1
|
Schlecht J, Moritz B, Kiessig S, Neusüß C. Characterization of therapeutic mAb charge heterogeneity by iCIEF coupled to mass spectrometry (iCIEF-MS). Electrophoresis 2023; 44:540-548. [PMID: 36148605 DOI: 10.1002/elps.202200170] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/07/2022]
Abstract
Imaged capillary isoelectric focusing (iCIEF) has emerged as an important technique for therapeutic monoclonal antibody (mAb) charge heterogeneity analysis in the biopharmaceutical context, providing imaged detection and quantitation by UV without a mobilization step. Besides quantitation, the characterization of separated charge variants ideally directly by online electrospray ionization-mass spectrometry (ESI-MS) is crucial to ensure product quality, safety, and efficacy. Straightforward direct iCIEF-MS coupling combining high separation efficiency and quantitative results of iCIEF with the characterization power of MS enables deep characterization of mAb charge variants. A short technical setup and optimized methodical parameters (30 nl/min mobilization rate, 2%-4% ampholyte concentration, 0.5-2 mg/ml sample concentration) allow successful mAb charge variant peak assignment from iCIEF to MS. Despite a loss of separation resolution during the transfer, separated intact mAb charge variants, including deamidation as well as major and minor glycoforms even from low abundant charge variants, could be characterized by online ESI-MS with high precision. The presented setup provides a large potential for mAb charge heterogeneity characterization in biopharmaceutical applications.
Collapse
Affiliation(s)
- Johannes Schlecht
- Department of Chemistry, Aalen University, Aalen, Germany.,Department of Pharmaceutical and Medicinal Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | | | | | | |
Collapse
|
2
|
Schlecht J, Jooß K, Moritz B, Kiessig S, Neusüß C. Two-Dimensional Capillary Zone Electrophoresis-Mass Spectrometry: Intact mAb Charge Variant Separation Followed by Peptide Level Analysis Using In-Capillary Digestion. Anal Chem 2023; 95:4059-4066. [PMID: 36800441 DOI: 10.1021/acs.analchem.2c04578] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Characterization of charge heterogeneity is an essential pillar for pharmaceutical development and quality control of therapeutic monoclonal antibodies (mAbs). The highly selective and commonly applied capillary zone electrophoresis (CZE) method containing high amounts of ε-aminocaproic acid (EACA) provides a detailed and robust charge heterogeneity profile of intact mAb variants. Nevertheless, the exact location of protein modifications within these charge profiles remains ambiguous. Electrospray ionization mass spectrometry (ESI-MS) is a promising tool for this purpose; however, EACA is incompatible with electrospray. In this context, we present a two-dimensional CZE-CZE-MS system to combine efficient charge variant separation of intact mAbs with subsequent peptide analysis after in-capillary digestion of selected charge variants. The first dimension is based on a generic CZE(EACA) method in a fused silica capillary. In the second dimension, a neutral-coated capillary is used for in-capillary reduction and digestion with Tris(2-carboxyethyl)phosphine (TCEP) and pepsin, followed by CZE separation and MS/MS-characterization of the resulting peptides. The setup is demonstrated using stressed and nonstressed mAbs where peaks of basic, main, and acidic variants were transferred in a heart-cut fashion, digested, and characterized on the peptide level. Sequence coverages of more than 90% were obtained for heavy chain (HC) and light chain (LC) for four different mAbs, including low-abundance variants (<2% of the main peak). Frequently observed modifications (deamidation, oxidation, etc.) could be detected and localized. This study demonstrates a proof-of-concept for identification and localization of protein modifications from CZE charge heterogeneity profiles and, in this way, is expected to support the development and quality control testing of protein pharmaceuticals.
Collapse
Affiliation(s)
- Johannes Schlecht
- Department of Chemistry, Aalen University, Beethovenstrasse 1, 73430 Aalen, Germany.,Department of Pharmaceutical and Medicinal Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kevin Jooß
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Bernd Moritz
- F. Hoffmann La-Roche Ltd., Grenzacherstraße 124, 4058 Basel, Switzerland
| | - Steffen Kiessig
- F. Hoffmann La-Roche Ltd., Grenzacherstraße 124, 4058 Basel, Switzerland
| | - Christian Neusüß
- Department of Chemistry, Aalen University, Beethovenstrasse 1, 73430 Aalen, Germany
| |
Collapse
|
3
|
Kaya SI, Cetinkaya A, Caglayan MG, Ozkan SA. Recent biopharmaceutical applications of capillary electrophoresis methods on recombinant DNA technology-based products. Electrophoresis 2021; 43:1035-1049. [PMID: 34529858 DOI: 10.1002/elps.202100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 09/05/2021] [Indexed: 11/11/2022]
Abstract
Biopharmaceuticals (recombinant technology-based products, vaccines, whole blood and blood components, gene therapy, cells, tissues, etc.,) are described as biological medical products produced from various living sources such as human, microbial, animal, and so on by manufacturing, extraction, or semi-synthesis. They are complex molecules having high molecular weights. For their safety and efficacy, their structural, clinical, physicochemical, and chemical features must be carefully controlled, and they must be well characterized by analytical techniques before the approval of the final product. Capillary electrophoresis (CE) having versatile modes can provide valuable safety and efficacy information, such as amino acid sequence, size variants (low and high molecular weight variants), charged variants (acidic and basic impurities), aggregates, N-linked glycosylation, and O-linked glycosylation. There are numerous applications of CE in the literature. In this review, the most significant and recent studies on the analysis of recombinant DNA technology-based products using different CE modes in the last ten years have been overviewed. It was seen that the researches mostly focus on the analysis of mAbs and IgG. In addition, in recent years, researchers have started to prefer CE combined mass spectrometry (MS) techniques to provide a more detailed characterization for protein and peptide fragments.
Collapse
Affiliation(s)
- S Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Mehmet G Caglayan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
4
|
Arndt JR, Wormwood Moser KL, Van Aken G, Doyle RM, Talamantes T, DeBord D, Maxon L, Stafford G, Fjeldsted J, Miller B, Sherman M. High-Resolution Ion-Mobility-Enabled Peptide Mapping for High-Throughput Critical Quality Attribute Monitoring. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2019-2032. [PMID: 33835810 DOI: 10.1021/jasms.0c00434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Characterization and monitoring of post-translational modifications (PTMs) by peptide mapping is a ubiquitous assay in biopharmaceutical characterization. Often, this assay is coupled to reversed-phase liquid chromatographic (LC) separations that require long gradients to identify all components of the protein digest and resolve critical modifications for relative quantitation. Incorporating ion mobility (IM) as an orthogonal separation that relies on peptide structure can supplement the LC separation by providing an additional differentiation filter to resolve isobaric peptides, potentially reducing ambiguity in identification through mobility-aligned fragmentation and helping to reduce the run time of peptide mapping assays. A next-generation high-resolution ion mobility (HRIM) technique, based on structures for lossless ion manipulations (SLIM) technology with a 13 m ion path, provides peak capacities and higher resolving power that rivals traditional chromatographic separations and, owing to its ability to resolve isobaric peptides that coelute in faster chromatographic methods, allows for up to 3× shorter run times than conventional peptide mapping methods. In this study, the NIST monoclonal antibody IgG1κ (NIST RM 8671, NISTmAb) was characterized by LC-HRIM-MS and LC-HRIM-MS with collision-induced dissociation (HRIM-CID-MS) using a 20 min analytical method. This approach delivered a sequence coverage of 96.5%. LC-HRIM-CID-MS experiments provided additional confidence in sequence determination. HRIM-MS resolved critical oxidations, deamidations, and isomerizations that coelute with their native counterparts in the chromatographic dimension. Finally, quantitative measurements of % modification were made using only the m/z-extracted HRIM arrival time distributions, showing good agreement with the reference liquid-phase separation. This study shows, for the first time, the analytical capability of HRIM using SLIM technology for enhancing peptide mapping workflows relevant to biopharmaceutical characterization.
Collapse
Affiliation(s)
- James R Arndt
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Kelly L Wormwood Moser
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Gregory Van Aken
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Rory M Doyle
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Tatjana Talamantes
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Daniel DeBord
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Laura Maxon
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - George Stafford
- Agilent Technologies Inc., 5301 Stevens Creek Bouelvard, Santa Clara, California 95051, United States
| | - John Fjeldsted
- Agilent Technologies Inc., 5301 Stevens Creek Bouelvard, Santa Clara, California 95051, United States
| | - Bryan Miller
- Agilent Technologies Inc., 5301 Stevens Creek Bouelvard, Santa Clara, California 95051, United States
| | - Melissa Sherman
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| |
Collapse
|
5
|
Dykstra AB, Flick TG, Lee B, Blue LE, Angell N. Chip-Based Capillary Zone Electrophoresis Mass Spectrometry for Rapid Resolution and Quantitation of Critical Quality Attributes in Protein Biotherapeutics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1952-1963. [PMID: 33730487 DOI: 10.1021/jasms.0c00424] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aspiration of the multi-attribute method (MAM) is to utilize a single mass spectrometry-based method that can measure multiple attributes simultaneously, thus enabling data-driven decisions more quickly and efficiently. However, challenges associated with identifying and quantitating critical quality attributes such as asparagine deamidation and isoaspartic acid using conventional ultrahigh-pressure liquid chromatography (UHPLC) coupled to mass spectrometry have necessitated long gradients to ensure sufficient separation for quantitation. Microfluidic chip-based capillary zone electrophoresis mass spectrometry (CZE-MS) shows potential to enable rapid charge-based separation of peptide mixtures, and this approach was evaluated using multipeptide mixtures of synthetic peptides as well as digested protein therapeutics. In these experiments, repeatability, linearity, and peak-to-peak resolution of several peptide families containing asparagine deamidation and/or isoaspartic acid were demonstrated. In addition, a comparison of peptide map results acquired with both UHPLC-MS and CZE-MS for two enzymatically digested biological therapeutics showed comparable sequence coverage and quantitation results between the two approaches. As MAM becomes increasingly utilized for analysis of biological therapeutics, MS instrument demand will rapidly increase, resulting in a bottleneck. A CZE-based separation shows potential to alleviate this bottleneck by drastically increasing MAM throughput while providing results comparable to those acquired using conventional UHPLC separations.
Collapse
Affiliation(s)
- Andrew B Dykstra
- Department of Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Tawnya G Flick
- Department of Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Burton Lee
- Department of Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Laura E Blue
- Department of Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Nic Angell
- Department of Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| |
Collapse
|
6
|
Hui JO, Flick T, Loo JA, Campuzano IDG. Unequivocal Identification of Aspartic Acid and isoAspartic Acid by MALDI-TOF/TOF: From Peptide Standards to a Therapeutic Antibody. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1901-1909. [PMID: 33390012 DOI: 10.1021/jasms.0c00370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aspartic acid (Asp) to isoaspartic acid (isoAsp) isomerization in therapeutic monoclonal antibodies (mAbs) and other biotherapeutics is a critical quality attribute (CQA) that requires careful control and monitoring during the drug discovery and production processes. The unwanted formation of isoAsp within biotherapeutics and resultant structural changes in the peptide backbone may negatively impact the efficacy, potency, and safety of the molecule or become immunogenic, especially if the isomerization occurs within the mAb complementarity determining region (CDR). Herein we describe a MALDI-TOF/TOF mass spectrometry method that affords unequivocal identification of the presence and the exact position of the isoAsp residue(s) in peptide standards ranging in size from a tripeptide to a docosapeptide (22 residues). In general, the peptide bond immediately N-terminal to the isoAsp residue is more susceptible to MALDI-TOF/TOF fragmentation than its unmodified counterpart. In some of the peptides evaluated in this study, fragmentation of the peptide bond C-terminal to the isoAsp residue (the aspartate effect) is also enhanced when compared to the control. Relative quantification by MALDI-TOF/TOF of this chemical modification is dependent upon a successful reversed-phase HPLC (rpHPLC) separation of the control and modified peptides. This method has also been validated on a therapeutic mAb that contains a well-documented isoAsp residue in the heavy chain CDR3 after forced degradation. Moreover, we also demonstrate that higher energy C-trap dissociation of only the singly charged species, and not the multiply charged form, of the isoAsp containing peptide, separated by rpHPLC, results in LC-MS/MS fragmentation that is highly consistent to that of MALDI-TOF/TOF.
Collapse
Affiliation(s)
- John O Hui
- Amgen Research, Discovery Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Tawnya Flick
- Attribute Sciences, Pivotal, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Joseph A Loo
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Iain D G Campuzano
- Amgen Research, Discovery Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| |
Collapse
|
7
|
François YN, Biacchi M, Gahoual R, Vezin A, Pansanel J. CEToolbox: Specialized calculator for capillary electrophoresis users as an android application. Electrophoresis 2021; 42:1431-1435. [PMID: 33890318 DOI: 10.1002/elps.202100036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/10/2022]
Abstract
CE has been demonstrated to be a useful and powerful separation method for the characterization of charged and neutral molecules. Since the end of the 1980s and the development of the first commercialized CE device, the use of this separation method has continued to grow for academic and industrial research involving inexorably increasing of the number of CE users. Whatever the application domain, each CE user is daily confronted to the same problems often based on basic calculations of separation properties. In order to help the community of CE users to get quickly and easily a lot of information, and desiring to provide a tool running on mobile platforms, CEToolbox has been developed as a free Android application. Within few clicks, CEToolbox offers extensive injection information as injected volume, total capillary volume, proportion and amount of injected sample, rinsing time, and electrical field. Moreover, three additional tabs allow to obtain the calculation of the viscosity and the conductivity of BGE, and the separation flow rates. Finally, a last tab is dedicated to the calculation of electroosmotic mobility and effective mobilities for a maximum of 20 compounds. CEToolbox, which can be downloaded for free on Google and F-Droid application stores, was developed to simplify the daily of CE users regardless of the CE devices.
Collapse
Affiliation(s)
- Yannis Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Michael Biacchi
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Rabah Gahoual
- Université de Paris, Faculté de sciences pharmaceutiques et biologiques, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRSUMR8258, Paris, Inserm U1022, France
| | - Aurélien Vezin
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | | |
Collapse
|
8
|
Shen X, Liang Z, Xu T, Yang Z, Wang Q, Chen D, Pham L, Du W, Sun L. Investigating native capillary zone electrophoresis-mass spectrometry on a high-end quadrupole-time-of-flight mass spectrometer for the characterization of monoclonal antibodies. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 462:116541. [PMID: 33642939 PMCID: PMC7906288 DOI: 10.1016/j.ijms.2021.116541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Native capillary zone electrophoresis-mass spectrometry (CZE-MS) has attracted attentions for the characterization of monoclonal antibodies (mAbs) due to the potential of CZE for highly efficient separations of mAbs under native conditions as well as its compatibility with native electrospray ionization (ESI)-MS. However, the low sample loading capacity and limited separation resolution of native CZE for large proteins and protein complexes (e.g. mAbs) impede the widespread adoption of native CZE-MS. Here, we present a novel native capillary isoelectric focusing (cIEF)-assisted CZE-MS method for the characterization of mAbs with much larger sample loading capacity and significantly better separation resolution than native CZE-MS alone. The native cIEF-assisted CZE-MS employed separation capillaries with a new carbohydrate-based neutral coating, a commercilized electrokinetically pumped sheathflow CE-MS interface, and a high-end quadrupole-time-of-flight (Q-TOF) mass spectrometer. Using the method, we documented the separations of different proteoforms of the SigmaMAb and the detection of its various glyco-proteoforms and homodimer. The native cIEF-assisted CZE-MS separated the NIST mAb into three peaks with a submicroliter sample loading volume, corresponding to its different proteoforms. We observed that both the NIST mAb and its homodimer had eight glyco-proteoforms, four of which had low abundance. The results demonstrate the potential of our native cIEF-assisted CZE-MS method for advancing the characterization of large proteins and protein complexes under native conditions.
Collapse
Affiliation(s)
- Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, USA 48824
| | - Zhijie Liang
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA 48859
- Current address: Department of Wound Repair Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People’s Hospital of Nanning, Nanning, China 530000
| | - Tian Xu
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, USA 48824
| | - Zhichang Yang
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, USA 48824
| | - Qianjie Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, USA 48824
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, USA 48824
| | - Lucynda Pham
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA 48859
| | - Wenjun Du
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA 48859
- Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI, USA 48859
- Corresponding authors. Wenjun Du: ; Phone: 1-989-774-7568, Liangliang Sun: ; Phone: 1-517-353-0498
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, USA 48824
- Corresponding authors. Wenjun Du: ; Phone: 1-989-774-7568, Liangliang Sun: ; Phone: 1-517-353-0498
| |
Collapse
|
9
|
Dadouch M, Ladner Y, Bich C, Montels J, Morel J, Perrin C. Fast in-line bottom-up analysis of monoclonal antibodies: Toward an electrophoretic fingerprinting approach. Electrophoresis 2021; 42:1229-1237. [PMID: 33650106 DOI: 10.1002/elps.202000375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 01/08/2023]
Abstract
For their characterization and quality control, monoclonal antibodies are frequently analyzed at the bottom-up level to generate specific fingerprints that can be used to tackle post-translational modifications or ensure production consistency between lots. To circumvent time-consuming and labor-intensive off-line sample preparation steps, the implementation of integrated methodologies from sample preparation to separation and detection is highly valuable. In this perspective, capillary zone electrophoresis appears as a choice technique since the capillary can subsequently be used as a vessel for sample preparation and electrophoretic discrimination/detection of the reaction products. Here, a fast in-line methodology for the routine quality control of mAbs at the bottom-up level is reported. Simultaneous denaturation and reduction (pretreatment step) were conducted with RapiGest® surfactant and dithiothreitol before in-line tryptic digestion. Reactant mixing was realized by transverse diffusion of laminar flow profile under controlled temperature. In-line digestion was carried out with a resistant trypsin to autolysis. The main parameters affecting the digestion efficiency (trypsin concentration and incubation conditions) were optimized to generate mAb electrophoretic profiles free from trypsin interferences. An acidic MS-compatible BGE was used to obtain high resolution separation of released peptides and in-line surfactant cleavage. The whole methodology was performed in less than two hours with good repeatability of migration times (RSD = 0.91%, n = 5) and corrected peak areas (RSD = 9.6%, n = 5). CE-fingerprints were successfully established for different mAbs and an antibody-drug conjugate.
Collapse
Affiliation(s)
- Meriem Dadouch
- UMR 5247-CNRS-UM-ENSCM, Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, Montpellier, France
| | - Yoann Ladner
- UMR 5247-CNRS-UM-ENSCM, Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, Montpellier, France
| | - Claudia Bich
- UMR 5247-CNRS-UM-ENSCM, Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, Montpellier, France
| | - Jérôme Montels
- UMR 5247-CNRS-UM-ENSCM, Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, Montpellier, France
| | - Jacques Morel
- Département de Rhumatologie, Université de Montpellier, Hôpital Lapeyronie, Montpellier Cedex 5, 34295, France
| | - Catherine Perrin
- UMR 5247-CNRS-UM-ENSCM, Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, Montpellier, France
| |
Collapse
|
10
|
Shen Z, Wang Y, Xu H, Zhang Q, Sha C, Sun B, Li Q. Analytical comparability assessment on glycosylation of ziv-aflibercept and the biosimilar candidate. Int J Biol Macromol 2021; 180:494-509. [PMID: 33684428 DOI: 10.1016/j.ijbiomac.2021.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Ziv-aflibercept (aflibercept) is a recombinant fusion protein which combines the portions of human vascular endothelial growth factor receptors extracellular domains fused to the Fc portion of human IgG1. It is a highly sialylated glycoprotein with 5 N-glycosylation sites. In this study, a comprehensive strategy for comparability study of the complex glycosylation was developed between aflibercept and the biosimilar candidate including the investigations on N-glycosylation sites, site occupancy, site-specific glycoforms, released glycans and sialic acids. The results indicated that same N-glycosylation sites were identified, site occupancy were 100% except N68 site, site-specific glycoforms and released glycans showed similar glycan species, contents of NANA were at a same level for two products. Minor differences were found between two products. The biosimilar candidate presented lower level of aglycosylation, lower level of glycans containing one terminal sialic acid, higher level of glycans containing two terminal sialic acids, higher level of G0F and Man5, lower level of G1F and G2F compared with aflibercept. However, further studies exhibited no differences were observed in the cell-based biological potency and Fc effector function. Moreover, the biosimilar candidate showed a similar pharmacokinetics curve and bioequivalence compared with aflibercept.
Collapse
Affiliation(s)
- Zhenduo Shen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanhong Wang
- Department of Pharmacy, Shandong Drug and Food Vocational College, Weihai, China
| | - Huarong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Chunjie Sha
- Analytical Department, Shandong Boan Biotechnology Co., Ltd, Yantai, China
| | - Baiping Sun
- Analytical Department, Shandong Boan Biotechnology Co., Ltd, Yantai, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
11
|
Analysis of Monoclonal Antibodies by Capillary Electrophoresis: Sample Preparation, Separation, and Detection. SEPARATIONS 2021. [DOI: 10.3390/separations8010004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are dominating the biopharmaceutical field due to the fact of their high specificity in the treatment of diverse diseases. Nevertheless, mAbs are very complex glycoproteins exhibiting several macro- and microheterogeneities that may affect their safety, quality, and efficacy. This complexity is very challenging for mAbs development, formulation, and quality control. To tackle the quality issue, a combination of multiple analytical approaches is necessary. In this perspective, capillary electrophoresis has gained considerable interest over the last decade due to the fact of its complementary features to chromatographic approaches. This review provides an overview of the strategies of mAbs and derivatives analysis by capillary electrophoresis hyphenated to ultraviolet, fluorescence, and mass spectrometry detection. The main sample preparation approaches used for mAb analytical characterization (i.e., intact, middle-up/down, and bottom-up) are detailed. The different electrophoretic modes used as well as integrated analysis approaches (sample preparation and separation) are critically discussed.
Collapse
|
12
|
Saadé J, Biacchi M, Giorgetti J, Lechner A, Beck A, Leize-Wagner E, François YN. Analysis of Monoclonal Antibody Glycopeptides by Capillary Electrophoresis-Mass Spectrometry Coupling (CE-MS). Methods Mol Biol 2021; 2271:97-106. [PMID: 33908002 DOI: 10.1007/978-1-0716-1241-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glycosylation is a crucial posttranslational modification (PTM) that might affect the safety and efficacy of monoclonal antibodies (mAbs). Capillary electrophoresis-mass spectrometry (CE-MS) enables the characterization of the primary structure of mAbs. A bottom-up proteomic workflow is designed to provide detailed information about the glycosylation. In this chapter, we describe the validated experimental protocol applied for the characterization and relative quantification of mAbs N-glycosylation at the glycopeptide level.
Collapse
Affiliation(s)
- Josiane Saadé
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Michael Biacchi
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Jérémie Giorgetti
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Antony Lechner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Alain Beck
- Centre d'Immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
13
|
Pradhan G, Sneha JM, Sonwane BP, Santhakumari B, Rao A, Kulkarni MJ. Multiple-parallel-protease digestion coupled with high-resolution mass spectrometry: An approach towards comprehensive peptide mapping of therapeutic mAbs. J Proteomics 2020; 232:104053. [PMID: 33238212 DOI: 10.1016/j.jprot.2020.104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/03/2020] [Accepted: 11/17/2020] [Indexed: 11/18/2022]
Abstract
Therapeutic monoclonal antibodies (mAbs) are structurally large and complex molecules. To be safe and efficacious, a biosimilar mAb must show high similarity to its reference product in Critical Quality Attributes (CQA). mAbs are highly sensitive to protein expression, production, manufacturing, supply chain, and storage conditions. All these factors make biosimilar mAbs intrinsically susceptible for variability during production. Accordingly, several lots of references and tests are required to establish the biosimilarity of a test mAb. The primary structure is a CQA of a mAb affecting its safety and efficacy. Here, we apply peptide mapping as an analytical method to decipher the primary structure and associated modifications for a quick quality assessment of TrastuzumAb and RituximAb innovator and biosimilar. A multiple-parallel-protease digestion strategy followed by high-resolution mass spectrometric analysis consistently achieved 100% sequence coverage along with reliable detection of post-translational modifications. Additionally, the use of supporting methods such as intact mass analysis and circular dichroism helped us to decipher the primary and higher order structures of these mAbs. We identify discernible variations in the profile of the innovator and biosimilar mAbs and validate the method for quick yet deep comparability analysis of the primary structure of biosimilar mAbs sold in the market. SIGNIFICANCE: Peptide mapping using bottom-up approach is one of the most common methods for the characterization of therapeutic monoclonal antibodies. Herein, we describe a multi-parallel-protease digestion strategy using a combination of five different proteases followed by high-resolution mass spectrometric analysis with TrastuzumAb and RituximAb as an example. This resulted in a comprehensive identification of peptides with increased reliability and identification of different PTMs. Additional supporting orthogonal methods like intact mass and higher-order structure analysis helped evaluate broader conformational properties.
Collapse
Affiliation(s)
- Gauri Pradhan
- CSIR-National Chemical Laboratory, Pune 411008, India
| | - J M Sneha
- CSIR-National Chemical Laboratory, Pune 411008, India
| | - Babasaheb P Sonwane
- CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| | - B Santhakumari
- CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Alka Rao
- CSIR-Institute of Microbial Technology, Chandigarh 160036, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, India.
| | - Mahesh J Kulkarni
- CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, India.
| |
Collapse
|
14
|
Glycoproteomics Technologies in Glycobiotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:413-434. [PMID: 33205259 DOI: 10.1007/10_2020_144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Glycosylation is a key factor determining the pharmacological properties of biotherapeutics, including their stability, solubility, bioavailability, pharmacokinetics, and immunogenicity. As such, comprehensive information about glycosylation of biotherapeutics is critical to demonstrate similarity. Regulatory agencies also require extensive documentation of the comprehensive analyses of glycosylation-related critical quality attributes (CQAs) during the development, manufacturing, and release of biosimilars. Mass spectrometry has catalysed tremendous advancements in the characterisation of glycosylation CQAs of biotherapeutics. Here we provide a perspective overview on the MS-based technologies relevant for biotherapeutic product characterisation with an emphasis on the recent developments that allow determination of glycosylation features such as site of glycosylation, sialic acid linkage, glycan structure, and content.
Collapse
|
15
|
Carillo S, Jakes C, Bones J. In-depth analysis of monoclonal antibodies using microfluidic capillary electrophoresis and native mass spectrometry. J Pharm Biomed Anal 2020; 185:113218. [DOI: 10.1016/j.jpba.2020.113218] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/22/2022]
|
16
|
Cheng J, Wang L, Rive CM, Holt RA, Morin GB, Chen DDY. Complementary Methods for de Novo Monoclonal Antibody Sequencing to Achieve Complete Sequence Coverage. J Proteome Res 2020; 19:2700-2707. [PMID: 32338916 DOI: 10.1021/acs.jproteome.0c00223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mass spectrometry is a powerful tool for de novo sequencing of novel proteins. Recent efforts in this area have mainly focused on liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Here, we present an alternative method, capillary electrophoresis tandem mass spectrometry (CE-MS/MS), for sequencing novel monoclonal antibodies. Using less than 200 ng in total of tryptic digest sample in a triplicated measurement, CE-MS/MS with pH-mediated focusing successfully sequenced mAb infliximab with 100% sequence coverage and 100% accuracy for the light chain and 96% coverage and 93% accuracy for the heavy chain. It was also demonstrated that CE-MS/MS gives comparable results, and in some cases, even better results, as compared to LC-MS/MS when used as a standalone technique. A combined workflow using both CE-MS/MS and LC-MS/MS was also used to sequence a novel antibody, anti-CD-176, resulting in the first proposed sequence for this mAb.
Collapse
Affiliation(s)
- Jianhui Cheng
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Lingyu Wang
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Craig M Rive
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 1L3, Canada
| | - Robert A Holt
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 1L3, Canada
| | - Gregg B Morin
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 1L3, Canada
| | - David D Y Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
17
|
Combination of intact, middle-up and bottom-up levels to characterize 7 therapeutic monoclonal antibodies by capillary electrophoresis – Mass spectrometry. J Pharm Biomed Anal 2020; 182:113107. [DOI: 10.1016/j.jpba.2020.113107] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/22/2022]
|
18
|
Borgmann-Winter KE, Wang K, Bandyopadhyay S, Torshizi AD, Blair IA, Hahn CG. The proteome and its dynamics: A missing piece for integrative multi-omics in schizophrenia. Schizophr Res 2020; 217:148-161. [PMID: 31416743 PMCID: PMC7500806 DOI: 10.1016/j.schres.2019.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 01/08/2023]
Abstract
The complex and heterogeneous pathophysiology of schizophrenia can be deconstructed by integration of large-scale datasets encompassing genes through behavioral phenotypes. Genome-wide datasets are now available for genetic, epigenetic and transcriptomic variations in schizophrenia, which are then analyzed by newly devised systems biology algorithms. A missing piece, however, is the inclusion of information on the proteome and its dynamics in schizophrenia. Proteomics has lagged behind omics of the genome, transcriptome and epigenome since analytic platforms were relatively less robust for proteins. There has been remarkable progress, however, in the instrumentation of liquid chromatography (LC) and mass spectrometry (MS) (LCMS), experimental paradigms and bioinformatics of the proteome. Here, we present a summary of methodological innovations of recent years in MS based proteomics and the power of new generation proteomics, review proteomics studies that have been conducted in schizophrenia to date, and propose how such data can be analyzed and integrated with other omics results. The function of a protein is determined by multiple molecular properties, i.e., subcellular localization, posttranslational modification (PTMs) and protein-protein interactions (PPIs). Incorporation of these properties poses additional challenges in proteomics and their integration with other omics; yet is a critical next step to close the loop of multi-omics integration. In sum, the recent advent of high-throughput proteome characterization technologies and novel mathematical approaches enable us to incorporate functional properties of the proteome to offer a comprehensive multi-omics based understanding of schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Karin E Borgmann-Winter
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America; Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Sabyasachi Bandyopadhyay
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America
| | - Abolfazl Doostparast Torshizi
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America.
| |
Collapse
|
19
|
Assessment of Structural and Functional Comparability of Biosimilar Products: Trastuzumab as a Case Study. BioDrugs 2020; 34:209-223. [DOI: 10.1007/s40259-020-00404-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Saadé J, Gahoual R, Beck A, Leize-Wagner E, François YN. Characterization of the Primary Structure of Cysteine-Linked Antibody-Drug Conjugates Using Capillary Electrophoresis with Mass Spectrometry. Methods Mol Biol 2020; 2078:263-272. [PMID: 31643063 DOI: 10.1007/978-1-4939-9929-3_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Capillary electrophoresis-mass spectrometry (CE-MS) enables the characterization of the primary structure of ADCs. An analytical method based on a derived bottom-up proteomic workflow is designed to provide detailed information about the amino acid sequence, the glycosylation profiling, and the location on the peptide backbone of the conjugated drugs. Here we describe the experimental protocol applied on the characterization of cysteine-linked brentuximab vedotin (Adcetris®).
Collapse
Affiliation(s)
- Josiane Saadé
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Rabah Gahoual
- Laboratoire Vecteurs Pour l'Imagerie Moléculaire et le Ciblage Thérapeutique (VICT), Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Alain Beck
- Pierre Fabre Laboratories, IRPF-Centre d'Immunologie Pierre Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
21
|
Schadt S, Hauri S, Lopes F, Edelmann MR, Staack RF, Villaseñor R, Kettenberger H, Roth AB, Schuler F, Richter WF, Funk C. Are Biotransformation Studies of Therapeutic Proteins Needed? Scientific Considerations and Technical Challenges. Drug Metab Dispos 2019; 47:1443-1456. [DOI: 10.1124/dmd.119.088997] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
|
22
|
Gomes FP, Yates JR. Recent trends of capillary electrophoresis-mass spectrometry in proteomics research. MASS SPECTROMETRY REVIEWS 2019; 38:445-460. [PMID: 31407381 PMCID: PMC6800771 DOI: 10.1002/mas.21599] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Progress in proteomics research has led to a demand for powerful analytical tools with high separation efficiency and sensitivity for confident identification and quantification of proteins, posttranslational modifications, and protein complexes expressed in cells and tissues. This demand has significantly increased interest in capillary electrophoresis-mass spectrometry (CE-MS) in the past few years. This review provides highlights of recent advances in CE-MS for proteomics research, including a short introduction to top-down mass spectrometry and native mass spectrometry (native MS), as well as a detailed overview of CE methods. Both the potential and limitations of these methods for the analysis of proteins and peptides in synthetic and biological samples and the challenges of CE methods are discussed, along with perspectives about the future direction of CE-MS. @ 2019 Wiley Periodicals, Inc. Mass Spec Rev 00:1-16, 2019.
Collapse
Affiliation(s)
| | - John R. Yates
- Correspondent author: , Phone number: (858) 784-8862, Departments of Molecular Medicine and Neurobiology, 10550 North Torrey Pines Road, SR302B, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
23
|
Révész Á, Rokob TA, Jeanne Dit Fouque D, Hüse D, Háda V, Turiák L, Memboeuf A, Vékey K, Drahos L. Optimal Collision Energies and Bioinformatics Tools for Efficient Bottom-up Sequence Validation of Monoclonal Antibodies. Anal Chem 2019; 91:13128-13135. [PMID: 31518108 DOI: 10.1021/acs.analchem.9b03362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Rigorous validation of amino acid sequence is fundamental in the characterization of original and biosimilar protein biopharmaceuticals. Widely accepted workflows are based on bottom-up mass spectrometry, and they often require multiple techniques and significant manual work. Here, we demonstrate that optimization of a set of tandem mass spectroscopy (MS/MS) collision energies and automated combination of all available information in the measurements can increase the sequence validated by one technique close to the inherent limits. We created a software (called "Serac") that consumes results of the Mascot database search engine and identifies the amino acids validated by bottom-up MS/MS experiments using the most rigorous, industrially acceptable definition of sequence coverage (we term this "confirmed sequence coverage"). The software can combine spectra at the level of amino acids or fragment ions to exploit complementarity, provides full transparency to justify validation, and reduces manual effort. With its help, we investigated collision energy dependence of confirmed sequence coverage of individual peptides and full proteins on trypsin-digested monoclonal antibody samples (rituximab and trastuzumab). We found the energy dependence to be modest, but we demonstrated the benefit of using spectra taken at multiple energies. We describe a workflow based on 2-3 LC-MS/MS runs, carefully selected collision energies, and a fragment ion level combination, which yields ∼85% confirmed sequence coverage, 25%-30% above that from a basic proteomics protocol. Further increase can mainly be expected from alternative digestion enzymes or fragmentation techniques, which can be seamlessly integrated to the processing, thereby allowing effortless validation of full sequences.
Collapse
Affiliation(s)
- Ágnes Révész
- MS Proteomics Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| | - Tibor András Rokob
- Theoretical Chemistry Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| | - Dany Jeanne Dit Fouque
- UMR CNRS 6521, CEMCA , Université de Bretagne Occidentale , 6 Av. Le Gorgeu , 29238 Brest Cedex 3 , France
| | - Dániel Hüse
- Analytical Department of Biotechnology , Gedeon Richter Plc , POB 27, H-1475 Budapest 10 , Hungary
| | - Viktor Háda
- Analytical Department of Biotechnology , Gedeon Richter Plc , POB 27, H-1475 Budapest 10 , Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| | - Antony Memboeuf
- UMR CNRS 6521, CEMCA , Université de Bretagne Occidentale , 6 Av. Le Gorgeu , 29238 Brest Cedex 3 , France
| | - Károly Vékey
- MS Proteomics Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| |
Collapse
|
24
|
Insights from capillary electrophoresis approaches for characterization of monoclonal antibodies and antibody drug conjugates in the period 2016–2018. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1122-1123:1-17. [DOI: 10.1016/j.jchromb.2019.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022]
|
25
|
Giorgetti J, Lechner A, Del Nero E, Beck A, François YN, Leize-Wagner E. Intact monoclonal antibodies separation and analysis by sheathless capillary electrophoresis-mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2019; 25:324-332. [PMID: 30351978 DOI: 10.1177/1469066718807798] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Capillary electrophoresis-mass spectrometry coupling is a growing technique in biopharmaceutics characterization. Assessment of monoclonal antibodies is well known at middle-up and bottom-up levels to obtain information about the sequence, post-translational modifications and degradation products. Intact protein analysis is an actual challenge to be closer to the real protein structure. At this level, actual techniques are time consuming or cumbersome processes. In this work, a 20 minutes separation method has been developed to optimize characterization of intact monoclonal antibodies. Thus, separation has been done on a positively charged coated capillary with optimized volatile background electrolyte and sample buffer. Three world-wide health authorities approved monoclonal antibodies have been used to set up a rapid and ease of use method. Intact trastuzumab, rituximab and palivizumab isoforms have been partially separated with this method in less than 20 minutes under denaturing conditions. For each monoclonal antibody, 2X-glycosylated and 1X-glycosylated structures have been identified and separated. Concerning basic and acidic variants, potential aspartic acid isomerization modification and asparagine deamidation have been observed. Accurate mass determination for high-mass molecular species remains a challenge, but the progress in intact monoclonal antibodies separation appears very promising for biopharmaceutics characterization.
Collapse
Affiliation(s)
- Jérémie Giorgetti
- 1 Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Antony Lechner
- 1 Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Elise Del Nero
- 1 Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Alain Beck
- 2 Centre d'immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | - Yannis-Nicolas François
- 1 Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Emmanuelle Leize-Wagner
- 1 Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
26
|
Lim MS, So MK, Lim CS, Song DH, Kim JW, Woo J, Ko BJ. Validation of Rapi-Fluor method for glycan profiling and application to commercial antibody drugs. Talanta 2019; 198:105-110. [DOI: 10.1016/j.talanta.2019.01.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 01/09/2023]
|
27
|
Montealegre C, Neusüß C. Coupling imaged capillary isoelectric focusing with mass spectrometry using a nanoliter valve. Electrophoresis 2018; 39:1151-1154. [DOI: 10.1002/elps.201800013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 12/20/2022]
|
28
|
Sączyńska V, Bierczyńska-Krzysik A, Cecuda-Adamczewska V, Baran P, Porębska A, Florys K, Zieliński M, Płucienniczak G. Production of highly and broad-range specific monoclonal antibodies against hemagglutinin of H5-subtype avian influenza viruses and their differentiation by mass spectrometry. Virol J 2018; 15:13. [PMID: 29334981 PMCID: PMC5769215 DOI: 10.1186/s12985-017-0886-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 10/31/2017] [Indexed: 02/08/2023] Open
Abstract
Background The highly pathogenic avian influenza viruses of the H5 subtype, such as the H5N1 viral strains or the novel H5N8 and H5N2 reassortants, are of both veterinary and public health concern worldwide. To combat these viruses, monoclonal antibodies (mAbs) against H5 hemagglutinin (HA) play a significant role. These mAbs are effective diagnostic and therapeutic agents and powerful tools in vaccine development and basic scientific research. The aim of this study was to obtain diagnostically valuable mAbs with broad strain specificity against H5-subtype AIVs. Results We applied the hybridoma method to produce anti-HA mAbs. The cloning and screening procedures resulted in the selection of 7 mouse hybridoma cell lines and their respective antibody clones. Preliminary immunoreactivity studies showed that these newly established mAbs, all of the IgG1 isotype, had high specificity and broad-range activities against the H5 HAs. However, these studies did not allow for a clear distinction among the selected antibodies and mAb-secreting hybridoma clones. To differentiate the analyzed mAbs and determine the exact number of hybridoma clones, peptide mapping of the Fc and Fab fragments was performed using a Matrix-Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF/TOF) mass spectrometer. Detailed analyses of the acquired MS and MS/MS spectra confirmed that the Fc fragments constituted highly conserved species- and isotype-immunoglobulin components, whereas the Fab fragments exhibited considerable variation in the sequences that determine antibody specificity. This approach enabled unambiguous characterization of the selected mAbs according to their peptide composition. As a result, 6 different clones were distinguished. Conclusions Our work provided a unique panel of anti-H5 HA mAbs, which meets the demand for novel, high-specificity analytical tools for use in serologic surveillance. Applications of these mAbs in areas other than diagnostics are also possible. Moreover, we demonstrated for the first time that peptide mapping of antibody fragments with mass spectrometry is an efficient method for the differentiation of antibody clones and relevant antibody-producing cell lines. The method may be successfully used to characterize mAbs at the protein level. Electronic supplementary material The online version of this article (10.1186/s12985-017-0886-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Violetta Sączyńska
- Institute of Biotechnology and Antibiotics, Starościńska 5 Street, 02-516, Warsaw, Poland.
| | | | | | - Piotr Baran
- Institute of Biotechnology and Antibiotics, Starościńska 5 Street, 02-516, Warsaw, Poland
| | - Anna Porębska
- Institute of Biotechnology and Antibiotics, Starościńska 5 Street, 02-516, Warsaw, Poland
| | - Katarzyna Florys
- Institute of Biotechnology and Antibiotics, Starościńska 5 Street, 02-516, Warsaw, Poland
| | - Marcin Zieliński
- Institute of Biotechnology and Antibiotics, Starościńska 5 Street, 02-516, Warsaw, Poland
| | - Grażyna Płucienniczak
- Institute of Biotechnology and Antibiotics, Starościńska 5 Street, 02-516, Warsaw, Poland
| |
Collapse
|
29
|
Isomeric Separation and Characterisation of Glycoconjugates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:77-99. [DOI: 10.1007/978-981-13-2158-0_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Dada OO, Zhao Y, Jaya N, Salas-Solano O. High-Resolution Capillary Zone Electrophoresis with Mass Spectrometry Peptide Mapping of Therapeutic Proteins: Improved Separation with Mixed Aqueous–Aprotic Dipolar Solvents (N,N-Dimethylacetamide and N,N-Dimethylformamide) as the Background Electrolyte. Anal Chem 2017; 89:11227-11235. [DOI: 10.1021/acs.analchem.7b03405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Oluwatosin O. Dada
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Yimeng Zhao
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Nomalie Jaya
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Oscar Salas-Solano
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| |
Collapse
|
31
|
Giorgetti J, D'Atri V, Canonge J, Lechner A, Guillarme D, Colas O, Wagner-Rousset E, Beck A, Leize-Wagner E, François YN. Monoclonal antibody N-glycosylation profiling using capillary electrophoresis - Mass spectrometry: Assessment and method validation. Talanta 2017; 178:530-537. [PMID: 29136858 DOI: 10.1016/j.talanta.2017.09.083] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 01/08/2023]
Abstract
Characterization of therapeutic proteins represents a major challenge for analytical sciences due to their heterogeneity caused by post-translational modifications (PTM). Among these PTM, glycosylation which is possibly the most prominent, require comprehensive identification because of their major influence on protein structure and effector functions of monoclonal antibodies (mAbs). As a consequence, glycosylation profiling must be deeply characterized. For this application, several analytical methods such as separation-based or MS-based methods, were evaluated. However, no CE-ESI-MS approach has been assessed and validated. Here, we illustrate how the use of CE-ESI-MS method permits the comprehensive characterization of mAbs N-glycosylation at the glycopeptide level to perform relative quantitation of N-glycan species. Validation of the CE-ESI-MS method in terms of robustness and reproducibility was demonstrated through the relative quantitation of glycosylation profiles for ten different mAbs produced in different cell lines. Glycosylation patterns obtained for each mAbs were compared to Hydrophilic Interaction Chromatography of 2-aminobenzamide labelled glycans with fluorescence detector (HILIC-FD) analysis considered as a reference method. Very similar glycoprofiling were obtained with the CE-ESI-MS and HILIC-FD demonstrating the attractiveness of CE-ESI-MS method to characterize and quantify the glycosylation heterogeneity of a wide range of therapeutic mAbs with high accuracy and precision.
Collapse
Affiliation(s)
- Jérémie Giorgetti
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| | - Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Julie Canonge
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| | - Antony Lechner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Olivier Colas
- Centre d'immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | | | - Alain Beck
- Centre d'immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, France.
| |
Collapse
|
32
|
Biacchi M, Said N, Beck A, Leize-Wagner E, François YN. Top-down and middle-down approach by fraction collection enrichment using off-line capillary electrophoresis – mass spectrometry coupling: Application to monoclonal antibody F c/2 charge variants. J Chromatogr A 2017; 1498:120-127. [DOI: 10.1016/j.chroma.2017.02.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 01/13/2017] [Accepted: 02/26/2017] [Indexed: 12/22/2022]
|
33
|
Faserl K, Sarg B, Maurer V, Lindner HH. Exploiting charge differences for the analysis of challenging post-translational modifications by capillary electrophoresis-mass spectrometry. J Chromatogr A 2017; 1498:215-223. [DOI: 10.1016/j.chroma.2017.01.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 12/27/2022]
|
34
|
Largy E, Cantais F, Van Vyncht G, Beck A, Delobel A. Orthogonal liquid chromatography-mass spectrometry methods for the comprehensive characterization of therapeutic glycoproteins, from released glycans to intact protein level. J Chromatogr A 2017; 1498:128-146. [PMID: 28372839 DOI: 10.1016/j.chroma.2017.02.072] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/04/2017] [Accepted: 02/28/2017] [Indexed: 01/16/2023]
Abstract
Proteins are increasingly used as therapeutics. Their characterization is challenging due to their size and inherent heterogeneity notably caused by post-translational modifications, among which glycosylation is probably the most prominent. The glycosylation profile of therapeutic proteins must therefore be thoroughly analyzed. Here, we illustrate how the use of a combination of various cutting-edge LC or LC/MS(/MS) methods, and operating at different levels of analysis allows the comprehensive characterization of both the N- and O-glycosylations of therapeutic proteins without the need for other approaches (capillary electrophoresis, MALDI-TOF). This workflow does not call for the use of highly specialized/custom hardware and software nor an extensive knowledge of glycan analysis. Most notably, we present the point of view of a contract research organization, with the constraints associated to the work in a regulated environment (GxP). Two salient points of this work are i) the use of mixed-mode chromatography as a fast and straightforward mean of profiling N-glycans sialylation as well as an orthogonal method to separate N-glycans co-eluting in the HILIC mode; and ii) the use of widepore HILIC/MS to analyze challenging N/O-glycosylation profiles at both the peptide and subunit levels. A particular attention was given to the sample preparations in terms of duration, specificity, versatility, and robustness, as well as the ease of data processing.
Collapse
Affiliation(s)
- Eric Largy
- Quality Assistance sa, Technoparc de Thudinie 2, 6536, Donstiennes, Belgium
| | - Fabrice Cantais
- Quality Assistance sa, Technoparc de Thudinie 2, 6536, Donstiennes, Belgium
| | - Géry Van Vyncht
- Quality Assistance sa, Technoparc de Thudinie 2, 6536, Donstiennes, Belgium
| | - Alain Beck
- Centre d'Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164, Saint-Julien-en-Genevois, France
| | - Arnaud Delobel
- Quality Assistance sa, Technoparc de Thudinie 2, 6536, Donstiennes, Belgium.
| |
Collapse
|
35
|
Liu J, Eris T, Li C, Cao S, Kuhns S. Assessing Analytical Similarity of Proposed Amgen Biosimilar ABP 501 to Adalimumab. BioDrugs 2016; 30:321-38. [PMID: 27461107 PMCID: PMC4972872 DOI: 10.1007/s40259-016-0184-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND ABP 501 is being developed as a biosimilar to adalimumab. Comprehensive comparative analytical characterization studies have been conducted and completed. OBJECTIVE The objective of this study was to assess analytical similarity between ABP 501 and two adalimumab reference products (RPs), licensed by the United States Food and Drug Administration (adalimumab [US]) and authorized by the European Union (adalimumab [EU]), using state-of-the-art analytical methods. METHODS Comprehensive analytical characterization incorporating orthogonal analytical techniques was used to compare products. Physicochemical property comparisons comprised the primary structure related to amino acid sequence and post-translational modifications including glycans; higher-order structure; primary biological properties mediated by target and receptor binding; product-related substances and impurities; host-cell impurities; general properties of the finished drug product, including strength and formulation; subvisible and submicron particles and aggregates; and forced thermal degradation. RESULTS ABP 501 had the same amino acid sequence and similar post-translational modification profiles compared with adalimumab RPs. Primary structure, higher-order structure, and biological activities were similar for the three products. Product-related size and charge variants and aggregate and particle levels were also similar. ABP 501 had very low residual host-cell protein and DNA. The finished ABP 501 drug product has the same strength with regard to protein concentration and fill volume as adalimumab RPs. ABP 501 and the RPs had a similar stability profile both in normal storage and thermal stress conditions. CONCLUSION Based on the comprehensive analytical similarity assessment, ABP 501 was found to be similar to adalimumab with respect to physicochemical and biological properties.
Collapse
Affiliation(s)
- Jennifer Liu
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| | - Tamer Eris
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Cynthia Li
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Shawn Cao
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Scott Kuhns
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| |
Collapse
|
36
|
Cutting-edge capillary electrophoresis characterization of monoclonal antibodies and related products. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:61-78. [PMID: 27265157 DOI: 10.1016/j.jchromb.2016.05.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 01/22/2023]
Abstract
Out of all categories, monoclonal antibodies (mAbs), biosimilar, antibody-drug conjugates (ADCs) and Fc-fusion proteins attract the most interest due to their strong therapeutic potency and specificity. Because of their intrinsic complexity due to a large number of micro-heterogeneities, there is a crucial need of analytical methods to provide comprehensive in-depth characterization of these molecules. CE presents some obvious benefits as high resolution separation and miniaturized format to be widely applied to the analysis of biopharmaceuticals. CE is an effective method for the separation of proteins at different levels. capillary gel electrophoresis (CGE), capillary isoelectric focusing (cIEF) and capillary zone electrophoresis (CZE) have been particularly relevant for the characterization of size and charge variants of intact and reduced mAbs, while CE-MS appears to be a promising analytical tool to assess the primary structure of mAbs and related products. This review will be dedicated to detail the current and state-of-the-art CE-based methods for the characterization of mAbs and related products.
Collapse
|
37
|
Ibrahim M, Gahoual R, Enkler L, Becker HD, Chicher J, Hammann P, François YN, Kuhn L, Leize-Wagner E. Improvement of Mitochondria Extract from Saccharomyces cerevisiae Characterization in Shotgun Proteomics Using Sheathless Capillary Electrophoresis Coupled to Tandem Mass Spectrometry. J Chromatogr Sci 2016; 54:653-63. [PMID: 26860395 PMCID: PMC4885408 DOI: 10.1093/chromsci/bmw005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/11/2015] [Indexed: 12/16/2022]
Abstract
In this work, we describe the characterization of a quantity-limited sample (100 ng) of yeast mitochondria by shotgun bottom-up proteomics. Sample characterization was carried out by sheathless capillary electrophoresis, equipped with a high sensitivity porous tip and coupled to tandem mass spectrometry (CESI-MS-MS) and concomitantly with a state-of-art nano flow liquid chromatography coupled to a similar mass spectrometry (MS) system (nanoLC-MS-MS). With single injections, both nanoLC-MS-MS and CESI-MS-MS 60 min-long separation experiments allowed us to identify 271 proteins (976 unique peptides) and 300 proteins (1,765 unique peptides) respectively, demonstrating a significant specificity and complementarity in identification depending on the physicochemical separation employed. Such complementary, maximizing the number of analytes detected, presents a powerful tool to deepen a biological sample's proteomic characterization. A comprehensive study of the specificity provided by each separating technique was also performed using the different properties of the identified peptides: molecular weight, mass-to-charge ratio (m/z), isoelectric point (pI), sequence coverage or MS-MS spectral quality enabled to determine the contribution of each separation. For example, CESI-MS-MS enables to identify larger peptides and eases the detection of those having extreme pI without impairing spectral quality. The addition of peptides, and therefore proteins identified by both techniques allowed us to increase significantly the sequence coverages and then the confidence of characterization. In this study, we also demonstrated that the two yeast enolase isoenzymes were both characterized in the CESI-MS-MS data set. The observation of discriminant proteotypic peptides is facilitated when a high number of precursors with high-quality MS-MS spectra are generated.
Collapse
Affiliation(s)
- Marianne Ibrahim
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, 67008 Strasbourg, France
| | - Rabah Gahoual
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, 67008 Strasbourg, France
| | - Ludovic Enkler
- Unité Mixte de Recherche 7156 Génétique Moléculaire Génomique Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Hubert Dominique Becker
- Unité Mixte de Recherche 7156 Génétique Moléculaire Génomique Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Johana Chicher
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, FRC 1589, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, FRC 1589, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, 67008 Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, FRC 1589, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, 67008 Strasbourg, France
| |
Collapse
|
38
|
Said N, Gahoual R, Kuhn L, Beck A, François YN, Leize-Wagner E. Structural characterization of antibody drug conjugate by a combination of intact, middle-up and bottom-up techniques using sheathless capillary electrophoresis - Tandem mass spectrometry as nanoESI infusion platform and separation method. Anal Chim Acta 2016; 918:50-9. [PMID: 27046210 DOI: 10.1016/j.aca.2016.03.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/03/2016] [Accepted: 03/06/2016] [Indexed: 12/29/2022]
Abstract
Antibody-drug conjugates (ADCs) represent a fast growing class of biotherapeutic products. Their production leads to a distribution of species exhibiting different number of conjugated drugs overlaying the inherent complexity resulting from the monoclonal antibody format, such as glycoforms. ADCs require an additional level of characterization compared to first generation of biotherapeutics obtained through multiple analytical techniques for complete structure assessment. We report the development of complementary approaches implementing sheathless capillary electrophoresis-mass spectrometry (sheathless CE-MS) to characterize the different aspects defining the structure of brentuximab vedotin. Native MS using sheathless CE-MS instrument as a nanoESI infusion platform enabled accurate mass measurements and estimation of the average drug to antibody ratio alongside to drug load distribution. Middle-up analysis performed after limited IdeS proteolysis allowed to study independently the light chain, Fab and F(ab')2 subunits incorporating 1, 0 to 4 and 0 to 8 payloads respectively. Finally, a CZE-ESI-MS/MS methodology was developed in order to be compatible with hydrophobic drug composing ADCs. From a single injection, complete sequence coverage could be achieved. Using the same dataset, glycosylation and drug-loaded peptides could be simultaneously identified revealing robust information regarding their respective localization and abundance. Drug-loaded peptide fragmentation mass spectra study demonstrated drug specific fragments reinforcing identification confidence, undescribed so far. Results reveal the method ability to characterize ADCs primary structure in a comprehensive manner while reducing tremendously the number of experiments required. Data generated showed that sheathless CZE-ESI-MS/MS characteristics position the methodology developed as a relevant alternative for comprehensive multilevel characterization of these complex biomolecules.
Collapse
Affiliation(s)
- Nassur Said
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, Strasbourg, France
| | - Rabah Gahoual
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, Strasbourg, France; Division of BioAnalytical Chemistry, AIMMS Research Group BioMolecular Analysis, VU University Amsterdam, Amsterdam, The Netherlands
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, FRC 1589, CNRS, Université de Strasbourg, Strasbourg, France
| | - Alain Beck
- Centre d'immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, Strasbourg, France.
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
39
|
Heemskerk AAM, Deelder AM, Mayboroda OA. CE-ESI-MS for bottom-up proteomics: Advances in separation, interfacing and applications. MASS SPECTROMETRY REVIEWS 2016; 35:259-271. [PMID: 24852088 DOI: 10.1002/mas.21432] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/27/2014] [Indexed: 06/03/2023]
Abstract
With the development of more sensitive hyphenation strategies for capillary electrophoresis-electrospray-mass spectrometry the technique has reemerged as technique with high separation power combined with high sensitivity in the analysis of peptides and protein digests. This review will discuss the newly developed hyphenation strategies for CE-ESI-MS and their application in bottom-up proteomics as well as the applications in the same time span, 2009 to present, using co-axial sheathliquid. Subsequently all separate aspects in the development of a CE-ESI-MS method for bottom-up proteomics shall be discussed, highlighting certain applications and discussing pros and cons of the various choices. The separation of peptides in a capillary electrophoresis system is discussed including the great potential for modeling of this migration of peptides due to the simple electrophoretic separation process. Furthermore, the technical aspects of method development are discussed, namely; background electrolyte choice, coating of the separation capillary and chosen loading method. Finally, conclusions and an outlook on future developments in the field of bottom-up proteomics by CE-ESI-MS will be provided.
Collapse
Affiliation(s)
- Anthonius A M Heemskerk
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, The Netherlands
| | - André M Deelder
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, The Netherlands
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, The Netherlands
| |
Collapse
|
40
|
Beck A, Terral G, Debaene F, Wagner-Rousset E, Marcoux J, Janin-Bussat MC, Colas O, Van Dorsselaer A, Cianférani S. Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev Proteomics 2016; 13:157-83. [PMID: 26653789 DOI: 10.1586/14789450.2016.1132167] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antibody drug conjugates (ADCs) are highly cytotoxic drugs covalently attached via conditionally stable linkers to monoclonal antibodies (mAbs) and are among the most promising next-generation empowered biologics for cancer treatment. ADCs are more complex than naked mAbs, as the heterogeneity of the conjugates adds to the inherent microvariability of the biomolecules. The development and optimization of ADCs rely on improving their analytical and bioanalytical characterization by assessing several critical quality attributes, namely the distribution and position of the drug, the amount of naked antibody, the average drug to antibody ratio, and the residual drug-linker and related product proportions. Here brentuximab vedotin (Adcetris) and trastuzumab emtansine (Kadcyla), the first and gold-standard hinge-cysteine and lysine drug conjugates, respectively, were chosen to develop new mass spectrometry (MS) methods and to improve multiple-level structural assessment protocols.
Collapse
Affiliation(s)
- Alain Beck
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Guillaume Terral
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - François Debaene
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - Elsa Wagner-Rousset
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Julien Marcoux
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | | | - Olivier Colas
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Alain Van Dorsselaer
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - Sarah Cianférani
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| |
Collapse
|
41
|
Parsons TB, Struwe WB, Gault J, Yamamoto K, Taylor TA, Raj R, Wals K, Mohammed S, Robinson CV, Benesch JLP, Davis BG. Optimal Synthetic Glycosylation of a Therapeutic Antibody. ACTA ACUST UNITED AC 2016; 128:2407-2413. [PMID: 27546920 PMCID: PMC4974915 DOI: 10.1002/ange.201508723] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/02/2015] [Indexed: 11/25/2022]
Abstract
Glycosylation patterns in antibodies critically determine biological and physical properties but their precise control is a significant challenge in biology and biotechnology. We describe herein the optimization of an endoglycosidase‐catalyzed glycosylation of the best‐selling biotherapeutic Herceptin, an anti‐HER2 antibody. Precise MS analysis of the intact four‐chain Ab heteromultimer reveals nonspecific, non‐enzymatic reactions (glycation), which are not detected under standard denaturing conditions. This competing reaction, which has hitherto been underestimated as a source of side products, can now be minimized. Optimization allowed access to the purest natural form of Herceptin to date (≥90 %). Moreover, through the use of a small library of sugars containing non‐natural functional groups, Ab variants containing defined numbers of selectively addressable chemical tags (reaction handles at Sia C1) in specific positions (for attachment of cargo molecules or “glycorandomization”) were readily generated.
Collapse
Affiliation(s)
- Thomas B Parsons
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Weston B Struwe
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Joseph Gault
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Keisuke Yamamoto
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Thomas A Taylor
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Ritu Raj
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Kim Wals
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK; Department of Pharmacology University of Oxford Oxford OX1 3QT UK
| | - Shabaz Mohammed
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Carol V Robinson
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Justin L P Benesch
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Benjamin G Davis
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
42
|
Parsons TB, Struwe WB, Gault J, Yamamoto K, Taylor TA, Raj R, Wals K, Mohammed S, Robinson CV, Benesch JLP, Davis BG. Optimal Synthetic Glycosylation of a Therapeutic Antibody. Angew Chem Int Ed Engl 2016; 55:2361-7. [PMID: 26756880 PMCID: PMC4973692 DOI: 10.1002/anie.201508723] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/02/2015] [Indexed: 12/11/2022]
Abstract
Glycosylation patterns in antibodies critically determine biological and physical properties but their precise control is a significant challenge in biology and biotechnology. We describe herein the optimization of an endoglycosidase-catalyzed glycosylation of the best-selling biotherapeutic Herceptin, an anti-HER2 antibody. Precise MS analysis of the intact four-chain Ab heteromultimer reveals nonspecific, non-enzymatic reactions (glycation), which are not detected under standard denaturing conditions. This competing reaction, which has hitherto been underestimated as a source of side products, can now be minimized. Optimization allowed access to the purest natural form of Herceptin to date (≥90 %). Moreover, through the use of a small library of sugars containing non-natural functional groups, Ab variants containing defined numbers of selectively addressable chemical tags (reaction handles at Sia C1) in specific positions (for attachment of cargo molecules or "glycorandomization") were readily generated.
Collapse
Affiliation(s)
- Thomas B Parsons
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Weston B Struwe
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Joseph Gault
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Keisuke Yamamoto
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Thomas A Taylor
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Ritu Raj
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Kim Wals
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.,Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Shabaz Mohammed
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Justin L P Benesch
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Benjamin G Davis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
43
|
Fekete S, Guillarme D, Sandra P, Sandra K. Chromatographic, Electrophoretic, and Mass Spectrometric Methods for the Analytical Characterization of Protein Biopharmaceuticals. Anal Chem 2015; 88:480-507. [DOI: 10.1021/acs.analchem.5b04561] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Szabolcs Fekete
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Pat Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| | - Koen Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| |
Collapse
|
44
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2013-middle 2015). Electrophoresis 2015; 37:162-88. [DOI: 10.1002/elps.201500329] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, v.v.i; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
45
|
Zhang L, Luo S, Zhang B. Glycan analysis of therapeutic glycoproteins. MAbs 2015; 8:205-15. [PMID: 26599345 PMCID: PMC4966609 DOI: 10.1080/19420862.2015.1117719] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/26/2015] [Accepted: 11/02/2015] [Indexed: 01/02/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are glycoproteins produced by living cell systems. The glycan moieties attached to the proteins can directly affect protein stability, bioactivity, and immunogenicity. Therefore, glycan variants of a glycoprotein product must be adequately analyzed and controlled to ensure product quality. However, the inherent complexity of protein glycosylation poses a daunting analytical challenge. This review provides an update of recent advances in glycan analysis, including the potential utility of lectin-based microarray for high throughput glycan profiling. Emphasis is placed on comparison of the major types of analytics for use in determining unique glycan features such as glycosylation site, glycan structure, and content.
Collapse
Affiliation(s)
- Lei Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Shen Luo
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Baolin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
46
|
Dotz V, Haselberg R, Shubhakar A, Kozak RP, Falck D, Rombouts Y, Reusch D, Somsen GW, Fernandes DL, Wuhrer M. Mass spectrometry for glycosylation analysis of biopharmaceuticals. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Pang Y, Wang WH, Reid GE, Hunt DF, Bruening ML. Pepsin-Containing Membranes for Controlled Monoclonal Antibody Digestion Prior to Mass Spectrometry Analysis. Anal Chem 2015; 87:10942-9. [PMID: 26455365 DOI: 10.1021/acs.analchem.5b02739] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Monoclonal antibodies (mAbs) are the fastest growing class of therapeutic drugs, because of their high specificities to target cells. Facile analysis of therapeutic mAbs and their post-translational modifications (PTMs) is essential for quality control, and mass spectrometry (MS) is the most powerful tool for antibody characterization. This study uses pepsin-containing nylon membranes as controlled proteolysis reactors for mAb digestion prior to ultrahigh-resolution Orbitrap MS analysis. Variation of the residence times (from 3 ms to 3 s) of antibody solutions in the membranes yields "bottom-up" (1-2 kDa) to "middle-down" (5-15 kDa) peptide sizes within less than 10 min. These peptides cover the entire sequences of Trastuzumab and a Waters antibody, and a proteolytic peptide comprised of 140 amino acids from the Waters antibody contains all three complementarity determining regions on the light chain. This work compares the performance of "bottom-up" (in-solution tryptic digestion), "top-down" (intact protein fragmentation), and "middle-down" (in-membrane digestion) analysis of an antibody light chain. Data from tandem MS show 99%, 55%, and 99% bond cleavage for "bottom-up", "top-down", and "middle-down" analyses, respectively. In-membrane digestion also facilitates detection of PTMs such as oxidation, deamidation, N-terminal pyroglutamic acid formation, and glycosylation. Compared to "bottom-up" and "top-down" approaches for antibody characterization, in-membrane digestion uses minimal sample preparation time, and this technique also yields high peptide and sequence coverage for the identification of PTMs.
Collapse
Affiliation(s)
- Yongle Pang
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Wei-Han Wang
- Department of Chemistry, University of Virginia , Charlottesville, Virginia 22904, United States
| | - Gavin E Reid
- School of Chemistry, Department of Biochemistry and Molecular Biology, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Donald F Hunt
- Department of Chemistry, University of Virginia , Charlottesville, Virginia 22904, United States.,Department of Pathology, Health Sciences Center, University of Virginia , Charlottesville, Virginia 22908, United States
| | - Merlin L Bruening
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
48
|
Gahoual R, Biacchi M, Chicher J, Kuhn L, Hammann P, Beck A, Leize-Wagner E, François YN. Monoclonal antibodies biosimilarity assessment using transient isotachophoresis capillary zone electrophoresis-tandem mass spectrometry. MAbs 2015; 6:1464-73. [PMID: 25484058 DOI: 10.4161/mabs.36305] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Out of all categories, monoclonal antibody (mAb) therapeutics attract the most interest due to their strong therapeutic potency and specificity. Six of the 10 top-selling drugs are antibody-based therapeutics that will lose patent protection soon. The European Medicines Agency has pioneered the regulatory framework for approval of biosimilar products and approved the first biosimilar antibodies by the end of 2013. As highly complex glycoproteins with a wide range of micro-variants, mAbs require extensive characterization through multiple analytical methods for structure assessment rendering manufacturing control and biosimilarity studies particularly product and time-consuming. Here, capillary zone electrophoresis coupled to mass spectrometry by a sheathless interface (CESI-MS) was used to characterize marketed reference mAbs and their respective biosimilar candidate simultaneously over different facets of their primary structure. CESI-MS/MS data were compared between approved mAbs and their biosimilar candidates to prove/disconfirm biosimilarity regarding recent regulation directives. Using only a single sample injection of 200 fmol, CESI-MS/MS data enabled 100% amino acids (AA) sequence characterization, which allows a difference of even one AA between 2 samples to be distinguished precisely. Simultaneously glycoforms were characterized regarding their structures and position through fragmentation spectra and glycoforms semiquantitative analysis was established, showing the capacity of the developed methodology to detect up to 16 different glycans. Other posttranslational modifications hotspots were characterized while their relative occurrence levels were estimated and compared to biosimilars. These results proved the value of using CESI-MS because the separation selectivity and ionization efficiency provided by the system allowed substantial improvement in the characterization workflow robustness and accuracy. Biosimilarity assessment could be performed routinely with a single injection of each candidate enabling improvements in the biosimilar development pipeline.
Collapse
Affiliation(s)
- Rabah Gahoual
- a Laboratoire de spectrométrie de masse des interactions et des systèmes (LSMIS); CNRS - UMR 7140 , Université de Strasbourg , Strasbourg Cedex , France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Jung SK, Lee KH, Jeon JW, Lee JW, Kwon BO, Kim YJ, Bae JS, Kim DI, Lee SY, Chang SJ. Physicochemical characterization of Remsima. MAbs 2015; 6:1163-77. [PMID: 25517302 PMCID: PMC4622713 DOI: 10.4161/mabs.32221] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Remsima® (infliximab) was recently approved as the world's first biosimilar monoclonal antibody (mAb) in both the European Union and Korea. To achieve this, extensive physicochemical characterization of Remsima® in relation to Remicade® was conducted in order to demonstrate the highly similar properties between the two molecules. A multitude of state-of-the-art analyses revealed that Remsima® has identical primary as well as indistinguishable higher order structures compared with the original product. Monomer and aggregate contents of Remsima® were also found to be comparable with those of Remicade®. In terms of charge isoforms, although Remsima® was observed to contain slightly less basic variants than the original antibody, the difference was shown to be largely due to the presence of C-terminal lysine. On the other hand, this lysine was found to be rapidly clipped inside serum in vitro and in vivo, suggesting it has no effect on the biological potency or safety of the drug. Analysis of the glycan contents of the antibodies showed comparable glycan types and distributions. Recent results of clinical studies have further confirmed that the two antibody products are highly similar to each other. Based on this research as well as previous clinical and non-clinical comparability studies, Remsima® can be considered as a highly similar molecule to Remicade® in terms of physicochemical properties, efficacy, and safety for its final approval as a biosimilar product to Remicade®.
Collapse
|
50
|
Biacchi M, Gahoual R, Said N, Beck A, Leize-Wagner E, François YN. Glycoform Separation and Characterization of Cetuximab Variants by Middle-up Off-Line Capillary Zone Electrophoresis-UV/Electrospray Ionization-MS. Anal Chem 2015; 87:6240-50. [DOI: 10.1021/acs.analchem.5b00928] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michael Biacchi
- Laboratoire de Spectrométrie de
Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR
7140, Université de Strasbourg, Strasbourg 67000, France
| | - Rabah Gahoual
- Laboratoire de Spectrométrie de
Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR
7140, Université de Strasbourg, Strasbourg 67000, France
| | - Nassur Said
- Laboratoire de Spectrométrie de
Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR
7140, Université de Strasbourg, Strasbourg 67000, France
| | - Alain Beck
- Centre d’Immunologie Pierre Fabre, Saint-Julien-en-Genevois 74164, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de
Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR
7140, Université de Strasbourg, Strasbourg 67000, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de
Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR
7140, Université de Strasbourg, Strasbourg 67000, France
| |
Collapse
|