1
|
Bharathi JK, Suresh P, Prakash MAS, Muneer S. Exploring recent progress of molecular farming for therapeutic and recombinant molecules in plant systems. Heliyon 2024; 10:e37634. [PMID: 39309966 PMCID: PMC11416299 DOI: 10.1016/j.heliyon.2024.e37634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/10/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
An excellent technique for producing pharmaceuticals called "molecular farming" enables the industrial mass production of useful recombinant proteins in genetically modified organisms. Protein-based pharmaceuticals are rising in significance because of a variety of factors, including their bioreactivity, precision, safety, and efficacy rate. Heterologous expression methods for the manufacturing of pharmaceutical products have been previously employed using yeast, bacteria, and animal cells. However, the high cost of mammalian cell system, and production, the chance for product complexity, and contamination, and the hurdles of scaling up to commercial production are the limitations of these traditional expression methods. Plants have been raised as a hopeful replacement system for the expression of biopharmaceutical products due to their potential benefits, which include low production costs, simplicity in scaling up to commercial manufacturing levels, and a lower threat of mammalian toxin contaminations and virus infections. Since plants are widely utilized as a source of therapeutic chemicals, molecular farming offers a unique way to produce molecular medicines such as recombinant antibodies, enzymes, growth factors, plasma proteins, and vaccines whose molecular basis for use in therapy is well established. Biopharming provides more economical and extensive pharmaceutical drug supplies, including vaccines for contagious diseases and pharmaceutical proteins for the treatment of conditions like heart disease and cancer. To assess its technical viability and the efficacy resulting from the adoption of molecular farming products, the following review explores the various methods and methodologies that are currently employed to create commercially valuable molecules in plant systems.
Collapse
Affiliation(s)
- Jothi Kanmani Bharathi
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India
| | - Preethika Suresh
- School of Bioscience and Biotechnology, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
- Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
| | - Muthu Arjuna Samy Prakash
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India
| | - Sowbiya Muneer
- Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
| |
Collapse
|
2
|
Legen J, Dühnen S, Gauert A, Götz M, Schmitz-Linneweber C. A CRR2-Dependent sRNA Sequence Supports Papillomavirus Vaccine Expression in Tobacco Chloroplasts. Metabolites 2023; 13:metabo13030315. [PMID: 36984756 PMCID: PMC10054877 DOI: 10.3390/metabo13030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction: Human papillomavirus (HPV) infection is the leading cause of cervical cancer, and vaccination with HPV L1 capsid proteins has been successful in controlling it. However, vaccination coverage is not universal, particularly in developing countries, where 80% of all cervical cancer cases occur. Cost-effective vaccination could be achieved by expressing the L1 protein in plants. Various efforts have been made to produce the L1 protein in plants, including attempts to express it in chloroplasts for high-yield performance. However, manipulating chloroplast gene expression requires complex and difficult-to-control expression elements. In recent years, a family of nuclear-encoded, chloroplast-targeted RNA-binding proteins, the pentatricopeptide repeat (PPR) proteins, were described as key regulators of chloroplast gene expression. For example, PPR proteins are used by plants to stabilize and translate chloroplast mRNAs. Objectives: To demonstrate that a PPR target site can be used to drive HPV L1 expression in chloroplasts. Methods: To test our hypothesis, we used biolistic chloroplast transformation to establish tobacco lines that express two variants of the HPV L1 protein under the control of the target site of the PPR protein CHLORORESPIRATORY REDUCTION2 (CRR2). The transgenes were inserted into a dicistronic operon driven by the plastid rRNA promoter. To determine the effectiveness of the PPR target site for the expression of the HPV L1 protein in the chloroplasts, we analyzed the accumulation of the transgenic mRNA and its processing, as well as the accumulation of the L1 protein in the transgenic lines. Results: We established homoplastomic lines carrying either the HPV18 L1 protein or an HPV16B Enterotoxin::L1 fusion protein. The latter line showed severe growth retardation and pigment loss, suggesting that the fusion protein is toxic to the chloroplasts. Despite the presence of dicistronic mRNAs, we observed very little accumulation of monocistronic transgenic mRNA and no significant increase in CRR2-associated small RNAs. Although both lines expressed the L1 protein, quantification using an external standard suggested that the amounts were low. Conclusions: Our results suggest that PPR binding sites can be used to drive vaccine expression in plant chloroplasts; however, the factors that modulate the effectiveness of target gene expression remain unclear. The identification of dozens of PPR binding sites through small RNA sequencing expands the set of expression elements available for high-value protein production in chloroplasts.
Collapse
Affiliation(s)
- Julia Legen
- Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Sara Dühnen
- Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Anton Gauert
- Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Michael Götz
- BioEnergy GmbH, Dietersberg 1, 92334 Berching, Germany
| | - Christian Schmitz-Linneweber
- Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
- Correspondence: ; Tel.: +49-20-2093-49700
| |
Collapse
|
3
|
Harnessing the Potential of Plant Expression System towards the Production of Vaccines for the Prevention of Human Papillomavirus and Cervical Cancer. Vaccines (Basel) 2022; 10:vaccines10122064. [PMID: 36560473 PMCID: PMC9782824 DOI: 10.3390/vaccines10122064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Cervical cancer is the most common gynecological malignant tumor worldwide, and it remains a major health problem among women, especially in developing countries. Despite the significant research efforts employed for tumor prevention, cervical cancer ranks as the leading cause of cancer death. Human papillomavirus (HPV) is the most important risk factor for cervical cancer. Cervical cancer is a preventable disease, for which early detection could increase survival rates. Immunotherapies represent a promising approach in the treatment of cancer, and several potential candidates are in clinical trials, while some are available in the market. However, equal access to available HPV vaccines is limited due to their high cost, which remains a global challenge for cervical cancer prevention. The implementation of screening programs, disease control systems, and medical advancement in developed countries reduce the serious complications associated with the disease somewhat; however, the incidence and prevalence of cervical cancer in low-income and middle-income countries continues to gradually increase, making it the leading cause of mortality, largely due to the unaffordable and inaccessible anti-cancer therapeutic options. In recent years, plants have been considered as a cost-effective production system for the development of vaccines, therapeutics, and other biopharmaceuticals. Several proof-of-concept studies showed the possibility of producing recombinant biopharmaceuticals for cancer immunotherapy in a plant platform. This review summarizes the current knowledge and therapeutic options for the prevention of cervical cancer and discusses the potential of the plant expression platform to produce affordable HPV vaccines.
Collapse
|
4
|
Latif S, Gottschamel J, Syed T, Younus I, Gull K, Sameeullah M, Batool N, Lössl AG, Mariz F, Müller M, Mirza B, Waheed MT. Inducible expression of human papillomavirus-16 L1 capsomeres in the plastomes of Nicotiana tabacum: Transplastomic plants develop normal flowers and pollen. Biotechnol Appl Biochem 2022; 69:596-611. [PMID: 33650709 DOI: 10.1002/bab.2136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/24/2021] [Indexed: 12/20/2022]
Abstract
Human papillomavirus type-16 (HPV-16) is the major HPV type involved in causing cervical cancer among women. The disease burden is high in developing and underdeveloped countries. Previously, the constitutive expression of HPV-16 L1 protein led to male sterility in transplastomic tobacco plants. Here, the HPV-16 L1 gene was expressed in chloroplasts of Nicotiana tabacum under the control of an ethanol-inducible promoter, trans-activated by nucleus-derived signal peptide. Plants containing nuclear component were transformed with transformation vector pEXP-T7-L1 by biolistic gun. The transformation and homoplasmic status of transformed plants was verified by polymerase chain reaction and Southern blotting, respectively. Protein was induced by spraying 5% ethanol for 7 consecutive days. The correct folding of L1 protein was confirmed by antigen-capture ELISA using a conformation-specific antibody. The L1 protein accumulated up to 3 μg/g of fresh plant material. The L1 protein was further purified using affinity chromatography. All transplastomic plants developed normal flowers and produced viable seeds upon self-pollination. Pollens also showed completely normal structure under light microscope and scanning electron microscopy. These data confirm the use of the inducible expression as plant-safe approach for expressing transgenes in plants, especially those genes that cause detrimental effects on plant growth and morphology.
Collapse
Affiliation(s)
- Sara Latif
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Johanna Gottschamel
- Department of Applied Plant Science and Plant Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Tahira Syed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iqra Younus
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Division of Molecular and Cellular Function, School of Biological Sciences, University of Manchester, , Oxford Road, Manchester, United Kingdom
| | - Kehkshan Gull
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Sameeullah
- Innovative Food Technologies Development Application and Research Centre, Faculty of Engineering, Bolu Abant Izzet Baysal University, Golkoye Campus, Bolu, Turkey
| | - Neelam Batool
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Andreas Günter Lössl
- Department of Applied Plant Science and Plant Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Filipe Mariz
- Tumorvirus-specific Vaccination Strategies, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Martin Müller
- Tumorvirus-specific Vaccination Strategies, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Lahore College for Women University, Lahore, Pakistan
| | - Mohammad Tahir Waheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
5
|
Hemmati F, Hemmati-Dinarvand M, Karimzade M, Rutkowska D, Eskandari MH, Khanizadeh S, Afsharifar A. Plant-derived VLP: a worthy platform to produce vaccine against SARS-CoV-2. Biotechnol Lett 2021; 44:45-57. [PMID: 34837582 PMCID: PMC8626723 DOI: 10.1007/s10529-021-03211-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
After its emergence in late 2019 SARS-CoV-2 was declared a pandemic by the World Health Organization on 11 March 2020 and has claimed more than 2.8 million lives. There has been a massive global effort to develop vaccines against SARS-CoV-2 and the rapid and low cost production of large quantities of vaccine is urgently needed to ensure adequate supply to both developed and developing countries. Virus-like particles (VLPs) are composed of viral antigens that self-assemble into structures that mimic the structure of native viruses but lack the viral genome. Thus they are not only a safer alternative to attenuated or inactivated vaccines but are also able to induce potent cellular and humoral immune responses and can be manufactured recombinantly in expression systems that do not require viral replication. VLPs have successfully been produced in bacteria, yeast, insect and mammalian cell cultures, each production platform with its own advantages and limitations. Plants offer a number of advantages in one production platform, including proper eukaryotic protein modification and assembly, increased safety, low cost, high scalability as well as rapid production speed, a critical factor needed to control outbreaks of potential pandemics. Plant-based VLP-based viral vaccines currently in clinical trials include, amongst others, Hepatitis B virus, Influenza virus and SARS-CoV-2 vaccines. Here we discuss the importance of plants as a next generation expression system for the fast, scalable and low cost production of VLP-based vaccines.
Collapse
Affiliation(s)
- Farshad Hemmati
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Mohsen Hemmati-Dinarvand
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marziye Karimzade
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Daria Rutkowska
- CSIR Next Generation Health, PO Box 395, Pretoria, 0001, South Africa
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Afsharifar
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
6
|
Venkataraman S, Hefferon K, Makhzoum A, Abouhaidar M. Combating Human Viral Diseases: Will Plant-Based Vaccines Be the Answer? Vaccines (Basel) 2021; 9:vaccines9070761. [PMID: 34358177 PMCID: PMC8310141 DOI: 10.3390/vaccines9070761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/28/2022] Open
Abstract
Molecular pharming or the technology of application of plants and plant cell culture to manufacture high-value recombinant proteins has progressed a long way over the last three decades. Whether generated in transgenic plants by stable expression or in plant virus-based transient expression systems, biopharmaceuticals have been produced to combat several human viral diseases that have impacted the world in pandemic proportions. Plants have been variously employed in expressing a host of viral antigens as well as monoclonal antibodies. Many of these biopharmaceuticals have shown great promise in animal models and several of them have performed successfully in clinical trials. The current review elaborates the strategies and successes achieved in generating plant-derived vaccines to target several virus-induced health concerns including highly communicable infectious viral diseases. Importantly, plant-made biopharmaceuticals against hepatitis B virus (HBV), hepatitis C virus (HCV), the cancer-causing virus human papillomavirus (HPV), human immunodeficiency virus (HIV), influenza virus, zika virus, and the emerging respiratory virus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have been discussed. The use of plant virus-derived nanoparticles (VNPs) and virus-like particles (VLPs) in generating plant-based vaccines are extensively addressed. The review closes with a critical look at the caveats of plant-based molecular pharming and future prospects towards further advancements in this technology. The use of biopharmed viral vaccines in human medicine and as part of emergency response vaccines and therapeutics in humans looks promising for the near future.
Collapse
Affiliation(s)
- Srividhya Venkataraman
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
- Correspondence:
| | - Kathleen Hefferon
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana;
| | - Mounir Abouhaidar
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
| |
Collapse
|
7
|
Rabiu KA, Alausa TG, Akinlusi FM, Davies NO, Shittu KA, Akinola OI. Parental acceptance of human papillomavirus vaccination for adolescent girls in Lagos, Nigeria. J Family Med Prim Care 2020; 9:2950-2957. [PMID: 32984154 PMCID: PMC7491808 DOI: 10.4103/jfmpc.jfmpc_102_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/12/2020] [Accepted: 04/07/2020] [Indexed: 12/24/2022] Open
Abstract
Background and Aims: Human papillomavirus (HPV) vaccination is recommended for adolescent girls and would offer a long-term solution to cervical cancer especially in developing countries. However, parental perception and acceptance is a critical success factor. This study examined the degree of parental acceptance of HPV vaccination for adolescent secondary-school girls in Lagos, Nigeria. Materials and Methods: A descriptive cross-sectional survey of adolescent girls’ parents was undertaken in two urban and two rural secondary schools in Lagos. Univariate and multivariate analysis were carried out using logistic regression to determine correlates of parental acceptance of HPV vaccine. Results: Of the 318 respondents, 45.9% had poor knowledge of cervical cancer and HPV infection, whereas 29.6% had good knowledge. Majority (54.7%) also had poor knowledge of HPV vaccine, whereas 26.7% had good knowledge. Most (72%) would vaccinate their daughters if vaccines were free, whereas only 35.5% would, if not free. Poor knowledge of cervical cancer and HPV infection significantly reduced the likelihood of vaccination even if free (adjusted odds ratio [OR] =0.48; 95% confidence interval [CI] =0.24–0.94; P = 0.0325), whereas good knowledge of HPV vaccines (adjusted OR = 6.11; 95% CI = 1.37–27.34; P = 0.018) and tertiary education in the mother (adjusted OR = 29.17; 95% CI = 3.98–214.08; P = 0.0009) increased the likelihood, if not free. Conclusion: HPV vaccination was acceptable to most parents only if offered free. Poor knowledge of cervical cancer, HPV infection, and vaccine may hinder acceptability. It is recommended that HPV vaccination is offered free through the National Programme on Immunization in Nigeria.
Collapse
Affiliation(s)
- Kabiru A Rabiu
- Department of Obstetrics and Gynaecology, Lagos State University College of Medicine, Ikeja, Lagos State, Nigeria
| | - Taiwo G Alausa
- Department of Obstetrics and Gynaecology, Lagos State University Teaching Hospital, Ikeja, Lagos State, Nigeria
| | - Fatimat M Akinlusi
- Department of Obstetrics and Gynaecology, Lagos State University College of Medicine, Ikeja, Lagos State, Nigeria
| | - Nosimot O Davies
- Department of Haematology and Blood Transfusion, Lagos University College of Medicine, Idi-Araba, Lagos State, Nigeria
| | - Khadijah A Shittu
- Department of Obstetrics and Gynaecology, Lagos State University Teaching Hospital, Ikeja, Lagos State, Nigeria
| | - Oluwarotimi Ireti Akinola
- Department of Obstetrics and Gynaecology, Lagos State University College of Medicine, Ikeja, Lagos State, Nigeria
| |
Collapse
|
8
|
Siu JYM, Fung TKF, Leung LHM. Barriers to Receiving HPV Vaccination Among Men in a Chinese Community: A Qualitative Study in Hong Kong. Am J Mens Health 2020; 13:1557988319831912. [PMID: 30776950 PMCID: PMC6775547 DOI: 10.1177/1557988319831912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human papillomavirus (HPV) can cause various diseases; low-risk strains can cause
genital warts, whereas high-risk strains can cause cervical cancer and cancer of
the vulva in women and cancers of the penis, anus, and oropharynx in men.
Although HPV affects men, literature has reported that the prevalence of HPV
vaccination is far lower among men than among women. Few studies have examined
perceptions and acceptability of the HPV vaccine among men, particularly in
Chinese communities. In this study, the acceptability of the HPV vaccine to men
was investigated using Hong Kong men as a case group. A qualitative research
approach was adopted. Thirty-nine men were purposively sampled for the in-depth
individual semistructured interviews from June to October 2017 to investigate
their perceptions of the HPV vaccine and the barriers for them to receive the
vaccination. Limited knowledge and awareness of HPV-related issues, low
perceived risk of HPV infection, perceived association between HPV vaccine and
promiscuity, and lack of accessible official information on HPV-related topics
were identified as the key barriers. These barriers intermingled with the
sociocultural environment, cultural values of sexuality, and patriarchal gender
values. HPV vaccine is shown to be socially constructed as a vaccine for women
exclusively and for promiscuity. The participants were discouraged from
receiving HPV vaccination because of its signaling of socially deviant
promiscuity. Cultural taboo on sex served as a social oppression of open
discussion about HPV vaccine and affected the participants’ perceived need of
vaccination. Perceived insignificance of reproductive organs also influenced the
participants’ perceived need of vaccination.
Collapse
Affiliation(s)
- Judy Yuen-Man Siu
- 1 Department of Applied Social Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Timothy K F Fung
- 2 Department of Communication Studies, School of Communication, Hong Kong Baptist University, Hong Kong
| | - Leo Ho-Man Leung
- 1 Department of Applied Social Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
9
|
Menzel S, Holland T, Boes A, Spiegel H, Fischer R, Buyel JF. Downstream processing of a plant-derived malaria transmission-blocking vaccine candidate. Protein Expr Purif 2018; 152:122-130. [PMID: 30059744 DOI: 10.1016/j.pep.2018.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/15/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022]
Abstract
Plants as a platform for recombinant protein expression are now economically comparable to well-established systems, such as microbes and mammalian cells, thanks to advantages such as scalability and product safety. However, downstream processing accounts for the majority of the final product costs because plant extracts contain large quantities of host cell proteins (HCPs) that must be removed using elaborate purification strategies. Heat precipitation in planta (blanching) can remove ∼80% of HCPs and thus simplify further purification steps, but this is only possible if the target protein is thermostable. Here we describe a combination of blanching and chromatography to purify the thermostable transmission-blocking malaria vaccine candidate FQS, which was transiently expressed in Nicotiana benthamiana leaves. If the blanching temperature exceeded a critical threshold of ∼75 °C, FQS was no longer recognized by the malaria transmission-blocking monoclonal antibody 4B7. A design-of-experiments approach revealed that reducing the blanching temperature from 80 °C to 70 °C restored antibody binding while still precipitating most HCPs. We also found that blanching inhibited the degradation of FQS in plant extracts, probably due to the thermal inactivation of proteases. We screened hydrophobic interaction chromatography materials using miniature columns and a liquid-handling station. Octyl Sepharose achieved the highest FQS purity during the primary capture step and led to a final purity of ∼72% with 60% recovery via step elution. We found that 30-75% FQS was lost during ultrafiltration/diafiltration, giving a final yield of 9 mg kg-1 plant material after purification based on an initial yield of ∼49 mg kg-1 biomass after blanching.
Collapse
Affiliation(s)
- Stephan Menzel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Tanja Holland
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany; Eppendorf AG, Bioprocess Center, Rudolf-Schulten-Str. 5, 52428, Juelich, Germany
| | - Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Rainer Fischer
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Johannes Felix Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany; Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
10
|
Reconceptualizing cancer immunotherapy based on plant production systems. Future Sci OA 2017; 3:FSO217. [PMID: 28884013 PMCID: PMC5583679 DOI: 10.4155/fsoa-2017-0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 01/25/2023] Open
Abstract
Plants can be used as inexpensive and facile production platforms for vaccines and other biopharmaceuticals. More recently, plant-based biologics have expanded to include cancer immunotherapy agents. The following review describes the current state of the art for plant-derived strategies to prevent or reduce cancers. The review discusses avenues taken to prevent infection by oncogenic viruses, solid tumors and lymphomas. Strategies including cancer vaccines, monoclonal antibodies and virus nanoparticles are described, and examples are provided. The review ends with a discussion of the implications of plant-based cancer immunotherapy for developing countries. Cancer immunotherapy has made great strides over recent years. This review describes the use of plants as production systems to produce biopharmaceuticals such as vaccines and antibodies to treat a wide variety of cancers. The use of nanoparticle technology based on plant viruses as a novel strategy to target and combat cancers is also included. The review concludes with a discussion of plant production platforms and their relevance for the generation of cheap and effective cancer immunotherapies for developing countries.
Collapse
|
11
|
Waheed MT, Sameeullah M, Khan FA, Syed T, Ilahi M, Gottschamel J, Lössl AG. Need of cost-effective vaccines in developing countries: What plant biotechnology can offer? SPRINGERPLUS 2016; 5:65. [PMID: 26839758 PMCID: PMC4722051 DOI: 10.1186/s40064-016-1713-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/13/2016] [Indexed: 12/22/2022]
Abstract
To treat current infectious diseases, different therapies are used that include drugs or vaccines or both. Currently, the world is facing an increasing problem of drug resistance from many pathogenic microorganisms. In majority of cases, when vaccines are used, formulations consist of live attenuated microorganisms. This poses an additional risk of infection in immunocompromised patients and people suffering from malnutrition in developing countries. Therefore, there is need to improve drug therapy as well as to develop next generation vaccines, in particular against infectious diseases with highest mortality rates. For patients in developing countries, costs related to treatments are one of the major hurdles to reduce the disease burden. In many cases, use of prophylactic vaccines can help to control the incidence of infectious diseases. In the present review, we describe some infectious diseases with high impact on health of people in low and middle income countries. We discuss the prospects of plants as alternative platform for the development of next-generation subunit vaccines that can be a cost-effective source for mass immunization of people in developing countries.
Collapse
Affiliation(s)
- Mohammad Tahir Waheed
- />Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Muhammad Sameeullah
- />Department of Horticulture, Faculty of Agriculture and Natural Sciences, Abant Izzet Baysal University, Golkoy Campus, 14280 Bolu, Turkey
| | - Faheem Ahmed Khan
- />Molecular Biotechnology Laboratory for Triticeae Crops, Huazhong Agricultural University, Wuhan, China
| | - Tahira Syed
- />Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Manzoor Ilahi
- />Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | | | - Andreas Günter Lössl
- />Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life Sciences, Konrad Lorenz Straße 24, 3430 Tulln an der Donau, Austria
- />AIT Austrian Institute of Technology GmbH, Donau-City-Straße 1, 1220 Vienna, Austria
| |
Collapse
|
12
|
Menzel S, Holland T, Boes A, Spiegel H, Bolzenius J, Fischer R, Buyel JF. Optimized Blanching Reduces the Host Cell Protein Content and Substantially Enhances the Recovery and Stability of Two Plant-Derived Malaria Vaccine Candidates. FRONTIERS IN PLANT SCIENCE 2016; 7:159. [PMID: 26925077 PMCID: PMC4756251 DOI: 10.3389/fpls.2016.00159] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/30/2016] [Indexed: 05/19/2023]
Abstract
Plants provide an advantageous expression platform for biopharmaceutical proteins because of their low pathogen burden and potential for inexpensive, large-scale production. However, the purification of target proteins can be challenging due to issues with extraction, the removal of host cell proteins (HCPs), and low expression levels. The heat treatment of crude extracts can reduce the quantity of HCPs by precipitation thus increasing the purity of the target protein and streamlining downstream purification. In the overall context of downstream process (DSP) development for plant-derived malaria vaccine candidates, we applied a design-of-experiments approach to enhance HCP precipitation from Nicotiana benthamiana extracts generated after transient expression, using temperatures in the 20-80°C range, pH values of 3.0-8.0 and incubation times of 0-60 min. We also investigated the recovery of two protein-based malaria vaccine candidates under these conditions and determined their stability in the heat-treated extract while it was maintained at room temperature for 24 h. The heat precipitation of HCPs was also carried out by blanching intact plants in water or buffer prior to extraction in a blender. Our data show that all the heat precipitation methods reduced the amount of HCP in the crude plant extracts by more than 80%, simplifying the subsequent DSP steps. Furthermore, when the heat treatment was performed at 80°C rather than 65°C, both malaria vaccine candidates were more stable after extraction and the recovery of both proteins increased by more than 30%.
Collapse
Affiliation(s)
- Stephan Menzel
- Integrated Production Platforms, Fraunhofer-Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Tanja Holland
- Integrated Production Platforms, Fraunhofer-Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Alexander Boes
- Plant Biotechnology, Fraunhofer-Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Holger Spiegel
- Plant Biotechnology, Fraunhofer-Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Johanna Bolzenius
- Institute for Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany
| | - Rainer Fischer
- Integrated Production Platforms, Fraunhofer-Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
- Plant Biotechnology, Fraunhofer-Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany
| | - Johannes F. Buyel
- Integrated Production Platforms, Fraunhofer-Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany
- *Correspondence: Johannes F. Buyel,
| |
Collapse
|
13
|
Chan HT, Daniell H. Plant-made oral vaccines against human infectious diseases-Are we there yet? PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1056-70. [PMID: 26387509 PMCID: PMC4769796 DOI: 10.1111/pbi.12471] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 05/13/2023]
Abstract
Although the plant-made vaccine field started three decades ago with the promise of developing low-cost vaccines to prevent infectious disease outbreaks and epidemics around the globe, this goal has not yet been achieved. Plants offer several major advantages in vaccine generation, including low-cost production by eliminating expensive fermentation and purification systems, sterile delivery and cold storage/transportation. Most importantly, oral vaccination using plant-made antigens confers both mucosal (IgA) and systemic (IgG) immunity. Studies in the past 5 years have made significant progress in expressing vaccine antigens in edible leaves (especially lettuce), processing leaves or seeds through lyophilization and achieving antigen stability and efficacy after prolonged storage at ambient temperatures. Bioencapsulation of antigens in plant cells protects them from the digestive system; the fusion of antigens to transmucosal carriers enhances efficiency of their delivery to the immune system and facilitates successful development of plant vaccines as oral boosters. However, the lack of oral priming approaches diminishes these advantages because purified antigens, cold storage/transportation and limited shelf life are still major challenges for priming with adjuvants and for antigen delivery by injection. Yet another challenge is the risk of inducing tolerance without priming the host immune system. Therefore, mechanistic aspects of these two opposing processes (antibody production or suppression) are discussed in this review. In addition, we summarize recent progress made in oral delivery of vaccine antigens expressed in plant cells via the chloroplast or nuclear genomes and potential challenges in achieving immunity against infectious diseases using cold-chain-free vaccine delivery approaches.
Collapse
Affiliation(s)
| | - Henry Daniell
- Correspondence (Tel 215 746 2563; fax 215 898 3695; )
| |
Collapse
|
14
|
Sack M, Rademacher T, Spiegel H, Boes A, Hellwig S, Drossard J, Stoger E, Fischer R. From gene to harvest: insights into upstream process development for the GMP production of a monoclonal antibody in transgenic tobacco plants. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1094-105. [PMID: 26214282 DOI: 10.1111/pbi.12438] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 05/22/2023]
Abstract
The EU Sixth Framework Programme Integrated Project 'Pharma-Planta' developed an approved manufacturing process for recombinant plant-made pharmaceutical proteins (PMPs) using the human HIV-neutralizing monoclonal antibody 2G12 as a case study. In contrast to the well-established Chinese hamster ovary platform, which has been used for the production of therapeutic antibodies for nearly 30 years, only draft regulations were initially available covering the production of recombinant proteins in transgenic tobacco plants. Whereas recombinant proteins produced in animal cells are secreted into the culture medium during fermentation in bioreactors, intact plants grown under nonsterile conditions in a glasshouse environment provide various 'plant-specific' regulatory and technical challenges for the development of a process suitable for the acquisition of a manufacturing licence for clinical phase I trials. During upstream process development, several generic steps were addressed (e.g. plant transformation and screening, seed bank generation, genetic stability, host plant uniformity) as well as product-specific aspects (e.g. product quantity). This report summarizes the efforts undertaken to analyse and define the procedures for the GMP/GACP-compliant upstream production of 2G12 in transgenic tobacco plants from gene to harvest, including the design of expression constructs, plant transformation, the generation of production lines, master and working seed banks and the detailed investigation of cultivation and harvesting parameters and their impact on biomass, product yield and intra/interbatch variability. The resulting procedures were successfully translated into a prototypic manufacturing process that has been approved by the German competent authority.
Collapse
Affiliation(s)
- Markus Sack
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Thomas Rademacher
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stephan Hellwig
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Juergen Drossard
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology (IAGZ), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rainer Fischer
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| |
Collapse
|
15
|
Xiong Y, Chen L, Luo P. N-Benzylcinnamide induces apoptosis in HPV16 and HPV18 cervical cancer cells via suppression of E6 and E7 protein expression. IUBMB Life 2015; 67:374-9. [PMID: 25914202 DOI: 10.1002/iub.1380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/03/2015] [Indexed: 01/15/2023]
Abstract
Seventy percent of all cervical cancers are caused by human papillomavirus (HPV) infections. Natural products are being extensively explored for their potential ability to prevent and treat cervical cancers. N-benzylcinnamide (PT-3) is a natural product purified from Piper submultinerve. Whether or not PT-3 has an effect on cervical cancer cells is as yet unknown. Therefore, we set out to explore the mechanism of action behind PT-3 and how it affects cells that either contain or lack HPV DNA. Our results demonstrate that PT-3 slows the growth kinetics of CaSki (HPV-16 positive) and HeLa (HPV-18 positive) cells in a dose-dependent manner, but does not slows HPV-negative cells. Importantly, we also found that PT-3 induces apoptosis by suppressing expression of E6 and E7 viral oncogenes in HPV-infected cervical cancer CaSki and HeLa cells. Moreover, we found that suppression of E6 and E7 expression leads to modulations in p53 and protein retinoblastomas, which are not changed in HPV-negative cervical cancer C33A cells. These findings demonstrate that PT-3 can effectively promote apoptosis by downregulating expression of E6 and E7.
Collapse
Affiliation(s)
- Yuanhuan Xiong
- Department of Obstetrics and Gynecology, Jiangxi Provincial People's Hospital, Donghu District, Nanchang City, Jiangxi Province, China
| | - Lin Chen
- Faculty of Medical Sciences, Wuhan University School of Medicine, Wuhan, Hubei, People's Republic of China
| | - Puying Luo
- Department of Obstetrics and Gynecology, Jiangxi Provincial People's Hospital, Donghu District, Nanchang City, Jiangxi Province, China
| |
Collapse
|
16
|
Boes A, Spiegel H, Edgue G, Kapelski S, Scheuermayer M, Fendel R, Remarque E, Altmann F, Maresch D, Reimann A, Pradel G, Schillberg S, Fischer R. Detailed functional characterization of glycosylated and nonglycosylated variants of malaria vaccine candidate PfAMA1 produced in Nicotiana benthamiana and analysis of growth inhibitory responses in rabbits. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:222-34. [PMID: 25236489 DOI: 10.1111/pbi.12255] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/07/2014] [Accepted: 08/10/2014] [Indexed: 06/03/2023]
Abstract
One of the most promising malaria vaccine candidate antigens is the Plasmodium falciparum apical membrane antigen 1 (PfAMA1). Several studies have shown that this blood-stage antigen can induce strong parasite growth inhibitory antibody responses. PfAMA1 contains up to six recognition sites for N-linked glycosylation, a post-translational modification that is absent in P. falciparum. To prevent any potential negative impact of N-glycosylation, the recognition sites have been knocked out in most PfAMA1 variants expressed in eukaryotic hosts. However, N-linked glycosylation may increase efficacy by improving immunogenicity and/or focusing the response towards relevant epitopes by glycan masking. We describe the production of glycosylated and nonglycosylated PfAMA1 in Nicotiana benthamiana and its detailed characterization in terms of yield, integrity and protective efficacy. Both PfAMA1 variants accumulated to high levels (>510 μg/g fresh leaf weight) after transient expression, and high-mannose-type N-glycans were confirmed for the glycosylated variant. No significant differences between the N. benthamiana and Pichia pastoris PfAMA1 variants were detected in conformation-sensitive ligand-binding studies. Specific titres of >2 × 10(6) were induced in rabbits, and strong reactivity with P. falciparum schizonts was observed in immunofluorescence assays, as well as up to 100% parasite growth inhibition for both variants, with IC₅₀ values of ~35 μg/mL. Competition assays indicated that a number of epitopes were shielded from immune recognition by N-glycans, warranting further studies to determine how glycosylation can be used for the directed targeting of immune responses. These results highlight the potential of plant transient expression systems as a production platform for vaccine candidates.
Collapse
Affiliation(s)
- Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fahad S, Khan FA, Pandupuspitasari NS, Ahmed MM, Liao YC, Waheed MT, Sameeullah M, Darkhshan, Hussain S, Saud S, Hassan S, Jan A, Jan MT, Wu C, Chun MX, Huang J. Recent developments in therapeutic protein expression technologies in plants. Biotechnol Lett 2015; 37:265-79. [PMID: 25326175 PMCID: PMC7088338 DOI: 10.1007/s10529-014-1699-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/06/2014] [Indexed: 12/17/2022]
Abstract
Infectious diseases and cancers are some of the commonest causes of deaths throughout the world. The previous two decades have witnessed a combined endeavor across various biological sciences to address this issue in novel ways. The advent of recombinant DNA technologies has provided the tools for producing recombinant proteins that can be used as therapeutic agents. A number of expression systems have been developed for the production of pharmaceutical products. Recently, advances have been made using plants as bioreactors to produce therapeutic proteins directed against infectious diseases and cancers. This review highlights the recent progress in therapeutic protein expression in plants (stable and transient), the factors affecting heterologous protein expression, vector systems and recent developments in existing technologies and steps towards the industrial production of plant-made vaccines, antibodies, and biopharmaceuticals.
Collapse
Affiliation(s)
- Shah Fahad
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei China
| | - Faheem Ahmed Khan
- Molecular Biotechnology Laboratory for Triticeae Crops, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070 China
| | | | | | - Yu Cai Liao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Muhammad Sameeullah
- Biotechnology Lab., Department of Biology, Faculty of Science and Arts, Abant Izzet Baysal University, Golkoy Campus, 14280 Bolu, Turkey
| | - Darkhshan
- Women Institute of Learning, Abbottabad, Pakistan
| | - Saddam Hussain
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei China
| | - Shah Saud
- Department of Horticultural, Northeast Agricultural University, Harbin, 150030 China
| | - Shah Hassan
- Agriculture University, Peshawar, 25000 Pakistan
| | | | | | - Chao Wu
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei China
| | - Ma Xiao Chun
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei China
| |
Collapse
|
18
|
Hassan SW, Waheed MT, Müller M, Clarke JL, Shinwari ZK, Lössl AG. Expression of HPV-16 L1 capsomeres with glutathione-S-transferase as a fusion protein in tobacco plastids: an approach for a capsomere-based HPV vaccine. Hum Vaccin Immunother 2014; 10:2975-82. [PMID: 25483463 PMCID: PMC5443053 DOI: 10.4161/21645515.2014.970973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/11/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022] Open
Abstract
Human Papillomavirus (HPV) is the main cause of cervical cancer, which is the second most severe cancer of women worldwide, particularly in developing countries. Although vaccines against HPV infection are commercially available, they are neither affordable nor accessible to women in low income countries e.g. Africa. Thus, alternative cost-effective vaccine production approaches need to be developed. This study uses tobacco plants to express pentameric capsomeres of HPV that have been reported to generate elevated immune responses against HPV. A modified HPV-16 L1 (L1_2xCysM) protein has been expressed as a fusion protein with glutathione-S-transferase (GST) in tobacco chloroplasts following biolistic transformation. In total 7 transplastomic lines with healthy phenotypes were generated. Site specific integration of the GST-L1_2xCysM and aadA genes was confirmed by PCR. Southern blot analysis verified homogenous transformation of all transplastomic lines. Antigen capture ELISA with the conformation-specific antibody Ritti01, showed protein expression as well as the retention of immunogenic epitopes of L1 protein. In their morphology, GST-L1 expressing tobacco plants were identical to wild type plants and yielded fertile flowers. Taken together, these data enrich knowledge for future development of cost-effective plant-made vaccines against HPV.
Collapse
Affiliation(s)
- Syed Waqas Hassan
- Department of Biotechnology; Quaid-i-Azam University; Islamabad, Pakistan
| | | | - Martin Müller
- Deutsches Krebsforschungszentrum; Heidelberg, Germany
| | - Jihong Liu Clarke
- Bioforsk-Norwegian Institute for Agricultural and Environmental Research; Aas, Norway
| | | | - Andreas Günter Lössl
- Department of Crop Sciences; University of Natural Resources and Applied Life Sciences; Tulln an der Donau, Austria
| |
Collapse
|
19
|
Voepel N, Boes A, Edgue G, Beiss V, Kapelski S, Reimann A, Schillberg S, Pradel G, Fendel R, Scheuermayer M, Spiegel H, Fischer R. Malaria vaccine candidate antigen targeting the pre-erythrocytic stage of Plasmodium falciparum produced at high level in plants. Biotechnol J 2014; 9:1435-45. [PMID: 25200253 DOI: 10.1002/biot.201400350] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/28/2014] [Accepted: 09/05/2014] [Indexed: 01/07/2023]
Abstract
Plants have emerged as low-cost production platforms suitable for vaccines targeting poverty-related diseases. Besides functional efficacy, the stability, yield, and purification process determine the production costs of a vaccine and thereby the feasibility of plant-based production. We describe high-level plant production and functional characterization of a malaria vaccine candidate targeting the pre-erythrocytic stage of Plasmodium falciparum. CCT, a fusion protein composed of three sporozoite antigens (P. falciparum cell traversal protein for ookinetes and sporozoites [PfCelTOS], P. falciparum circumsporozoite protein [PfCSP], and P. falciparum thrombospondin-related adhesive protein [PfTRAP]), was transiently expressed by agroinfiltration in Nicotiana benthamiana leaves, accumulated to levels up to 2 mg/g fresh leaf weight (FLW), was thermostable up to 80°C and could be purified to >95% using a simple two-step procedure. Reactivity of sera from malaria semi-immune donors indicated the immunogenic conformation of the purified fusion protein consisting of PfCelTOS, PfCSP_TSR, PfTRAP_TSR domains (CCT) protein. Total IgG from the CCT-specific mouse immune sera specifically recognized P. falciparum sporozoites in immunofluorescence assays and induced up to 35% inhibition in hepatocyte invasion assays. Featuring domains from three promising sporozoite antigens with different roles (attachment and cell traversal) in the hepatocyte invasion process, CCT has the potential to elicit broader immune responses against the pre-erythrocytic stage of P. falciparum and represents an interesting new candidate, also as a component of multi-stage, multi-subunit malaria vaccine cocktails.
Collapse
Affiliation(s)
- Nadja Voepel
- Department Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Siu JYM. Perceptions of and barriers to vaccinating daughters against human papillomavirus (HPV) among mothers in Hong Kong. BMC WOMENS HEALTH 2014; 14:73. [PMID: 24890226 PMCID: PMC4049476 DOI: 10.1186/1472-6874-14-73] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/28/2014] [Indexed: 11/10/2022]
Abstract
Background Significant others are noted to be remarkable influences in modelling children’s and young people’s health perceptions and their adoption of health behaviour. The vaccinations which a child receives are shown to be significantly influenced by his or her parents. However, there is a paucity of Chinese-based studies. When discussing the Human Papillomavirus (HPV) vaccine, very few studies examine the perceptions of Chinese parents regarding the vaccine as a preventive health measure, and even fewer examine how these perceptions of the vaccine and sexual values influence their motivations in encouraging their children to be vaccinated. In view of the literature gap, this article investigates the perceptions of Hong Kong mothers in regard to vaccinating their daughters against HPV in Hong Kong. Methods A qualitative research approach with individual semi-structured interviews was conducted with 35 mothers aged 30 to 60 years old with daughter(s) between 9 and 17 years old. Results Six connected themes emerged. The participants commonly perceived the HPV vaccination as being unnecessary for their daughters in view of their young age. They worried that it would encourage their daughters to engage in premarital sex, and perceived the vaccination to be potentially harmful to health. Also, their low perceived risk of HPV in addition to the lack of reassurance from their health care providers failed to convince the participants that the vaccination was important for their daughters’ health. Finally, the participants found the vaccine to be expensive and perceived it to have little protection value in comparison to other optional vaccines. Conclusion The sampled mothers did not have a positive perception of the HPV vaccine. The cultural association between receiving the vaccination and premarital sex was prevalent. Bounded by their cultural values, the participants also had many misconceptions regarding the vaccine and the transmission of HPV, which discouraged them from having their daughters vaccinated. Furthermore, a lack of support from health care providers and the government health authorities concerning HPV vaccination failed to provide confidence and reassurance to mothers, and conveyed a meaning to these mothers that HPV vaccine is relatively unimportant.
Collapse
Affiliation(s)
- Judy Yuen-man Siu
- David C, Lam Institute for East-West Studies (Environment, Health, and Sustainability working group), Hong Kong Baptist University, Kowloon, Hong Kong.
| |
Collapse
|
21
|
Hefferon K. Plant-derived pharmaceuticals for the developing world. Biotechnol J 2013; 8:1193-202. [PMID: 23857915 DOI: 10.1002/biot.201300162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/02/2013] [Accepted: 06/26/2013] [Indexed: 12/17/2022]
Abstract
Plant-produced vaccines and therapeutic agents offer enormous potential for providing relief to developing countries by reducing the incidence of infant mortality caused by infectious diseases. Vaccines derived from plants have been demonstrated to effectively elicit an immune response. Biopharmaceuticals produced in plants are inexpensive to produce, require fewer expensive purification steps, and can be stored at ambient temperatures for prolonged periods of time. As a result, plant-produced biopharmaceuticals have the potential to be more accessible to the rural poor. This review describes current progress with respect to plant-produced biopharmaceuticals, with a particular emphasis on those that target developing countries. Specific emphasis is given to recent research on the production of plant-produced vaccines toward human immunodeficiency virus, malaria, tuberculosis, hepatitis B virus, Ebola virus, human papillomavirus, rabies virus and common diarrheal diseases. Production platforms used to express vaccines in plants, including nuclear and chloroplast transformation, and the use of viral expression vectors, are described in this review. The review concludes by outlining the next steps for plant-produced vaccines to achieve their goal of providing safe, efficacious and inexpensive vaccines to the developing world.
Collapse
Affiliation(s)
- Kathleen Hefferon
- Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada; Cornell University, Ithaca, NY, USA.
| |
Collapse
|
22
|
Siu JYM. Barriers to receiving human papillomavirus vaccination among female students in a university in Hong Kong. CULTURE, HEALTH & SEXUALITY 2013; 15:1071-1084. [PMID: 23826650 DOI: 10.1080/13691058.2013.807518] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper investigates, using a qualitative approach, barriers to receiving Human Papillomavirus (HPV) vaccine among female undergraduate students in a Hong Kong university. By conducting individual semi-structured interviews with 35 young women aged 19 to 23, seven intertwining perceptual, social and cultural, healthcare provider and financial barriers were identified. These barriers included the perception as being low-risk due to an absence of sexual contact, lack of confidence in the safety of the vaccine, suspicion of parents concerning the intention to get vaccinated, lack of positive discussion among peers, insufficient information from primary-care doctors, difficulty in choosing a suitable HPV vaccine and cost of the vaccine. Future HPV-vaccination promotion therefore not only needs to enhance risk perception and needs awareness of young women, but also educate parents and correct their misconceptions. As primary care doctors are the first line of contact with patients, providing more support to enhance their knowledge of the HPV vaccine and to encourage their enthusiasm in providing responsive disease-prevention education can motivate young women to get vaccinated.
Collapse
Affiliation(s)
- Judy Yuen-man Siu
- a David C. Lam Institute for East-West Studies, Hong Kong Baptist University , Hong Kong , Hong Kong
| |
Collapse
|
23
|
Lössl AG, Clarke JL. Conference Scene: Molecular pharming: manufacturing medicines in plants. Immunotherapy 2013; 5:9-12. [DOI: 10.2217/imt.12.146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Within the expanding area of molecular pharming, the development of plants for manufacturing immunoglobulins, enzymes, virus-like particles and vaccines has become a major focus point. On 21 September 2012, the meeting ‘Molecular Pharming – recent progress in manufacturing medicines in plants’, hosted by EuroSciCon, was held at the Bioscience Catalyst campus, Stevenage, UK. The scientific program of this eventful meeting covered diverse highlights of biopharming: monoclonal antibodies, virus-like particles from transient and chloroplast expression systems, for example, for Dengue and HPV, apolipoproteins from safflower seeds, and new production platforms, such as potato or hydroponics by rhizosecretion. This report summarizes the stimulating scientific presentations and fruitful panel discussions on the current topics in this promising research field.
Collapse
Affiliation(s)
- Andreas G Lössl
- Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Jihong L Clarke
- Plant Health & Protection Division, Bioforsk-Norwegian Institute for Agricultural & Environmental Research, Høgskoleveien 7, 1432 Ås, Norway
| |
Collapse
|
24
|
Hongli L, Xukui L, Ting L, Wensheng L, Lusheng S, Jin Z. Transgenic tobacco expressed HPV16-L1 and LT-B combined immunization induces strong mucosal and systemic immune responses in mice. Hum Vaccin Immunother 2013; 9:83-9. [PMID: 23108357 PMCID: PMC3667950 DOI: 10.4161/hv.22292] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/09/2012] [Accepted: 09/19/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although there are two HPV vaccines have been used to prevent cervical cancer, the cost limits their application in developing countries. The aim of this study was to evaluate the potential value of plant-based HPV16L1 and LTB proteins as a high-efficiency, low-cost and easy-to-use HPV16L1 oral vaccine. RESULTS Transgenic plant-derived HPV16L1 and LTB were identified, which display potent immunogenicity and biologic activity. Higher levels of specific IgG and IgA levels of HPV16L1 were induced when mice were immunized with L1 combined with LTB by the oral route. The stimulation index (SI) of spleen cells from the L1/LTB-immunized group was significantly higher than that in the L1-immunized group (p < 0.05). The percentage of IFN-γ (+) /IL-4 (+) CD4 (+) T cells from the L1/LTB group was clearly increased compared with that in the L1 and control groups (p < 0.05). METHODS Plant-expressed HPV16L1 and LTB proteins were extracted from transgenic tobacco leaves, and their biologic characteristics and activity were examined with electron microscopy and GM1-binding assays respectively. Mice were immunized orally with either HPV16L1 or LTB alone or in combination. Induced mucosal and systemic immune responses were detected by ELISA, Hemagglutination inhibition (HAI), lymphocyte proliferation assays and flow cytometry analysis. CONCLUSION Strong mucosal and systemic immune responses were induced by transgenic tobacco derived HPV16-L1 and LTB combined immunization. This study will lay the foundation for the development of a new type of vaccine to decrease HPV16 infections, which may lead to the prevention of cervical cancer.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/isolation & purification
- Administration, Oral
- Animals
- Antibodies, Viral/blood
- Bacterial Toxins/administration & dosage
- Bacterial Toxins/genetics
- Bacterial Toxins/isolation & purification
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Capsid Proteins/isolation & purification
- Cell Proliferation
- Enterotoxins/administration & dosage
- Enterotoxins/genetics
- Enterotoxins/isolation & purification
- Escherichia coli Proteins/administration & dosage
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/isolation & purification
- Female
- Flow Cytometry
- Immunity, Mucosal
- Immunoglobulin A/analysis
- Immunoglobulin G/analysis
- Immunoglobulin G/blood
- Interferon-gamma/metabolism
- Leukocytes, Mononuclear/immunology
- Mice
- Mice, Inbred BALB C
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/immunology
- Oncogene Proteins, Viral/isolation & purification
- Papillomavirus Vaccines/administration & dosage
- Papillomavirus Vaccines/genetics
- Papillomavirus Vaccines/immunology
- Papillomavirus Vaccines/isolation & purification
- Plants, Genetically Modified
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- Spleen/immunology
- Nicotiana
- Vaccination/methods
Collapse
Affiliation(s)
- Liu Hongli
- First Affiliated Hospital of Medical College; Xi’an Jiaotong University; Xi’an, Shaanxi Province, P.R. China
| | - Li Xukui
- Stomatological Hospital of Medical College; Xi’an Jiaotong University; Xi’an, Shaanxi Province, P.R. China
| | - Lei Ting
- First Affiliated Hospital of Medical College; Xi’an Jiaotong University; Xi’an, Shaanxi Province, P.R. China
| | - Li Wensheng
- First Affiliated Hospital of Medical College; Xi’an Jiaotong University; Xi’an, Shaanxi Province, P.R. China
| | - Si Lusheng
- First Affiliated Hospital of Medical College; Xi’an Jiaotong University; Xi’an, Shaanxi Province, P.R. China
| | - Zheng Jin
- First Affiliated Hospital of Medical College; Xi’an Jiaotong University; Xi’an, Shaanxi Province, P.R. China
| |
Collapse
|