1
|
Wang H, Bienz M, Yan XX, Xu W. Structural basis of the interaction between BCL9-Pygo and LDB-SSBP complexes in assembling the Wnt enhanceosome. Nat Commun 2023; 14:3702. [PMID: 37349336 PMCID: PMC10287724 DOI: 10.1038/s41467-023-39439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
The Wnt enhanceosome is responsible for transactivation of Wnt-responsive genes and a promising therapeutic target for treatment of numerous cancers with Adenomatous Polyposis Coli (APC) or β-catenin mutations. How the Wnt enhanceosome is assembled remains poorly understood. Here we show that B-cell lymphoma 9 protein (BCL9), Pygopus (Pygo), LIM domain-binding protein 1 (LDB1) and single-stranded DNA-binding protein (SSBP) form a stable core complex within the Wnt enhanceosome. Their mutual interactions rely on a highly conserved N-terminal asparagine proline phenylalanine (NPF) motif of Pygo, through which the BCL9-Pygo complex binds to the LDB-SSBP core complex. Our crystal structure of a ternary complex comprising the N-terminus of human Pygo2, LDB1 and SSBP2 reveals a single LDB1-SSBP2 complex binding simultaneously to two Pygo2 molecules via their NPF motifs. These interactions critically depend on the NPF motifs which bind to a deep groove formed between LDB1 and SSBP2, potentially constituting a binding site for drugs blocking Wnt/β-catenin signaling. Analysis of human cell lines lacking LDB or Pygo supports the functional relevance of the Pygo-LDB1-SSBP2 interaction for Wnt/β-catenin-dependent transcription.
Collapse
Affiliation(s)
- Hongyang Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mariann Bienz
- Medical Research Council Laboratory of Molecular Biology, CB2 0QH, Cambridge, United Kingdom
| | - Xiao-Xue Yan
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Wenqing Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
2
|
Bharti M, Bajpai A, Rautela U, Manzar N, Ateeq B, Sinha P. Human ERG oncoprotein represses a Drosophila LIM domain binding protein-coding gene Chip. Proc Natl Acad Sci U S A 2023; 120:e2211189119. [PMID: 36595681 PMCID: PMC9926275 DOI: 10.1073/pnas.2211189119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/24/2022] [Indexed: 01/05/2023] Open
Abstract
Human ETS Related Gene, ERG, a master transcription factor, turns oncogenic upon its out-of-context activation in diverse developmental lineages. However, the mechanism underlying its lineage-specific activation of Notch (N), Wnt, or EZH2-three well-characterized oncogenic targets of ERG-remains elusive. We reasoned that deep homology in genetic tool kits might help uncover such elusive cancer mechanisms in Drosophila. By heterologous gain of human ERG in Drosophila, here we reveal Chip, which codes for a transcriptional coactivator, LIM-domain-binding (LDB) protein, as its novel target. ERG represses Drosophila Chip via its direct binding and, indirectly, via E(z)-mediated silencing of its promoter. Downregulation of Chip disrupts LIM-HD complex formed between Chip and Tailup (Tup)-a LIM-HD transcription factor-in the developing notum. A consequent activation of N-driven Wg signaling leads to notum-to-wing transdetermination. These fallouts of ERG gain are arrested upon a simultaneous gain of Chip, sequestration of Wg ligand, and, alternatively, loss of N signaling or E(z) activity. Finally, we show that the human LDB1, a homolog of Drosophila Chip, is repressed in ERG-positive prostate cancer cells. Besides identifying an elusive target of human ERG, our study unravels an underpinning of its lineage-specific carcinogenesis.
Collapse
Affiliation(s)
- Mahima Bharti
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India, 208016
| | - Anjali Bajpai
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India, 208016
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, India, 208016
| | - Umanshi Rautela
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India, 208016
- National Institute of Immunology, India, 110067
| | - Nishat Manzar
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India, 208016
| | - Bushra Ateeq
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India, 208016
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, India, 208016
| | - Pradip Sinha
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India, 208016
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, India, 208016
| |
Collapse
|
3
|
Safety of mechanical and manual chest compressions in cardiac arrest patients: A systematic review and meta-analysis. Resuscitation 2021; 169:124-135. [PMID: 34699924 DOI: 10.1016/j.resuscitation.2021.10.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022]
Abstract
AIM Summarise the evidence regarding the safety of mechanical and manual chest compressions for cardiac arrest patients. METHODS Two investigators separately screened the articles of EMBASE, PubMed, and Cochrane Central databases. Cohort studies and randomized clinical trials (RCTs) that evaluated the safety of mechanical (LUCAS or AutoPulse) and manual chest compressions in cardiac arrest patients were included. A meta-analysis was performed using a random effects model to calculate the pooled odds ratios (ORs) and their 95% confidence intervals (CIs). The primary outcome was the rate of overall compression-induced injuries. The secondary outcomes included the incidence of life-threatening injuries, skeletal fractures, visceral injuries, and other soft tissue injuries. RESULTS The meta-analysis included 11 trials involving 2,818 patients. A significantly higher rate of overall compression-induced injuries was found for mechanical compressions than manual compressions (OR, 1.29; 95% CI, 1.19-1.41), while there was no significant difference between the two groups in respect of the rate of life-threatening injuries. Furthermore, both modalities shared similar incidences of sternal fractures, vertebral fractures, lung, spleen, and kidney injuries. However, compared to mechanical compressions, manual compressions were shown to present a reduced risk of posterior rib fractures, and heart and liver lesions. CONCLUSIONS The findings suggested that manual compressions could decrease the risk of compression-induced injuries compared to mechanical compressions in cardiac arrest patients. Interestingly, mechanical compressions have not increased the risk of life-threatening injuries, whereas additional high-quality RCTs are needed to further verify the safety of mechanical chest devices. TRIAL REGISTRY INPLASY; Registration number: INPLASY2020110111; URL: https://inplasy.com/.
Collapse
|
4
|
She M, Tang M, Jiang T, Zeng Q. The Roles of the LIM Domain Proteins in Drosophila Cardiac and Hematopoietic Morphogenesis. Front Cardiovasc Med 2021; 8:616851. [PMID: 33681304 PMCID: PMC7928361 DOI: 10.3389/fcvm.2021.616851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Drosophila melanogaster has been used as a model organism for study on development and pathophysiology of the heart. LIM domain proteins act as adaptors or scaffolds to promote the assembly of multimeric protein complexes. We found a total of 75 proteins encoded by 36 genes have LIM domain in Drosophila melanogaster by the tools of SMART, FLY-FISH, and FlyExpress, and around 41.7% proteins with LIM domain locate in lymph glands, muscles system, and circulatory system. Furthermore, we summarized functions of different LIM domain proteins in the development and physiology of fly heart and hematopoietic systems. It would be attractive to determine whether it exists a probable "LIM code" for the cycle of different cell fates in cardiac and hematopoietic tissues. Next, we aspired to propose a new research direction that the LIM domain proteins may play an important role in fly cardiac and hematopoietic morphogenesis.
Collapse
Affiliation(s)
- Meihua She
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Min Tang
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Tingting Jiang
- Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Qun Zeng
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| |
Collapse
|
5
|
Zhai H, Zhang X, You Y, Lin L, Zhou W, Li C. SEUSS integrates transcriptional and epigenetic control of root stem cell organizer specification. EMBO J 2020; 39:e105047. [PMID: 32926464 PMCID: PMC7560201 DOI: 10.15252/embj.2020105047] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/09/2022] Open
Abstract
Proper regulation of homeotic gene expression is critical for stem cell fate in both plants and animals. In Arabidopsis thaliana, the WUSCHEL (WUS)-RELATED HOMEOBOX 5 (WOX5) gene is specifically expressed in a group of root stem cell organizer cells called the quiescent center (QC) and plays a central role in QC specification. Here, we report that the SEUSS (SEU) protein, homologous to the animal LIM-domain binding (LDB) proteins, assembles a functional transcriptional complex that regulates WOX5 expression and QC specification. SEU is physically recruited to the WOX5 promoter by the master transcription factor SCARECROW. Subsequently, SEU physically recruits the SET domain methyltransferase SDG4 to the WOX5 promoter, thus activating WOX5 expression. Thus, analogous to its animal counterparts, SEU acts as a multi-adaptor protein that integrates the actions of genetic and epigenetic regulators into a concerted transcriptional program to control root stem cell organizer specification.
Collapse
Affiliation(s)
- Huawei Zhai
- State Key Laboratory of Plant GenomicsNational Center for Plant Gene Research (Beijing)Institute of Genetics and Developmental BiologyInnovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijingChina
| | - Xiaoyue Zhang
- State Key Laboratory of Plant GenomicsNational Center for Plant Gene Research (Beijing)Institute of Genetics and Developmental BiologyInnovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Yanrong You
- State Key Laboratory of Plant GenomicsNational Center for Plant Gene Research (Beijing)Institute of Genetics and Developmental BiologyInnovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Lihao Lin
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai'anShandong ProvinceChina
| | - Wenkun Zhou
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijingChina
- Frontier Science Center for Molecular Design and BreedingChina Agricultural UniversityBeijingChina
| | - Chuanyou Li
- State Key Laboratory of Plant GenomicsNational Center for Plant Gene Research (Beijing)Institute of Genetics and Developmental BiologyInnovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
6
|
Renko M, Fiedler M, Rutherford TJ, Schaefer JV, Plückthun A, Bienz M. Rotational symmetry of the structured Chip/LDB-SSDP core module of the Wnt enhanceosome. Proc Natl Acad Sci U S A 2019; 116:20977-20983. [PMID: 31570581 PMCID: PMC6800368 DOI: 10.1073/pnas.1912705116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Chip/LIM-domain binding protein (LDB)-single-stranded DNA-binding protein (SSDP) (ChiLS) complex controls numerous cell-fate decisions in animal cells, by mediating transcription of developmental control genes via remote enhancers. ChiLS is recruited to these enhancers by lineage-specific LIM-domain proteins that bind to its Chip/LDB subunit. ChiLS recently emerged as the core module of the Wnt enhanceosome, a multiprotein complex that primes developmental control genes for timely Wnt responses. ChiLS binds to NPFxD motifs within Pygopus (Pygo) and the Osa/ARID1A subunit of the BAF chromatin remodeling complex, which could synergize with LIM proteins in tethering ChiLS to enhancers. Chip/LDB and SSDP both contain N-terminal dimerization domains that constitute the bulk of their structured cores. Here, we report the crystal structures of these dimerization domains, in part aided by DARPin chaperones. We conducted systematic surface scanning by structure-designed mutations, followed by in vitro and in vivo binding assays, to determine conserved surface residues required for binding between Chip/LDB, SSDP, and Pygo-NPFxD. Based on this, and on the 4:2 (SSDP-Chip/LDB) stoichiometry of ChiLS, we derive a highly constrained structural model for this complex, which adopts a rotationally symmetrical SSDP2-LDB2-SSDP2 architecture. Integrity of ChiLS is essential for Pygo binding, and our mutational analysis places the NPFxD pockets on either side of the Chip/LDB dimer, each flanked by an SSDP dimer. The symmetry and multivalency of ChiLS underpin its function as an enhancer module integrating Wnt signals with lineage-specific factors to operate context-dependent transcriptional switches that are pivotal for normal development and cancer.
Collapse
Affiliation(s)
- Miha Renko
- Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, United Kingdom
| | - Marc Fiedler
- Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, United Kingdom
| | - Trevor J Rutherford
- Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, United Kingdom
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Mariann Bienz
- Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, United Kingdom;
| |
Collapse
|
7
|
Mieszczanek J, van Tienen LM, Ibrahim AEK, Winton DJ, Bienz M. Bcl9 and Pygo synergise downstream of Apc to effect intestinal neoplasia in FAP mouse models. Nat Commun 2019; 10:724. [PMID: 30760710 PMCID: PMC6374407 DOI: 10.1038/s41467-018-08164-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/19/2018] [Indexed: 01/03/2023] Open
Abstract
Bcl9 and Pygo are Wnt enhanceosome components that effect β-catenin-dependent transcription. Whether they mediate β-catenin-dependent neoplasia is unclear. Here we assess their roles in intestinal tumourigenesis initiated by Apc loss-of-function (ApcMin), or by Apc1322T encoding a partially-functional Apc truncation commonly found in colorectal carcinomas. Intestinal deletion of Bcl9 extends disease-free survival in both models, and essentially cures Apc1322T mice of their neoplasia. Loss-of-Bcl9 synergises with loss-of-Pygo to shift gene expression within Apc-mutant adenomas from stem cell-like to differentiation along Notch-regulated secretory lineages. Bcl9 loss also promotes tumour retention in ApcMin mice, apparently via relocating nuclear β-catenin to the cell surface, but this undesirable effect is not seen in Apc1322T mice whose Apc truncation retains partial function in regulating β-catenin. Our results demonstrate a key role of the Wnt enhanceosome in β-catenin-dependent intestinal tumourigenesis and reveal the potential of BCL9 as a therapeutic target during early stages of colorectal cancer.
Collapse
Affiliation(s)
- Juliusz Mieszczanek
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Laurens M van Tienen
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ashraf E K Ibrahim
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Douglas J Winton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre,, Robinson Way, Cambridge, CB2 0RE, UK
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
8
|
Gammons M, Bienz M. Multiprotein complexes governing Wnt signal transduction. Curr Opin Cell Biol 2018; 51:42-49. [PMID: 29153704 DOI: 10.1016/j.ceb.2017.10.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/10/2017] [Indexed: 12/30/2022]
Abstract
Three multiprotein complexes have key roles in transducing Wnt signals from the plasma membrane to the cell nucleus - the β-catenin destruction complex, or Axin degradasome, which targets the Wnt effector β-catenin for proteasomal degradation in the absence of Wnt; the Wnt signalosome, assembled by polymerization of Dishevelled upon Wnt engaging its receptors, to inactivate the Axin degradasome, which allows β-catenin to accumulate; and the Wnt enhanceosome which enables β-catenin to gain access to target genes, to relieve their transcriptional repression by Groucho/TLE. This review focuses on recent advances that have highlighted mechanistic principles governing the assembly and function of these complexes.
Collapse
Affiliation(s)
- Melissa Gammons
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
9
|
Werner K, Donow C, Pandur P. Chip/Ldb1 interacts with Tailup/islet1 to regulate cardiac gene expression inDrosophila. Genesis 2017; 55. [DOI: 10.1002/dvg.23030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Kathrin Werner
- Institut für Biochemie und Molekulare Biologie; Albert-Einstein-Allee 11; 89081 Ulm Germany
| | - Cornelia Donow
- Institut für Biochemie und Molekulare Biologie; Albert-Einstein-Allee 11; 89081 Ulm Germany
| | - Petra Pandur
- Institut für Biochemie und Molekulare Biologie; Albert-Einstein-Allee 11; 89081 Ulm Germany
| |
Collapse
|
10
|
Gong X, Flores-Vergara MA, Hong JH, Chu H, Lim J, Franks RG, Liu Z, Xu J. SEUSS Integrates Gibberellin Signaling with Transcriptional Inputs from the SHR-SCR-SCL3 Module to Regulate Middle Cortex Formation in the Arabidopsis Root. PLANT PHYSIOLOGY 2016; 170:1675-83. [PMID: 26818732 PMCID: PMC4775121 DOI: 10.1104/pp.15.01501] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/22/2016] [Indexed: 05/18/2023]
Abstract
A decade of studies on middle cortex (MC) formation in the root endodermis of Arabidopsis (Arabidopsis thaliana) have revealed a complex regulatory network that is orchestrated by several GRAS family transcription factors, including SHORT-ROOT (SHR), SCARECROW (SCR), and SCARECROW-LIKE3 (SCL3). However, how their functions are regulated remains obscure. Here we show that mutations in the SEUSS (SEU) gene led to a higher frequency of MC formation. seu mutants had strongly reduced expression of SHR, SCR, and SCL3, suggesting that SEU positively regulates these genes. Our results further indicate that SEU physically associates with upstream regulatory sequences of SHR, SCR, and SCL3; and that SEU has distinct genetic interactions with these genes in the control of MC formation, with SCL3 being epistatic to SEU. Similar to SCL3, SEU was repressed by the phytohormone GA and induced by the GA biosynthesis inhibitor paclobutrazol, suggesting that SEU acts downstream of GA signaling to regulate MC formation. Consistently, we found that SEU mediates the regulation of SCL3 by GA signaling. Together, our study identifies SEU as a new critical player that integrates GA signaling with transcriptional inputs from the SHR-SCR-SCL3 module to regulate MC formation in the Arabidopsis root.
Collapse
Affiliation(s)
- Xue Gong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.G.);Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695 (M.A.F.-V., R.G.F.);Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543 (J.H.H., H.C., J.X.);Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea (J.L.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20743 (Z.L.)
| | - Miguel A Flores-Vergara
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.G.);Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695 (M.A.F.-V., R.G.F.);Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543 (J.H.H., H.C., J.X.);Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea (J.L.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20743 (Z.L.)
| | - Jing Han Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.G.);Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695 (M.A.F.-V., R.G.F.);Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543 (J.H.H., H.C., J.X.);Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea (J.L.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20743 (Z.L.)
| | - Huangwei Chu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.G.);Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695 (M.A.F.-V., R.G.F.);Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543 (J.H.H., H.C., J.X.);Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea (J.L.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20743 (Z.L.)
| | - Jun Lim
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.G.);Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695 (M.A.F.-V., R.G.F.);Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543 (J.H.H., H.C., J.X.);Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea (J.L.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20743 (Z.L.)
| | - Robert G Franks
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.G.);Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695 (M.A.F.-V., R.G.F.);Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543 (J.H.H., H.C., J.X.);Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea (J.L.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20743 (Z.L.)
| | - Zhongchi Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.G.);Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695 (M.A.F.-V., R.G.F.);Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543 (J.H.H., H.C., J.X.);Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea (J.L.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20743 (Z.L.)
| | - Jian Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.G.);Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695 (M.A.F.-V., R.G.F.);Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543 (J.H.H., H.C., J.X.);Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea (J.L.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20743 (Z.L.)
| |
Collapse
|
11
|
Fiedler M, Graeb M, Mieszczanek J, Rutherford TJ, Johnson CM, Bienz M. An ancient Pygo-dependent Wnt enhanceosome integrated by Chip/LDB-SSDP. eLife 2015; 4:e09073. [PMID: 26312500 PMCID: PMC4571689 DOI: 10.7554/elife.09073] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/26/2015] [Indexed: 12/15/2022] Open
Abstract
TCF/LEF factors are ancient context-dependent enhancer-binding proteins that are activated by β-catenin following Wnt signaling. They control embryonic development and adult stem cell compartments, and their dysregulation often causes cancer. β-catenin-dependent transcription relies on the NPF motif of Pygo proteins. Here, we use a proteomics approach to discover the Chip/LDB-SSDP (ChiLS) complex as the ligand specifically binding to NPF. ChiLS also recognizes NPF motifs in other nuclear factors including Runt/RUNX2 and Drosophila ARID1, and binds to Groucho/TLE. Studies of Wnt-responsive dTCF enhancers in the Drosophila embryonic midgut indicate how these factors interact to form the Wnt enhanceosome, primed for Wnt responses by Pygo. Together with previous evidence, our study indicates that ChiLS confers context-dependence on TCF/LEF by integrating multiple inputs from lineage and signal-responsive factors, including enhanceosome switch-off by Notch. Its pivotal function in embryos and stem cells explain why its integrity is crucial in the avoidance of cancer.
Collapse
Affiliation(s)
- Marc Fiedler
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Michael Graeb
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Juliusz Mieszczanek
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Trevor J Rutherford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Christopher M Johnson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
12
|
Li J, Kurasawa Y, Wang Y, Clise-Dwyer K, Klumpp SA, Liang H, Tailor RC, Raymond AC, Estrov Z, Brandt SJ, Davis RE, Zweidler-McKay P, Amin HM, Nagarajan L. Requirement for ssbp2 in hematopoietic stem cell maintenance and stress response. THE JOURNAL OF IMMUNOLOGY 2014; 193:4654-62. [PMID: 25238756 DOI: 10.4049/jimmunol.1300337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transcriptional mechanisms governing hematopoietic stem cell (HSC) quiescence, self-renewal, and differentiation are not fully understood. Sequence-specific ssDNA-binding protein 2 (SSBP2) is a candidate acute myelogenous leukemia (AML) suppressor gene located at chromosome 5q14. SSBP2 binds the transcriptional adaptor protein Lim domain-binding protein 1 (LDB1) and enhances LDB1 stability to regulate gene expression. Notably, Ldb1 is essential for HSC specification during early development and maintenance in adults. We previously reported shortened lifespan and greater susceptibility to B cell lymphomas and carcinomas in Ssbp2(-/-) mice. However, whether Ssbp2 plays a regulatory role in normal HSC function and leukemogenesis is unknown. In this study, we provide several lines of evidence to demonstrate a requirement for Ssbp2 in the function and transcriptional program of hematopoietic stem and progenitor cells (HSPCs) in vivo. We found that hematopoietic tissues were hypoplastic in Ssbp2(-/-) mice, and the frequency of lymphoid-primed multipotent progenitor cells in bone marrow was reduced. Other significant features of these mice were delayed recovery from 5-fluorouracil treatment and diminished multilineage reconstitution in lethally irradiated bone marrow recipients. Dramatic reduction of Notch1 transcripts and increased expression of transcripts encoding the transcription factor E2a and its downstream target Cdkn1a also distinguished Ssbp2(-/-) HSPCs from wild-type HSPCs. Finally, a tendency toward coordinated expression of SSBP2 and the AML suppressor NOTCH1 in a subset of the Cancer Genome Atlas AML cases suggested a role for SSBP2 in AML pathogenesis. Collectively, our results uncovered a critical regulatory function for SSBP2 in HSPC gene expression and function.
Collapse
Affiliation(s)
- June Li
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Yasuhiro Kurasawa
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Yang Wang
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Sherry A Klumpp
- Department of Veterinary Medicine and Surgery, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Hong Liang
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Ramesh C Tailor
- Department of Radiation Physics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Aaron C Raymond
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030; Graduate Program in Genes and Development, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Zeev Estrov
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Stephen J Brandt
- Department of Medicine, Vanderbilt University, Nashville, TN 37232; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232; Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232
| | - Richard E Davis
- Department of Lymphoma and Myeloma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Patrick Zweidler-McKay
- Division of Pediatrics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Hesham M Amin
- Department of Hematopathology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030; and
| | - Lalitha Nagarajan
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030; Graduate Program in Genes and Development, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030; Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030; Graduate Program in Human Molecular Genetics, Center for Stem Cell and Developmental Biology, and Center for Cancer Genetics and Genomics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|