1
|
Hautiere M, Maffucci I, Costa N, Herbet A, Essono S, Padiolleau-Lefevre S, Boquet D. The functionality of a therapeutic antibody candidate restored by a single mutation from proline to threonine in the variable region. Hum Vaccin Immunother 2023; 19:2279867. [PMID: 38012091 PMCID: PMC10760395 DOI: 10.1080/21645515.2023.2279867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
mAbs play an essential role in the therapeutic arsenal. Our laboratory has patented the Rendomab-B49 mAb targeting the endothelin B receptor (ETB). This G protein-coupled receptor plays a driving role in the progression of numerous cancers. We chimerized our mAb (xiRB49) to evaluate its preclinical therapeutic efficacy in different ETB+ tumor models with an antibody drug conjugate approach. As previously reported, the chimerization process of an antibody can alter its functionality. In this article, we present the chimerization of RB49. xiRB49 purified by Protein A remained perfectly soluble and did not aggregate, but it lost all its ability to recognize ETB. A detailed analysis of its variable region using IMGT tools allowed us to identify an unusual proline at position 125. In silico mAb modeling and in vitro experiments were performed for a better understanding of xiRB49 structure-function relationships. Our results show that the proline in position 125 on the heavy chain alters the xiRB49 CDR3 light chain conformation and its mutation to threonine allows complete functional recovery.
Collapse
Affiliation(s)
- Marie Hautiere
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, Gif-sur-Yvette, France
| | - Irene Maffucci
- Centre de Recherche de Royallieu, CNRS UMR 7025, Génie Enzymatique et Cellulaire, Compiègne Cedex, France
- Centre de Recherche de Royallieu, Sorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire, Compiègne Cedex, France
| | - Narciso Costa
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, Gif-sur-Yvette, France
| | - Amaury Herbet
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, Gif-sur-Yvette, France
| | | | - Séverine Padiolleau-Lefevre
- Centre de Recherche de Royallieu, CNRS UMR 7025, Génie Enzymatique et Cellulaire, Compiègne Cedex, France
- Centre de Recherche de Royallieu, Sorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire, Compiègne Cedex, France
| | - Didier Boquet
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Lejeune M, Köse MC, Jassin M, Gou MJ, Herbet A, Duray E, Cobraiville G, Foguenne J, Boquet D, Gothot A, Beguin Y, Fillet M, Caers J. Integrative Analysis of Proteomics and Transcriptomics Reveals Endothelin Receptor B as Novel Single Target and Identifies New Combinatorial Targets for Multiple Myeloma. Hemasphere 2023; 7:e901. [PMID: 37359190 PMCID: PMC10289631 DOI: 10.1097/hs9.0000000000000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/25/2023] [Indexed: 06/28/2023] Open
Abstract
Despite the recent introduction of next-generation immunotherapeutic agents, multiple myeloma (MM) remains incurable. New strategies targeting MM-specific antigens may result in a more effective therapy by preventing antigen escape, clonal evolution, and tumor resistance. In this work, we adapted an algorithm that integrates proteomic and transcriptomic results of myeloma cells to identify new antigens and possible antigen combinations. We performed cell surface proteomics on 6 myeloma cell lines based and combined these results with gene expression studies. Our algorithm identified 209 overexpressed surface proteins from which 23 proteins could be selected for combinatorial pairing. Flow cytometry analysis of 20 primary samples confirmed the expression of FCRL5, BCMA, and ICAM2 in all samples and IL6R, endothelin receptor B (ETB), and SLCO5A1 in >60% of myeloma cases. Analyzing possible combinations, we found 6 combinatorial pairs that can target myeloma cells and avoid toxicity on other organs. In addition, our studies identified ETB as a tumor-associated antigen that is overexpressed on myeloma cells. This antigen can be targeted with a new monoclonal antibody RB49 that recognizes an epitope located in a region that becomes highly accessible after activation of ETB by its ligand. In conclusion, our algorithm identified several candidate antigens that can be used for either single-antigen targeting approaches or for combinatorial targeting in new immunotherapeutic approaches in MM.
Collapse
Affiliation(s)
- Margaux Lejeune
- Laboratory of Hematology, GIGA I3, University of Liège, Belgium
| | - Murat Cem Köse
- Laboratory of Hematology, GIGA I3, University of Liège, Belgium
| | - Mégane Jassin
- Laboratory of Hematology, GIGA I3, University of Liège, Belgium
| | - Marie-Jia Gou
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Amaury Herbet
- Université Paris-Saclay, CEA, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Elodie Duray
- Laboratory of Hematology, GIGA I3, University of Liège, Belgium
| | - Gaël Cobraiville
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Jacques Foguenne
- Department of Hematobiology and Immunohematology, CHU de Liège, Belgium
| | - Didier Boquet
- Université Paris-Saclay, CEA, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - André Gothot
- Department of Hematobiology and Immunohematology, CHU de Liège, Belgium
| | - Yves Beguin
- Laboratory of Hematology, GIGA I3, University of Liège, Belgium
- Department of Hematology, CHU de Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Jo Caers
- Laboratory of Hematology, GIGA I3, University of Liège, Belgium
- Department of Hematology, CHU de Liège, Belgium
| |
Collapse
|
3
|
Torres Crigna A, Link B, Samec M, Giordano FA, Kubatka P, Golubnitschaja O. Endothelin-1 axes in the framework of predictive, preventive and personalised (3P) medicine. EPMA J 2021; 12:265-305. [PMID: 34367381 PMCID: PMC8334338 DOI: 10.1007/s13167-021-00248-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Endothelin-1 (ET-1) is involved in the regulation of a myriad of processes highly relevant for physical and mental well-being; female and male health; in the modulation of senses, pain, stress reactions and drug sensitivity as well as healing processes, amongst others. Shifted ET-1 homeostasis may influence and predict the development and progression of suboptimal health conditions, metabolic impairments with cascading complications, ageing and related pathologies, cardiovascular diseases, neurodegenerative pathologies, aggressive malignancies, modulating, therefore, individual outcomes of both non-communicable and infectious diseases such as COVID-19. This article provides an in-depth analysis of the involvement of ET-1 and related regulatory pathways in physiological and pathophysiological processes and estimates its capacity as a predictor of ageing and related pathologies,a sensor of lifestyle quality and progression of suboptimal health conditions to diseases for their targeted preventionand as a potent target for cost-effective treatments tailored to the person.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Barbara Link
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
4
|
Abstract
Discovered in 1987 as a potent endothelial cell-derived vasoconstrictor peptide, endothelin-1 (ET-1), the predominant member of the endothelin peptide family, is now recognized as a multifunctional peptide with cytokine-like activity contributing to almost all aspects of physiology and cell function. More than 30 000 scientific articles on endothelin were published over the past 3 decades, leading to the development and subsequent regulatory approval of a new class of therapeutics-the endothelin receptor antagonists (ERAs). This article reviews the history of the discovery of endothelin and its role in genetics, physiology, and disease. Here, we summarize the main clinical trials using ERAs and discuss the role of endothelin in cardiovascular diseases such as arterial hypertension, preecclampsia, coronary atherosclerosis, myocardial infarction in the absence of obstructive coronary artery disease (MINOCA) caused by spontaneous coronary artery dissection (SCAD), Takotsubo syndrome, and heart failure. We also discuss how endothelins contributes to diabetic kidney disease and focal segmental glomerulosclerosis, pulmonary arterial hypertension, as well as cancer, immune disorders, and allograft rejection (which all involve ETA autoantibodies), and neurological diseases. The application of ERAs, dual endothelin receptor/angiotensin receptor antagonists (DARAs), selective ETB agonists, novel biologics such as receptor-targeting antibodies, or immunization against ETA receptors holds the potential to slow the progression or even reverse chronic noncommunicable diseases. Future clinical studies will show whether targeting endothelin receptors can prevent or reduce disability from disease and improve clinical outcome, quality of life, and survival in patients.
Collapse
Affiliation(s)
- Matthias Barton
- From Molecular Internal Medicine, University of Zürich, Switzerland (M.B.)
- Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan (M.Y.)
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX (M.Y.)
| |
Collapse
|
5
|
Therapeutic Monoclonal Antibodies to Complex Membrane Protein Targets: Antigen Generation and Antibody Discovery Strategies. BioDrugs 2019; 32:339-355. [PMID: 29934752 DOI: 10.1007/s40259-018-0289-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cell surface membrane proteins comprise a wide array of structurally and functionally diverse proteins involved in a variety of important physiological and homeostatic processes. Complex integral membrane proteins, which are embedded in the lipid bilayer by multiple transmembrane-spanning helices, are represented by families of proteins that are important target classes for drug discovery. Such protein families include G-protein-coupled receptors, ion channels and transporters. Although these targets have typically been the domain of small-molecule drugs, the exquisite specificity of monoclonal antibodies offers a significant opportunity to selectively modulate these target proteins. Nevertheless, the isolation of antibodies with desired pharmacological functions has proved difficult because of technical challenges in preparing membrane protein antigens for antibody drug discovery. In this review, we describe recent progress in defining strategies for the generation of membrane protein antigens. We also describe antibody-isolation strategies that identify antibodies that bind the membrane protein and modulate protein function.
Collapse
|
6
|
|
7
|
Davenport AP, Kuc RE, Southan C, Maguire JJ. New drugs and emerging therapeutic targets in the endothelin signaling pathway and prospects for personalized precision medicine. Physiol Res 2018; 67:S37-S54. [PMID: 29947527 DOI: 10.33549/physiolres.933872] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the last thirty years since the discovery of endothelin-1, the therapeutic strategy that has evolved in the clinic, mainly in the treatment of pulmonary arterial hypertension, is to block the action of the peptide either at the ET(A) subtype or both receptors using orally active small molecule antagonists. Recently, there has been a rapid expansion in research targeting ET receptors using chemical entities other than small molecules, particularly monoclonal antibody antagonists and selective peptide agonists and antagonists. While usually sacrificing oral bio-availability, these compounds have other therapeutic advantages with the potential to considerably expand drug targets in the endothelin pathway and extend treatment to other pathophysiological conditions. Where the small molecule approach has been retained, a novel strategy to combine two vasoconstrictor targets, the angiotensin AT(1) receptor as well as the ET(A) receptor in the dual antagonist sparsentan has been developed. A second emerging strategy is to combine drugs that have two different targets, the ET(A) antagonist ambrisentan with the phosphodiesterase inhibitor tadalafil, to improve the treatment of pulmonary arterial hypertension. The solving of the crystal structure of the ET(B) receptor has the potential to identify allosteric binding sites for novel ligands. A further key advance is the experimental validation of a single nucleotide polymorphism that has genome wide significance in five vascular diseases and that significantly increases the amount of big endothelin-1 precursor in the plasma. This observation provides a rationale for testing this single nucleotide polymorphism to stratify patients for allocation to treatment with endothelin agents and highlights the potential to use personalized precision medicine in the endothelin field.
Collapse
Affiliation(s)
- A P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
8
|
Investigating the utility of minimized sample preparation and high-resolution mass spectrometry for quantification of monoclonal antibody drugs. J Pharm Biomed Anal 2018; 159:384-392. [DOI: 10.1016/j.jpba.2018.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/18/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022]
|
9
|
Herbet A, Costa N, Leventoux N, Mabondzo A, Couraud JY, Borrull A, Hugnot JP, Boquet D. Antibodies targeting human endothelin-1 receptors reveal different conformational states in cancer cells. Physiol Res 2018; 67:S257-S264. [PMID: 29947545 DOI: 10.33549/physiolres.933848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The endothelin axis (endothelins and their receptors) is strongly involved in physiological and pathological processes. ET-1 plays a crucial role in particular in tumor diseases. Endothelin-1 receptors (ET(A) and ET(B)) are deregulated and overexpressed in several tumors such as melanoma and glioma. We studied the binding of 24 monoclonal antibodies directed against human ET(B) receptors (hET(B)) to different melanoma cell lines. Few of these mAbs bound to all the melanoma cell lines. One of them, rendomab B49, bound to ET(B) receptors expressed at the surface of human glioma stem cells. More recently, we produced new antibodies directed against human ET(A) receptor (hET(A)). Several antibodies have been isolated and have been screened on different tumoral cells lines. As for the mAbs directed against the hET(B) receptor only some of new antibodies directed against ET(A) receptor are capable to bind the human tumoral cell lines. Rendomab A63 directed against hET(A) is one of them. We report the specificity and binding properties of these mAbs and consider their potential use in diagnosis by an in vivo imaging approach.
Collapse
Affiliation(s)
- A Herbet
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments (LEMM), CEA, Université Paris Saclay, Gif-sur-Yvette, France.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels. Biochem Soc Trans 2017; 44:831-7. [PMID: 27284048 DOI: 10.1042/bst20160028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Indexed: 11/17/2022]
Abstract
The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed.
Collapse
|
11
|
Kim IS, Heilmann S, Kansler ER, Zhang Y, Zimmer M, Ratnakumar K, Bowman RL, Simon-Vermot T, Fennell M, Garippa R, Lu L, Lee W, Hollmann T, Xavier JB, White RM. Microenvironment-derived factors driving metastatic plasticity in melanoma. Nat Commun 2017; 8:14343. [PMID: 28181494 PMCID: PMC5309794 DOI: 10.1038/ncomms14343] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 12/20/2016] [Indexed: 01/07/2023] Open
Abstract
Cellular plasticity is a state in which cancer cells exist along a reversible phenotypic spectrum, and underlies key traits such as drug resistance and metastasis. Melanoma plasticity is linked to phenotype switching, where the microenvironment induces switches between invasive/MITFLO versus proliferative/MITFHI states. Since MITF also induces pigmentation, we hypothesize that macrometastatic success should be favoured by microenvironments that induce a MITFHI/differentiated/proliferative state. Zebrafish imaging demonstrates that after extravasation, melanoma cells become pigmented and enact a gene expression program of melanocyte differentiation. We screened for microenvironmental factors leading to phenotype switching, and find that EDN3 induces a state that is both proliferative and differentiated. CRISPR-mediated inactivation of EDN3, or its synthetic enzyme ECE2, from the microenvironment abrogates phenotype switching and increases animal survival. These results demonstrate that after metastatic dissemination, the microenvironment provides signals to promote phenotype switching and provide proof that targeting tumour cell plasticity is a viable therapeutic opportunity. Phenotype switching is a form of plasticity that allows melanoma cancer cells that leave the primary tumour to invade secondary sites, to switch from an invasive to a proliferative state. Here the authors identify EDN3, and its synthetic enzyme ECE2, as a regulator of melanoma plasticity in the microenvironment.
Collapse
Affiliation(s)
- Isabella S Kim
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology &Genetics, New York, New York 10065, USA
| | - Silja Heilmann
- Memorial Sloan Kettering Cancer Center, Department of Computational Biology, New York, New York 10065, USA
| | - Emily R Kansler
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology &Genetics, New York, New York 10065, USA.,Memorial Sloan Kettering Cancer Center, Gerstner Graduate School of Biomedical Sciences, New York, New York 10065, USA
| | - Yan Zhang
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology &Genetics, New York, New York 10065, USA
| | - Milena Zimmer
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology &Genetics, New York, New York 10065, USA
| | - Kajan Ratnakumar
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology &Genetics, New York, New York 10065, USA
| | - Robert L Bowman
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology &Genetics, New York, New York 10065, USA.,Memorial Sloan Kettering Cancer Center, Gerstner Graduate School of Biomedical Sciences, New York, New York 10065, USA
| | - Theresa Simon-Vermot
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology &Genetics, New York, New York 10065, USA
| | - Myles Fennell
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology &Genetics, New York, New York 10065, USA
| | - Ralph Garippa
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology &Genetics, New York, New York 10065, USA
| | - Liang Lu
- Medical College of Georgia, Augusta, Georgia 30912, USA
| | - William Lee
- Memorial Sloan Kettering Cancer Center, Department of Computational Biology, New York, New York 10065, USA
| | - Travis Hollmann
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, New York 10065, USA
| | - Joao B Xavier
- Memorial Sloan Kettering Cancer Center, Department of Computational Biology, New York, New York 10065, USA
| | - Richard M White
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology &Genetics, New York, New York 10065, USA.,Memorial Sloan Kettering Cancer Center, Department of Medicine, New York, New York 10065, USA
| |
Collapse
|
12
|
Martin N, Costa N, Wien F, Winnik FM, Ortega C, Herbet A, Boquet D, Tribet C. Refolding of Aggregation-Prone ScFv Antibody Fragments Assisted by Hydrophobically Modified Poly(sodium acrylate) Derivatives. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/19/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Nicolas Martin
- Ecole normale supérieure; PSL Research University; UPMC Univ Paris 06; CNRS, Département de Chimie; PASTEUR, 24, rue Lhomond 75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06; ENS, CNRS, PASTEUR; 75005 Paris France
| | - Narciso Costa
- CEA, iBiTecS, SPI; Laboratoire d'Ingénierie des Anticorps pour la Santé (LIAS); Bt. 136, CEA Saclay F-91191 Gif sur Yvette France
| | - Frank Wien
- Synchrotron Soleil; Saint-Aubin; F-91192 Gif-sur-Yvette France
| | - Françoise M. Winnik
- Department of Chemistry; Faculty of Pharmacy; Université de Montréal; CP 6128 Succursale Centre Ville Montréal QC H3C 3J7 Canada
- World Premier Initiative (WPI) International Research Center Initiative; International Center for Materials Nanoarchitectonics (MANA) and National Institute for Materials Science (NIMS) 1-1Namiki; Tsukuba 305-0044 Japan
- Department of Chemistry and Faculty of Pharmacy; University of Helsinki; Helsinki FI 00014 Finland
| | - Céline Ortega
- CEA, iBiTecS, SPI; Laboratoire d'Ingénierie des Anticorps pour la Santé (LIAS); Bt. 136, CEA Saclay F-91191 Gif sur Yvette France
| | - Amaury Herbet
- CEA, iBiTecS, SPI; Laboratoire d'Ingénierie des Anticorps pour la Santé (LIAS); Bt. 136, CEA Saclay F-91191 Gif sur Yvette France
| | - Didier Boquet
- CEA, iBiTecS, SPI; Laboratoire d'Ingénierie des Anticorps pour la Santé (LIAS); Bt. 136, CEA Saclay F-91191 Gif sur Yvette France
| | - Christophe Tribet
- Ecole normale supérieure; PSL Research University; UPMC Univ Paris 06; CNRS, Département de Chimie; PASTEUR, 24, rue Lhomond 75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06; ENS, CNRS, PASTEUR; 75005 Paris France
| |
Collapse
|
13
|
Borrull A, Allard B, Wijkhuisen A, Herbet A, Lamourette P, Birouk W, Leiber D, Tanfin Z, Ducancel F, Boquet D, Couraud JY, Robin P. Rendomab B4, a monoclonal antibody that discriminates the human endothelin B receptor of melanoma cells and inhibits their migration. MAbs 2016; 8:1371-1385. [PMID: 27390909 DOI: 10.1080/19420862.2016.1208865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metastatic melanoma is an aggressive cancer with a poor prognostic, and the design of new targeted drugs to treat melanoma is a therapeutic challenge. A promising approach is to produce monoclonal antibodies (mAbs) against the endothelin B receptor (ETB), which is known to be overexpressed in melanoma and to contribute to proliferation, migration and vasculogenic mimicry associated with invasiveness of this cancer. We previously described rendomab-B1, a mAb produced by DNA immunization. It is endowed with remarkable characteristics in term of affinity, specificity and antagonist properties against human ETB expressed by the endothelial cells, but, surprisingly, had poor affinity for ETB expressed by melanoma cells. This characteristic strongly suggested the existence of a tumor-specific ETB form. In the study reported here, we identified a new mAb, rendomab-B4, which, in contrast to rendomab-B1, binds ETB expressed on UACC-257, WM-266-4 and SLM8 melanoma cells. Moreover, after binding to UACC-257 cells, rendomab-B4 is internalized and colocalizes with the endosomal protein EEA-1. Interestingly, rendomab-B4, despite its inability to compete with endothelin binding, is able to inhibit phospholipase C pathway and migration induced by endothelin. By contrast, rendomab-B4 fails to decrease ERK1/2 phosphorylation induced by endothelin, suggesting a biased effect on ETB. These particular properties make rendomab-B4 an interesting tool to analyze ETB-structure/function and a promising starting point for the development of new immunological tools in the field of melanoma therapeutics.
Collapse
Affiliation(s)
- Aurélie Borrull
- a CEA, iBiTec-S, SPI, Laboratoire d'Ingénierie des Anticorps pour la Santé , Gif-sur-Yvette , France.,b Université Paris Sud-11 , CNRS, UMR 8619, IBBMC , Orsay , France
| | - Bertrand Allard
- a CEA, iBiTec-S, SPI, Laboratoire d'Ingénierie des Anticorps pour la Santé , Gif-sur-Yvette , France
| | - Anne Wijkhuisen
- a CEA, iBiTec-S, SPI, Laboratoire d'Ingénierie des Anticorps pour la Santé , Gif-sur-Yvette , France.,c Université Paris Diderot, Sorbonne Paris Cité , Gif-sur-Yvette , France
| | - Amaury Herbet
- a CEA, iBiTec-S, SPI, Laboratoire d'Ingénierie des Anticorps pour la Santé , Gif-sur-Yvette , France
| | - Patricia Lamourette
- d CEA, iBiTec-S, SPI, Laboratoire d'Etude et de Recherche en Immunoanalyse , Gif-sur-Yvette , France
| | - Wided Birouk
- b Université Paris Sud-11 , CNRS, UMR 8619, IBBMC , Orsay , France
| | - Denis Leiber
- b Université Paris Sud-11 , CNRS, UMR 8619, IBBMC , Orsay , France
| | - Zahra Tanfin
- b Université Paris Sud-11 , CNRS, UMR 8619, IBBMC , Orsay , France
| | - Frédéric Ducancel
- a CEA, iBiTec-S, SPI, Laboratoire d'Ingénierie des Anticorps pour la Santé , Gif-sur-Yvette , France
| | - Didier Boquet
- a CEA, iBiTec-S, SPI, Laboratoire d'Ingénierie des Anticorps pour la Santé , Gif-sur-Yvette , France
| | - Jean-Yves Couraud
- a CEA, iBiTec-S, SPI, Laboratoire d'Ingénierie des Anticorps pour la Santé , Gif-sur-Yvette , France.,c Université Paris Diderot, Sorbonne Paris Cité , Gif-sur-Yvette , France
| | - Philippe Robin
- b Université Paris Sud-11 , CNRS, UMR 8619, IBBMC , Orsay , France
| |
Collapse
|
14
|
Aubert JD, Juillerat-Jeanneret L. Endothelin-Receptor Antagonists beyond Pulmonary Arterial Hypertension: Cancer and Fibrosis. J Med Chem 2016; 59:8168-88. [PMID: 27266371 DOI: 10.1021/acs.jmedchem.5b01781] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The endothelin axis and in particular the two endothelin receptors, ETA and ETB, are targets for therapeutic intervention in human diseases. Endothelin-receptor antagonists are in clinical use to treat pulmonary arterial hypertension and have been under clinical investigation for the treatment of several other diseases, such as systemic hypertension, cancer, vasospasm, and fibrogenic diseases. In this Perspective, we review the molecules that have been evaluated in human clinical trials for the treatment of pulmonary arterial hypertension, as well as other cardiovascular diseases, cancer, and fibrosis. We will also discuss the therapeutic consequences of receptor selectivity with regard to ETA-selective, ETB-selective, or dual ETA/ETB antagonists. We will also consider which chemical characteristics are relevant to clinical use and the properties of molecules necessary for efficacy in treating diseases against which known molecules displayed suboptimal efficacy.
Collapse
Affiliation(s)
- John-David Aubert
- Pneumology Division and Transplantation Center, Centre Hospitalier Universitaire Vaudois (CHUV) , CH1011 Lausanne, Switzerland
| | - Lucienne Juillerat-Jeanneret
- University Institute of Pathology and Transplantation Center, Centre Hospitalier Universitaire Vaudois (CHUV), and University of Lausanne (UNIL), CH1011 Lausanne, Switzerland
| |
Collapse
|
15
|
Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacol Rev 2016; 68:357-418. [PMID: 26956245 PMCID: PMC4815360 DOI: 10.1124/pr.115.011833] [Citation(s) in RCA: 517] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The endothelins comprise three structurally similar 21-amino acid peptides. Endothelin-1 and -2 activate two G-protein coupled receptors, ETA and ETB, with equal affinity, whereas endothelin-3 has a lower affinity for the ETA subtype. Genes encoding the peptides are present only among vertebrates. The ligand-receptor signaling pathway is a vertebrate innovation and may reflect the evolution of endothelin-1 as the most potent vasoconstrictor in the human cardiovascular system with remarkably long lasting action. Highly selective peptide ETA and ETB antagonists and ETB agonists together with radiolabeled analogs have accurately delineated endothelin pharmacology in humans and animal models, although surprisingly no ETA agonist has been discovered. ET antagonists (bosentan, ambrisentan) have revolutionized the treatment of pulmonary arterial hypertension, with the next generation of antagonists exhibiting improved efficacy (macitentan). Clinical trials continue to explore new applications, particularly in renal failure and for reducing proteinuria in diabetic nephropathy. Translational studies suggest a potential benefit of ETB agonists in chemotherapy and neuroprotection. However, demonstrating clinical efficacy of combined inhibitors of the endothelin converting enzyme and neutral endopeptidase has proved elusive. Over 28 genetic modifications have been made to the ET system in mice through global or cell-specific knockouts, knock ins, or alterations in gene expression of endothelin ligands or their target receptors. These studies have identified key roles for the endothelin isoforms and new therapeutic targets in development, fluid-electrolyte homeostasis, and cardiovascular and neuronal function. For the future, novel pharmacological strategies are emerging via small molecule epigenetic modulators, biologicals such as ETB monoclonal antibodies and the potential of signaling pathway biased agonists and antagonists.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Kelly A Hyndman
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Neeraj Dhaun
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Christopher Southan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Donald E Kohan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Jennifer S Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David M Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David J Webb
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| |
Collapse
|
16
|
Cordeiro N, Wijkhuisen A, Savatier A, Moulharat N, Ferry G, Léonetti M. Obtaining anti-type 1 melatonin receptor antibodies by immunization with melatonin receptor-expressing cells. J Immunol Methods 2015; 428:37-41. [PMID: 26657944 DOI: 10.1016/j.jim.2015.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 11/25/2022]
Abstract
Antibodies (Abs) specific to cell-surface receptors are attractive tools for studying the physiological role of such receptors or for controlling their activity. We sought to obtain such antibodies against the type 1 receptor for melatonin (MT1). For this, we injected mice with CHO cells transfected with a plasmid encoding human MT1 (CHO-MT1-h), in the presence or absence of an adjuvant mixture containing Alum and CpG1018. As we previously observed that the immune response to a protein antigen is increased when it is coupled to a fusion protein, called ZZTat101, we also investigated if the association of ZZTat101 with CHO-MT1-h cells provides an immunogenic advantage. We measured similar levels of anti-CHO and anti-MT1-h Ab responses in animals injected with either CHO-MT1-h cells or ZZTat101/CHO-MT1-h cells, with or without adjuvant, indicating that neither the adjuvant mixture nor ZZTat101 increased the anti-cell immune response. Then, we investigated whether the antisera also recognized murine MT1 (MT1-m). Using cloned CHO cells transfected with a plasmid encoding MT1-m, we found that antisera raised against CHO-MT1-h cells also bound the mouse receptor. Altogether our studies indicate that immunizing approaches based on MT1-h-expressing CHO cells allow the production of polyclonal antibodies against MT1 receptors of different origins. This paves the way to preparation of MT1-specific monoclonal antibodies.
Collapse
Affiliation(s)
- Nelia Cordeiro
- CEA, institut de Biologie et de Technologie de Saclay (iBiTec-S), Service de Pharmacologie et d'immunoanalyse (SPI), 91191 Gif sur Yvette, France
| | | | - Alexandra Savatier
- CEA, institut de Biologie et de Technologie de Saclay (iBiTec-S), Service de Pharmacologie et d'immunoanalyse (SPI), 91191 Gif sur Yvette, France
| | - Natacha Moulharat
- Institut de Recherches Servier, Division Biotechnologie, Pharmacologie Moléculaire et Cellulaire, 125 Chemin de Ronde, 78290 Croissy-Sur-Seine, France
| | - Gilles Ferry
- Institut de Recherches Servier, Division Biotechnologie, Pharmacologie Moléculaire et Cellulaire, 125 Chemin de Ronde, 78290 Croissy-Sur-Seine, France
| | - Michel Léonetti
- CEA, institut de Biologie et de Technologie de Saclay (iBiTec-S), Service de Pharmacologie et d'immunoanalyse (SPI), 91191 Gif sur Yvette, France.
| |
Collapse
|
17
|
Rossant CJ, Carroll D, Huang L, Elvin J, Neal F, Walker E, Benschop JJ, Kim EE, Barry ST, Vaughan TJ. Phage display and hybridoma generation of antibodies to human CXCR2 yields antibodies with distinct mechanisms and epitopes. MAbs 2015; 6:1425-38. [PMID: 25484064 DOI: 10.4161/mabs.34376] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Generation of functional antibodies against integral membrane proteins such as the G-protein coupled receptor CXCR2 is technically challenging for several reasons, including limited epitope accessibility, the requirement for a lipid environment to maintain structure and their existence in dynamic conformational states. Antibodies to human CXCR2 were generated by immunization in vivo and by in vitro selection methods. Whole cell immunization of transgenic mice and screening of phage display libraries using CXCR2 magnetic proteoliposomes resulted in the isolation of antibodies with distinct modes of action. The hybridoma-derived antibody fully inhibited IL-8 and Gro-α responses in calcium flux and β-arrestin recruitment assays. The phage-display derived antibodies were allosteric antagonists that showed ligand dependent differences in functional assays. The hybridoma and phage display antibodies did not cross-compete in epitope competition assays and mapping using linear and CLIPS peptides confirmed that they recognized distinct epitopes of human CXCR2. This illustrates the benefits of using parallel antibody isolation approaches with different antigen presentation methods to successfully generate functionally and mechanistically diverse antagonistic antibodies to human CXCR2. The method is likely to be broadly applicable to other complex membrane proteins.
Collapse
Key Words
- BSA, bovine serum albumin
- CDR, complementarity determining region
- CXCR2
- CXCR2, C-X-C Chemokine Receptor 2
- ECL, extracellular loops
- ENA-78, epithelial derived -neutrophil activating protein
- FBS, fetal bovine serum
- FMAT, Fluorescence Microvolume Assay Technology
- GCP-2, granulocyte activating protein
- GPCR
- GPCR, G-protein coupled receptor
- Gro-α, growth related oncogene- α
- Gro-β, growth related oncogene- β
- Gro-γ, growth related oncogene- γ
- IL-8, Interleukin-8
- Ig, Immunoglobulin
- NAP-2, neutrophil activating protein-2, CLIPS, Chemical Linkage of Peptides onto Scaffolds
- PBS, phosphate buffered saline
- epitope mapping
- human antibody
- immunization
- phage display
- proteoliposomes
- scFv, single chain Fv fragments
Collapse
|
18
|
Richard S, Boucher M, Herbet A, Lalatonne Y, Mériaux S, Boquet D, Motte L. Endothelin B receptors targeted by iron oxide nanoparticles functionalized with a specific antibody: toward immunoimaging of brain tumors. J Mater Chem B 2015; 3:2939-2942. [DOI: 10.1039/c5tb00103j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vasculature enhancement is observed in mouse brain after intravenous injection of iron oxide nanoparticles functionalized with antibody targeting endothelin B receptors over-expressed in glioma.
Collapse
Affiliation(s)
- S. Richard
- Université Paris 13
- Sorbonne Paris Cité
- CSPBAT
- UMR CNRS 7244
- 93017 Bobigny
| | - M. Boucher
- CEA
- DSV
- I2BM
- NeuroSpin
- Unité d'imagerie par IRM et de Spectroscopie (UNIRS)
| | - A. Herbet
- CEA
- DSV
- iBiTec-S
- SPI
- Laboratoire d'Etude du Métabolisme des Médicaments (LEMM)
| | - Y. Lalatonne
- Université Paris 13
- Sorbonne Paris Cité
- CSPBAT
- UMR CNRS 7244
- 93017 Bobigny
| | - S. Mériaux
- CEA
- DSV
- I2BM
- NeuroSpin
- Unité d'imagerie par IRM et de Spectroscopie (UNIRS)
| | - D. Boquet
- CEA
- DSV
- iBiTec-S
- SPI
- Laboratoire d'Etude du Métabolisme des Médicaments (LEMM)
| | - L. Motte
- Université Paris 13
- Sorbonne Paris Cité
- CSPBAT
- UMR CNRS 7244
- 93017 Bobigny
| |
Collapse
|
19
|
Maguire JJ, Davenport AP. Endothelin@25 - new agonists, antagonists, inhibitors and emerging research frontiers: IUPHAR Review 12. Br J Pharmacol 2014; 171:5555-72. [PMID: 25131455 PMCID: PMC4290702 DOI: 10.1111/bph.12874] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 12/16/2022] Open
Abstract
Since the discovery of endothelin (ET)-1 in 1988, the main components of the signalling pathway have become established, comprising three structurally similar endogenous 21-amino acid peptides, ET-1, ET-2 and ET-3, that activate two GPCRs, ETA and ETB . Our aim in this review is to highlight the recent progress in ET research. The ET-like domain peptide, corresponding to prepro-ET-193-166 , has been proposed to be co-synthesized and released with ET-1, to modulate the actions of the peptide. ET-1 remains the most potent vasoconstrictor in the human cardiovascular system with a particularly long-lasting action. To date, the major therapeutic strategy to block the unwanted actions of ET in disease, principally in pulmonary arterial hypertension, has been to use antagonists that are selective for the ETA receptor (ambrisentan) or that block both receptor subtypes (bosentan). Macitentan represents the next generation of antagonists, being more potent than bosentan, with longer receptor occupancy and it is converted to an active metabolite; properties contributing to greater pharmacodynamic and pharmacokinetic efficacy. A second strategy is now being more widely tested in clinical trials and uses combined inhibitors of ET-converting enzyme and neutral endopeptidase such as SLV306 (daglutril). A third strategy based on activating the ETB receptor, has led to the renaissance of the modified peptide agonist IRL1620 as a clinical candidate in delivering anti-tumour drugs and as a pharmacological tool to investigate experimental pathophysiological conditions. Finally, we discuss biased signalling, epigenetic regulation and targeting with monoclonal antibodies as prospective new areas for ET research.
Collapse
Affiliation(s)
- J J Maguire
- Clinical Pharmacology Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|