1
|
Mohammad A, Babiker F, Al-Bader M. Effects of Apocynin, a NADPH Oxidase Inhibitor, in the Protection of the Heart from Ischemia/Reperfusion Injury. Pharmaceuticals (Basel) 2023; 16:492. [PMID: 37111249 PMCID: PMC10141704 DOI: 10.3390/ph16040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Ischemia and perfusion (I/R) induce inflammation and oxidative stress, which play a notable role in tissue damage. The aim of this study was to investigate the role of an NADPH oxidase inhibitor (apocynin) in the protection of the heart from I/R injury. Hearts isolated from Wistar rats (n = 8 per group) were perfused with a modified Langendorff preparation. Left ventricular (LV) contractility and cardiovascular hemodynamics were evaluated by a data acquisition program, and infarct size was evaluated by 2,3,5-Triphenyl-2H-tetrazolium chloride (TTC) staining. Furthermore, the effect of apocynin on the pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and anti-inflammatory cytokine (IL-10) was evaluated using an enzyme linked immunosorbent assay (ELISA). Hearts were subjected to 30 min of regional ischemia, produced by ligation of the left anterior descending (LAD) coronary artery, followed by 30 min of reperfusion. Hearts were infused with apocynin before ischemia, during ischemia or at reperfusion. To understand the potential pathways of apocynin protection of the heart, a nitric oxide donor (S-nitroso-N-acetylpenicillamine, SNAP), nitric oxide blocker (N (gamma)-nitro-L-arginine methyl ester, L-Name), nicotinic acid adenine dinucleotide phosphate (NAADP) inhibiter (Ned-K), cyclic adenosine diphosphate ribose (cADPR) agonist, or CD38 blocker (Thiazoloquin (az)olin (on)e compound, 78c) was infused with apocynin. Antioxidants were evaluated by measuring superoxide dismutase (SOD) and catalase (CAT) activity. Apocynin infusion before ischemia or at reperfusion protected the heart by normalizing cardiac hemodynamics and decreasing the infarct size. Apocynin treatment resulted in a significant (p < 0.05) decrease in pro-inflammatory cytokine levels and a significant increase (p < 0.05) in anti-inflammatory and antioxidant levels. Apocynin infusion protected the heart by improving LV hemodynamics and coronary vascular dynamics. This treatment decreased the infarct size and inflammatory cytokine levels and increased anti-inflammatory cytokine and antioxidant levels. This protection follows a pathway involving CD38, nitric oxide and acidic stores.
Collapse
Affiliation(s)
| | - Fawzi Babiker
- Department of Physiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Kuwait City 13110, Kuwait
| | | |
Collapse
|
2
|
Martucci LL, Cancela JM. Neurophysiological functions and pharmacological tools of acidic and non-acidic Ca2+ stores. Cell Calcium 2022; 104:102582. [DOI: 10.1016/j.ceca.2022.102582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
|
3
|
Roles of cADPR and NAADP in pancreatic beta cell signalling. Cell Calcium 2022; 103:102562. [DOI: 10.1016/j.ceca.2022.102562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 11/19/2022]
|
4
|
Krogsaeter E, Rosato AS, Grimm C. TRPMLs and TPCs: targets for lysosomal storage and neurodegenerative disease therapy? Cell Calcium 2022; 103:102553. [DOI: 10.1016/j.ceca.2022.102553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/25/2022]
|
5
|
Glucose and NAADP trigger elementary intracellular β-cell Ca 2+ signals. Sci Rep 2021; 11:10714. [PMID: 34021189 PMCID: PMC8140081 DOI: 10.1038/s41598-021-88906-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/15/2021] [Indexed: 11/12/2022] Open
Abstract
Pancreatic β-cells release insulin upon a rise in blood glucose. The precise mechanisms of stimulus-secretion coupling, and its failure in Diabetes Mellitus Type 2, remain to be elucidated. The consensus model, as well as a class of currently prescribed anti-diabetic drugs, are based around the observation that glucose-evoked ATP production in β-cells leads to closure of cell membrane ATP-gated potassium (KATP) channels, plasma membrane depolarisation, Ca2+ influx, and finally the exocytosis of insulin granules. However, it has been demonstrated by the inactivation of this pathway using genetic and pharmacological means that closure of the KATP channel alone may not be sufficient to explain all β-cell responses to glucose elevation. We have previously proposed that NAADP-evoked Ca2+ release is an important step in stimulus-secretion coupling in pancreatic β-cells. Here we show using total internal reflection fluorescence (TIRF) microscopy that glucose as well as the Ca2+ mobilising messenger nicotinic acid adenine dinucleotide phosphate (NAADP), known to operate in β-cells, lead to highly localised elementary intracellular Ca2+ signals. These were found to be obscured by measurements of global Ca2+ signals and the action of powerful SERCA-based sequestration mechanisms at the endoplasmic reticulum (ER). Building on our previous work demonstrating that NAADP-evoked Ca2+ release is an important step in stimulus-secretion coupling in pancreatic β-cells, we provide here the first demonstration of elementary Ca2+ signals in response to NAADP, whose occurrence was previously suspected. Optical quantal analysis of these events reveals a unitary event amplitude equivalent to that of known elementary Ca2+ signalling events, inositol trisphosphate (IP3) receptor mediated blips, and ryanodine receptor mediated quarks. We propose that a mechanism based on these highly localised intracellular Ca2+ signalling events mediated by NAADP may initially operate in β-cells when they respond to elevations in blood glucose.
Collapse
|
6
|
Asfaha TY, Gunaratne GS, Johns ME, Marchant JS, Walseth TF, Slama JT. The synthesis and characterization of a clickable-photoactive NAADP analog active in human cells. Cell Calcium 2019; 83:102060. [PMID: 31442840 DOI: 10.1016/j.ceca.2019.102060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+ mobilizing second messenger which triggers Ca2+ release in both sea urchin egg homogenates and in mammalian cells. The NAADP binding protein has not been identified and the regulation of NAADP mediated Ca2+ release remains controversial. To address this issue, we have synthesized an NAADP analog in which 3-azido-5-azidomethylbenzoic acid is attached to the amino group of 5-(3-aminopropyl)-NAADP to produce an NAADP analog which is both a photoaffinity label and clickable. This 'all-in-one-clickable' NAADP (AIOC-NAADP) elicited Ca2+ release when microinjected into cultured human SKBR3 cells at low concentrations. In contrast, it displayed little activity in sea urchin egg homogenates where very high concentrations were required to elicit Ca2+ release. In mammalian cell homogenates, incubation with low concentrations of [32P]AIOC-NAADP followed by irradiation with UV light resulted in labeling 23 kDa protein(s). Competition between [32P]AIOC-NAADP and increasing concentrations of NAADP demonstrated that the labeling was selective. We show that this label recognizes and selectively photodervatizes the 23 kDa NAADP binding protein(s) in cultured human cells identified in previous studies using [32P]5-N3-NAADP.
Collapse
Affiliation(s)
- Timnit Yosef Asfaha
- Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 3000 Arlington Avenue, Toledo, OH, 43614, United States
| | - Gihan S Gunaratne
- Department of Pharmacology, University of Minnesota Medical School, 312 Church St., Minneapolis, MN, 55455-0217, United States
| | - Malcolm E Johns
- Department of Pharmacology, University of Minnesota Medical School, 312 Church St., Minneapolis, MN, 55455-0217, United States
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226-0509, United States
| | - Timothy F Walseth
- Department of Pharmacology, University of Minnesota Medical School, 312 Church St., Minneapolis, MN, 55455-0217, United States.
| | - James T Slama
- Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 3000 Arlington Avenue, Toledo, OH, 43614, United States.
| |
Collapse
|
7
|
Foster WJ, Taylor HBC, Padamsey Z, Jeans AF, Galione A, Emptage NJ. Hippocampal mGluR1-dependent long-term potentiation requires NAADP-mediated acidic store Ca 2+ signaling. Sci Signal 2018; 11:11/558/eaat9093. [PMID: 30482851 DOI: 10.1126/scisignal.aat9093] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acidic organelles, such as endosomes and lysosomes, store Ca2+ that is released in response to intracellular increases in the second messenger nicotinic acid adenine dinucleotide phosphate (NAADP). In neurons, NAADP and Ca2+ signaling contribute to synaptic plasticity, a process of activity-dependent long-term potentiation (LTP) [or, alternatively, long-term depression (LTD)] of synaptic strength and neuronal transmission that is critical for neuronal function and memory formation. We explored the function of and mechanisms regulating acidic Ca2+ store signaling in murine hippocampal neurons. We found that metabotropic glutamate receptor 1 (mGluR1) was coupled to NAADP signaling that elicited Ca2+ release from acidic stores. In turn, this released Ca2+-mediated mGluR1-dependent LTP by transiently inhibiting SK-type K+ channels, possibly through the activation of protein phosphatase 2A. Genetically removing two-pore channels (TPCs), which are endolysosomal-specific ion channels, switched the polarity of plasticity from LTP to LTD, indicating the importance of specific receptor store coupling and providing mechanistic insight into how mGluR1 can produce both synaptic potentiation and synaptic depression.
Collapse
Affiliation(s)
- William J Foster
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | - Henry B C Taylor
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Zahid Padamsey
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Alexander F Jeans
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | - Nigel J Emptage
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
8
|
Pan JY, Yuan S, Yu T, Su CL, Liu XL, He J, Li H. Regulation of L-type Ca2+ Channel Activity and Insulin Secretion by Huntingtin-associated Protein 1. J Biol Chem 2016; 291:26352-26363. [PMID: 27624941 DOI: 10.1074/jbc.m116.727990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 09/13/2016] [Indexed: 11/06/2022] Open
Abstract
Huntingtin-associated protein 1 (Hap1) was originally identified as a protein that binds to the Huntington disease protein, huntingtin. Growing evidence has shown that Hap1 participates in intracellular trafficking via its association with various microtubule-dependent transporters and organelles. Recent studies also revealed that Hap1 is involved in exocytosis such as insulin release from pancreatic β-cells. However, the mechanism underlying the action of Hap1 on insulin release remains to be investigated. We found that Hap1 knock-out mice had a lower plasma basal insulin level than control mice. Using cultured pancreatic β-cell lines, INS-1 cells, we confirmed that decreasing Hap1 reduces the number of secreted vesicles and inhibits vesicle exocytosis. Electrophysiology and imaging of intracellular Ca2+ measurements demonstrated that Hap1 depletion significantly reduces the influx of Ca2+ mediated by L-type Ca2+ channels (Cav). This decrease is not due to reduced expression of Cav1.2 channel mRNA but results from the decreased distribution of Cav1.2 on the plasma membrane of INS-1 cells. Fluorescence recovery after photobleaching showed a defective movement of Cav1.2 in Hap1 silencing INS-1 cells. Our findings suggest that Hap1 is important for insulin secretion of pancreatic β-cells via regulating the intracellular trafficking and plasma membrane localization of Cav1.2, providing new insight into the mechanisms that regulate insulin release from pancreatic β-cells.
Collapse
Affiliation(s)
- Jing-Ying Pan
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| | - Shijin Yuan
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| | - Tao Yu
- the Clinic Laboratory, Wuhan Children's Hospital, Wuhan 430016, China
| | - Cong-Lin Su
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| | - Xiao-Long Liu
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| | - Jun He
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| | - He Li
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| |
Collapse
|
9
|
Brailoiu GC, Brailoiu E. Modulation of Calcium Entry by the Endo-lysosomal System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:423-47. [PMID: 27161239 DOI: 10.1007/978-3-319-26974-0_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Endo-lysosomes are acidic organelles that besides the role in macromolecules degradation, act as intracellular Ca(2+) stores. Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca(2+)-mobilizing second messenger, produced in response to agonist stimulation, activates Ca(2+)-releasing channels on endo-lysosomes and modulates a variety of cellular functions. NAADP-evoked signals are amplified by Ca(2+) release from endoplasmic reticulum, via the recruitment of inositol 1,4,5-trisphosphate and/or ryanodine receptors through a Ca(2+)-induced Ca(2+)- release (CICR) mechanism. The endo-lysosomal Ca(2+) channels activated by NAADP were recently identified as the two-pore channels (TPCs). In addition to TPCs, endo-lysosomes express another distinct family of Ca(2+)- permeable channels, namely the transient receptor potential mucolipin (TRPML) channels, functionally distinct from TPCs. TPCs belong to the voltage-gated channels, resembling voltage-gated Na(+) and Ca(2+) channels. TPCs have important roles in vesicular fusion and trafficking, in triggering a global Ca(2+) signal and in modulation of the membrane excitability. Depletion of acidic Ca(2+) stores has been shown to activate store-operated Ca(2+) entry in human platelets and mouse pancreatic β-cells. In human platelets, Ca(2+) influx in response to acidic stores depletion is facilitated by the tubulin-cytoskeleton and occurs through non-selective cation channels and transient receptor potential canonical (TRPC) channels. Emerging evidence indicates that activation of intracellular receptors, situated on endo-lysosomes, elicits canonical and non-canonical signaling mechanisms that involve CICR and activation of non-selective cation channels in plasma membrane. The ability of endo-lysosomal Ca(2+) stores to modulate the Ca(2+) release from other organelles and the Ca(2+) entry increases the diversity and complexity of cellular signaling mechanisms.
Collapse
Affiliation(s)
- G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University, 901 Walnut St, Rm 916, Philadelphia, PA, 19107, USA.
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Temple University School of Medicine, 3500 N. Broad Street, Room 848, Philadelphia, PA, 19140, USA
| |
Collapse
|
10
|
Chang G, Yang R, Cao Y, Nie A, Gu X, Zhang H. SIDT2 is involved in the NAADP-mediated release of calcium from insulin secretory granules. J Mol Endocrinol 2016; 56:249-59. [PMID: 26744456 DOI: 10.1530/jme-15-0227] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 01/06/2016] [Indexed: 11/08/2022]
Abstract
The Sidt2 global knockout mouse (Sidt2(-/-)) has impaired insulin secretion. The aim of this study was to assess the role of SIDT2 protein in glucose-induced insulin secretion in primary cultured mouse β-cells. The major metabolic and electrophysiological steps of glucose-induced insulin secretion of primary cultured β-cells from Sidt2(-/-) mice were investigated. The β-cells from Sidt2(-/-) mice had normal NAD(P)H responses and KATP and KV currents. However, they exhibited a lower [Ca(2+)]i peak height when stimulated with 20mM glucose compared with those from WT mice. Furthermore, it took a longer time for the [Ca(2+)]i of β-cell from Sidt2(-/-) mice to reach the peak. Pretreatment with ryanodine or 2-aminoethoxydiphenyl borate (2-APB) did not change [Ca(2+)]i the response pattern to glucose in Sidt2(-/-) cells. Extraordinarily, pretreatment with bafilomycin A1(Baf-A1) led to a comparable [Ca(2+)]i increase pattern between these two groups, suggesting that calcium traffic from the intracellular acidic compartment is defective in Sidt2(-/-) β-cells. Bath-mediated application of 50nM nicotinic acid adenine dinucleotide phosphate (NAADP) normalized the [Ca(2+)]i response of Sidt2(-/-) β-cells. Finally, glucose-induced CD38 expression increased to a comparable level between Sidt2(-/-) and WT islets, suggesting that Sidt2(-/-) islets generated NAADP normally. We conclude that Sidt2 is involved in NAADP-mediated release of calcium from insulin secretory granules and thus regulates insulin secretion.
Collapse
Affiliation(s)
- Guoying Chang
- Department of Pediatric Endocrinology and Genetic MetabolismXinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Yang
- Department of Pediatric Endocrinology and Genetic MetabolismXinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Cao
- Shanghai Clinical Center for Endocrine and Metabolic DiseasesShanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aifang Nie
- Shanghai Clinical Center for Endocrine and Metabolic DiseasesShanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic MetabolismXinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic MetabolismXinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Fan Y, Li X, Zhang Y, Fan X, Zhang N, Zheng H, Song Y, Shen C, Shen J, Ren F, Yang J. Genetic Variants of TPCN2 Associated with Type 2 Diabetes Risk in the Chinese Population. PLoS One 2016; 11:e0149614. [PMID: 26918892 PMCID: PMC4769022 DOI: 10.1371/journal.pone.0149614] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/02/2016] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE The aim of this study was to determine whether TPCN2 genetic variants are associated with type 2 diabetes and to elucidate which variants in TPCN2 confer diabetes susceptibility in the Chinese population. RESEARCH DESIGN AND METHODS The sample population included 384 patients with type 2 diabetes and 1468 controls. Anthropometric parameters, glycemic and lipid profiles and insulin resistance were measured. We selected 6 TPCN2 tag single nucleotide polymorphisms (rs35264875, rs267603153, rs267603154, rs3829241, rs1551305, and rs3750965). Genotypes were determined using a Sequenom MassARRAY SNP genotyping system. RESULTS Ultimately, we genotyped 3 single nucleotide polymorphisms (rs3750965, rs3829241, and rs1551305) in all individuals. There was a 5.1% higher prevalence of the rs1551305 variant allele in type 2 diabetes individuals (A) compared with wild-type homozygous individuals (G). The AA genotype of rs1551305 was associated with a higher diabetes risk (p<0.05). The distributions of rs3829241 and rs3750965 polymorphisms were not significantly different between the two groups. HOMA-%B of subjects harboring the AA genotype of rs1551305 decreased by 14.87% relative to the GG genotype. CONCLUSIONS TPCN2 plays a role in metabolic regulation, and the rs1551305 single nucleotide polymorphism is associated with type 2 diabetes risk. Future work will begin to unravel the underlying mechanisms.
Collapse
Affiliation(s)
- Yujuan Fan
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
| | - Xuesong Li
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
| | - Yu Zhang
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
| | - Xiaofang Fan
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
| | - Ning Zhang
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
| | - Hui Zheng
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
| | - Yuping Song
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
| | - Chunfang Shen
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
| | - Jiayi Shen
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
| | - Fengdong Ren
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
| | - Jialin Yang
- Department of Endocrinology, Central Hospital of Minhang District, Minhang Hospital affiliated with Fudan University, Shanghai, People’s Republic of China
- * E-mail:
| |
Collapse
|
12
|
Abstract
Lysosomes are acidic compartments filled with more than 60 different types of hydrolases. They mediate the degradation of extracellular particles from endocytosis and of intracellular components from autophagy. The digested products are transported out of the lysosome via specific catabolite exporters or via vesicular membrane trafficking. Lysosomes also contain more than 50 membrane proteins and are equipped with the machinery to sense nutrient availability, which determines the distribution, number, size, and activity of lysosomes to control the specificity of cargo flux and timing (the initiation and termination) of degradation. Defects in degradation, export, or trafficking result in lysosomal dysfunction and lysosomal storage diseases (LSDs). Lysosomal channels and transporters mediate ion flux across perimeter membranes to regulate lysosomal ion homeostasis, membrane potential, catabolite export, membrane trafficking, and nutrient sensing. Dysregulation of lysosomal channels underlies the pathogenesis of many LSDs and possibly that of metabolic and common neurodegenerative diseases.
Collapse
Affiliation(s)
- Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109;
| | | |
Collapse
|
13
|
Shigeto M, Ramracheya R, Tarasov AI, Cha CY, Chibalina MV, Hastoy B, Philippaert K, Reinbothe T, Rorsman N, Salehi A, Sones WR, Vergari E, Weston C, Gorelik J, Katsura M, Nikolaev VO, Vennekens R, Zaccolo M, Galione A, Johnson PRV, Kaku K, Ladds G, Rorsman P. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. J Clin Invest 2015; 125:4714-28. [PMID: 26571400 DOI: 10.1172/jci81975] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/01/2015] [Indexed: 01/11/2023] Open
Abstract
Strategies aimed at mimicking or enhancing the action of the incretin hormone glucagon-like peptide 1 (GLP-1) therapeutically improve glucose-stimulated insulin secretion (GSIS); however, it is not clear whether GLP-1 directly drives insulin secretion in pancreatic islets. Here, we examined the mechanisms by which GLP-1 stimulates insulin secretion in mouse and human islets. We found that GLP-1 enhances GSIS at a half-maximal effective concentration of 0.4 pM. Moreover, we determined that GLP-1 activates PLC, which increases submembrane diacylglycerol and thereby activates PKC, resulting in membrane depolarization and increased action potential firing and subsequent stimulation of insulin secretion. The depolarizing effect of GLP-1 on electrical activity was mimicked by the PKC activator PMA, occurred without activation of PKA, and persisted in the presence of PKA inhibitors, the KATP channel blocker tolbutamide, and the L-type Ca(2+) channel blocker isradipine; however, depolarization was abolished by lowering extracellular Na(+). The PKC-dependent effect of GLP-1 on membrane potential and electrical activity was mediated by activation of Na(+)-permeable TRPM4 and TRPM5 channels by mobilization of intracellular Ca(2+) from thapsigargin-sensitive Ca(2+) stores. Concordantly, GLP-1 effects were negligible in Trpm4 or Trpm5 KO islets. These data provide important insight into the therapeutic action of GLP-1 and suggest that circulating levels of this hormone directly stimulate insulin secretion by β cells.
Collapse
|
14
|
Abstract
The genetic basis of type 2 diabetes remains incompletely defined despite the use of multiple genetic strategies. Multiparental populations such as heterogeneous stocks (HS) facilitate gene discovery by allowing fine mapping to only a few megabases, significantly decreasing the number of potential candidate genes compared to traditional mapping strategies. In the present work, we employed expression and sequence analysis in HS rats (Rattus norvegicus) to identify Tpcn2 as a likely causal gene underlying a 3.1-Mb locus for glucose and insulin levels. Global gene expression analysis on liver identified Tpcn2 as the only gene in the region that is differentially expressed between HS rats with glucose intolerance and those with normal glucose regulation. Tpcn2 also maps as a cis-regulating expression QTL and is negatively correlated with fasting glucose levels. We used founder sequence to identify variants within this region and assessed association between 18 variants and diabetic traits by conducting a mixed-model analysis, accounting for the complex family structure of the HS. We found that two variants were significantly associated with fasting glucose levels, including a nonsynonymous coding variant within Tpcn2. Studies in Tpcn2 knockout mice demonstrated a significant decrease in fasting glucose levels and insulin response to a glucose challenge relative to those in wild-type mice. Finally, we identified variants within Tpcn2 that are associated with fasting insulin in humans. These studies indicate that Tpcn2 is a likely causal gene that may play a role in human diabetes and demonstrate the utility of multiparental populations for positionally cloning genes within complex loci.
Collapse
|
15
|
Arredouani A, Ruas M, Collins SC, Parkesh R, Clough F, Pillinger T, Coltart G, Rietdorf K, Royle A, Johnson P, Braun M, Zhang Q, Sones W, Shimomura K, Morgan AJ, Lewis AM, Chuang KT, Tunn R, Gadea J, Teboul L, Heister PM, Tynan PW, Bellomo EA, Rutter GA, Rorsman P, Churchill GC, Parrington J, Galione A. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells. J Biol Chem 2015; 290:21376-92. [PMID: 26152717 PMCID: PMC4571866 DOI: 10.1074/jbc.m115.671248] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 12/02/2022] Open
Abstract
Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca2+ action potentials due to the activation of voltage-dependent Ca2+ channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic β cells. NAADP-regulated Ca2+ release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca2+ from the endolysosomal system, resulting in localized Ca2+ signals. We show here that NAADP-mediated Ca2+ release from endolysosomal Ca2+ stores activates inward membrane currents and depolarizes the β cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca2+ release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca2+ signals, and insulin secretion. Our findings implicate NAADP-evoked Ca2+ release from acidic Ca2+ storage organelles in stimulus-secretion coupling in β cells.
Collapse
Affiliation(s)
- Abdelilah Arredouani
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom,
| | - Margarida Ruas
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Stephan C Collins
- the Centre des Sciences du Gout et de l'Alimentation, Equipe 5, 9E Boulevard Jeanne d'Arc 21000 Dijon, France
| | - Raman Parkesh
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Frederick Clough
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Toby Pillinger
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - George Coltart
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Katja Rietdorf
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Andrew Royle
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Paul Johnson
- the Nuffield Department of Surgery, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, United Kingdom
| | - Matthias Braun
- the The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, United Kingdom
| | - Quan Zhang
- the The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, United Kingdom
| | - William Sones
- the The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, United Kingdom
| | - Kenju Shimomura
- the Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, United Kingdom
| | - Anthony J Morgan
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Alexander M Lewis
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Kai-Ting Chuang
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Ruth Tunn
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Joaquin Gadea
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Lydia Teboul
- The Mary Lyon Centre, Medical Research Council Harwell, Oxfordshire OX11 0RD, United Kingdom
| | - Paula M Heister
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Patricia W Tynan
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Elisa A Bellomo
- the Centre des Sciences du Gout et de l'Alimentation, Equipe 5, 9E Boulevard Jeanne d'Arc 21000 Dijon, France
| | - Guy A Rutter
- the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Medicine, Imperial College London, Hammersmith Hospital, du Cane Road, London W12 0NN, United Kingdom, and
| | - Patrik Rorsman
- the The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, United Kingdom
| | - Grant C Churchill
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - John Parrington
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom,
| | - Antony Galione
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom,
| |
Collapse
|
16
|
Lear PV, González-Touceda D, Porteiro Couto B, Viaño P, Guymer V, Remzova E, Tunn R, Chalasani A, García-Caballero T, Hargreaves IP, Tynan PW, Christian HC, Nogueiras R, Parrington J, Diéguez C. Absence of intracellular ion channels TPC1 and TPC2 leads to mature-onset obesity in male mice, due to impaired lipid availability for thermogenesis in brown adipose tissue. Endocrinology 2015; 156:975-86. [PMID: 25545384 PMCID: PMC4330317 DOI: 10.1210/en.2014-1766] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022]
Abstract
Intracellular calcium-permeable channels have been implicated in thermogenic function of murine brown and brite/beige adipocytes, respectively transient receptor potential melastin-8 and transient receptor potential vanilloid-4. Because the endo-lysosomal two-pore channels (TPCs) have also been ascribed with metabolic functionality, we studied the effect of simultaneously knocking out TPC1 and TPC2 on body composition and energy balance in male mice fed a chow diet. Compared with wild-type mice, TPC1 and TPC2 double knockout (Tpcn1/2(-/-)) animals had a higher respiratory quotient and became obese between 6 and 9 months of age. Although food intake was unaltered, interscapular brown adipose tissue (BAT) maximal temperature and lean-mass adjusted oxygen consumption were lower in Tpcn1/2(-/-) than in wild type mice. Phosphorylated hormone-sensitive lipase expression, lipid density and expression of β-adrenergic receptors were also lower in Tpcn1/2(-/-) BAT, whereas mitochondrial respiratory chain function and uncoupling protein-1 expression remained intact. We conclude that Tpcn1/2(-/-) mice show mature-onset obesity due to reduced lipid availability and use, and a defect in β-adrenergic receptor signaling, leading to impaired thermogenic activity, in BAT.
Collapse
Affiliation(s)
- Pamela V. Lear
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | | | | | - Patricia Viaño
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | - Vanessa Guymer
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | - Elena Remzova
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | - Ruth Tunn
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | - Annapurna Chalasani
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | - Tomás García-Caballero
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | - Iain P. Hargreaves
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | - Patricia W. Tynan
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | - Helen C. Christian
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | - Rubén Nogueiras
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | | | | |
Collapse
|
17
|
Ronco V, Potenza DM, Denti F, Vullo S, Gagliano G, Tognolina M, Guerra G, Pinton P, Genazzani AA, Mapelli L, Lim D, Moccia F. A novel Ca²⁺-mediated cross-talk between endoplasmic reticulum and acidic organelles: implications for NAADP-dependent Ca²⁺ signalling. Cell Calcium 2015; 57:89-100. [PMID: 25655285 DOI: 10.1016/j.ceca.2015.01.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/01/2015] [Indexed: 12/31/2022]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) serves as the ideal trigger of spatio-temporally complex intracellular Ca(2+) signals. However, the identity of the intracellular Ca(2+) store(s) recruited by NAADP, which may include either the endolysosomal (EL) or the endoplasmic reticulum (ER) Ca(2+) pools, is still elusive. Here, we show that the Ca(2+) response to NAADP was suppressed by interfering with either EL or ER Ca(2+) sequestration. The measurement of EL and ER Ca(2+) levels by using selectively targeted aequorin unveiled that the preventing ER Ca(2+) storage also affected ER Ca(2+) loading and vice versa. This indicates that a functional Ca(2+)-mediated cross-talk exists at the EL-ER interface and exerts profound implications for the study of NAADP-induced Ca(2+) signals. Extreme caution is warranted when dissecting NAADP targets by pharmacologically inhibiting EL and/or the ER Ca(2+) pools. Moreover, Ca(2+) transfer between these compartments might be essential to regulate vital Ca(2+)-dependent processes in both organelles.
Collapse
Affiliation(s)
- Virginia Ronco
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", 28100 Novara, Italy
| | - Duilio Michele Potenza
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Federico Denti
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Sabrina Vullo
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Giuseppe Gagliano
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Marialuisa Tognolina
- Laboratory of Neurophysiology, Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, ItalyfCentro Fermi, 00184 Roma, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", 28100 Novara, Italy
| | - Lisa Mapelli
- Laboratory of Neurophysiology, Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy; Centro Fermi, 00184 Roma, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", 28100 Novara, Italy.
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
18
|
Ramos I, Reich A, Wessel GM. Two-pore channels function in calcium regulation in sea star oocytes and embryos. Development 2014; 141:4598-609. [PMID: 25377554 DOI: 10.1242/dev.113563] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Egg activation at fertilization is an excellent process for studying calcium regulation. Nicotinic acid adenine dinucleotide-phosphate (NAADP), a potent calcium messenger, is able to trigger calcium release, likely through two-pore channels (TPCs). Concomitantly, a family of ectocellular enzymes, the ADP-ribosyl cyclases (ARCs), has emerged as being able to change their enzymatic mode from one of nucleotide cyclization in formation of cADPR to a base-exchange reaction in the generation of NAADP. Using sea star oocytes we gain insights into the functions of endogenously expressed TPCs and ARCs in the context of the global calcium signals at fertilization. Three TPCs and one ARC were found in the sea star (Patiria miniata) that were localized in the cortex of the oocytes and eggs. PmTPCs were localized in specialized secretory organelles called cortical granules, and PmARCs accumulated in a different, unknown, set of vesicles, closely apposed to the cortical granules in the egg cortex. Using morpholino knockdown of PmTPCs and PmARC in the oocytes, we found that both calcium regulators are essential for early embryo development, and that knockdown of PmTPCs leads to aberrant construction of the fertilization envelope at fertilization and changes in cortical granule pH. The calcium signals at fertilization are not significantly altered when individual PmTPCs are silenced, but the timing and shape of the cortical flash and calcium wave are slightly changed when the expression of all three PmTPCs is perturbed concomitantly, suggesting a cooperative activity among TPC isoforms in eliciting calcium signals that may influence localized physiological activities.
Collapse
Affiliation(s)
- Isabela Ramos
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941, Brazil
| | - Adrian Reich
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Gary M Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| |
Collapse
|
19
|
Gilon P, Chae HY, Rutter GA, Ravier MA. Calcium signaling in pancreatic β-cells in health and in Type 2 diabetes. Cell Calcium 2014; 56:340-61. [DOI: 10.1016/j.ceca.2014.09.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 12/24/2022]
|
20
|
Galione A. A primer of NAADP-mediated Ca(2+) signalling: From sea urchin eggs to mammalian cells. Cell Calcium 2014; 58:27-47. [PMID: 25449298 DOI: 10.1016/j.ceca.2014.09.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 02/04/2023]
Abstract
Since the discovery of the Ca(2+) mobilizing effects of the pyridine nucleotide metabolite, nicotinic acid adenine dinucleotide phosphate (NAADP), this molecule has been demonstrated to function as a Ca(2+) mobilizing intracellular messenger in a wide range of cell types. In this review, I will briefly summarize the distinct principles behind NAADP-mediated Ca(2+) signalling before going on to outline the role of this messenger in the physiology of specific cell types. Central to the discussion here is the finding that NAADP principally mobilizes Ca(2+) from acidic organelles such as lysosomes and it is this property that allows NAADP to play a unique role in intracellular Ca(2+) signalling. Lysosomes and related organelles are small Ca(2+) stores but importantly may also initiate a two-way dialogue with other Ca(2+) storage organelles to amplify Ca(2+) release, and may be strategically localized to influence localized Ca(2+) signalling microdomains. The study of NAADP signalling has created a new and fruitful focus on the lysosome and endolysosomal system as major players in calcium signalling and pathophysiology.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
21
|
Arndt L, Castonguay J, Arlt E, Meyer D, Hassan S, Borth H, Zierler S, Wennemuth G, Breit A, Biel M, Wahl-Schott C, Gudermann T, Klugbauer N, Boekhoff I. NAADP and the two-pore channel protein 1 participate in the acrosome reaction in mammalian spermatozoa. Mol Biol Cell 2014; 25:948-64. [PMID: 24451262 PMCID: PMC3952862 DOI: 10.1091/mbc.e13-09-0523] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A TPCN1 gene–deficient mouse strain is used to show that two convergent working NAADP-dependent pathways with nonoverlapping activation and self-inactivation profiles for distinct NAADP concentrations drive acrosomal exocytosis, by which TPC1 is central for the pathway activated by low-micromolar NAADP concentrations. The functional relationship between the formation of hundreds of fusion pores during the acrosome reaction in spermatozoa and the mobilization of calcium from the acrosome has been determined only partially. Hence, the second messenger NAADP, promoting efflux of calcium from lysosome-like compartments and one of its potential molecular targets, the two-pore channel 1 (TPC1), were analyzed for its involvement in triggering the acrosome reaction using a TPCN1 gene–deficient mouse strain. The present study documents that TPC1 and NAADP-binding sites showed a colocalization at the acrosomal region and that treatment of spermatozoa with NAADP resulted in a loss of the acrosomal vesicle that showed typical properties described for TPCs: Registered responses were not detectable for its chemical analogue NADP and were blocked by the NAADP antagonist trans-Ned-19. In addition, two narrow bell-shaped dose-response curves were identified with maxima in either the nanomolar or low micromolar NAADP concentration range, where TPC1 was found to be responsible for activating the low affinity pathway. Our finding that two convergent NAADP-dependent pathways are operative in driving acrosomal exocytosis supports the concept that both NAADP-gated cascades match local NAADP concentrations with the efflux of acrosomal calcium, thereby ensuring complete fusion of the large acrosomal vesicle.
Collapse
Affiliation(s)
- Lilli Arndt
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians University, 81377 München, Germany Department of Pharmacy, Ludwig-Maximilians University, 81377 München, Germany Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University, 79104 Freiburg, Germany Institute for Anatomy, University of Duisburg-Essen, 45141 Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Park KH, Kim BJ, Shawl AI, Han MK, Lee HC, Kim UH. Autocrine/paracrine function of nicotinic acid adenine dinucleotide phosphate (NAADP) for glucose homeostasis in pancreatic β-cells and adipocytes. J Biol Chem 2013; 288:35548-58. [PMID: 24165120 PMCID: PMC3853300 DOI: 10.1074/jbc.m113.489278] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/20/2013] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger for mobilizing Ca(2+) from intracellular stores in various cell types. Extracellular application of NAADP has been shown to elicit intracellular Ca(2+) signals, indicating that it is readily transported into cells. However, little is known about the functional role of this NAADP uptake system. Here, we show that NAADP is effectively transported into selected cell types involved in glucose homeostasis, such as adipocytes and pancreatic β-cells, but not the acinar cells, in a high glucose-dependent manner. NAADP uptake was inhibitable by Ned-19, a NAADP mimic; dipyridamole, a nucleoside inhibitor; or NaN3, a metabolic inhibitor or under Ca(2+)-free conditions. Furthermore, NAADP was found to be released from pancreatic islets upon stimulation by high glucose. Consistently, administration of NAADP to type 2 diabetic mice improved glucose tolerance. We propose that NAADP is functioning as an autocrine/paracrine hormone important in glucose homeostasis. NAADP is thus a potential antidiabetic agent with therapeutic relevance.
Collapse
Affiliation(s)
- Kwang-Hyun Park
- From the Department of Biochemistry
- the National Creative Research Laboratory for Ca Signaling Network
| | - Byung-Ju Kim
- From the Department of Biochemistry
- the National Creative Research Laboratory for Ca Signaling Network
| | - Asif Iqbal Shawl
- From the Department of Biochemistry
- the National Creative Research Laboratory for Ca Signaling Network
| | | | - Hon Cheung Lee
- the School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Uh-Hyun Kim
- From the Department of Biochemistry
- the National Creative Research Laboratory for Ca Signaling Network
- the Institute of Cardiovascular Research, Chonbuk National University Medical School, Jeonju, 561-180, Korea and
| |
Collapse
|
23
|
Li PL, Zhang Y, Abais JM, Ritter JK, Zhang F. Cyclic ADP-Ribose and NAADP in Vascular Regulation and Diseases. ACTA ACUST UNITED AC 2013; 2:63-85. [PMID: 24749015 DOI: 10.1166/msr.2013.1022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), two intracellular Ca2+ mobilizing second messengers, have been recognized as a fundamental signaling mechanism regulating a variety of cell or organ functions in different biological systems. Here we reviewed the literature regarding these ADP-ribosylcyclase products in vascular cells with a major focus on their production, physiological roles, and related underlying mechanisms mediating their actions. In particular, several hot topics in this area of research are comprehensively discussed, which may help understand some of the controversial evidence provided by different studies. For example, some new models are emerging for the agonist receptor coupling of CD38 or ADP-ribosylcyclase and for the formation of an acidic microenvironment to facilitate the production of NAADP in vascular cells. We also summarized the evidence regarding the NAADP-mediated two-phase Ca2+ release with a slow Ca2+-induced Ca2+ release (CICR) and corresponding physiological relevance. The possibility of a permanent structural space between lysosomes and sarcoplasmic reticulum (SR), as well as the critical role of lysosome trafficking in phase 2 Ca2+ release in response to some agonists are also explored. With respect to the molecular targets of NAADP within cells, several possible candidates including SR ryanodine receptors (RyRs), lysosomal transient receptor potential-mucolipin 1 (TRP-ML1) and two pore channels (TPCs) are presented with supporting and opposing evidence. Finally, the possible role of NAADP-mediated regulation of lysosome function in autophagy and atherogenesis is discussed, which may indicate a new direction for further studies on the pathological roles of cADPR and NAADP in the vascular system.
Collapse
Affiliation(s)
- Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Yang Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Justine M Abais
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| |
Collapse
|
24
|
Zhao Y, Graeff R, Lee HC. Roles of cADPR and NAADP in pancreatic cells. Acta Biochim Biophys Sin (Shanghai) 2012; 44:719-29. [PMID: 22677461 DOI: 10.1093/abbs/gms044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) are Ca(2+)-mobilizing nucleotides that were discovered in the late 1980s. Two decades of investigations have built up a considerable understanding about these two molecules that are related because both are derived from pyridine nucleotides and known to be generated by CD38/ADP-ribosyl cyclases. cADPR has been shown to target the ryanodine receptors in the endoplasmic reticulum whereas NAADP stimulates the two-pore channels in the endo-lysosomes. Accumulating results indicate that cADPR and NAADP are second messenger molecules mediating Ca(2+) signaling activated by a wide range of agonists. This article reviews what is known about these two molecules, especially regarding their signaling roles in the pancreatic cells.
Collapse
Affiliation(s)
- Yongjuan Zhao
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
25
|
Lee HC. Cyclic ADP-ribose and NAADP: fraternal twin messengers for calcium signaling. SCIENCE CHINA-LIFE SCIENCES 2011; 54:699-711. [PMID: 21786193 DOI: 10.1007/s11427-011-4197-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/10/2011] [Indexed: 12/17/2022]
Abstract
The concept advanced by Berridge and colleagues that intracellular Ca(2+)-stores can be mobilized in an agonist-dependent and messenger (IP(3))-mediated manner has put Ca(2+)-mobilization at the center stage of signal transduction mechanisms. During the late 1980s, we showed that Ca(2+)-stores can be mobilized by two other messengers unrelated to inositol trisphosphate (IP(3)) and identified them as cyclic ADP-ribose (cADPR), a novel cyclic nucleotide from NAD, and nicotinic acid adenine dinucleotide phosphate (NAADP), a linear metabolite of NADP. Their messenger functions have now been documented in a wide range of systems spanning three biological kingdoms. Accumulated evidence indicates that the target of cADPR is the ryanodine receptor in the sarco/endoplasmic reticulum, while that of NAADP is the two pore channel in endolysosomes.As cADPR and NAADP are structurally and functionally distinct, it is remarkable that they are synthesized by the same enzyme. They are thus fraternal twin messengers. We first identified the Aplysia ADP-ribosyl cyclase as one such enzyme and, through homology, found its mammalian homolog, CD38. Gene knockout in mice confirms the important roles of CD38 in diverse physiological functions from insulin secretion, susceptibility to bacterial infection, to social behavior of mice through modulating neuronal oxytocin secretion. We have elucidated the catalytic mechanisms of the Aplysia cyclase and CD38 to atomic resolution by crystallography and site-directed mutagenesis. This article gives a historical account of the cADPR/NAADP/CD38-signaling pathway and describes current efforts in elucidating the structure and function of its components.
Collapse
Affiliation(s)
- Hon Cheung Lee
- Department of Physiology, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
26
|
Leech CA, Dzhura I, Chepurny OG, Kang G, Schwede F, Genieser HG, Holz GG. Molecular physiology of glucagon-like peptide-1 insulin secretagogue action in pancreatic β cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:236-47. [PMID: 21782840 DOI: 10.1016/j.pbiomolbio.2011.07.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 07/08/2011] [Indexed: 10/18/2022]
Abstract
Insulin secretion from pancreatic β cells is stimulated by glucagon-like peptide-1 (GLP-1), a blood glucose-lowering hormone that is released from enteroendocrine L cells of the distal intestine after the ingestion of a meal. GLP-1 mimetics (e.g., Byetta) and GLP-1 analogs (e.g., Victoza) activate the β cell GLP-1 receptor (GLP-1R), and these compounds stimulate insulin secretion while also lowering levels of blood glucose in patients diagnosed with type 2 diabetes mellitus (T2DM). An additional option for the treatment of T2DM involves the administration of dipeptidyl peptidase-IV (DPP-IV) inhibitors (e.g., Januvia, Galvus). These compounds slow metabolic degradation of intestinally released GLP-1, thereby raising post-prandial levels of circulating GLP-1 substantially. Investigational compounds that stimulate GLP-1 secretion also exist, and in this regard a noteworthy advance is the demonstration that small molecule GPR119 agonists (e.g., AR231453) stimulate L cell GLP-1 secretion while also directly stimulating β cell insulin release. In this review, we summarize what is currently known concerning the signal transduction properties of the β cell GLP-1R as they relate to insulin secretion. Emphasized are the cyclic AMP, protein kinase A, and Epac2-mediated actions of GLP-1 to regulate ATP-sensitive K⁺ channels, voltage-dependent K⁺ channels, TRPM2 cation channels, intracellular Ca⁺ release channels, and Ca⁺-dependent exocytosis. We also discuss new evidence that provides a conceptual framework with which to understand why GLP-1R agonists are less likely to induce hypoglycemia when they are administered for the treatment of T2DM.
Collapse
Affiliation(s)
- Colin A Leech
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, NY, USA.
| | | | | | | | | | | | | |
Collapse
|