disorders. Yet, a role for PIEZO1 in megakaryopoiesis and proplatelet formation has never been investigated. Here, we show that activation of PIEZO1 increases the number of immature Mks in mice, while the number of mature Mks and Mk ploidy level are reduced. Piezo1/2 knockout mice show an increase in Mk size and platelet count, both at basal state and upon marrow regeneration. Similarly, in human samples, PIEZO1 is expressed during megakaryopoiesis. Its activation reduces Mk size, ploidy, maturation, and proplatelet extension. Resulting effects of PIEZO1 activation on Mks resemble the profile in Primary Myelofibrosis (PMF). Intriguingly, Mks derived from Jak2V617F PMF mice show significantly elevated PIEZO1 expression, compared to wild-type controls. Accordingly, Mks isolated from bone marrow aspirates of JAK2V617F PMF patients show increased PIEZO1 expression compared to Essential Thrombocythemia. Most importantly, PIEZO1 expression in bone marrow Mks is inversely correlated with patient platelet count. The ploidy, maturation, and proplatelet formation of Mks from JAK2V617F PMF patients are rescued upon PIEZO1 inhibition. Together, our data suggest that PIEZO1 places a brake on Mk maturation and platelet formation in physiology, and its upregulation in PMF Mks might contribute to aggravating some hallmarks of the disease.
Collapse
Affiliation(s)
- Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Anastasia Iris Karkempetzaki
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- University of Crete, School of Medicine, Heraklion, Greece
| | - Catherine Leon
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, F-67000 Strasbourg, France
| | - Anandi Krishnan
- Institute of Immunology, Stanford University School of Medicine, Palo Alto, California, United States
| | - Nasi Huang
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | | | - Daniele Cattaneo
- Hematology Division, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Christina Marie Torres Ward
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Shinobu Matsuura
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ines Guinard
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, F-67000 Strasbourg, France
| | - Josiane Weber
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, F-67000 Strasbourg, France
| | - Aurora De Acutis
- Interdepartmental Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | - Giovanni Vozzi
- Interdepartmental Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | - Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Katya Ravid
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
6
|
Orfali R, Alwatban AZ, Orfali RS, Lau L, Chea N, Alotaibi AM, Nam YW, Zhang M. Oxidative stress and ion channels in neurodegenerative diseases. Front Physiol 2024; 15:1320086. [PMID: 38348223 PMCID: PMC10859863 DOI: 10.3389/fphys.2024.1320086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Numerous neurodegenerative diseases result from altered ion channel function and mutations. The intracellular redox status can significantly alter the gating characteristics of ion channels. Abundant neurodegenerative diseases associated with oxidative stress have been documented, including Parkinson's, Alzheimer's, spinocerebellar ataxia, amyotrophic lateral sclerosis, and Huntington's disease. Reactive oxygen and nitrogen species compounds trigger posttranslational alterations that target specific sites within the subunits responsible for channel assembly. These alterations include the adjustment of cysteine residues through redox reactions induced by reactive oxygen species (ROS), nitration, and S-nitrosylation assisted by nitric oxide of tyrosine residues through peroxynitrite. Several ion channels have been directly investigated for their functional responses to oxidizing agents and oxidative stress. This review primarily explores the relationship and potential links between oxidative stress and ion channels in neurodegenerative conditions, such as cerebellar ataxias and Parkinson's disease. The potential correlation between oxidative stress and ion channels could hold promise for developing innovative therapies for common neurodegenerative diseases.
Collapse
Affiliation(s)
- Razan Orfali
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Adnan Z. Alwatban
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Liz Lau
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Noble Chea
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Abdullah M. Alotaibi
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| |
Collapse
|
7
|
Tyagi A, Ali S, Park S, Bae H. Deciphering the role of mechanosensitive channels in plant root biology: perception, signaling, and adaptive responses. PLANTA 2023; 258:105. [PMID: 37878056 DOI: 10.1007/s00425-023-04261-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
Abstract
MAIN CONCLUSION Mechanosensitive channels are integral membrane proteins that rapidly translate extrinsic or intrinsic mechanical tensions into biological responses. They can serve as potential candidates for developing smart-resilient crops with efficient root systems. Mechanosensitive (MS) calcium channels are molecular switches for mechanoperception and signal transduction in all living organisms. Although tremendous progress has been made in understanding mechanoperception and signal transduction in bacteria and animals, this remains largely unknown in plants. However, identification and validation of MS channels such as Mid1-complementing activity channels (MCAs), mechanosensitive-like channels (MSLs), and Piezo channels (PIEZO) has been the most significant discovery in plant mechanobiology, providing novel insights into plant mechanoperception. This review summarizes recent advances in root mechanobiology, focusing on MS channels and their related signaling players, such as calcium ions (Ca2+), reactive oxygen species (ROS), and phytohormones. Despite significant advances in understanding the role of Ca2+ signaling in root biology, little is known about the involvement of MS channel-driven Ca2+ and ROS signaling. Additionally, the hotspots connecting the upstream and downstream signaling of MS channels remain unclear. In light of this, we discuss the present knowledge of MS channels in root biology and their role in root developmental and adaptive traits. We also provide a model highlighting upstream (cell wall sensors) and downstream signaling players, viz., Ca2+, ROS, and hormones, connected with MS channels. Furthermore, we highlighted the importance of emerging signaling molecules, such as nitric oxide (NO), hydrogen sulfide (H2S), and neurotransmitters (NTs), and their association with root mechanoperception. Finally, we conclude with future directions and knowledge gaps that warrant further research to decipher the complexity of root mechanosensing.
Collapse
Affiliation(s)
- Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea.
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
8
|
Yu D, Ahmed A, Jayasi J, Womac A, Sally O, Bae C. Inflammation condition sensitizes Piezo1 mechanosensitive channel in mouse cerebellum astrocyte. Front Cell Neurosci 2023; 17:1200946. [PMID: 37305437 PMCID: PMC10248153 DOI: 10.3389/fncel.2023.1200946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Piezo1 mechanosensitive ion channel (MSC) plays a significant role in human physiology. Despite several research on the function and expression of Piezo1 in the nervous system, its electrophysiological properties in neuroinflammatory astrocytes remain unknown. We tested whether astrocytic neuroinflammatory state regulates Piezo1 using electrical recordings, calcium imaging, and wound healing assays on cultured astrocytes. In this study, we determined whether neuroinflammatory condition regulates astrocytic Piezo1 currents in astrocytes. First, we performed electrophysiological recordings on the mouse cerebellum astrocytes (C8-S) under lipopolysaccharide (LPS)-induced neuroinflammatory condition. We found that LPS treatment significantly increased MSC currents in C8-S. The half-maximal pressure of LPS treated MSC currents was left-shifted but the slope sensitivity was not altered by LPS treatment. LPS-induced increase of MSC currents were further augmented by Piezo1 agonist, Yoda1 but were normalized by Piezo1 inhibitor, GsMTx4. Furthermore, silencing Piezo1 in LPS treated C8-S normalized not only MSC currents but also calcium influx and cell migration velocity. Together, our results show that LPS sensitized Piezo1 channel in C8-S astrocytes. These findings will suggest that astrocytic Piezo1 is a determinant of neuroinflammation pathogenesis and may in turn become the foundation of further research into curing several neuronal illnesses and injury related inflammation of neuronal cells.
Collapse
|
9
|
Flegler VJ, Rasmussen T, Böttcher B. How Functional Lipids Affect the Structure and Gating of Mechanosensitive MscS-like Channels. Int J Mol Sci 2022; 23:ijms232315071. [PMID: 36499396 PMCID: PMC9739000 DOI: 10.3390/ijms232315071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
The ability to cope with and adapt to changes in the environment is essential for all organisms. Osmotic pressure is a universal threat when environmental changes result in an imbalance of osmolytes inside and outside the cell which causes a deviation from the normal turgor. Cells have developed a potent system to deal with this stress in the form of mechanosensitive ion channels. Channel opening releases solutes from the cell and relieves the stress immediately. In bacteria, these channels directly sense the increased membrane tension caused by the enhanced turgor levels upon hypoosmotic shock. The mechanosensitive channel of small conductance, MscS, from Escherichia coli is one of the most extensively studied examples of mechanically stimulated channels. Different conformational states of this channel were obtained in various detergents and membrane mimetics, highlighting an intimate connection between the channel and its lipidic environment. Associated lipids occupy distinct locations and determine the conformational states of MscS. Not all these features are preserved in the larger MscS-like homologues. Recent structures of homologues from bacteria and plants identify common features and differences. This review discusses the current structural and functional models for MscS opening, as well as the influence of certain membrane characteristics on gating.
Collapse
|
10
|
Goult BT, von Essen M, Hytönen VP. The mechanical cell - the role of force dependencies in synchronising protein interaction networks. J Cell Sci 2022; 135:283155. [PMID: 36398718 PMCID: PMC9845749 DOI: 10.1242/jcs.259769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The role of mechanical signals in the proper functioning of organisms is increasingly recognised, and every cell senses physical forces and responds to them. These forces are generated both from outside the cell or via the sophisticated force-generation machinery of the cell, the cytoskeleton. All regions of the cell are connected via mechanical linkages, enabling the whole cell to function as a mechanical system. In this Review, we define some of the key concepts of how this machinery functions, highlighting the critical requirement for mechanosensory proteins, and conceptualise the coupling of mechanical linkages to mechanochemical switches that enables forces to be converted into biological signals. These mechanical couplings provide a mechanism for how mechanical crosstalk might coordinate the entire cell, its neighbours, extending into whole collections of cells, in tissues and in organs, and ultimately in the coordination and operation of entire organisms. Consequently, many diseases manifest through defects in this machinery, which we map onto schematics of the mechanical linkages within a cell. This mapping approach paves the way for the identification of additional linkages between mechanosignalling pathways and so might identify treatments for diseases, where mechanical connections are affected by mutations or where individual force-regulated components are defective.
Collapse
Affiliation(s)
- Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK,Authors for correspondence (; )
| | - Magdaléna von Essen
- Faculty of Medicine and Health Technology, Tampere University, FI-33100 Tampere, Finland
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, FI-33100 Tampere, Finland,Fimlab Laboratories, FI-33520 Tampere, Finland,Authors for correspondence (; )
| |
Collapse
|
11
|
Winlow W, Johnson AS. Nerve Impulses Have Three Interdependent Functions: Communication, Modulation, and Computation. Bioelectricity 2021. [DOI: 10.1089/bioe.2021.0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- William Winlow
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, Napoli, Italia
- Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool, United Kingdom
| | - Andrew S. Johnson
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, Napoli, Italia
| |
Collapse
|
12
|
Qiu Z, Kala S, Guo J, Xian Q, Zhu J, Zhu T, Hou X, Wong KF, Yang M, Wang H, Sun L. Targeted Neurostimulation in Mouse Brains with Non-invasive Ultrasound. Cell Rep 2021; 32:108033. [PMID: 32814040 DOI: 10.1016/j.celrep.2020.108033] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/11/2019] [Accepted: 07/23/2020] [Indexed: 01/17/2023] Open
Abstract
Recently developed brain stimulation techniques have significantly advanced our ability to manipulate the brain's function. However, stimulating specific neurons in a desired region without significant surgical invasion remains a challenge. Here, we demonstrate a neuron-specific and region-targeted neural excitation strategy using non-invasive ultrasound through activation of heterologously expressed mechanosensitive ion channels (MscL-G22S). Low-intensity ultrasound is significantly better at inducing Ca2+ influx and neuron activation in vitro and at evoking electromyogram (EMG) responses in vivo in targeted cells expressing MscL-G22S. Neurons in the cerebral cortex or dorsomedial striatum of mice are made to express MscL-G22S and stimulated ultrasonically. We find significant upregulation of c-Fos in neuron nuclei only in the regions expressing MscL-G22S compared with the non-MscL controls, as well as in various other regions in the same brain. Thus, we detail an effective approach for activating specific regions and cell types in intact mouse brains by sensitizing them to ultrasound using a mechanosensitive ion channel.
Collapse
Affiliation(s)
- Zhihai Qiu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077
| | - Shashwati Kala
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077
| | - Jinghui Guo
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077
| | - Quanxiang Xian
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077
| | - Jiejun Zhu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077
| | - Ting Zhu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077
| | - Xuandi Hou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077
| | - Kin Fung Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077
| | - Minyi Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077
| | - Haoru Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077
| | - Lei Sun
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China, 999077.
| |
Collapse
|
13
|
Wilson MA, Pohorille A. Electrophysiological Properties from Computations at a Single Voltage: Testing Theory with Stochastic Simulations. ENTROPY 2021; 23:e23050571. [PMID: 34066581 PMCID: PMC8148522 DOI: 10.3390/e23050571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022]
Abstract
We use stochastic simulations to investigate the performance of two recently developed methods for calculating the free energy profiles of ion channels and their electrophysiological properties, such as current–voltage dependence and reversal potential, from molecular dynamics simulations at a single applied voltage. These methods require neither knowledge of the diffusivity nor simulations at multiple voltages, which greatly reduces the computational effort required to probe the electrophysiological properties of ion channels. They can be used to determine the free energy profiles from either forward or backward one-sided properties of ions in the channel, such as ion fluxes, density profiles, committor probabilities, or from their two-sided combination. By generating large sets of stochastic trajectories, which are individually designed to mimic the molecular dynamics crossing statistics of models of channels of trichotoxin, p7 from hepatitis C and a bacterial homolog of the pentameric ligand-gated ion channel, GLIC, we find that the free energy profiles obtained from stochastic simulations corresponding to molecular dynamics simulations of even a modest length are burdened with statistical errors of only 0.3 kcal/mol. Even with many crossing events, applying two-sided formulas substantially reduces statistical errors compared to one-sided formulas. With a properly chosen reference voltage, the current–voltage curves can be reproduced with good accuracy from simulations at a single voltage in a range extending for over 200 mV. If possible, the reference voltages should be chosen not simply to drive a large current in one direction, but to observe crossing events in both directions.
Collapse
Affiliation(s)
- Michael A. Wilson
- Exobiology Branch, MS 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA;
- SETI Institute, 189 Bernardo Ave, Suite 200, Mountain View, CA 94043, USA
| | - Andrew Pohorille
- Exobiology Branch, MS 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA;
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94132, USA
- Correspondence: ; Tel.: +1-650-604-5759
| |
Collapse
|
14
|
Baratchi S, Zaldivia MTK, Wallert M, Loseff-Silver J, Al-Aryahi S, Zamani J, Thurgood P, Salim A, Htun NM, Stub D, Vahidi P, Duffy SJ, Walton A, Nguyen TH, Jaworowski A, Khoshmanesh K, Peter K. Transcatheter Aortic Valve Implantation Represents an Anti-Inflammatory Therapy Via Reduction of Shear Stress-Induced, Piezo-1-Mediated Monocyte Activation. Circulation 2020; 142:1092-1105. [PMID: 32697107 DOI: 10.1161/circulationaha.120.045536] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aortic valve stenosis is an increasingly prevalent degenerative and inflammatory disease. Transcatheter aortic valve implantation (TAVI) has revolutionized its treatment, thereby avoiding its life-threatening/disabling consequences. Whether aortic valve stenosis is accelerated by inflammation and whether it is itself a cause of inflammation are unclear. We hypothesized that the large shear forces exerted on circulating cells, particularly on the largest circulating cells, monocytes, while passing through stenotic aortic valves result in proinflammatory effects that are resolved with TAVI. METHODS TAVI provides a unique opportunity to compare the activation status of monocytes under high shear stress (before TAVI) and under low shear stress (after TAVI). The activation status of monocytes was determined with a single-chain antibody, MAN-1, which is specific for the activated β2-integrin Mac-1. Monocyte function was further characterized by the adhesion of myocytes to stimulated endothelial cells, phagocytic activity, uptake of oxidized low-density lipoprotein, and cytokine expression. In addition, we designed a microfluidic system to recapitulate the shear rate conditions before and after TAVI. We used this tool in combination with functional assays, Ca2+ imaging, siRNA gene silencing, and pharmacological agonists and antagonists to identify the key mechanoreceptor mediating the shear stress sensitivity of monocytes. Last, we stained for monocytes in explanted stenotic aortic human valves. RESULTS The resolution of high shear stress through TAVI reduces Mac-1 activation, cellular adhesion, phagocytosis, oxidized low-density lipoprotein uptake, and expression of inflammatory markers in monocytes and plasma. Using microfluidics and pharmacological and genetic studies, we could recapitulate high shear stress effects on isolated human monocytes under highly controlled conditions, showing that shear stress-dependent calcium influx and monocyte adhesion are mediated by the mechanosensitive ion channel Piezo-1. We also demonstrate that the expression of this receptor is shear stress dependent and downregulated in patients receiving TAVI. Last, we show monocyte accumulation at the aortic side of leaflets of explanted aortic valves. CONCLUSIONS We demonstrate that high shear stress, as present in patients with aortic valve stenosis, activates multiple monocyte functions, and we identify Piezo-1 as the mainly responsible mechanoreceptor, representing a potentially druggable target. We demonstrate an anti-inflammatory effect and therefore a novel therapeutic benefit of TAVI.
Collapse
Affiliation(s)
- Sara Baratchi
- School of Health and Biomedical Sciences (S.B., S.A.-A., P.V., A.J., K.P.), RMIT University, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
| | - Maria T K Zaldivia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
| | - Maria Wallert
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
| | - Julia Loseff-Silver
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
| | - Sefaa Al-Aryahi
- School of Health and Biomedical Sciences (S.B., S.A.-A., P.V., A.J., K.P.), RMIT University, Melbourne, Victoria, Australia
| | - Jalal Zamani
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
| | - Peter Thurgood
- School of Engineering (P.T., K.K.), RMIT University, Melbourne, Victoria, Australia
| | - Agus Salim
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
- Department of Mathematics and Statistics, La Trobe University, Melbourne, Victoria, Australia (A.S.)
| | - Nay M Htun
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
| | - Dion Stub
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia (D.S.)
| | - Parisa Vahidi
- School of Health and Biomedical Sciences (S.B., S.A.-A., P.V., A.J., K.P.), RMIT University, Melbourne, Victoria, Australia
| | - Stephen J Duffy
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
| | - Antony Walton
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
| | - Thanh Ha Nguyen
- Cardiology Department, Queen Elizabeth Hospital, University of Adelaide, Woodville, South Australia, Australia (T.H.N.)
| | - Anthony Jaworowski
- School of Health and Biomedical Sciences (S.B., S.A.-A., P.V., A.J., K.P.), RMIT University, Melbourne, Victoria, Australia
| | | | - Karlheinz Peter
- School of Health and Biomedical Sciences (S.B., S.A.-A., P.V., A.J., K.P.), RMIT University, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
| |
Collapse
|
15
|
Basu D, Haswell ES. The Mechanosensitive Ion Channel MSL10 Potentiates Responses to Cell Swelling in Arabidopsis Seedlings. Curr Biol 2020; 30:2716-2728.e6. [PMID: 32531281 DOI: 10.1016/j.cub.2020.05.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 01/06/2023]
Abstract
The ability to respond to unanticipated increases in volume is a fundamental property of cells, essential for cellular integrity in the face of osmotic challenges. Plants must manage cell swelling during flooding, rehydration, and pathogen invasion-but little is known about the mechanisms by which this occurs. It has been proposed that plant cells could sense and respond to cell swelling through the action of mechanosensitive ion channels. Here, we characterize a new assay to study the effects of cell swelling on Arabidopsis thaliana seedlings and to test the contributions of the mechanosensitive ion channel MscS-like10 (MSL10). The assay incorporates both cell wall softening and hypo-osmotic treatment to induce cell swelling. We show that MSL10 is required for several previously demonstrated responses to hypo-osmotic shock, including a cytoplasmic calcium transient within the first few seconds, accumulation of ROS within the first 30 min, and increased transcript levels of mechano-inducible genes within 60 min. We also show that cell swelling induces programmed cell death within 3 h in a MSL10-dependent manner. Finally, we show that MSL10 is unable to potentiate cell swelling-induced death when phosphomimetic residues are introduced into its soluble N terminus. Thus, MSL10 functions as a phospho-regulated membrane-based sensor that connects the perception of cell swelling to a downstream signaling cascade and programmed cell death.
Collapse
Affiliation(s)
- Debarati Basu
- NSF Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Elizabeth S Haswell
- NSF Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
16
|
Zhou T, Gao B, Fan Y, Liu Y, Feng S, Cong Q, Zhang X, Zhou Y, Yadav PS, Lin J, Wu N, Zhao L, Huang D, Zhou S, Su P, Yang Y. Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-ß-catenin. eLife 2020; 9:52779. [PMID: 32186512 PMCID: PMC7112954 DOI: 10.7554/elife.52779] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/17/2020] [Indexed: 12/15/2022] Open
Abstract
Mechanical forces are fundamental regulators of cell behaviors. However, molecular regulation of mechanotransduction remain poorly understood. Here, we identified the mechanosensitive channels Piezo1 and Piezo2 as key force sensors required for bone development and osteoblast differentiation. Loss of Piezo1, or more severely Piezo1/2, in mesenchymal or osteoblast progenitor cells, led to multiple spontaneous bone fractures in newborn mice due to inhibition of osteoblast differentiation and increased bone resorption. In addition, loss of Piezo1/2 rendered resistant to further bone loss caused by unloading in both bone development and homeostasis. Mechanistically, Piezo1/2 relayed fluid shear stress and extracellular matrix stiffness signals to activate Ca2+ influx to stimulate Calcineurin, which promotes concerted activation of NFATc1, YAP1 and ß-catenin transcription factors by inducing their dephosphorylation as well as NFAT/YAP1/ß-catenin complex formation. Yap1 and ß-catenin activities were reduced in the Piezo1 and Piezo1/2 mutant bones and such defects were partially rescued by enhanced ß-catenin activities.
Collapse
Affiliation(s)
- Taifeng Zhou
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States.,Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Bo Gao
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Fan
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| | - Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| | - Shuhao Feng
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States.,Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Qian Cong
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| | - Xiaolei Zhang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States.,Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yaxing Zhou
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| | - Prem S Yadav
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| | - Jiachen Lin
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States.,Department of Orthopedic Surgery and Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery and Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Liang Zhao
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Dongsheng Huang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, United States
| | - Peiqiang Su
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| |
Collapse
|
17
|
Qiu Z, Guo J, Kala S, Zhu J, Xian Q, Qiu W, Li G, Zhu T, Meng L, Zhang R, Chan HC, Zheng H, Sun L. The Mechanosensitive Ion Channel Piezo1 Significantly Mediates In Vitro Ultrasonic Stimulation of Neurons. iScience 2019; 21:448-457. [PMID: 31707258 PMCID: PMC6849147 DOI: 10.1016/j.isci.2019.10.037] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/04/2019] [Accepted: 10/18/2019] [Indexed: 10/28/2022] Open
Abstract
Ultrasound brain stimulation is a promising modality for probing brain function and treating brain disease non-invasively and with high spatiotemporal resolution. However, the mechanism underlying its effects remains unclear. Here, we examine the role that the mouse piezo-type mechanosensitive ion channel component 1 (Piezo1) plays in mediating the in vitro effects of ultrasound in mouse primary cortical neurons and a neuronal cell line. We show that ultrasound alone could activate heterologous and endogenous Piezo1, initiating calcium influx and increased nuclear c-Fos expression in primary neurons but not when pre-treated with a Piezo1 inhibitor. We also found that ultrasound significantly increased the expression of the important proteins phospho-CaMKII, phospho-CREB, and c-Fos in a neuronal cell line, but Piezo1 knockdown significantly reduced this effect. Our findings demonstrate that the activity of mechanosensitive ion channels such as Piezo1 stimulated by ultrasound is an important contributor to its ability to stimulate cells in vitro.
Collapse
Affiliation(s)
- Zhihai Qiu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Jinghui Guo
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China; Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Shashwati Kala
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Jiejun Zhu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Quanxiang Xian
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P. R. China
| | - Guofeng Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P. R. China
| | - Ting Zhu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P. R. China
| | - Rui Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Hsiao Chang Chan
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P. R. China.
| | - Lei Sun
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China.
| |
Collapse
|
18
|
Landrein B, Ingram G. Connected through the force: mechanical signals in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3507-3519. [PMID: 30821332 DOI: 10.1093/jxb/erz103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/12/2019] [Indexed: 05/12/2023]
Abstract
As multicellular organisms, plants acquire characteristic shapes through a complex set of biological processes known as morphogenesis. Biochemical signalling underlies much of development, as it allows cells to acquire specific identities based on their position within tissues and organs. However, as growing physical structures, plants, and their constituent cells, also experience internal and external physical forces that can be perceived and can influence key processes such as growth, polarity, and gene expression. This process, which adds another layer of control to growth and development, has important implications for plant morphogenesis. This review provides an overview of recent research into the role of mechanical signals in plant development and aims to show how mechanical signalling can be used, in concert with biochemical signals, as a cue allowing cells and tissues to coordinate their behaviour and to add robustness to developmental processes.
Collapse
Affiliation(s)
- Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, UCB Lyon 1, CNRS, INRA, Lyon Cedex, France
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, UCB Lyon 1, CNRS, INRA, Lyon Cedex, France
| |
Collapse
|
19
|
Gating and inactivation of mechanosensitive channels of small conductance: A continuum mechanics study. J Mech Behav Biomed Mater 2018; 90:502-514. [PMID: 30453114 DOI: 10.1016/j.jmbbm.2018.10.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/27/2018] [Accepted: 10/30/2018] [Indexed: 11/21/2022]
Abstract
Mechanosensitive channels of small conductance (MscS) in Escherichia coli (E. coli) serve as a paradigm for understanding the gating behaviors of the MscS family of ion channels. In this work, we develop a continuum mechanics framework to explore the conformational states of MscS during the gating transition. A complete gating transition trajectory from the closed to the open state along with partially open intermediates is obtained, and the open structure is close to the available structural model from crystallographic studies. The computational efficiency of the modeling framework makes it possible to explore the roles of various structural elements (e.g., loops that connect transmembrane helices) and specific interactions in the gating transition. It is observed that removing either the Asp62-Arg131 salt bridge or the Phe68-Leu111 non-polar interaction leads to essentially non-conducting structures even with a membrane tension close to the lysis limit. The loop connecting TM2 (the second transmembrane helix) and TM3 is found to be essential for force transmission during gating, while the loop connecting TM1 and TM2 does not make any major contribution. Based on the different structural evolutions observed when the TM3 kink is treated as a loop or a helical segment, we propose that the helical propensity of the kink plays a central role in inactivation; i.e., under prolonged sub-threshold membrane tension, transition of the initially flexible loop to a helical segment in TM3 may lead to MscS inactivation. Finally, the gating transition of MscS under different transmembrane voltages is explored and found to be essentially voltage independent. Collectively, results from the current continuum mechanics analysis provide further insights into the gating transition of MscS at structural and physical levels, and specific predictions are proposed for further experimental investigations.
Collapse
|
20
|
Hitting the Wall-Sensing and Signaling Pathways Involved in Plant Cell Wall Remodeling in Response to Abiotic Stress. PLANTS 2018; 7:plants7040089. [PMID: 30360552 PMCID: PMC6313904 DOI: 10.3390/plants7040089] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 11/24/2022]
Abstract
Plant cells are surrounded by highly dynamic cell walls that play important roles regulating aspects of plant development. Recent advances in visualization and measurement of cell wall properties have enabled accumulation of new data about wall architecture and biomechanics. This has resulted in greater understanding of the dynamics of cell wall deposition and remodeling. The cell wall is the first line of defense against different adverse abiotic and biotic environmental influences. Different abiotic stress conditions such as salinity, drought, and frost trigger production of Reactive Oxygen Species (ROS) which act as important signaling molecules in stress activated cellular responses. Detection of ROS by still-elusive receptors triggers numerous signaling events that result in production of different protective compounds or even cell death, but most notably in stress-induced cell wall remodeling. This is mediated by different plant hormones, of which the most studied are jasmonic acid and brassinosteroids. In this review we highlight key factors involved in sensing, signal transduction, and response(s) to abiotic stress and how these mechanisms are related to cell wall-associated stress acclimatization. ROS, plant hormones, cell wall remodeling enzymes and different wall mechanosensors act coordinately during abiotic stress, resulting in abiotic stress wall acclimatization, enabling plants to survive adverse environmental conditions.
Collapse
|
21
|
Kumari S, Vermeulen S, van der Veer B, Carlier A, de Boer J, Subramanyam D. Shaping Cell Fate: Influence of Topographical Substratum Properties on Embryonic Stem Cells. TISSUE ENGINEERING. PART B, REVIEWS 2018; 24:255-266. [PMID: 29455619 PMCID: PMC7116060 DOI: 10.1089/ten.teb.2017.0468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Development of multicellular organisms is a highly orchestrated process, with cells responding to factors and features present in the extracellular milieu. Changes in the surrounding environment help decide the fate of cells at various stages of development. This review highlights recent research that details the effects of mechanical properties of the surrounding environment and extracellular matrix and the underlying molecular mechanisms that regulate the behavior of embryonic stem cells (ESCs). In this study, we review the role of mechanical properties during embryogenesis and discuss the effect of engineered microtopographies on ESC pluripotency.
Collapse
Affiliation(s)
- Sarita Kumari
- National Center for Cell Science, SP Pune University, Pune, India
| | - Steven Vermeulen
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Ben van der Veer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Aurélie Carlier
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Jan de Boer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | | |
Collapse
|
22
|
Johnson AS, Winlow W. The Soliton and the Action Potential - Primary Elements Underlying Sentience. Front Physiol 2018; 9:779. [PMID: 29988539 PMCID: PMC6026668 DOI: 10.3389/fphys.2018.00779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/04/2018] [Indexed: 11/13/2022] Open
Abstract
At present the neurological basis of sentience is poorly understood and this problem is exacerbated by only a partial knowledge of how one of the primary elements of sentience, the action potential, actually works. This has consequences for our understanding of how communication within the brain and in artificial brain neural networks (BNNs). Reverse engineering models of brain activity assume processing works like a conventional binary computer and neglects speed of cognition, latencies, error in nerve conduction and the true dynamic structure of neural networks in the brain. Any model of nerve conduction that claims inspiration from nature must include these prerequisite parameters, but current western computer modeling of artificial BNNs assumes that the action potential is binary and binary mathematics has been assumed by force of popular acceptance to mediate computation in the brain. Here we present evidence that the action potential is a temporal compound ternary structure, described as the computational action potential (CAP). The CAP contains the refractory period, an analog third phase capable of phase-ternary computation via colliding action potentials. This would best fit a realistic BNN and provides a plausible mechanism to explain transmission, in preference to Cable Theory. The action potential pulse (APPulse), is made up of the action potential combined with a coupled synchronized soliton pressure pulse in the cell membrane. We describe a model of an ion channel in a membrane where a soliton deforms the channel sufficiently to destroy the electrostatic insulation thereby instigating a mechanical contraction across the membrane by electrostatic forces. Such a contraction has the effect of redistributing the force lengthways thereby increasing the volume of the ion channel in the membrane. Na ions, once attracted to the interior, balance the forces and the channel reforms to its original shape. A refractory period then occurs until the Na ions diffuse from the adjacent interior space. Finally, a computational model of the action potential (the CAP) is proposed with single action potentials significantly including the refractory period as a computational element capable of computation between colliding action potentials.
Collapse
Affiliation(s)
- Andrew S. Johnson
- Independent Scientist, Villelongue de la Salanque, France
- NPC Newton, Villelongue de la Salanque, France
| | - William Winlow
- Dipartimento di Biologia, Università degli Studi di Napoli, Naples, Italy
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
- NPC Newton, Preston, United Kingdom
| |
Collapse
|
23
|
Basu D, Haswell ES. Plant mechanosensitive ion channels: an ocean of possibilities. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:43-48. [PMID: 28750206 PMCID: PMC5714682 DOI: 10.1016/j.pbi.2017.07.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/26/2017] [Accepted: 07/09/2017] [Indexed: 05/19/2023]
Abstract
Mechanosensitive ion channels, transmembrane proteins that directly couple mechanical stimuli to ion flux, serve to sense and respond to changes in membrane tension in all branches of life. In plants, mechanosensitive channels have been implicated in the perception of important mechanical stimuli such as osmotic pressure, touch, gravity, and pathogenic invasion. Indeed, three established families of plant mechanosensitive ion channels play roles in cell and organelle osmoregulation and root mechanosensing - and it is likely that many other channels and functions await discovery. Inspired by recent discoveries in bacterial and animal systems, we are beginning to establish the conserved and the unique ways in which mechanosensitive channels function in plants.
Collapse
Affiliation(s)
- Debarati Basu
- Department of Biology, Mailcode 1137, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Elizabeth S Haswell
- Department of Biology, Mailcode 1137, Washington University in Saint Louis, Saint Louis, MO 63130, USA.
| |
Collapse
|
24
|
Kuchel PW, Shishmarev D. Accelerating metabolism and transmembrane cation flux by distorting red blood cells. SCIENCE ADVANCES 2017; 3:eaao1016. [PMID: 29057326 PMCID: PMC5647125 DOI: 10.1126/sciadv.aao1016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
Under static conditions, mammalian red blood cells (RBCs) require a continuous supply of energy, typically via glucose, to maintain their biconcave disc shape. Mechanical distortion, in a complementary way, should lead to increased energy demand that is manifest in accelerated glycolysis. The experimental challenge in observing this phenomenon was met by reversibly and reproducibly distorting the cells and noninvasively measuring glycolytic flux. This was done with a gel-distorting device that was coupled with 13C nuclear magnetic resonance (NMR) spectroscopy. We measured [3-13C]l-lactate production from [1,6-13C]d-glucose in the RBCs suspended in gelatin gels, and up to 90% rate enhancements were recorded. Thus, for the first time, we present experiments that demonstrate the linkage of mechanical distortion to metabolic changes in whole mammalian cells. In seeking a mechanism for the linkage between shape and energy supply, we measured transmembrane cation flux with Cs+ (as a K+ congener) using 133Cs NMR spectroscopy, and the cation flux was increased up to fivefold. The postulated mechanism for these notable (in terms of whole-body energy consumption) responses is stimulation of Ca-adenosine triphosphatase by increased transmembrane flux of Ca2+ via the channel protein Piezo1 and increased glycolysis because its flux is adenosine triphosphate demand-regulated.
Collapse
|
25
|
Abbonante V, Di Buduo CA, Gruppi C, De Maria C, Spedden E, De Acutis A, Staii C, Raspanti M, Vozzi G, Kaplan DL, Moccia F, Ravid K, Balduini A. A new path to platelet production through matrix sensing. Haematologica 2017; 102:1150-1160. [PMID: 28411253 PMCID: PMC5566016 DOI: 10.3324/haematol.2016.161562] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/11/2017] [Indexed: 01/28/2023] Open
Abstract
Megakaryocytes (MK) in the bone marrow (BM) are immersed in a network of extracellular matrix components that regulates platelet release into the circulation. Combining biological and bioengineering approaches, we found that the activation of transient receptor potential cation channel subfamily V member 4 (TRPV4), a mechano-sensitive ion channel, is induced upon MK adhesion on softer matrices. This response promoted platelet production by triggering a cascade of events that lead to calcium influx, β1 integrin activation and internalization, and Akt phosphorylation, responses not found on stiffer matrices. Lysyl oxidase (LOX) is a physiological modulator of BM matrix stiffness via collagen crosslinking. In vivo inhibition of LOX and consequent matrix softening lead to TRPV4 activation cascade and increased platelet levels. At the same time, in vitro proplatelet formation was reduced on a recombinant enzyme-mediated stiffer collagen. These results suggest a novel mechanism by which MKs, through TRPV4, sense extracellular matrix environmental rigidity and release platelets accordingly.
Collapse
Affiliation(s)
- Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Christian Andrea Di Buduo
- Department of Molecular Medicine, University of Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Cristian Gruppi
- Department of Molecular Medicine, University of Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Carmelo De Maria
- Interdepartmental Research Center "E. Piaggio", University of Pisa, Italy
| | - Elise Spedden
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA
| | - Aurora De Acutis
- Interdepartmental Research Center "E. Piaggio", University of Pisa, Italy
| | - Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA
| | - Mario Raspanti
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Giovanni Vozzi
- Interdepartmental Research Center "E. Piaggio", University of Pisa, Italy
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Italy
| | - Katya Ravid
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA, USA
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Italy .,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy.,Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
26
|
|
27
|
Cox CD, Bavi N, Martinac B. Origin of the Force: The Force-From-Lipids Principle Applied to Piezo Channels. CURRENT TOPICS IN MEMBRANES 2016; 79:59-96. [PMID: 28728824 DOI: 10.1016/bs.ctm.2016.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Piezo channels are a ubiquitously expressed, principal type of molecular force sensor in eukaryotes. They enable cells to decode a myriad of physical stimuli and are essential components of numerous mechanosensory processes. Central to their physiological role is the ability to change conformation in response to mechanical force. Here we discuss the evolutionary origin of Piezo in relation to other MS channels in addition to the force that gates Piezo channels. In particular, we discuss whether Piezo channels are inherently mechanosensitive in accordance with the force-from-lipid paradigm which has been firmly established for bacterial MS channels and two-pore domain K+ (K2P) channels. We also discuss the evidence supporting a reliance on or direct interaction with structural scaffold proteins of the cytoskeleton and extracellular matrix according to the force-from-filament principle. In doing so, we explain the false dichotomy that these distinctions represent. We also discuss the possible unifying models that shed light on channel mechanosensitivity at the molecular level.
Collapse
Affiliation(s)
- C D Cox
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Darlinghurst, NSW, Australia
| | - N Bavi
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Darlinghurst, NSW, Australia
| | - B Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Darlinghurst, NSW, Australia
| |
Collapse
|
28
|
McEntire DM, Kirkpatrick DR, Dueck NP, Kerfeld MJ, Smith TA, Nelson TJ, Reisbig MD, Agrawal DK. Pain transduction: a pharmacologic perspective. Expert Rev Clin Pharmacol 2016; 9:1069-80. [PMID: 27137678 DOI: 10.1080/17512433.2016.1183481] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Pain represents a necessary physiological function yet remains a significant pathological process in humans across the world. The transduction of a nociceptive stimulus refers to the processes that turn a noxious stimulus into a transmissible neurological signal. This involves a number of ion channels that facilitate the conversion of nociceptive stimulus into and electrical signal. AREAS COVERED An understanding of nociceptive physiology complements a discussion of analgesic pharmacology. Therefore, the two are presented together. In this review article, a critical evaluation is provided on research findings relating to both the physiology and pharmacology of relevant acid-sensing ion channels (ASICs), transient receptor potential (TRP) cation channels, and voltage-gated sodium (Nav) channels. Expert commentary: Despite significant steps toward identifying new and more effective modalities to treat pain, there remain many avenues of inquiry related to pain transduction. The activity of ASICs in nociception has been demonstrated but the physiology is not fully understood. A number of medications appear to interact with ASICs but no research has demonstrated pain-relieving clinical utility. Direct antagonism of TRPV1 channels is not in practice due to concerning side effects. However, work in this area is ongoing. Additional research in the of TRPA1, TRPV3, and TRPM8 may yield useful results. Local anesthetics are widely used. However, the risk for systemic effects limits the maximal safe dosage. Selective Nav antagonists have been identified that lack systemic effects.
Collapse
Affiliation(s)
- Dan M McEntire
- a Department of Clinical and Translational Science and Department of Anesthesiology , Creighton University School of Medicine , Omaha , NE , USA
| | - Daniel R Kirkpatrick
- a Department of Clinical and Translational Science and Department of Anesthesiology , Creighton University School of Medicine , Omaha , NE , USA
| | - Nicholas P Dueck
- a Department of Clinical and Translational Science and Department of Anesthesiology , Creighton University School of Medicine , Omaha , NE , USA
| | - Mitchell J Kerfeld
- a Department of Clinical and Translational Science and Department of Anesthesiology , Creighton University School of Medicine , Omaha , NE , USA
| | - Tyler A Smith
- a Department of Clinical and Translational Science and Department of Anesthesiology , Creighton University School of Medicine , Omaha , NE , USA
| | - Taylor J Nelson
- a Department of Clinical and Translational Science and Department of Anesthesiology , Creighton University School of Medicine , Omaha , NE , USA
| | - Mark D Reisbig
- a Department of Clinical and Translational Science and Department of Anesthesiology , Creighton University School of Medicine , Omaha , NE , USA
| | - Devendra K Agrawal
- a Department of Clinical and Translational Science and Department of Anesthesiology , Creighton University School of Medicine , Omaha , NE , USA
| |
Collapse
|
29
|
Morrissey JB, Cheng RY, Davoudi S, Gilbert PM. Biomechanical Origins of Muscle Stem Cell Signal Transduction. J Mol Biol 2015; 428:1441-54. [PMID: 26004541 DOI: 10.1016/j.jmb.2015.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/03/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
Skeletal muscle, the most abundant and widespread tissue in the human body, contracts upon receiving electrochemical signals from the nervous system to support essential functions such as thermoregulation, limb movement, blinking, swallowing and breathing. Reconstruction of adult muscle tissue relies on a pool of mononucleate, resident muscle stem cells, known as "satellite cells", expressing the paired-box transcription factor Pax7 necessary for their specification during embryonic development and long-term maintenance during adult life. Satellite cells are located around the myofibres in a niche at the interface of the basal lamina and the host fibre plasma membrane (i.e., sarcolemma), at a very low frequency. Upon damage to the myofibres, quiescent satellite cells are activated and give rise to a population of transient amplifying myogenic progenitor cells, which eventually exit the cell cycle permanently and fuse to form new myofibres and regenerate the tissue. A subpopulation of satellite cells self-renew and repopulate the niche, poised to respond to future demands. Harnessing the potential of satellite cells relies on a complete understanding of the molecular mechanisms guiding their regulation in vivo. Over the past several decades, studies revealed many signal transduction pathways responsible for satellite cell fate decisions, but the niche cues driving the activation and silencing of these pathways are less clear. Here we explore the scintillating possibility that considering the dynamic changes in the biophysical properties of the skeletal muscle, namely stiffness, and the stretch and shear forces to which a myofibre can be subjected to may provide missing information necessary to gain a full understanding of satellite cell niche regulation.
Collapse
Affiliation(s)
- James B Morrissey
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1
| | - Richard Y Cheng
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1
| | - Sadegh Davoudi
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1
| | - Penney M Gilbert
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1.
| |
Collapse
|
30
|
Sarvaiya N, Kothari V. Effect of audible sound in form of music on microbial growth and production of certain important metabolites. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715020125] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
31
|
Ossola D, Amarouch MY, Behr P, Vörös J, Abriel H, Zambelli T. Force-controlled patch clamp of beating cardiac cells. NANO LETTERS 2015; 15:1743-50. [PMID: 25639960 DOI: 10.1021/nl504438z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
From its invention in the 1970s, the patch clamp technique is the gold standard in electrophysiology research and drug screening because it is the only tool enabling accurate investigation of voltage-gated ion channels, which are responsible for action potentials. Because of its key role in drug screening, innovation efforts are being made to reduce its complexity toward more automated systems. While some of these new approaches are being adopted in pharmaceutical companies, conventional patch-clamp remains unmatched in fundamental research due to its versatility. Here, we merged the patch clamp and atomic force microscope (AFM) techniques, thus equipping the patch-clamp with the sensitive AFM force control. This was possible using the FluidFM, a force-controlled nanopipette based on microchanneled AFM cantilevers. First, the compatibility of the system with patch-clamp electronics and its ability to record the activity of voltage-gated ion channels in whole-cell configuration was demonstrated with sodium (NaV1.5) channels. Second, we showed the feasibility of simultaneous recording of membrane current and force development during contraction of isolated cardiomyocytes. Force feedback allowed for a gentle and stable contact between AFM tip and cell membrane enabling serial patch clamping and injection without apparent cell damage.
Collapse
Affiliation(s)
- Dario Ossola
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich , Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
32
|
Hamilton ES, Schlegel AM, Haswell ES. United in diversity: mechanosensitive ion channels in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 66:113-37. [PMID: 25494462 PMCID: PMC4470482 DOI: 10.1146/annurev-arplant-043014-114700] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Mechanosensitive (MS) ion channels are a common mechanism for perceiving and responding to mechanical force. This class of mechanoreceptors is capable of transducing membrane tension directly into ion flux. In plant systems, MS ion channels have been proposed to play a wide array of roles, from the perception of touch and gravity to the osmotic homeostasis of intracellular organelles. Three families of plant MS ion channels have been identified: the MscS-like (MSL), Mid1-complementing activity (MCA), and two-pore potassium (TPK) families. Channels from these families vary widely in structure and function, localize to multiple cellular compartments, and conduct chloride, calcium, and/or potassium ions. However, they are still likely to represent only a fraction of the MS ion channel diversity in plant systems.
Collapse
Affiliation(s)
- Eric S. Hamilton
- Department of Biology, Washington University in Saint Louis, Saint Louis, Missouri 63130
| | - Angela M. Schlegel
- Department of Biology, Washington University in Saint Louis, Saint Louis, Missouri 63130
| | - Elizabeth S. Haswell
- Department of Biology, Washington University in Saint Louis, Saint Louis, Missouri 63130
| |
Collapse
|
33
|
Abstract
Morphogenesis is the remarkable process by which cells self-assemble into complex tissues and organs that exhibit specialized form and function during embryological development. Many of the genes and chemical cues that mediate tissue and organ formation have been identified; however, these signals alone are not sufficient to explain how tissues and organs are constructed that exhibit their unique material properties and three-dimensional forms. Here, we review work that has revealed the central role that physical forces and extracellular matrix mechanics play in the control of cell fate switching, pattern formation, and tissue development in the embryo and how these same mechanical signals contribute to tissue homeostasis and developmental control throughout adult life.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
34
|
Single Mechanosensitive and Ca2+-Sensitive Channel Currents Recorded from Mouse and Human Embryonic Stem Cells. J Membr Biol 2012. [DOI: 10.1007/s00232-012-9523-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|